1
|
Maeda K, Almofty SA, Singh SK, Eid MMA, Shimoda M, Ikeda T, Koito A, Pham P, Goodman MF, Sakaguchi N. GANP interacts with APOBEC3G and facilitates its encapsidation into the virions to reduce HIV-1 infectivity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:6030-6039. [PMID: 24198285 PMCID: PMC4086635 DOI: 10.4049/jimmunol.1302057] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The ssDNA-dependent deoxycytidine deaminase apolipoprotein B mRNA-editing, enzyme-catalytic, polypeptide-like 3G (A3G) is a potent restrictive factor against HIV-1 virus lacking viral-encoded infectivity factor (Vif) in CD4(+) T cells. A3G antiretroviral activity requires its encapsulation into HIV-1 virions. In this study, we show that germinal center-associated nuclear protein (GANP) is induced in activated CD4(+) T cells and physically interacts with A3G. Overexpression of GANP augments the A3G encapsidation into the virion-like particles and ΔVif HIV-1 virions. GANP is encapsidated in HIV-1 virion and modulates A3G packaging into the cores together with cellular RNAs, including 7SL RNA, and with unspliced HIV-1 genomic RNA. GANP upregulation leads to a significant increase in A3G-catalyzed G→A hypermutation in the viral genome and suppression of HIV-1 infectivity in a single-round viral infection assay. Conversely, GANP knockdown caused a marked increase in HIV-1 infectivity in a multiple-round infection assay. The data suggest that GANP is a cellular factor that facilitates A3G encapsidation into HIV-1 virions to inhibit viral infectivity.
Collapse
MESH Headings
- APOBEC-3G Deaminase
- Acetyltransferases/antagonists & inhibitors
- Acetyltransferases/biosynthesis
- Acetyltransferases/chemistry
- Acetyltransferases/genetics
- Acetyltransferases/physiology
- CD4-Positive T-Lymphocytes/immunology
- Cells, Cultured
- Cytidine Deaminase/chemistry
- Cytidine Deaminase/physiology
- Genes, vif
- HIV-1/physiology
- HIV-1/ultrastructure
- Humans
- Intracellular Signaling Peptides and Proteins/antagonists & inhibitors
- Intracellular Signaling Peptides and Proteins/biosynthesis
- Intracellular Signaling Peptides and Proteins/chemistry
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/physiology
- Lymphocyte Activation
- Mutation
- Protein Interaction Mapping
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Small Cytoplasmic/metabolism
- RNA, Small Interfering/pharmacology
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Recognition Particle/metabolism
- Up-Regulation
- Virion/metabolism
- Virion/ultrastructure
- Virulence
- Virus Replication
- vif Gene Products, Human Immunodeficiency Virus/deficiency
- RNA, Small Untranslated
Collapse
Affiliation(s)
- Kazuhiko Maeda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Sarah Ameen Almofty
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Shailendra Kumar Singh
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mohammed Mansour Abbas Eid
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Mayuko Shimoda
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Terumasa Ikeda
- Department of Retrovirology and Self-Defense, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Atsushi Koito
- Department of Retrovirology and Self-Defense, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| | - Phuong Pham
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910
| | - Myron F. Goodman
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910
| | - Nobuo Sakaguchi
- Department of Immunology, Graduate School of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Fadel HJ, Saenz DT, Guevara R, von Messling V, Peretz M, Poeschla EM. Productive replication and evolution of HIV-1 in ferret cells. J Virol 2012; 86:2312-22. [PMID: 22171279 PMCID: PMC3302389 DOI: 10.1128/jvi.06035-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 11/25/2011] [Indexed: 11/20/2022] Open
Abstract
A rodent or other small animal model for HIV-1 has not been forthcoming, with the principal obstacles being species-specific restriction mechanisms and deficits in HIV-1 dependency factors. Some Carnivorans may harbor comparatively fewer impediments. For example, in contrast to mice, the domestic cat genome encodes essential nonreceptor HIV-1 dependency factors. All Feliformia species and at least one Caniformia species also lack a major lentiviral restriction mechanism (TRIM5α/TRIMCyp proteins). Here we investigated cells from two species in another carnivore family, the Mustelidae, for permissiveness to the HIV-1 life cycle. Mustela putorius furo (domesticated ferret) primary cells and cell lines did not restrict HIV-1, feline immunodeficiency virus (FIV), equine infectious anemia virus (EIAV), or N-tropic murine leukemia virus (MLV) postentry and supported late HIV-1 life cycle steps comparably to human cells. The ferret TRIM5α gene exon 8, which encodes the B30.2 domain, was found to be pseudogenized. Strikingly, ferret (but not mink) cells engineered to express human HIV-1 entry receptors supported productive spreading replication, amplification, and serial passage of wild-type HIV-1. Nevertheless, produced virions had relatively reduced infectivity and the virus accrued G→A hypermutations, consistent with APOBEC3 protein pressure. Ferret cell-passaged HIV-1 also evolved amino acid changes in the capsid cyclophilin A binding loop. We conclude that the genome of this carnivore can provide essential nonreceptor HIV-1 dependency factors and that ferret APOBEC3 proteins with activity against HIV-1 are likely. Even so, unlike in cat cells, HIV-1 can replicate in ferret cells without vif substitution. The virus evolves in this novel nonprimate cell adaptive landscape. We suggest that further characterization of HIV-1 adaptation in ferret cells and delineation of Mustelidae restriction factor repertoires are warranted, with a view to the potential for an HIV-1 animal model.
Collapse
Affiliation(s)
- Hind J. Fadel
- Department of Molecular Medicine
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | - Dyana T. Saenz
- Department of Molecular Medicine
- Department of Immunology
| | | | | | | | - Eric M. Poeschla
- Department of Molecular Medicine
- Department of Immunology
- Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Nakayama EE, Shioda T. TRIM5α and Species Tropism of HIV/SIV. Front Microbiol 2012; 3:13. [PMID: 22291694 PMCID: PMC3264904 DOI: 10.3389/fmicb.2012.00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 01/09/2012] [Indexed: 12/03/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infects humans and chimpanzees but not old world monkeys (OWMs) such as the rhesus monkey (Rh) and cynomolgus monkey (CM). HIV-1 efficiently enters cells of OWMs but encounters a block before reverse transcription. This narrow host range is attributed to a barrier in the host cell. In 2004, the screening of a Rh cDNA library identified tripartite motif 5α (TRIM5α) as a cellular antiviral factor. TRIM5α is one of splicing variants produced by TRIM5 gene and TRIM5 proteins are members of the TRIM family containing RING, B-box 2, and coiled-coil domains. The RING domain is frequently found in E3 ubiquitin ligase and TRIM5α is degraded via the ubiquitin–proteasome-dependent pathway. Among TRIM5 splicing variants, TRIM5α alone has an additional C-terminal PRYSPRY (B30.2) domain. Previous studies have shown that sequence variation in variable regions of the PRYSPRY domain among different monkey species affects species-specific retrovirus infection, while amino acid sequence differences in the viral capsid protein determine viral sensitivity to restriction. TRIM5α recognizes the multimerized capsid proteins (viral core) of an incoming virus by its PRYSPRY domain and is thus believed to control retroviral infection. There are significant intraspecies variations in the Rh-TRIM5 gene. It has also been reported that some Rh and CM individuals have retrotransposed cyclophilin A open reading frame in the TRIM5 gene, which produces TRIM5–cyclophilin A fusion protein (TRIMCyp). TRIMCyp, which was originally identified as an anti-HIV-1 factor of New World owl monkeys, is an interesting example of the gain of a new function by retrotransposition. As different TRIM5 genotypes of Rh showed different levels of simian immunodeficiency virus replication in vivo, the TRIM5 genotyping is thought to be important in acquired immunodeficiency syndrome monkey models.
Collapse
Affiliation(s)
- Emi E Nakayama
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University Suita, Osaka, Japan
| | | |
Collapse
|
4
|
Fadel HJ, Poeschla EM. Retroviral restriction and dependency factors in primates and carnivores. Vet Immunol Immunopathol 2011; 143:179-89. [PMID: 21715018 DOI: 10.1016/j.vetimm.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5α, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin.
Collapse
Affiliation(s)
- Hind J Fadel
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
5
|
High natural permissivity of primary rabbit cells for HIV-1, with a virion infectivity defect in macrophages as the final replication barrier. J Virol 2010; 84:12300-14. [PMID: 20861260 DOI: 10.1128/jvi.01607-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An immunocompetent, permissive, small-animal model would be valuable for the study of human immunodeficiency virus type 1 (HIV-1) pathogenesis and for the testing of drug and vaccine candidates. However, the development of such a model has been hampered by the inability of primary rodent cells to efficiently support several steps of the HIV-1 replication cycle. Although transgenesis of the HIV receptor complex and human cyclin T1 have been beneficial, additional late-phase blocks prevent robust replication of HIV-1 in rodents and limit the range of in vivo applications. In this study, we explored the HIV-1 susceptibility of rabbit primary T cells and macrophages. Envelope-specific and coreceptor-dependent entry of HIV-1 was achieved by expressing human CD4 and CCR5. A block of HIV-1 DNA synthesis, likely mediated by TRIM5, was overcome by limited changes to the HIV-1 gag gene. Unlike with mice and rats, primary cells from rabbits supported the functions of the regulatory viral proteins Tat and Rev, Gag processing, and the release of HIV-1 particles at levels comparable to those in human cells. While HIV-1 produced by rabbit T cells was highly infectious, a macrophage-specific infectivity defect became manifest by a complex pattern of mutations in the viral genome, only part of which were deamination dependent. These results demonstrate a considerable natural HIV-1 permissivity of the rabbit species and suggest that receptor complex transgenesis combined with modifications in gag and possibly vif of HIV-1 to evade species-specific restriction factors might render lagomorphs fully permissive to infection by this pathogenic human lentivirus.
Collapse
|
6
|
Abstract
Nonprimate animal models of HIV-1 infection are prevented by missing cellular cofactors and by antiviral actions of species-specific host defense factors. These blocks are profound in rodents but may be less abundant in certain Carnivora. Here, we enabled productive, spreading replication and passage of HIV-1 in feline cells. Feline fibroblasts, T-cell lines, and primary peripheral blood mononuclear cells supported early and late HIV-1 life cycle phases in a manner equivalent to that of human cells, except that produced virions had low infectivity. Stable expression of feline immunodeficiency virus (FIV) Vif-green fluorescent protein (GFP) in HIV-1 entry receptor-complemented feline (CrFK) cells enabled robust spreading HIV-1 replication. FIV Vif colocalized with feline APOBEC3 (fA3) proteins, targeted them for degradation, and prevented G-->A hypermutation of the HIV-1 cDNA by fA3CH and fA3H. HIV-1 Vif was inactive against fA3s as expected and even paradoxically augmented restriction in some assays. In an interesting contrast, simian immunodeficiency virus SIVmac Vif had substantial anti-fA3 activities, which were complete against fA3CH and partial against fA3H. Moreover, both primate lentiviral Vifs colocalized with fA3s and could be pulled down from cell lysates by fA3CH. HIV-1 molecular clones that encode FIV Vif or SIVmac Vif (HIV-1(VF) and HIV-1(VS)) were then constructed. These viruses replicated productively in HIV-1 receptor-expressing CrFK cells and could be passaged serially to uninfected cells. Thus, with the exception of entry receptors, the cat genome can supply the dependency factors needed by HIV-1, and a main restriction can be countered by vif chimerism. The results raise the possibility that the domestic cat could yield an animal model of HIV-1 infection.
Collapse
|
7
|
Ikeda T, Ohsugi T, Kimura T, Matsushita S, Maeda Y, Harada S, Koito A. The antiretroviral potency of APOBEC1 deaminase from small animal species. Nucleic Acids Res 2008; 36:6859-71. [PMID: 18971252 PMCID: PMC2588513 DOI: 10.1093/nar/gkn802] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Although the role of the APOBEC3-dependent retroelement restriction system as an intrinsic immune defense against human immunodeficiency virus type1 (HIV-1) infection is becoming clear, only the rat ortholog of mammalian APOBEC1s (A1) thus far has been shown to possess antiviral activity. Here, we cloned A1 cDNAs from small animal species, and showed that similar to rat A1, both wild-type and Δvif HIV-1 infection was inhibited by mouse and hamster A1 (4- to 10-fold), whereas human A1 had negligible effects. Moreover, rabbit A1 significantly reduced the infectivity of both HIV-1 virions (>300-fold), as well as that of SIVmac, SIVagm, FIV and murine leukemia virus. Immunoblot analysis showed that A1s were efficiently incorporated into the HIV-1 virion, and their packaging is mediated through an interaction with the nucleocapsid Gag domain. Interestingly, there was a clear accumulation of particular C-T changes in the genomic RNAs of HIV-1 produced in their presence, with few G-A changes in the proviral DNA. Together, these data reveal that A1 may function as a defense mechanism, regulating retroelements in a wide range of mammalian species.
Collapse
Affiliation(s)
- Terumasa Ikeda
- Department of Retrovirology and Self-Defense, Faculty of Medical and Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Tsurutani N, Yasuda J, Yamamoto N, Choi BI, Kadoki M, Iwakura Y. Nuclear import of the preintegration complex is blocked upon infection by human immunodeficiency virus type 1 in mouse cells. J Virol 2006; 81:677-88. [PMID: 17079325 PMCID: PMC1797461 DOI: 10.1128/jvi.00870-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse cells do not support human immunodeficiency virus type 1 (HIV-1) replication because of host range barriers at steps including virus entry, transcription, RNA splicing, polyprotein processing, assembly, and release. The exact mechanisms for the suppression, however, are not completely understood. To elucidate further the barriers against HIV-1 replication in mouse cells, we analyzed the replication of the virus in lymphocytes from human CD4/CXCR4 transgenic mice. Although primary splenocytes and thymocytes allowed the entry and reverse transcription of HIV-1, the integration efficiency of the viral DNA was greatly reduced in these cells relative to human peripheral blood mononuclear cells, suggesting an additional block(s) before or at the point of host chromosome integration of the viral DNA. Preintegration processes were further analyzed using HIV-1 pseudotyped viruses. The reverse transcription step of HIV-1 pseudotyped with the envelope of murine leukemia virus or vesicular stomatitis virus glycoprotein was efficiently supported in both human and mouse cells, but nuclear import of the preintegration complex (PIC) of HIV-1 was blocked in mouse cells. We found that green fluorescent protein (GFP)-labeled HIV-1 integrase, which is known to be important in the nuclear localization of the PIC, could not be imported into the nucleus of mouse cells, in contrast to human cells. On the other hand, GFP-Vpr localized exclusively to the nuclei of both mouse and human cells. These observations suggest that, due to the dysfunction of integrase, the nuclear localization of PIC is suppressed in mouse cells.
Collapse
Affiliation(s)
- Naomi Tsurutani
- Center for Experimental Medicine, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Cervantes-Acosta G, Welman M, Freund F, Cohen EA, Lemay G. CD4/CXCR4 co-expression allows productive HIV-1 infection in canine kidney MDCK cells. Virus Res 2006; 120:138-45. [PMID: 16600413 DOI: 10.1016/j.virusres.2006.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2005] [Revised: 02/22/2006] [Accepted: 02/22/2006] [Indexed: 10/24/2022]
Abstract
The Madin-Darby canine kidney (MDCK) cell line has become the prototypic cell type for studying the mechanisms involved in viral glycoproteins transport and viral assembly in polarized cells. This cell line has been used in our laboratories for studying human immunodeficiency virus (HIV-1), despite the fact that MDCK cells cannot be infected by HIV. In transfected MDCK cells, HIV-1 glycoproteins are specifically transported to the basolateral cell surface where viral budding also mostly occurs. However, this model is of limited use when viral propagation, infection of most cells, or larger production of virions, is needed. The initial objective of this work was thus to establish an MDCK-derived cell line that could be productively infected by HIV-1, in order to pursue our studies on the polarization of viral budding. Expression of both receptor and co-receptor for T-tropic strains of the virus showed that canine cells are rendered permissive once virus binding and entry is allowed. In addition, a reduced infectivity of the viral particles released from the basolateral surface was observed. This observation most likely reflects the interference mediated by CD4 molecules that accumulate at the basolateral domain. Accordingly, this effect was largely prevented when using viruses that down-regulate cell surface CD4 by expression of both viral accessory proteins Vpu and Nef. This is a further evidence that the function of different viral proteins depends of the site of viral budding, which is itself determined by the presence of targeting signal(s) harbored by viral envelope glycoproteins.
Collapse
Affiliation(s)
- Guillermo Cervantes-Acosta
- Département de Microbiologie et Immunologie, Université de Montréal, P.O. Box 6128, Station Centre-ville, Montréal, Québec, Canada H3C 3J7.
| | | | | | | | | |
Collapse
|