1
|
Aquino JR, Fox CR, Parks GD. Role of Defective Interfering Particles in Complement-Mediated Lysis of Parainfluenza Virus-Infected Cells. Viruses 2025; 17:488. [PMID: 40284931 PMCID: PMC12031084 DOI: 10.3390/v17040488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
RNA viruses pose a significant global public health burden due to their high mutation rates, zoonotic potential, and ability to evade immune responses. A common aspect of their replication is the generation of defective interfering particles (DIPs), which contain truncated defective viral genomes (DVGs) that depend on full-length standard (STD) virus for replication. DVGs have gained recognition as they are increasingly detected in clinical samples from natural infections. While their role in modulating type I interferon (IFN-I) responses is well established, their impact on the complement (C') system is not understood. In this study, we examined how DVGs influence C'-mediated lysis during parainfluenza virus 5 (PIV5) infection using real-time in vitro cell viability assays. Our results demonstrated that C' effectively killed human lung epithelial cells infected with STD PIV5, whereas co-infection with DIP-enriched stocks significantly suppressed C'-mediated killing through mechanisms that were dependent on DVG replication but independent of IFN-I production. The titration of DI units in co-infection with STD PIV5 showed a strong linear relationship between DIP-mediated decreases in surface viral glycoprotein expression and the inhibition of C'-mediated lysis. Our findings reveal a previously unrecognized function of DVGs in modulating C' pathways, shedding light on their potential role in viral persistence and immune evasion.
Collapse
Affiliation(s)
| | | | - Griffith D. Parks
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (J.R.A.); (C.R.F.)
| |
Collapse
|
2
|
Maryanchik SV, Borovikova SE, Ivanova AO, Trofimov VV, Bagrova OE, Frolova AS, Mityaeva ON, Volchkov PY, Deviatkin AA. Antivirotics based on defective interfering particles: emerging concepts and challenges. Front Cell Infect Microbiol 2025; 15:1436026. [PMID: 40066067 PMCID: PMC11891348 DOI: 10.3389/fcimb.2025.1436026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 01/28/2025] [Indexed: 05/13/2025] Open
Abstract
Viruses are obligate parasites, that use the host's internal metabolic systems for their own reproduction. This complicates the search for molecular targets to prevent the spread of viral infection without disrupting the vital functions of human cells. Defective interfering particles (DIPs) are natural competitors of viruses for important resources of viral reproduction. DIPs emerge during infection, originate from the normal viral replication process and inhibit its progression, making them an interesting candidate for antiviral therapy. Here we describe the biology of DIPs, advances in DIP-based antiviral technology, analyze their therapeutic potential and provide a systemic overview of existing preventive and therapeutic antiviral strategies.
Collapse
Affiliation(s)
- S. V. Maryanchik
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, Moscow, Russia
| | - S. E. Borovikova
- Institute of Gene Biology Russian Academy of Sciences (RAS), Moscow, Russia
| | - A. O. Ivanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | | | - O. E. Bagrova
- State Virus Collection Laboratory, Federal State Budget Institution “National Research Centre for Epidemiology and Microbiology named after Honorary Academician N F Gamaleya” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - A. S. Frolova
- Sechenov First Moscow State Medical University, Moscow, Russia
- Sirius University of Science and Technology, Sochi, Russia
| | - O. N. Mityaeva
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| | - P. Yu Volchkov
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
- The Moscow Clinical Scientific Center (MCSC) named after A. S. Loginov, Moscow, Russia
| | - A. A. Deviatkin
- Federal Research Center for Innovator and Emerging Biomedical and Pharmaceutical Technologies, Moscow, Russia
| |
Collapse
|
3
|
Meir M, Kahn A, Farage C, Maoz Y, Harel N, Ben Zvi A, Segev S, Volkov M, Yahud R, Gophna U, Stern A. Navigating a Fine Balance: Point-Mutant Cheater Viruses Disrupt the Viral Replication Cycle. Mol Biol Evol 2025; 42:msae258. [PMID: 39703047 PMCID: PMC11979748 DOI: 10.1093/molbev/msae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/21/2024] Open
Abstract
Cheater viruses cannot replicate on their own yet replicate faster than the wild type (WT) when the 2 viruses coinfect the same cell. Cheaters must possess dual genetic features: a defect, which leads to their inability to infect cells on their own, and a selective advantage over WT during coinfection. Previously, we have discovered 2 point-mutant cheaters of the MS2 bacteriophage. Here, we set out to discover the possible repertoire of cheater MS2 viruses by performing experimental evolution at a very high multiplicity of infection. Our results revealed a third point-mutant cheater that arose in 8 biological replicas. Each of the 3 primary cheaters disrupts the fine balance necessary for phage replication, in different ways that create a defect + advantage. We found that over time, the point-mutant cheaters accumulate additional secondary mutations, which alter other stages of the viral replication cycle, complementing the disruptions created by the original cheater. Intriguingly, cheater and secondary mutations almost always reside in very close proximity on the genome. This region encodes for multiple functions: overlapping reading frames as well as overlapping RNA structures critical for transitioning from one stage to another in the viral replication cycle. This region of overlap explains the dual functions of cheaters, as one mutation can have pleiotropic effects. Overall, these findings underscore how viruses, whose dense genomes often have overlapping functions, can easily evolve point-mutant cheaters, and how cheaters can evolve to alter the intricate balance of the viral replication cycle.
Collapse
Affiliation(s)
- Moran Meir
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Arielle Kahn
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Carmel Farage
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Yael Maoz
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Noam Harel
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Ben Zvi
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Shir Segev
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Maria Volkov
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ravit Yahud
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Adi Stern
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
- Edmond J. Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Sharma SP, Chawla-Sarkar M, Sandhir R, Dutta D. Decoding the role of RNA sequences and their interactions in influenza A virus infection and adaptation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1871. [PMID: 39501458 DOI: 10.1002/wrna.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 04/10/2025]
Abstract
Influenza viruses (types A, B, C, and D) belong to the family orthomyxoviridae. Out of all the influenza types, influenza A virus (IAV) causes human pandemic outbreaks. Its pandemic potential is predominantly attributed to the genetic reassortment favored by a broad spectrum of host species that could lead to an antigenic shift along with a high rate of mutations in its genome, presenting a possibility of subtypes with heightened pathogenesis and virulence in humans (antigenic drift). In addition to antigenic shift and drift, there are several other inherent properties of its viral RNA species (vRNA, vmRNA, and cRNA) that significantly contribute to the success of specific stages of viral infection. In this review, we compile the key features of IAV RNA, such as sequence motifs and secondary structures, their functional significance in the infection cycle, and their overall impact on the virus's adaptive and evolutionary fitness. Because many of these motifs and folds are conserved, we also assess the existing antiviral approaches focused on targeting IAV RNA. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Satya P Sharma
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Mamta Chawla-Sarkar
- ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, West Bengal, India
| | - Rajat Sandhir
- Department of Biochemistry, Panjab University, Chandigarh, India
| | - Dipanjan Dutta
- School of Biological Sciences, Amity University, Punjab, India
| |
Collapse
|
5
|
González Aparicio LJ, López CB. Selection of nonstandard viral genomes during the evolution of RNA viruses: A virus survival strategy or a pesky inconvenience? Adv Virus Res 2024; 119:39-61. [PMID: 38897708 DOI: 10.1016/bs.aivir.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
RNA viruses are some of the most successful biological entities due their ability to adapt and evolve. Despite their small genome and parasitic nature, RNA viruses have evolved many mechanisms to ensure their survival and maintenance in the host population. We propose that one of these mechanisms of survival is the generation of nonstandard viral genomes (nsVGs) that accumulate during viral replication. NsVGs are often considered to be accidental defective byproducts of the RNA virus replication, but their ubiquity and the plethora of roles they have during infection indicate that they are an integral part of the virus life cycle. Here we review the different types of nsVGs and discuss how their multiple roles during infection could be beneficial for RNA viruses to be maintained in nature. By shifting our perspectives on what makes a virus successful, we posit that nsVG generation is a conserved phenomenon that arose during RNA virus evolution as an essential component of a healthy virus community.
Collapse
Affiliation(s)
- Lavinia J González Aparicio
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
6
|
Keown J, Baazaoui A, Šebesta M, Štefl R, Carrique L, Fodor E, Grimes JM. Structural and functional characterization of the interaction between the influenza A virus RNA polymerase and the CTD of host RNA polymerase II. J Virol 2024; 98:e0013824. [PMID: 38563748 PMCID: PMC11092357 DOI: 10.1128/jvi.00138-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024] Open
Abstract
Influenza A viruses, causing seasonal epidemics and occasional pandemics, rely on interactions with host proteins for their RNA genome transcription and replication. The viral RNA polymerase utilizes host RNA polymerase II (Pol II) and interacts with the serine 5 phosphorylated (pS5) C-terminal domain (CTD) of Pol II to initiate transcription. Our study, using single-particle electron cryomicroscopy (cryo-EM), reveals the structure of the 1918 pandemic influenza A virus polymerase bound to a synthetic pS5 CTD peptide composed of four heptad repeats mimicking the 52 heptad repeat mammalian Pol II CTD. The structure shows that the CTD peptide binds at the C-terminal domain of the PA viral polymerase subunit (PA-C) and reveals a previously unobserved position of the 627 domain of the PB2 subunit near the CTD. We identify crucial residues of the CTD peptide that mediate interactions with positively charged cavities on PA-C, explaining the preference of the viral polymerase for pS5 CTD. Functional analysis of mutants targeting the CTD-binding site within PA-C reveals reduced transcriptional function or defects in replication, highlighting the multifunctional role of PA-C in viral RNA synthesis. Our study provides insights into the structural and functional aspects of the influenza virus polymerase-host Pol II interaction and identifies a target for antiviral development.IMPORTANCEUnderstanding the intricate interactions between influenza A viruses and host proteins is crucial for developing targeted antiviral strategies. This study employs advanced imaging techniques to uncover the structural nuances of the 1918 pandemic influenza A virus polymerase bound to a specific host protein, shedding light on the vital process of viral RNA synthesis. The study identifies key amino acid residues in the influenza polymerase involved in binding host polymerase II (Pol II) and highlights their role in both viral transcription and genome replication. These findings not only deepen our understanding of the influenza virus life cycle but also pinpoint a potential target for antiviral development. By elucidating the structural and functional aspects of the influenza virus polymerase-host Pol II interaction, this research provides a foundation for designing interventions to disrupt viral replication and transcription, offering promising avenues for future antiviral therapies.
Collapse
Affiliation(s)
- Jeremy Keown
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Alaa Baazaoui
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Marek Šebesta
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Richard Štefl
- CEITEC–Central European Institute of Technology, Masaryk University, Brno, Czechia
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czechia
| | - Loïc Carrique
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ervin Fodor
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jonathan M. Grimes
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Brennan JW, Sun Y. Defective viral genomes: advances in understanding their generation, function, and impact on infection outcomes. mBio 2024; 15:e0069224. [PMID: 38567955 PMCID: PMC11077978 DOI: 10.1128/mbio.00692-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Defective viral genomes (DVGs) are truncated derivatives of their parental viral genomes generated during an aberrant round of viral genomic replication. Distinct classes of DVGs have been identified in most families of both positive- and negative-sense RNA viruses. Importantly, DVGs have been detected in clinical samples from virally infected individuals and an emerging body of association studies implicates DVGs in shaping the severity of disease caused by viral infections in humans. Consequently, there is growing interest in understanding the molecular mechanisms of de novo DVG generation, how DVGs interact with the innate immune system, and harnessing DVGs as novel therapeutics and vaccine adjuvants to attenuate viral pathogenesis. This minireview focuses on single-stranded RNA viruses (excluding retroviridae), and summarizes the current knowledge of DVG generation, the functions and diversity of DVG species, the roles DVGs play in influencing disease progression, and their application as antivirals and vaccine adjuvants.
Collapse
Affiliation(s)
- Justin W. Brennan
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| | - Yan Sun
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
8
|
Krischuns T, Arragain B, Isel C, Paisant S, Budt M, Wolff T, Cusack S, Naffakh N. The host RNA polymerase II C-terminal domain is the anchor for replication of the influenza virus genome. Nat Commun 2024; 15:1064. [PMID: 38316757 PMCID: PMC10844641 DOI: 10.1038/s41467-024-45205-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
The current model is that the influenza virus polymerase (FluPol) binds either to host RNA polymerase II (RNAP II) or to the acidic nuclear phosphoprotein 32 (ANP32), which drives its conformation and activity towards transcription or replication of the viral genome, respectively. Here, we provide evidence that the FluPol-RNAP II binding interface, beyond its well-acknowledged function in cap-snatching during transcription initiation, has also a pivotal role in replication of the viral genome. Using a combination of cell-based and in vitro approaches, we show that the RNAP II C-terminal-domain, jointly with ANP32, enhances FluPol replication activity. We observe successive conformational changes to switch from a transcriptase to a replicase conformation in the presence of the bound RNPAII C-terminal domain and propose a model in which the host RNAP II is the anchor for transcription and replication of the viral genome. Our data open new perspectives on the spatial coupling of viral transcription and replication and the coordinated balance between these two activities.
Collapse
Affiliation(s)
- Tim Krischuns
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| | | | - Catherine Isel
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Sylvain Paisant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France
| | - Matthias Budt
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Thorsten Wolff
- Unit 17 "Influenza and other Respiratory Viruses", Robert Koch Institut, Berlin, Germany
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble, France.
| | - Nadia Naffakh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3569, RNA Biology of Influenza Virus, Paris, France.
| |
Collapse
|
9
|
Xu Z, Peng Q, Song J, Zhang H, Wei D, Demongeot J, Zeng Q. Bioinformatic analysis of defective viral genomes in SARS-CoV-2 and its impact on population infection characteristics. Front Immunol 2024; 15:1341906. [PMID: 38348041 PMCID: PMC10859446 DOI: 10.3389/fimmu.2024.1341906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/15/2024] Open
Abstract
DVGs (Defective Viral Genomes) are prevalent in RNA virus infections. In this investigation, we conducted an analysis of high-throughput sequencing data and observed widespread presence of DVGs in SARS-CoV-2. Comparative analysis between SARS-CoV-2 and diverse DNA viruses revealed heightened susceptibility to damage and increased sequencing sample heterogeneity within the SARS-CoV-2 genome. Whole-genome sequencing depth variability analysis exhibited a higher coefficient of variation for SARS-CoV-2, while DVG analysis indicated a significant proportion of recombination sites, signifying notable genome heterogeneity and suggesting that a large proportion of assembled virus particles contain incomplete RNA sequences. Moreover, our investigation explored the sequencing depth and DVG content differences among various strains. Our findings revealed that as the virus evolves, there is a notable increase in the proportion of intact genomes within virus particles, as evidenced by third-generation sequencing data. Specifically, the proportion of intact genome in the Omicron strain surpassed that of the Delta and Alpha strains. This observation effectively elucidates the heightened infectiousness of the Omicron strain compared to the Delta and Alpha strains. We also postulate that this improvement in completeness stems from enhanced virus assembly capacity, as the Omicron strain can promptly facilitate the binding of RNA and capsid protein, thereby reducing the exposure time of vulnerable virus RNA in the host environment and significantly mitigating its degradation. Finally, employing mathematical modeling, we simulated the impact of DVG effects under varying environmental factors on infection characteristics and population evolution. Our findings provide an explanation for the close association between symptom severity and the extent of virus invasion, as well as the substantial disparity in population infection characteristics caused by the same strain under distinct environmental conditions. This study presents a novel approach for future virus research and vaccine development.
Collapse
Affiliation(s)
- Zhaobin Xu
- Department of Life Science, Dezhou University, Dezhou, China
| | - Qingzhi Peng
- Department of Life Science, Dezhou University, Dezhou, China
| | - Jian Song
- Department of Life Science, Dezhou University, Dezhou, China
| | - Hongmei Zhang
- Department of Life Science, Dezhou University, Dezhou, China
| | - Dongqing Wei
- State Key Laboratory of Microbial Metabolism, Shanghai-Islamabad-Belgrade Joint Innovation Center on Antibacterial Resistances, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Zhongguancun Scientific Park, Meixi, Nanyang, Henan, China
- Peng Cheng National Laboratory, Shenzhen, Guangdong, China
| | - Jacques Demongeot
- Laboratory AGEIS EA 7407, Team Tools for e-Gnosis Medical, Faculty of Medicine, University Grenoble Alpes (UGA), F-38700 La Tronche, France
| | - Qiangcheng Zeng
- Department of Life Science, Dezhou University, Dezhou, China
| |
Collapse
|
10
|
Kalamvoki M, Norris V. A Defective Viral Particle Approach to COVID-19. Cells 2022; 11:302. [PMID: 35053418 PMCID: PMC8774189 DOI: 10.3390/cells11020302] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/03/2021] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
The novel coronavirus SARS-CoV-2 has caused a pandemic resulting in millions of deaths worldwide. While multiple vaccines have been developed, insufficient vaccination combined with adaptive mutations create uncertainty for the future. Here, we discuss novel strategies to control COVID-19 relying on Defective Interfering Particles (DIPs) and related particles that arise naturally during an infection. Our intention is to encourage and to provide the basis for the implementation of such strategies by multi-disciplinary teams. We therefore provide an overview of SARS-CoV-2 for a multi-disciplinary readership that is specifically tailored to these strategies, we identify potential targets based on the current knowledge of the properties and functions of coronaviruses, and we propose specific strategies to engineer DIPs and other interfering or therapeutic nanoparticles.
Collapse
Affiliation(s)
- Maria Kalamvoki
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA
| | - Vic Norris
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen, 76821 Mont Saint Aignan, France;
| |
Collapse
|
11
|
Ayaz S, Dibben O, Chapman D. Presence of defective viral genes in H1N1 live attenuated influenza vaccine strains is not associated with reduced human cell fitness or vaccine effectiveness. Vaccine 2021; 39:6735-6745. [PMID: 34663504 DOI: 10.1016/j.vaccine.2021.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/26/2021] [Accepted: 10/06/2021] [Indexed: 11/28/2022]
Abstract
In the 2013-2014 and 2015-2016 seasons, quadrivalent live attenuated influenza vaccine (LAIV) showed reduced pandemic 2009 H1N1 (A/H1N1pdm09) vaccine effectiveness (VE) in the U.S. Impaired fitness of A/H1N1pdm09 LAIV strains in primary human nasal epithelial cells (hNEC) was subsequently shown to be associated with reduced VE. As defective viral genes (DVG) have been detected in QLAIV, it was hypothesised that these might play a role in reduced A/H1N1pdm09 fitness. By applying RT-PCR based approaches, DVG for PB2, PB1 and PA segments were detected in all influenza A LAIV strains tested. Absolute quantification of PA vRNA as a biomarker, using a novel digital RT-PCR assay (RT-dPCR), showed that DVG were a minority population (between 10.2 and 27.8 % of PA vRNA) in LAIV, irrespective of subtype or VE. Importantly, no difference was observed between the fitter pre-2009 H1N1 A/New Caledonia/20/1999 (A/NC99) and less fit A/H1N1pdm09 A/Bolivia/509/2013 (A/BOL13), containing medians of 16.0 % and 10.2 % PA DVG, respectively. Manipulating propagation conditions and minimising A/BOL13 PA DVG to 5.2 % failed to improve viral replication in hNEC, suggesting DVG were not limiting A/BOL13 fitness. Conversely, DVG were able to reduce A/NC99 replication in hNEC to A/BOL13-like levels, but only by enrichment of PA DVG to 66.5 % of vRNA. Notably, this required LAIV propagation under conditions markedly different to those used for vaccine production. We conclude from these data that abundance of DVG in QLAIV is not associated with variations in influenza A VE and that the reduced fitness of A/BOL13 previously described was not driven by the presence of DVG.
Collapse
Affiliation(s)
- Sameer Ayaz
- Flu-BPD, Biopharmaceuticals R&D, AstraZeneca, Liverpool, UK.
| | - Oliver Dibben
- Flu-BPD, Biopharmaceuticals R&D, AstraZeneca, Liverpool, UK
| | - David Chapman
- Flu-BPD, Biopharmaceuticals R&D, AstraZeneca, Liverpool, UK
| |
Collapse
|
12
|
Abstract
Influenza polymerase (FluPol) plays a key role in the viral infection cycle by transcribing and replicating the viral genome. FluPol is a multifunctional, heterotrimeric enzyme with cap-binding, endonuclease, RNA-dependent RNA polymerase and polyadenylation activities. It performs its functions in the context of the viral ribonucleoprotein particle (RNP), wherein the template viral RNA is coated by multiple copies of viral nucleoprotein. Moreover, it interacts with a number of host proteins that are essential cofactors and, consequently, adaptive mutations in the polymerase are required for crossing the avian-human species barrier. In this review, we show how mechanistic understanding of how FluPol performs its multiple functions has greatly advanced over the last decade through determination of high-resolution structures by X-ray crystallography and cryo-electron microscopy. These have revealed not only the detailed architecture of FluPol but highlighted the remarkably conformational flexibility that is inherent to its functioning as a dynamic RNA synthesis machine. Structural studies are also underpinning current attempts to develop next-generation anti-influenza drugs that directly target FluPol.
Collapse
Affiliation(s)
- Joanna M Wandzik
- European Molecular Biology Laboratory, Grenoble 38042-Cedex 9, France
| | - Tomas Kouba
- European Molecular Biology Laboratory, Grenoble 38042-Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble 38042-Cedex 9, France
| |
Collapse
|
13
|
Identification and Characterization of Defective Viral Genomes in Ebola Virus-Infected Rhesus Macaques. J Virol 2021; 95:e0071421. [PMID: 34160256 DOI: 10.1128/jvi.00714-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ebola virus (EBOV), of the family Filoviridae, is an RNA virus that can cause a hemorrhagic fever with a high mortality rate. Defective viral genomes (DVGs) are truncated genomes that have been observed during multiple RNA virus infections, including in vitro EBOV infection, and have previously been associated with viral persistence and immunostimulatory activity. As DVGs have been detected in cells persistently infected with EBOV, we hypothesized that DVGs may also accumulate during viral replication in filovirus-infected hosts. Therefore, we interrogated sequence data from serum and tissue samples using a bioinformatics tool in order to identify the presence of DVGs in nonhuman primates (NHPs) infected with EBOV, Sudan virus (SUDV), or Marburg virus (MARV). Multiple 5' copy-back DVGs (cbDVGs) were detected in NHP serum during the acute phase of filovirus infection. While the relative abundance of total DVGs in most animals was low, serum collected during acute EBOV and SUDV infections, but not MARV infections, contained a higher proportion of short trailer sequence cbDVGs than the challenge stock. This indicated an accumulation of these DVGs throughout infection, potentially due to the preferential replication of short DVGs over the longer viral genome. Using reverse transcriptase PCR (RT-PCR) and deep sequencing, we also confirmed the presence of 5' cbDVGs in EBOV-infected NHP testes, which is of interest due to EBOV persistence in semen of male survivors of infection. This work suggests that DVGs play a role in EBOV infection in vivo and that further study will lead to a better understanding of EBOV pathogenesis. IMPORTANCE The study of filovirus pathogenesis is critical for understanding the consequences of infection and for the development of strategies to ameliorate future outbreaks. Defective viral genomes (DVGs) have been detected during EBOV infections in vitro; however, their presence in in vivo infections remains unknown. In this study, DVGs were detected in samples collected from EBOV- and SUDV-infected nonhuman primates (NHPs). The accumulation of these DVGs in the trailer region of the genome during infection indicates a potential role in EBOV and SUDV pathogenesis. In particular, the presence of DVGs in the testes of infected NHPs requires further investigation as it may be linked to the establishment of persistence.
Collapse
|
14
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Wang S, Li N, Jin S, Zhang R, Xu T. Polymerase acidic subunit of H9N2 polymerase complex induces cell apoptosis by binding to PDCD 7 in A549 cells. Virol J 2021; 18:75. [PMID: 33849599 PMCID: PMC8045253 DOI: 10.1186/s12985-021-01547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
Background H9N2 influenza virus, a subtype of influenza A virus, can spread across different species and induce the respiratory infectious disease in humans, leading to a severe public health risk and a huge economic loss to poultry production. Increasing studies have shown that polymerase acidic (PA) subunit of RNA polymerase in ribonucleoproteins complex of H9N2 virus involves in crossing the host species barriers, the replication and airborne transmission of H9N2 virus. Methods Here, to further investigate the role of PA subunit during the infection of H9N2 influenza virus, we employed mass spectrometry (MS) to search the potential binding proteins of PA subunit of H9N2 virus. Our MS results showed that programmed cell death protein 7 (PDCD7) is a binding target of PA subunit. Co-immunoprecipitation and pull-down assays further confirmed the interaction between PDCD7 and PA subunit. Overexpression of PA subunit in A549 lung cells greatly increased the levels of PDCD7 in the nuclear and induced cell death assayed by MTT assay. Results Flow cytometry analysis and Western blot results showed that PA subunit overexpression significantly increased the expression of pro-apoptotic protein, bax and caspase 3, and induced cell apoptosis. However, knockout of PDCD7 effectively attenuated the effects of PA overexpression in cell apoptosis. Conclusions In conclusion, the PA subunit of H9N2 virus bind with PDCD7 and regulated cell apoptosis, which provide new insights in the role of PA subunit during H9N2 influenza virus infection. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01547-7.
Collapse
Affiliation(s)
- Shaohua Wang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Na Li
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Shugang Jin
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Ruihua Zhang
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China
| | - Tong Xu
- Key Laboratory of Preventive Veterinary Medicine, Department of Veterinary Medicine, Animal Science College, Hebei North University, Zhangjiakou, 075131, Hebei, People's Republic of China.
| |
Collapse
|
16
|
Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. J Virol 2021; 95:JVI.02181-20. [PMID: 33472930 PMCID: PMC8103698 DOI: 10.1128/jvi.02181-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5' and 3' terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Michelle A Wiebe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Kristen M Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
17
|
The influenza virus RNA polymerase as an innate immune agonist and antagonist. Cell Mol Life Sci 2021; 78:7237-7256. [PMID: 34677644 PMCID: PMC8532088 DOI: 10.1007/s00018-021-03957-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/29/2021] [Indexed: 12/16/2022]
Abstract
Influenza A viruses cause a mild-to-severe respiratory disease that affects millions of people each year. One of the many determinants of disease outcome is the innate immune response to the viral infection. While antiviral responses are essential for viral clearance, excessive innate immune activation promotes lung damage and disease. The influenza A virus RNA polymerase is one of viral proteins that affect innate immune activation during infection, but the mechanisms behind this activity are not well understood. In this review, we discuss how the viral RNA polymerase can both activate and suppress innate immune responses by either producing immunostimulatory RNA species or directly targeting the components of the innate immune signalling pathway, respectively. Furthermore, we provide a comprehensive overview of the polymerase residues, and their mutations, associated with changes in innate immune activation, and discuss their putative effects on polymerase function based on recent advances in our understanding of the influenza A virus RNA polymerase structure.
Collapse
|
18
|
Boussier J, Munier S, Achouri E, Meyer B, Crescenzo-Chaigne B, Behillil S, Enouf V, Vignuzzi M, van der Werf S, Naffakh N. RNA-seq accuracy and reproducibility for the mapping and quantification of influenza defective viral genomes. RNA (NEW YORK, N.Y.) 2020; 26:1905-1918. [PMID: 32929001 PMCID: PMC7668258 DOI: 10.1261/rna.077529.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 09/02/2020] [Indexed: 05/12/2023]
Abstract
Like most RNA viruses, influenza viruses generate defective viral genomes (DVGs) with large internal deletions during replication. There is accumulating evidence supporting a biological relevance of such DVGs. However, further understanding of the molecular mechanisms that underlie the production and biological activity of DVGs is conditioned upon the sensitivity and accuracy of detection methods, that is, next-generation sequencing (NGS) technologies and related bioinformatics algorithms. Although many algorithms were developed, their sensitivity and reproducibility were mostly assessed on simulated data. Here, we introduce DG-seq, a time-efficient pipeline for DVG detection and quantification, and a set of biological controls to assess the performance of not only our bioinformatics algorithm but also the upstream NGS steps. Using these tools, we provide the first rigorous comparison of the two commonly used sample processing methods for RNA-seq, with or without a PCR preamplification step. Our data show that preamplification confers a limited advantage in terms of sensitivity and introduces size- but also sequence-dependent biases in DVG quantification, thereby providing a strong rationale to favor preamplification-free methods. We further examine the features of DVGs produced by wild-type and transcription-defective (PA-K635A or PA-R638A) influenza viruses, and show an increased diversity and frequency of DVGs produced by the PA mutants compared to the wild-type virus. Finally, we demonstrate a significant enrichment in DVGs showing direct, A/T-rich sequence repeats at the deletion breakpoint sites. Our findings provide novel insights into the mechanisms of influenza virus DVG production.
Collapse
Affiliation(s)
- Jeremy Boussier
- Unité d'Immunobiologie des Cellules Dendritiques, Institut Pasteur, INSERM U1223, 75015 Paris, France
- Université de Paris, Sorbonne Paris Cité, 75013 Paris, France
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
| | - Sandie Munier
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Emna Achouri
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
- Hub de Bioinformatique et Biostatistique, Institut Pasteur, CNRS USR 3756, 75015 Paris, France
| | - Bjoern Meyer
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
| | - Bernadette Crescenzo-Chaigne
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| | - Sylvie Behillil
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, 75015 Paris, France
| | - Vincent Enouf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, 75015 Paris, France
- Pasteur International Bioresources network (PIBnet), Plateforme de Microbiologie Mutualisée (P2M), Institut Pasteur, 75015 Paris, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France
| | - Sylvie van der Werf
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
- Centre National de Référence des Virus des Infections Respiratoires, Institut Pasteur, 75015 Paris, France
| | - Nadia Naffakh
- Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, CNRS UMR 3569, Université de Paris, Paris, France
| |
Collapse
|
19
|
Ziegler CM, Botten JW. Defective Interfering Particles of Negative-Strand RNA Viruses. Trends Microbiol 2020; 28:554-565. [PMID: 32544442 PMCID: PMC7298151 DOI: 10.1016/j.tim.2020.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Viral defective interfering particles (DIPs) were intensely studied several decades ago but research waned leaving open many critical questions. New technologies and other advances led to a resurgence in DIP studies for negative-strand RNA viruses. While DIPs have long been recognized, their exact contribution to the outcome of acute or persistent viral infections has remained elusive. Recent studies have identified defective viral genomes (DVGs) in human infections, including respiratory syncytial virus and influenza, and growing evidence indicates that DVGs influence disease severity and may contribute to viral persistence. Further, several studies have advanced our understanding of key viral and host factors that regulate DIP formation and activity. Here we review these discoveries and highlight key questions moving forward.
Collapse
Affiliation(s)
- Christopher M Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA
| | - Jason W Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA; Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Vaccine Testing Center, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
20
|
Affiliation(s)
- Fadi G. Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
21
|
Furusawa Y, Yamada S, da Silva Lopes TJ, Dutta J, Khan Z, Kriti D, van Bakel H, Kawaoka Y. Influenza Virus Polymerase Mutation Stabilizes a Foreign Gene Inserted into the Virus Genome by Enhancing the Transcription/Replication Efficiency of the Modified Segment. mBio 2019; 10:e01794-19. [PMID: 31575766 PMCID: PMC6775454 DOI: 10.1128/mbio.01794-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/03/2019] [Indexed: 12/15/2022] Open
Abstract
We previously attempted to establish a reporter influenza virus by inserting the gene for the Venus fluorescent protein into the NS segment of influenza A/Puerto Rico/8/34 (PR8, H1N1) virus to yield WT-Venus-PR8. Although the inserted Venus gene was deleted during serial passages of WT-Venus-PR8, we discovered that the PB2-E712D mutation stabilizes the Venus gene. Here, we explored the mechanisms by which Venus gene deletion occurs and how the polymerase mutation stabilizes the Venus gene. Deep sequencing analysis revealed that PB2-E712D does not cause an appreciable change in the mutation rate, suggesting that the stability of the Venus gene is not affected by polymerase fidelity. We found by using quantitative real-time PCR that WT-Venus-PR8 induces high-level interferon beta (IFN-β) expression. The induction of IFN-β expression seemed to result from the reduced transcription/replication efficiency of the modified NS segment in WT-Venus-PR8. In contrast, the transcription/replication efficiency of the modified NS segment was enhanced by the PB2-E712D mutation. Loss of the Venus gene in WT-Venus-PR8 appeared to be caused by internal deletions in the NS segment. Moreover, to further our understanding of the Venus stabilization mechanisms, we identified additional amino acid mutations in the virus polymerase complex that stabilize the Venus gene. We found that some of these amino acids are located near the template exit or the product exit of the viral polymerase, suggesting that these amino acids contribute to the stability of the Venus gene by affecting the binding affinity between the polymerase complex and the RNA template and product.IMPORTANCE The reverse genetics method of influenza virus generation has enabled us to generate recombinant viruses bearing modified viral proteins. Recombinant influenza viruses expressing foreign genes have become useful tools in basic research, and such viruses can be utilized as efficient virus vectors or multivalent vaccines. However, the insertion of a foreign gene into the influenza virus genome often impairs virus replication, and the inserted genes are unstable. Elucidation of the mechanisms of foreign gene stabilization will help us to establish useful recombinant influenza viruses.
Collapse
Affiliation(s)
- Yuri Furusawa
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Shinya Yamada
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tiago Jose da Silva Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Divya Kriti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Ghorbani A, Ngunjiri JM, Lee CW. Influenza A Virus Subpopulations and Their Implication in Pathogenesis and Vaccine Development. Annu Rev Anim Biosci 2019; 8:247-267. [PMID: 31479617 DOI: 10.1146/annurev-animal-021419-083756] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The concept of influenza A virus (IAV) subpopulations emerged approximately 75 years ago, when Preben von Magnus described "incomplete" virus particles that interfere with the replication of infectious virus. It is now widely accepted that infectious particles constitute only a minor portion of biologically active IAV subpopulations. The IAV quasispecies is an extremely diverse swarm of biologically and genetically heterogeneous particle subpopulations that collectively influence the evolutionary fitness of the virus. This review summarizes the current knowledge of IAV subpopulations, focusing on their biologic and genomic diversity. It also discusses the potential roles IAV subpopulations play in virus pathogenesis and live attenuated influenza vaccine development.
Collapse
Affiliation(s)
- Amir Ghorbani
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Ngunjiri
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , ,
| | - Chang-Won Lee
- Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, Ohio 44691, USA; , , .,Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
23
|
Lui WY, Yuen CK, Li C, Wong WM, Lui PY, Lin CH, Chan KH, Zhao H, Chen H, To KKW, Zhang AJX, Yuen KY, Kok KH. SMRT sequencing revealed the diversity and characteristics of defective interfering RNAs in influenza A (H7N9) virus infection. Emerg Microbes Infect 2019; 8:662-674. [PMID: 31084471 PMCID: PMC6534226 DOI: 10.1080/22221751.2019.1611346] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Influenza defective interfering (DI) particles are replication-incompetent viruses carrying large internal deletion in the genome. The loss of essential genetic information causes abortive viral replication, which can be rescued by co-infection with a helper virus that possesses an intact genome. Despite reports of DI particles present in seasonal influenza A H1N1 infections, their existence in human infections by the avian influenza A viruses, such as H7N9, has not been studied. Here we report the ubiquitous presence of DI-RNAs in nasopharyngeal aspirates of H7N9-infected patients. Single Molecule Real Time (SMRT) sequencing was first applied and long-read sequencing analysis showed that a variety of H7N9 DI-RNA species were present in the patient samples and human bronchial epithelial cells. In several abundantly expressed DI-RNA species, long overlapping sequences have been identified around at the breakpoint region and the other side of deleted region. Influenza DI-RNA is known as a defective viral RNA with single large internal deletion. Beneficial to the long-read property of SMRT sequencing, double and triple internal deletions were identified in half of the DI-RNA species. In addition, we examined the expression of DI-RNAs in mice infected with sublethal dose of H7N9 virus at different time points. Interestingly, DI-RNAs were abundantly expressed as early as day 2 post-infection. Taken together, we reveal the diversity and characteristics of DI-RNAs found in H7N9-infected patients, cells and animals. Further investigations on this overwhelming generation of DI-RNA may provide important insights into the understanding of H7N9 viral replication and pathogenesis.
Collapse
Affiliation(s)
- Wing-Yu Lui
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Chun-Kit Yuen
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Can Li
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Wan Man Wong
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Pak-Yin Lui
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Chi-Ho Lin
- b Center for Genome Sciences, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Kwok-Hung Chan
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,c State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,d Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,e Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Hanjun Zhao
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,c State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,d Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,e Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Honglin Chen
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Kelvin K W To
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,c State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,d Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,e Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Anna J X Zhang
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,c State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,d Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,e Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Kwok-Yung Yuen
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,c State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,d Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China.,e Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| | - Kin-Hang Kok
- a Department of Microbiology, Li Ka Shing Faculty of Medicine , University of Hong Kong , Hong Kong , People's Republic of China
| |
Collapse
|
24
|
Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol 2019; 4:1075-1087. [PMID: 31160826 PMCID: PMC7097797 DOI: 10.1038/s41564-019-0465-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Viruses survive often harsh host environments, yet we know little about the strategies they utilize to adapt and subsist given their limited genomic resources. We are beginning to appreciate the surprising versatility of viral genomes and how replication-competent and -defective virus variants can provide means for adaptation, immune escape and virus perpetuation. This Review summarizes current knowledge of the types of defective viral genomes generated during the replication of RNA viruses and the functions that they carry out. We highlight the universality and diversity of defective viral genomes during infections and discuss their predicted role in maintaining a fit virus population, their impact on human and animal health, and their potential to be harnessed as antiviral tools. This Review describes recent findings on the biogenesis and the role of defective viral genomes during replication of RNA viruses and discusses their impact on viral dynamics and evolution.
Collapse
|
25
|
Abstract
Defective viral genomes (DVGs) are generated during viral replication and are unable to carry out a full replication cycle unless coinfected with a full-length virus. DVGs are produced by many viruses, and their presence correlates with alterations in infection outcomes. Historically, DVGs were studied for their ability to interfere with standard virus replication as well as for their association with viral persistence. More recently, a critical role for DVGs in inducing the innate immune response during infection was appreciated. Here we review the role of DVGs of RNA viruses in shaping outcomes of experimental as well as natural infections and explore the mechanisms by which DVGs impact infection outcome.
Collapse
Affiliation(s)
- Emmanuelle Genoyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
26
|
Sun Y, Kim EJ, Felt SA, Taylor LJ, Agarwal D, Grant GR, López CB. A specific sequence in the genome of respiratory syncytial virus regulates the generation of copy-back defective viral genomes. PLoS Pathog 2019; 15:e1007707. [PMID: 30995283 PMCID: PMC6504078 DOI: 10.1371/journal.ppat.1007707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/07/2019] [Accepted: 03/15/2019] [Indexed: 01/12/2023] Open
Abstract
Defective viral genomes of the copy-back type (cbDVGs) are the primary initiators of the antiviral immune response during infection with respiratory syncytial virus (RSV) both in vitro and in vivo. However, the mechanism governing cbDVG generation remains unknown, thereby limiting our ability to manipulate cbDVG content in order to modulate the host response to infection. Here we report a specific genomic signal that mediates the generation of a subset of RSV cbDVG species. Using a customized bioinformatics tool, we identified regions in the RSV genome frequently used to generate cbDVGs during infection. We then created a minigenome system to validate the function of one of these sequences and to determine if specific nucleotides were essential for cbDVG generation at that position. Further, we created a recombinant virus unable to produce a subset of cbDVGs due to mutations introduced in this sequence. The identified sequence was also found as a site for cbDVG generation during natural RSV infections, and common cbDVGs originated at this sequence were found among samples from various infected patients. These data demonstrate that sequences encoded in the viral genome determine the location of cbDVG formation and, therefore, the generation of cbDVGs is not a stochastic process. These findings open the possibility of genetically manipulating cbDVG formation to modulate infection outcome.
Collapse
Affiliation(s)
- Yan Sun
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Eun Ji Kim
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Sébastien A. Felt
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Louis J. Taylor
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Divyansh Agarwal
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Gregory R. Grant
- Institute of Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Carolina B. López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
27
|
Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction. Eur J Med Chem 2018; 157:743-758. [PMID: 30142611 DOI: 10.1016/j.ejmech.2018.08.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/03/2018] [Accepted: 08/11/2018] [Indexed: 11/21/2022]
Abstract
The limited treatment options against influenza virus along with the growing public health concerns regarding the continuous emergence of drug-resistant viruses make essential the development of new anti-flu agents with novel mechanisms of action. One of the most attractive targets is the interaction between two subunits of the RNA-dependent RNA polymerase, PA and PB1. Herein we report the rational design of hybrid compounds starting from a 3-cyano-4,6-diphenylpyridine scaffold recently identified as disruptor of PA-PB1 interactions. Guided by the previously reported SAR data, a library of amino acid derivatives was synthesized. The biological evaluation led to the identification of new PA-PB1 inhibitors, that do not show appreciable toxicity. Molecular modeling shed further lights on the inhibition mechanism of these compounds.
Collapse
|
28
|
Slaine PD, MacRae C, Kleer M, Lamoureux E, McAlpine S, Warhuus M, Comeau AM, McCormick C, Hatchette T, Khaperskyy DA. Adaptive Mutations in Influenza A/California/07/2009 Enhance Polymerase Activity and Infectious Virion Production. Viruses 2018; 10:E272. [PMID: 29783694 PMCID: PMC5977265 DOI: 10.3390/v10050272] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/16/2022] Open
Abstract
Mice are not natural hosts for influenza A viruses (IAVs), but they are useful models for studying antiviral immune responses and pathogenesis. Serial passage of IAV in mice invariably causes the emergence of adaptive mutations and increased virulence. Here, we report the adaptation of IAV reference strain A/California/07/2009(H1N1) (also known as CA/07) in outbred Swiss Webster mice. Serial passage led to increased virulence and lung titers, and dissemination of the virus to brains. We adapted a deep-sequencing protocol to identify and enumerate adaptive mutations across all genome segments. Among mutations that emerged during mouse-adaptation, we focused on amino acid substitutions in polymerase subunits: polymerase basic-1 (PB1) T156A and F740L and polymerase acidic (PA) E349G. These mutations were evaluated singly and in combination in minigenome replicon assays, which revealed that PA E349G increased polymerase activity. By selectively engineering three PB1 and PA mutations into the parental CA/07 strain, we demonstrated that these mutations in polymerase subunits decreased the production of defective viral genome segments with internal deletions and dramatically increased the release of infectious virions from mouse cells. Together, these findings increase our understanding of the contribution of polymerase subunits to successful host adaptation.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Amino Acid Substitution
- Animals
- Animals, Outbred Strains
- Cells, Cultured
- Disease Models, Animal
- Dogs
- Female
- Genome, Viral
- Humans
- Influenza A Virus, H1N1 Subtype/enzymology
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/virology
- Mice
- Mutation, Missense
- Protein Conformation
- RNA-Dependent RNA Polymerase/chemistry
- RNA-Dependent RNA Polymerase/genetics
- RNA-Dependent RNA Polymerase/metabolism
- Serial Passage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/metabolism
- Virion/metabolism
- Virulence
- Virus Replication
Collapse
Affiliation(s)
- Patrick D Slaine
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Cara MacRae
- The Hospital for Sick Children, University Health Network, Toronto, ON M5G 2C4, Canada.
| | - Mariel Kleer
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Emily Lamoureux
- CGEB-Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Sarah McAlpine
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS B3H 1V8, Canada.
| | - Michelle Warhuus
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS B3H 1V8, Canada.
| | - André M Comeau
- CGEB-Integrated Microbiome Resource (IMR) and Department of Pharmacology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Craig McCormick
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| | - Todd Hatchette
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Nova Scotia Health Authority (NSHA), Halifax, NS B3H 1V8, Canada.
| | - Denys A Khaperskyy
- Department of Microbiology and Immunology, Dalhousie University, 5850 College Street, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
29
|
Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog 2017; 13:e1006650. [PMID: 29023600 PMCID: PMC5638565 DOI: 10.1371/journal.ppat.1006650] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/15/2017] [Indexed: 12/13/2022] Open
Abstract
Influenza A virus (IAV) infection can be severe or even lethal in toddlers, the elderly and patients with certain medical conditions. Infection of apparently healthy individuals nonetheless accounts for many severe disease cases and deaths, suggesting that viruses with increased pathogenicity co-circulate with pandemic or epidemic viruses. Looking for potential virulence factors, we have identified a polymerase PA D529N mutation detected in a fatal IAV case, whose introduction into two different recombinant virus backbones, led to reduced defective viral genomes (DVGs) production. This mutation conferred low induction of antiviral response in infected cells and increased pathogenesis in mice. To analyze the association between low DVGs production and pathogenesis in humans, we performed a genomic analysis of viruses isolated from a cohort of previously healthy individuals who suffered highly severe IAV infection requiring admission to Intensive Care Unit and patients with fatal outcome who additionally showed underlying medical conditions. These viruses were compared with those isolated from a cohort of mild IAV patients. Viruses with fewer DVGs accumulation were observed in patients with highly severe/fatal outcome than in those with mild disease, suggesting that low DVGs abundance constitutes a new virulence pathogenic marker in humans. Influenza A viruses are the causative agents of annual epidemics, sporadic zoonotic outbreaks and occasionally pandemics. Worldwide, acute respiratory infections caused by influenza A viruses continue to be one of the main causes of acute illness and death. The appearance in 2009 of a new H1N1 pandemic influenza strain reinforced the search to identify viral pathogenicity determinants for evaluation of the consequences of virus epidemics and potential pandemics for human health. Here we identify a new general virulence determinant found in a cohort of severe/fatal influenza virus-infected patients, a reduced accumulation of viral defective genomes. These molecules are incomplete viral genome segments that activate the innate immune response. This data will contribute to the prediction of influenza disease severity, to improved guidance of patient treatment and will enable the development of risk-based prevention strategies and policies.
Collapse
|
30
|
Gould PS, Easton AJ, Dimmock NJ. Live Attenuated Influenza Vaccine contains Substantial and Unexpected Amounts of Defective Viral Genomic RNA. Viruses 2017; 9:E269. [PMID: 28934167 PMCID: PMC5691621 DOI: 10.3390/v9100269] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
The live attenuated influenza vaccine FluMist® was withdrawn in the USA by the Centers for Disease Control and Prevention after its failure to provide adequate protective immunity during 2013-2016. The vaccine uses attenuated core type A and type B viruses, reconfigured each year to express the two major surface antigens of the currently circulating viruses. Here Fluenz™ Tetra, the European version of this vaccine, was examined directly for defective-interfering (DI) viral RNAs. DI RNAs are deleted versions of the infectious virus genome, and have powerful biological properties including attenuation of infection, reduction of infectious virus yield, and stimulation of some immune responses. Reverse transcription polymerase chain reaction followed by cloning and sequencing showed that Fluenz™ vaccine contains unexpected and substantial amounts of DI RNA arising from both its influenza A and influenza B components, with 87 different DI RNA sequences identified. Flu A DI RNAs from segment 3 replaced the majority of the genomic full-length segment 3, thus compromising its infectivity. DI RNAs arise during vaccine production and non-infectious DI virus replaces infectious virus pro rata so that fewer doses of the vaccine can be made. Instead the vaccine carries a large amount of non-infectious but biologically active DI virus. The presence of DI RNAs could significantly reduce the multiplication in the respiratory tract of the vaccine leading to reduced immunizing efficacy and could also stimulate the host antiviral responses, further depressing vaccine multiplication. The role of DI viruses in the performance of this and other vaccines requires further investigation.
Collapse
Affiliation(s)
- Philip S Gould
- Faculty of Health and Life Sciences, Coventry University, Science and Health Building, 20 Whitefriars Street Coventry CV1 2DS, UK.
| | - Andrew J Easton
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Nigel J Dimmock
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
31
|
Pflug A, Lukarska M, Resa-Infante P, Reich S, Cusack S. Structural insights into RNA synthesis by the influenza virus transcription-replication machine. Virus Res 2017; 234:103-117. [PMID: 28115197 DOI: 10.1016/j.virusres.2017.01.013] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/31/2016] [Accepted: 01/13/2017] [Indexed: 12/22/2022]
Abstract
Influenza virus is a segmented, negative strand RNA virus with each genome segment being packaged in a distinct ribonucleoprotein particle (RNP). The RNP consists of the heterotrimeric viral RNA-dependent RNA polymerase bound to the conserved 5' and 3' ends of the genome segment (the viral promoter) with the rest of the viral RNA (vRNA) being covered by multiple copies of nucleoprotein. This review focusses on the new insights that recent crystal structures have given into the detailed molecular mechanisms by which the polymerase performs both transcription and replication of the vRNA genome. Promoter binding, in particular that of 5' end, is essential to allosterically activate all polymerase functions. Transcription is initiated by the hijacking of nascent, capped host transcripts by the process of 'cap-snatching', for which the viral polymerase makes an essential interaction with the C-terminal domain (CTD) of cellular RNA polymerase II. The structures allow a coherent mechanistic model of the subsequent cap-snatching, cap-dependent priming, elongation and self-polyadenylation steps of viral mRNA synthesis. During replication, the vRNA is copied without modification into complementary RNA (cRNA) which is packaged into cRNPs. A priming loop located in the polymerase active site is required for the unprimed synthesis of cRNA from vRNA, but is not required for cRNA to vRNA replication due to differences in the mode of initiation of RNA synthesis. Overall a picture emerges of influenza polymerase being a highly complex, flexible and dynamic machine. The challenge remains to understand in more detail how it functions within the RNP and how interacting host factors modulate its activity in the cellular context. Finally, these detailed insights have opened up new opportunities for structure-based antiviral drug design targeting multiple aspects of polymerase function.
Collapse
Affiliation(s)
- Alexander Pflug
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Maria Lukarska
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Patricia Resa-Infante
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stefan Reich
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France.
| |
Collapse
|
32
|
Lukarska M, Fournier G, Pflug A, Resa-Infante P, Reich S, Naffakh N, Cusack S. Structural basis of an essential interaction between influenza polymerase and Pol II CTD. Nature 2016; 541:117-121. [PMID: 28002402 DOI: 10.1038/nature20594] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022]
Abstract
The heterotrimeric influenza polymerase (FluPol), comprising subunits PA, PB1 and PB2, binds to the conserved 5' and 3' termini (the 'promoter') of each of the eight single-stranded viral RNA (vRNA) genome segments and performs both transcription and replication of vRNA in the infected cell nucleus. To transcribe viral mRNAs, FluPol associates with cellular RNA polymerase II (Pol II), which enables it to take 5'-capped primers from nascent Pol II transcripts. Here we present a co-crystal structure of bat influenza A polymerase bound to a Pol II C-terminal domain (CTD) peptide mimic, which shows two distinct phosphoserine-5 (SeP5)-binding sites in the polymerase PA subunit, accommodating four CTD heptad repeats overall. Mutagenesis of the SeP5-contacting basic residues (PA K289, R454, K635 and R638) weakens CTD repeat binding in vitro without affecting the intrinsic cap-primed (transcription) or unprimed (replication) RNA synthesis activity of recombinant polymerase, whereas in cell-based minigenome assays the same mutations substantially reduce overall polymerase activity. Only recombinant viruses with a single mutation in one of the SeP5-binding sites can be rescued, but these viruses are severely attenuated and genetically unstable. Several previously described mutants that modulate virulence can be rationalized by our results, including a second site mutation (PA(C453R)) that enables the highly attenuated mutant virus (PA(R638A)) to revert to near wild-type infectivity. We conclude that direct binding of FluPol to the SeP5 Pol II CTD is fine-tuned to allow efficient viral transcription and propose that the CTD-binding site on FluPol could be targeted for antiviral drug development.
Collapse
Affiliation(s)
- Maria Lukarska
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Guillaume Fournier
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Alexander Pflug
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Patricia Resa-Infante
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Stefan Reich
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| | - Nadia Naffakh
- Institut Pasteur, Unité de Génétique Moléculaire des Virus à ARN, Département de Virologie, F-75015 Paris, France.,CNRS, UMR3569, F-75015 Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Unité de Génétique Moléculaire des Virus à ARN, EA302, F-75015 Paris, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France
| |
Collapse
|
33
|
Wu NC, Olson CA, Du Y, Le S, Tran K, Remenyi R, Gong D, Al-Mawsawi LQ, Qi H, Wu TT, Sun R. Functional Constraint Profiling of a Viral Protein Reveals Discordance of Evolutionary Conservation and Functionality. PLoS Genet 2015; 11:e1005310. [PMID: 26132554 PMCID: PMC4489113 DOI: 10.1371/journal.pgen.1005310] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 05/28/2015] [Indexed: 12/31/2022] Open
Abstract
Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available. The analysis of sequence conservation is a common approach to identify functional residues within a protein. However, not all functional residues are conserved as natural evolution and species diversification permit continuous innovation of protein functionality through the retention of advantageous mutations. Non-conserved functional residues, which are often species-specific, may not be identified by conventional analysis of sequence conservation despite being biologically important. Here we described a novel approach to identify functional residues within a protein by coupling a high-throughput experimental fitness profiling approach with computational protein modeling. Our methodology is independent of sequence conservation and is applicable to any protein where structural information is available. In this study, we systematically mapped the functional residues on the influenza A PA protein and revealed that non-conserved functional residues are prevalent. Our results not only have significant implication on how functionality evolves during natural evolution, but also highlight the caveats when applying conservation-based approaches to identify functional residues within a protein.
Collapse
Affiliation(s)
- Nicholas C. Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - C. Anders Olson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Yushen Du
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Shuai Le
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | - Kevin Tran
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Roland Remenyi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Danyang Gong
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Laith Q. Al-Mawsawi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Hangfei Qi
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
| | - Ren Sun
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, United States of America,
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America,
- AIDS Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. J Virol 2015; 89:5651-67. [PMID: 25762737 DOI: 10.1128/jvi.00087-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.
Collapse
|
35
|
Wei K, Lin Y, Li Y, Chen Y. Tracking the Evolution in Phylogeny, Structure and Function of H5N1 Influenza Virus PA Gene. Transbound Emerg Dis 2014; 63:548-63. [PMID: 25476417 DOI: 10.1111/tbed.12301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 01/24/2023]
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses have severely affected the poultry industry of Vietnam and Indonesia. The outbreaks of HPAI H5N1 viruses continue to pose a serious threat to public health, which have profound impacts on public health. In this study, we presented phylogenetic evidences for five reassortants among HPAI H5N1 viruses sampled from Vietnam and Indonesia during 2003-2013 and found that reassortment events occurred more frequently in the three gene segments (PB1, PA and HA) than in the remaining five gene segments (PB2, NA, NP, NS and MP). The sequence-based analyses have revealed that the PA protein displays high levels of DNA sequence polymorphism and variability than other internal proteins. Seven positive selection sites were detected in PA proteins, which ranked second only to the surface glycoproteins. Structure-based comparative analysis of PA proteins showed a remarkable sequence conservation between the high-pathogenic, low-pathogenic and reassortant viruses, indicating that PA appears to be a potential antiviral target. Furthermore, by analysing the published data, we compared the differential expression of genes involved in RIG-I- and MAVS-mediated intracellular type I interferon (IFN)-inducing pathway between the VN3028IIcl2-infected, IDN3006-infected and IDN3006/PA-infected groups. Our analyses indicated that the inhibitory effect of the PA protein on MAVS was not strong. In addition, transcriptional levels of 33 mitochondrial proteins involved in the induction of apoptosis have significantly increased, suggesting that PA may play an important role in apoptosis signalling pathway.
Collapse
Affiliation(s)
- K Wei
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - Y Lin
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - Y Li
- School of Biological Sciences and Biotechnology, Minnan Normal University, Zhangzhou, China
| | - Y Chen
- School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
36
|
Hu J, Liu X. Crucial role of PA in virus life cycle and host adaptation of influenza A virus. Med Microbiol Immunol 2014; 204:137-49. [PMID: 25070354 DOI: 10.1007/s00430-014-0349-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 07/16/2014] [Indexed: 02/01/2023]
Abstract
The PA protein is the third subunit of the polymerase complex of influenza A virus. Compared with the other two polymerase subunits (PB2 and PB1), its precise functions are less defined. However, in recent years, advances in protein expression and crystallization technologies and also the reverse genetics, greatly accelerate our understanding of the essential role of PA in virus infection. Here, we first review the current literature on this remarkably multifunctional viral protein regarding virus life cycle, including viral RNA transcription and replication, viral genome packaging and assembly. We then discuss the various roles of PA in host adaption in avian species and mammals, general virus-host interaction, and host protein synthesis shutoff. We also review the recent findings about the novel proteins derived from PA. Finally, we discuss the prospects of PA as a target for the development of new antiviral approaches and drugs.
Collapse
Affiliation(s)
- Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, Jiangsu Province, China
| | | |
Collapse
|
37
|
Abstract
Only a small fraction of influenza A virus (IAV) particles within a viral population register as infectious by traditional infectivity assays. Despite constituting the most abundant product of influenza infection, the role that the 'noninfectious' particle fraction plays in the biology of the virus has largely been ignored. This review shines a light on this oft-ignored population by highlighting studies, both old and new, that describe the unique biological activities of these particles, and discussing what this population can tell us about the biology of IAV evolution and disease.
Collapse
Affiliation(s)
- Christopher B Brooke
- Laboratory of Viral Diseases, National Institute of Allergy & Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
38
|
Xu C, Chen H, Hu B, Yang S, Zhang L, Huang Q, Zhang X. Two amino acid residues in ion channel protein M2 and polymerase protein PA contribute to replication difference of H5N1 influenza viruses in mice. Virus Res 2013; 178:511-516. [PMID: 24512754 DOI: 10.1016/j.virusres.2013.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 09/27/2013] [Accepted: 10/03/2013] [Indexed: 10/26/2022]
Abstract
A/swine/Fujian/1/2001 (FJ1) and A/Duck/Zhejiang/52/2000 (DK52) are H5N1 influenza viruses that are lethal in chickens. However, in mice, FJ1 is highly pathogenic, whereas DK52 cannot replicate at all. In this study, we used reverse genetics to demonstrate that amino acid residues at position 54 of polymerase acidic protein (PA) and position 26 of ion channel protein M2 of FJ1 and DK52 are important determinants for replication in mice. In addition, we prove that M2 and PA proteins contribute to the replication of H5N1 viruses in mice.
Collapse
Affiliation(s)
- Chuantian Xu
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Hualan Chen
- Animal Influenza Laboratory of the Ministry of Agriculture and National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, CAAS, 427 Maduan Street, Harbin 150001, People's Republic of China
| | - Beixia Hu
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Shaohua Yang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Lin Zhang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Qinghua Huang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China
| | - Xiumei Zhang
- Shandong Key Laboratory of Animal Disease Control & Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, People's Republic of China.
| |
Collapse
|
39
|
Zhong J, Cui X, Shi Y, Gao Y, Cao H. Antiviral activity of Jinchai capsule against influenza virus. J TRADIT CHIN MED 2013; 33:200-4. [PMID: 23789217 PMCID: PMC7147227 DOI: 10.1016/s0254-6272(13)60125-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To evaluate the effect on influenza virus of Jinchai, a capsule made of Traditional Chinese Medicine. METHODS Madin-darby canine kidney (MDCK) cells were infected with the FM1 strain of influenza virus A (subtype H1N1) in vitro. They were used to explore how Jinchai affected cell adsorption, cell membrane fusion, transcription and replication of the influenza virus. Hemagglutinin (HA) protein, intracellular pH, and influenza virus protein acid (PA) polymerase subunit were detected with confocal microscopy and real-time fluorescent quantitative polymerase chain reaction. RESULTS Jinchai significantly reduced the expression of HA and PA polymerase subunit mRNA in infected MDCK cells. Jinchai also significantly decreased intracellular pH in infected cells. CONCLUSIONS Jinchai had strong anti-influenza activity against the influenza virus. It weakened the ability of the influenza virus to adsorb to cell wall and fuse with cell membranes in the early infection stage, and inhibited the transcription and replication of the virus.
Collapse
Affiliation(s)
- Juying Zhong
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | |
Collapse
|
40
|
Cellular protein HAX1 interacts with the influenza A virus PA polymerase subunit and impedes its nuclear translocation. J Virol 2012; 87:110-23. [PMID: 23055567 DOI: 10.1128/jvi.00939-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription and replication of the influenza A virus RNA genome occur in the nucleus through the viral RNA-dependent RNA polymerase consisting of PB1, PB2, and PA. Cellular factors that associate with the viral polymerase complex play important roles in these processes. To look for cellular factors that could associate with influenza A virus PA protein, we have carried out a yeast two-hybrid screen using a HeLa cell cDNA library. We identified six cellular proteins that may interact with PA. We focused our study on one of the new PA-interacting proteins, HAX1, a protein with antiapoptotic function. By using glutathione S-transferase pulldown and coimmunoprecipitation assays, we demonstrate that HAX1 specifically interacts with PA in vitro and in vivo and that HAX1 interacts with the nuclear localization signal domain of PA. Nuclear accumulation of PA was increased in HAX1-knockdown cells, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can impede nuclear transport of PA. As a consequence, knockdown of HAX1 resulted in a significant increase in virus yield and polymerase activity in a minigenome assay, and this phenotype could be reversed by reexpression of HAX1, indicating that HAX1 can inhibit influenza A virus propagation. Together, these results not only provide insight into the mechanism underlying nuclear transport of PA but also identify an intrinsic host factor that restricts influenza A virus infection.
Collapse
|
41
|
Liang Y, Danzy S, Dao LD, Parslow TG, Liang Y. Mutational analyses of the influenza A virus polymerase subunit PA reveal distinct functions related and unrelated to RNA polymerase activity. PLoS One 2012; 7:e29485. [PMID: 22238617 PMCID: PMC3253111 DOI: 10.1371/journal.pone.0029485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/29/2011] [Indexed: 11/19/2022] Open
Abstract
Influenza A viral polymerase is a heterotrimeric complex that consists of PA, PB1, and PB2 subunits. We previously reported that a di-codon substitution mutation (G507A-R508A), denoted J10, in the C-terminal half of PA had no apparent effect on viral RNA synthesis but prevented infectious virus production, indicating that PA may have a novel role independent of its polymerase activity. To further examine the roles of PA in the viral life cycle, we have now generated and characterized additional mutations in regions flanking the J10 site from residues 497 to 518. All tested di-codon mutations completely abolished or significantly reduced viral infectivity, but they did so through disparate mechanisms. Several showed effects resembling those of J10, in that the mutant polymerase supported normal levels of viral RNA synthesis but nonetheless failed to generate infectious viral particles. Others eliminated polymerase activity, in most cases by perturbing the normal nuclear localization of PA protein in cells. We also engineered single-codon mutations that were predicted to pack near the J10 site in the crystal structure of PA, and found that altering residues K378 or D478 each produced a J10-like phenotype. In further studies of J10 itself, we found that this mutation does not affect the formation and release of virion-like particles per se, but instead impairs the ability of those particles to incorporate each of the eight essential RNA segments (vRNAs) that make up the viral genome. Taken together, our analysis identifies mutations in the C-terminal region of PA that differentially affect at least three distinct activities: protein nuclear localization, viral RNA synthesis, and a trans-acting function that is required for efficient packaging of all eight vRNAs.
Collapse
Affiliation(s)
- Yuhong Liang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Shamika Danzy
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Luan Danh Dao
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Tristram G. Parslow
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Yuying Liang
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Comprehensive proteomic analysis of influenza virus polymerase complex reveals a novel association with mitochondrial proteins and RNA polymerase accessory factors. J Virol 2011; 85:8569-81. [PMID: 21715506 DOI: 10.1128/jvi.00496-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The trimeric RNA polymerase complex (3P, for PA-PB1-PB2) of influenza A virus (IAV) is an important viral determinant of pathogenicity and host range restriction. Specific interactions of the polymerase complex with host proteins may be determining factors in both of these characteristics and play important roles in the viral life cycle. To investigate this question, we performed a comprehensive proteomic analysis of human host proteins associated with the polymerase of the well-characterized H5N1 Vietnam/1203/04 isolate. We identified over 400 proteins by liquid chromatography-tandem mass spectrometry (LC-MS/MS), of which over 300 were found to bind to the PA subunit alone. The most intriguing and novel finding was the large number of mitochondrial proteins (∼20%) that associated with the PA subunit. These proteins mediate molecular transport across the mitochondrial membrane or regulate membrane potential and may in concert with the identified mitochondrion-associated apoptosis inducing factor (AIFM1) have roles in the induction of apoptosis upon association with PA. Additionally, we identified host factors that associated with the PA-PB1 (68 proteins) and/or the 3P complex (34 proteins) including proteins that have roles in innate antiviral signaling (e.g., ZAPS or HaxI) or are cellular RNA polymerase accessory factors (e.g., polymerase I transcript release factor [PTRF] or Supt5H). IAV strain-specific host factor binding to the polymerase was not observed in our analysis. Overall, this study has shed light into the complex contributions of the IAV polymerase to host cell pathogenicity and allows for direct investigations into the biological significance of these newly described interactions.
Collapse
|
43
|
Characterization and comparison of the full 3' and 5' untranslated genomic regions of diverse isolates of infectious salmon anaemia virus by using a rapid and universal method. J Virol Methods 2011; 174:136-43. [PMID: 21458495 DOI: 10.1016/j.jviromet.2011.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 03/07/2011] [Accepted: 03/23/2011] [Indexed: 01/22/2023]
Abstract
The 3' and 5' untranslated regions (UTRs) of the gene segments of orthomyxoviruses interact closely with the polymerase complex and are important for viral replication and transcription regulation. Despite this, the 3' and 5' RNA UTRs of the infectious salmon anaemia virus (ISAV) genome have only been partially characterized and little is known about the level of conservation between different virus subtypes. This report details for the first time, the adaptation of a rapid method for the simultaneous characterization of the 3' and 5' UTRs of each viral segment of ISAV. This was achieved through self circularization of segments using T4 RNA ligase, followed by PCR and sequencing. Dephosphorylation of 5' ends using tobacco acid pyrophosphatase (TAP) proved to be a specific requirement for ligation of ISAV ends which was not essential for characterization of influenza virus in a similar manner. The development of universal primers facilitated the characterization of 4 genetically distinct ISAV isolates from Canada, Norway and Scotland. Comparison of the UTR regions revealed a similarity in organization and presence of conserved terminal sequences as reported for other orthomyxoviruses. Interestingly, the 3' ends of ISAV segments including segments 1, 5 and 6, were shorter and 5' UTRs generally longer than in their influenza counterparts.
Collapse
|
44
|
Christiansen DH, Østergaard PS, Snow M, Dale OB, Falk K. A low-pathogenic variant of infectious salmon anemia virus (ISAV-HPR0) is highly prevalent and causes a non-clinical transient infection in farmed Atlantic salmon (Salmo salar L.) in the Faroe Islands. J Gen Virol 2010; 92:909-18. [PMID: 21148272 DOI: 10.1099/vir.0.027094-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Infectious salmon anemia virus (ISAV) is an orthomyxovirus responsible for a significant disease of farmed Atlantic salmon. Fallowing and re-establishment of the Atlantic salmon farming industry in the Faroes following a recent devastating infectious salmon anaemia (ISA) disease epidemic provided a unique opportunity to study the risk of re-emergence of disease. Over 53 months, 2787 of 34 573 (8.1%) apparently healthy Atlantic salmon analysed tested positive for ISAV by RT-PCR. Sequence analysis revealed the putative low-pathogenic ISAV-HPR0 subtype in all cases. Results demonstrated that ISAV-HPR0 appeared as a seasonal and transient infection without detectable ISA mortality or pathology. This finding, coupled to an apparent gill tropism of ISAV-HPR0, suggests ISAV-HPR0 causes a subclinical respiratory infection more like seasonal influenza, as opposed to the systemic infection and serious disease caused by highly pathogenic ISAV. The mean time before marine sites became infected was 7.7 months after transfer to seawater of the fish, suggesting a potentially unknown marine reservoir of infection. Sequence analysis identified two main subtypes of ISAV-HPR0 sequences, one of which showed close genetic association with ISAV isolates responsible for the disease outbreak in the Faroes. Thus ISAV-HPR0 might represent an ancestor of pathogenic variants and thus be a potential risk factor in the emergence of new strains of disease-causing ISAV. Our data, however, suggest that the risk of emergence of pathogenic ISAV variants from a reservoir of ISAV-HPR0 is low. This risk is probably being further reduced by practical management strategies adopted in the Faroes and aimed at reducing the potential for maintenance and adaptation of ISAV-HPR0.
Collapse
Affiliation(s)
- Debes H Christiansen
- Food and Veterinary Agency, National Reference Laboratory for Fish Diseases, Tórshavn, Faroe Islands.
| | | | | | | | | |
Collapse
|
45
|
Interspecies and intraspecies transmission of influenza A viruses: viral, host and environmental factors. Anim Health Res Rev 2010; 11:53-72. [DOI: 10.1017/s1466252310000137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractInfluenza A viruses are enveloped viruses belonging to the familyOrthomyxoviridaethat encompasses four more genera: Influenza B, Influenza C, Isavirus and Thogotovirus. Type A viruses belong to the only genus that is highly infectious to a variety of mammalian and avian species. They are divided into subtypes based on two surface glycoproteins, the hemagglutinin (HA) and neuraminidase (NA). So far, 16 HA and 9 NA subtypes have been identified worldwide, making a possible combination of 144 subtypes between both proteins. Generally, individual viruses are host-specific, however, interspecies transmission of influenza A viruses is not uncommon. All of the HA and NA subtypes have been isolated from wild birds; however, infections in humans and other mammalian species are limited to a few subtypes. The replication of individual influenza A virus in a specific host is dependent on many factors including, viral proteins, host system and environmental conditions. In this review, the key findings that contribute to the transmission of influenza A viruses amongst different species are summarized.
Collapse
|
46
|
Boivin S, Cusack S, Ruigrok RWH, Hart DJ. Influenza A virus polymerase: structural insights into replication and host adaptation mechanisms. J Biol Chem 2010; 285:28411-7. [PMID: 20538599 DOI: 10.1074/jbc.r110.117531] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The heterotrimeric RNA-dependent RNA polymerase of influenza viruses catalyzes RNA replication and transcription activities in infected cell nuclei. The nucleotide polymerization activity is common to both replication and transcription processes, with an additional cap-snatching function being employed during transcription to steal short 5'-capped RNA primers from host mRNAs. Cap-binding, endonuclease, and polymerase activities have long been studied biochemically, but structural studies on the polymerase and its subunits have been hindered by difficulties in producing sufficient quantities of material. Recently, because of heightened effort and advances in expression and crystallization technologies, a series of high resolution structures of individual domains have been determined. These shed light on intrinsic activities of the polymerase, including cap snatching, subunit association, and nucleocytoplasmic transport, and open up the possibility of structure-guided development of new polymerase inhibitors. Furthermore, the activity of influenza polymerase is highly host- and cell type-specific, being dependent on the identity of a few key amino acid positions in the different subunits, especially in the C-terminal region of PB2. New structures demonstrate the surface exposure of these residues, consistent with ideas that they might modulate interactions with host-specific factors that enhance or restrict activity. Recent proteomic and genome-wide interactome and RNA interference screens have suggested the identities of some of these potential regulators of polymerase function.
Collapse
Affiliation(s)
- Stéphane Boivin
- Unit of Virus Host-Cell Interactions, UMI3265, UJF-EMBL-CNRS, France
| | | | | | | |
Collapse
|
47
|
Marriott AC, Dimmock NJ. Defective interfering viruses and their potential as antiviral agents. Rev Med Virol 2010; 20:51-62. [PMID: 20041441 DOI: 10.1002/rmv.641] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Defective interfering (DI) virus is simply defined as a spontaneously generated virus mutant from which a critical portion of the virus genome has been deleted. At least one essential gene of the virus is deleted, either in its entirety, or sufficiently to make it non-functional. The resulting DI genome is then defective for replication in the absence of the product(s) of the deleted gene(s), and its replication requires the presence of the complete functional virus genome to provide the missing functions. In addition to being defective DI virus suppresses production of the helper virus in co-infected cells, and this process of interference can readily be observed in cultured cells. In some cases, DI virus has been observed to attenuate disease in virus-infected animals. In this article, we review the properties of DI virus, potential mechanisms of interference and progress in using DI virus (in particular that derived from influenza A virus) as a novel type of antiviral agent.
Collapse
Affiliation(s)
- A C Marriott
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | |
Collapse
|
48
|
Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 2009; 1:895-919. [PMID: 21994575 PMCID: PMC3185524 DOI: 10.3390/v1030895] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/25/2022] Open
Abstract
Defective interfering (DI) RNAs are subviral RNAs produced during multiplication of RNA viruses by the error-prone viral replicase. DI-RNAs are parasitic RNAs that are derived from and associated with the parent virus, taking advantage of viral-coded protein factors for their multiplication. Recent advances in the field of DI RNA biology has led to a greater understanding about generation and evolution of DI-RNAs as well as the mechanism of symptom attenuation. Moreover, DI-RNAs are versatile tools in the hands of virologists and are used as less complex surrogate templates to understand the biology of their helper viruses. The ease of their genetic manipulation has resulted in rapid discoveries on cis-acting RNA replication elements required for replication and recombination. DI-RNAs have been further exploited to discover host factors that modulate Tomato bushy stunt virus replication, as well as viral RNA recombination. This review discusses the current models on generation and evolution of DI-RNAs, the roles of viral and host factors in DI-RNA replication, and the mechanisms of disease attenuation.
Collapse
|
49
|
Dreger M, Leung BW, Brownlee GG, Deng T. A quantitative strategy to detect changes in accessibility of protein regions to chemical modification on heterodimerization. Protein Sci 2009; 18:1448-58. [PMID: 19517532 DOI: 10.1002/pro.159] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We describe a method for studying quantitative changes in accessibility of surface lysine residues of the PB1 subunit of the influenza RNA polymerase as a result of association with the PA subunit to form a PB1-PA heterodimer. Our method combines two established methods: (i) the chemical modification of surface lysine residues of native proteins by N-hydroxysuccinimidobiotin (NHS-biotin) and (ii) the stable isotope labeling of amino acids in cell culture (SILAC) followed by tryptic digestion and mass spectrometry. By linking the chemical modification with the SILAC methodology for the first time, we obtain quantitative data on chemical modification allowing subtle changes in accessibility to be described. Five regions in the PB1 monomer showed altered reactivity to NHS-biotin when compared with the [PB1-PA] heterodimer. Mutational analysis of residues in two such regions-at K265 and K481 of PB1, which were about three- and twofold, respectively, less accessible to biotinylation in the PB1-PA heterodimer compared with the PB1 monomer, demonstrated that both K265 and K481 were crucial for polymerase function. This novel assay of quantitative profiling of biotinylation patterns (Q-POP assay) highlights likely conformational changes at important functional sites, as observed here for PB1, and may provide information on protein-protein interaction interfaces. The Q-POP assay should be a generally applicable approach and may detect novel functional sites suitable for targeting by drugs.
Collapse
Affiliation(s)
- Mathias Dreger
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | | | | | | |
Collapse
|
50
|
Dynamics of biologically active subpopulations of influenza virus: plaque-forming, noninfectious cell-killing, and defective interfering particles. J Virol 2009; 83:8122-30. [PMID: 19494019 DOI: 10.1128/jvi.02680-08] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dynamic changes in the temporal appearance and quantity of a new class of influenza virus, noninfectious cell-killing particles (niCKP), were compared to defective interfering particles (DIP). After a single high-multiplicity passage in MDCK cells of an egg-derived stock that lacked detectable niCKP or DIP, both classes of particles appeared in large numbers (>5 x 10(8)/ml), and the plaque-forming particle (PFP) titer dropped approximately 60-fold. After two additional serial high-multiplicity passages the DIP remained relatively constant, the DIP/niCKP ratio reached 10:1, and the PFP had declined by about 10,000-fold. Together, the niCKP and DIP subpopulations constituted ca. 20% of the total hemagglutinating particle population in which these noninfectious biologically active particles (niBAP) were subsumed. DIP neither killed cells nor interfered with the cell-killing (apoptosis-inducing) activity of niCKP or PFP (infectious CKP), even though they blocked the replication of PFP. Relative to the UV-target of approximately 13,600 nucleotides (nt) for inactivation of PFP, the UV target for niCKP was approximately 2,400 nt, consistent with one of the polymerase subunit genes, and that for DIP was approximately 350 nt, consistent with the small DI-RNA responsible for DIP-mediated interference. Thus, niCKP and DIP are viewed as distinct particles with a propensity to form during infection at high multiplicities. These conditions are postulated to cause aberrations in the temporally regulated replication of virus and its packaging, leading to the production of niBAP. DIP have been implicated in the virulence of influenza virus, but the role of niCKP is yet unknown.
Collapse
|