1
|
Harmening S, Bogdanow B, Wagner K, Liu F, Messerle M, Borst EM. Interaction of human cytomegalovirus pUL52 with major components of the viral DNA encapsidation network underlines its essential role in genome cleavage-packaging. J Virol 2025; 99:e0220124. [PMID: 40062846 PMCID: PMC11998523 DOI: 10.1128/jvi.02201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/12/2025] [Indexed: 04/16/2025] Open
Abstract
Cleavage of human cytomegalovirus (HCMV) genomes and their packaging into capsids requires at least seven essential viral proteins, yet it is not completely understood how these proteins cooperate to accomplish this task. Besides the portal protein pUL104 and the terminase subunits pUL51, pUL56, and pUL89, the UL52 protein is also necessary for HCMV genome encapsidation; however, knowledge about pUL52 is scant. In the absence of pUL52, viral concatemers are not cleaved into unit-length genomes and no DNA-filled capsids are observed, yet no viral or cellular proteins interacting with pUL52 have been identified that would explain how pUL52 exerts its essential role in the HCMV infection cycle. In this study, we aimed at a comprehensive definition of pUL52-interacting proteins in infected cells. Using suitable HCMV mutants, we employed three complementary state-of-the-art proteomic approaches, namely biotin ligase-dependent proximity labeling, affinity purification, and cross-linking mass spectrometry. These experiments, combined with thorough validation by immunoblotting, pointed to several viral DNA-associated proteins and key players pivotal for genome encapsidation as interactors of pUL52. The most noticeable direct pUL52 interaction partners were the terminase subunits pUL56 and pUL89 as well as the portal protein pUL104. Hence, we suggest a model of pUL52 function in which pUL52 mediates association of HCMV genomes with the terminase subunits and the capsid portal. Taken together, our data contribute to the understanding of an essential viral process previously recognized as a prominent antiviral target. Disturbing the identified pUL52 interactions may provide a starting point to develop novel antiviral medication. IMPORTANCE Human cytomegalovirus (HCMV) can evoke severe disease in immunocompromised patients and, moreover, is the most frequent viral cause of malformations in newborns. The virus-specific process of genome cleavage and packaging into capsids has emerged as an Achilles heel in the HCMV life cycle, which can be targeted by novel antiviral drugs, yet the mechanism of viral DNA encapsidation is only partially understood. Here, we report that the essential viral cleavage-packaging protein pUL52 interacts with several HCMV proteins known to be crucial for genome packaging, with the most prominent ones being the terminase complex and the portal protein. These data provide insight into the role of pUL52 during HCMV infection and may lay the basis for the development of additional antiviral substances tackling viral DNA packaging.
Collapse
Affiliation(s)
- Sarah Harmening
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Boris Bogdanow
- Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Fan Liu
- Research group "Structural Interactomics", Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
2
|
Cao H, Wang M, Cheng A, Tian B, Yang Q, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Yu Y, Zhang L, Chen S, Liu M, Zhu D, Jia R. The functions of herpesvirus shuttling proteins in the virus lifecycle. Front Microbiol 2025; 16:1515241. [PMID: 39973925 PMCID: PMC11837949 DOI: 10.3389/fmicb.2025.1515241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/21/2025] Open
Abstract
During viral infection, the transport of various proteins between the nucleus and cytoplasm plays an important role in the viral lifecycle. Shuttling proteins are key factors in the transmission of nucleocytoplasmic information within cells and usually contain nuclear localization signals and nuclear export signals to mediate correct positioning for themselves and other proteins. The nucleocytoplasmic transport process is carried out through the nuclear pore complex on the nuclear envelope and is mediated by specific protein carriers. The viral proteins that function through nucleocytoplasmic shuttling in herpesviruses have gradually been identified as research advances. This article provides an overview of how shuttling proteins utilize nucleocytoplasmic shuttling signals and nuclear transport receptors for nucleocytoplasmic transport, as well as discusses how herpesvirus shuttling proteins enhance the effective infection of viruses by affecting their lifecycle and participating in innate immunity, this review provides a reference for understanding the pathogenesis of herpesvirus infection and determining new antiviral strategies.
Collapse
Affiliation(s)
- Huijun Cao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - YanLing Yu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Manska S, Hagemann A, Magana J, Rossetto CC, Verma SC. Characterization of Human Cytomegalovirus (HCMV) Long Non-Coding RNA1.2 During Lytic Replication. Viruses 2025; 17:149. [PMID: 40006904 PMCID: PMC11860937 DOI: 10.3390/v17020149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 02/27/2025] Open
Abstract
During lytic replication of human cytomegalovirus (HCMV), the most abundant viral transcripts are long non-coding RNAs (lncRNAs). Viral lncRNAs can have a variety of functions, some of which are necessary for viral production and the modulation of host processes during infection. HCMV produces four lncRNAs, Beta2.7 (RNA2.7), RNA4.9, RNA5.0 and RNA1.2. While there has been research on these viral lncRNAs, many of their functions remain uncharacterized. To determine the function of RNA1.2, we explored its requirement during lytic infection by generating viral mutants containing either a full or partial deletion of the RNA1.2 locus. Within permissive fibroblasts, the RNA1.2 deletion mutants showed no defects in viral DNA synthesis, transcript expression, protein production, or generation of viral progeny. Further investigation to identify potential cellular and viral protein binding partners of RNA1.2 was performed using liquid chromatography-mass spectrometry (LC-MS). A significant number of cellular proteins were identified and associated with RNA1.2. Specifically those associated with the innate immune response, mitochondrial processes, and cell cycle regulation. While RNA1.2 is dispensable for lytic replication, these findings suggest it may play a pivotal role in modulating the host response.
Collapse
Affiliation(s)
| | | | | | | | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA; (S.M.); (A.H.); (J.M.); (C.C.R.)
| |
Collapse
|
4
|
Zeng J, Cao D, Yang S, Jaijyan DK, Liu X, Wu S, Cruz-Cosme R, Tang Q, Zhu H. Insights into the Transcriptome of Human Cytomegalovirus: A Comprehensive Review. Viruses 2023; 15:1703. [PMID: 37632045 PMCID: PMC10458407 DOI: 10.3390/v15081703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a widespread pathogen that poses significant risks to immunocompromised individuals. Its genome spans over 230 kbp and potentially encodes over 200 open-reading frames. The HCMV transcriptome consists of various types of RNAs, including messenger RNAs (mRNAs), long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs), with emerging insights into their biological functions. HCMV mRNAs are involved in crucial viral processes, such as viral replication, transcription, and translation regulation, as well as immune modulation and other effects on host cells. Additionally, four lncRNAs (RNA1.2, RNA2.7, RNA4.9, and RNA5.0) have been identified in HCMV, which play important roles in lytic replication like bypassing acute antiviral responses, promoting cell movement and viral spread, and maintaining HCMV latency. CircRNAs have gained attention for their important and diverse biological functions, including association with different diseases, acting as microRNA sponges, regulating parental gene expression, and serving as translation templates. Remarkably, HCMV encodes miRNAs which play critical roles in silencing human genes and other functions. This review gives an overview of human cytomegalovirus and current research on the HCMV transcriptome during lytic and latent infection.
Collapse
Affiliation(s)
- Janine Zeng
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Di Cao
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Shaomin Yang
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Dabbu Kumar Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| | - Xiaolian Liu
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Songbin Wu
- Department of Pain Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, China
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 070101, USA
| |
Collapse
|
5
|
Manska S, Rossetto CC. Identification of cellular proteins associated with human cytomegalovirus (HCMV) DNA replication suggests novel cellular and viral interactions. Virology 2022; 566:26-41. [PMID: 34861458 PMCID: PMC8720285 DOI: 10.1016/j.virol.2021.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/07/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
Upon entry of Human cytomegalovirus (HCMV) into the host cell, the viral genome is transported to the nucleus where it serves as a template for transcription and genome replication. Production of new viral genomes is a coordinated effort between viral and cellular proteins. While the core replication proteins are encoded by the virus, additional cellular proteins support the process of genome synthesis. We used accelerated native isolation of proteins on nascent DNA (aniPOND) to study protein dynamics on nascent viral DNA during HCMV infection. Using this method, we identified specific viral and cellular proteins that are associated with nascent viral DNA. These included transcription factors, transcriptional regulators, DNA damage and repair factors, and chromatin remodeling complexes. The association of these identified proteins with viral DNA was confirmed by immunofluorescent imaging, chromatin-immunoprecipitation analyses, and shRNA knockdown experiments. These data provide evidence for the requirement of cellular factors involved in HCMV replication.
Collapse
Affiliation(s)
- Salomé Manska
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA
| | - Cyprian C. Rossetto
- University of Nevada, Reno School of Medicine, Department of Microbiology and Immunology, 1664 North Virginia Street/MS320, Reno, NV 89557 USA,Correspondence to: Cyprian C. Rossetto, Ph.D.
| |
Collapse
|
6
|
Manska S, Rossetto CC. Characteristics of Immediate-Early 2 (IE2) and UL84 Proteins in UL84-Independent Strains of Human Cytomegalovirus (HCMV). Microbiol Spectr 2021; 9:e0053921. [PMID: 34550009 PMCID: PMC8557881 DOI: 10.1128/spectrum.00539-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) immediate-early 2 (IE2) protein is the major transactivator for viral gene expression and is required for lytic replication. In addition to transcriptional activation, IE2 is known to mediate transcriptional repression of promoters, including the major immediate-early (MIE) promoter and a bidirectional promoter within the lytic origin of replication (oriLyt). The activity of IE2 is modulated by another viral protein, UL84. UL84 is multifunctional and is proposed to act as the origin-binding protein (OBP) during lytic replication. UL84 specifically interacts with IE2 to relieve IE2-mediated repression at the MIE and oriLyt promoters. Originally, UL84 was thought to be indispensable for viral replication, but recent work demonstrated that some strains of HCMV (TB40E and TR) can replicate independently of UL84. This peculiarity is due to a single amino acid change of IE2 (UL122 H388D). Here, we identified that a UL84-dependent (AD169) Δ84 viral mutant had distinct IE2 localization and was unable to synthesize DNA. We also demonstrated that a TB40E Δ84 IE2 D388H mutant containing the reversed IE2 amino acid switch adopted the phenotype of AD169 Δ84. Further functional experiments, including chromatin-immunoprecipitation sequencing (ChIP-seq), suggest distinct protein interactions and transactivation function at oriLyt between strains. Together, these data further highlight the complexity of initiation of HCMV viral DNA replication. IMPORTANCE Human cytomegalovirus (HCMV) is a significant cause of morbidity and mortality in immunocompromised individuals and is also the leading viral cause of congenital birth defects. After initial infection, HCMV establishes a lifelong latent infection with periodic reactivation and lytic replication. During lytic DNA synthesis, IE2 and UL84 have been regarded as essential factors required for initiation of viral DNA replication. However, previous reports identified that some isolates of HCMV can replicate in a UL84-independent manner due to a single amino acid change in IE2 (H388D). These UL84-independent strains are an important consideration, as they may have implications for HCMV disease and research. This has prompted renewed interest into the functional roles of IE2 and UL84. The work presented here focuses on the described functions of UL84 and ascertains if those required functions are fulfilled by IE2 in UL84-independent strains.
Collapse
Affiliation(s)
- Salome Manska
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| | - Cyprian C. Rossetto
- Department of Microbiology and Immunology, Reno School of Medicine, University of Nevada, Reno, Nevada, USA
| |
Collapse
|
7
|
Tripathi V, Chatterjee KS, Das R. Casein kinase-2-mediated phosphorylation increases the SUMO-dependent activity of the cytomegalovirus transactivator IE2. J Biol Chem 2019; 294:14546-14561. [PMID: 31371453 DOI: 10.1074/jbc.ra119.009601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/24/2019] [Indexed: 11/06/2022] Open
Abstract
Many viral factors manipulate the host post-translational modification (PTM) machinery for efficient viral replication. In particular, phosphorylation and SUMOylation can distinctly regulate the activity of the human cytomegalovirus (HCMV) transactivator immediate early 2 (IE2). However, the molecular mechanism of this process is unknown. Using various structural, biochemical, and cell-based approaches, here we uncovered that IE2 exploits a cross-talk between phosphorylation and SUMOylation. A scan for small ubiquitin-like modifier (SUMO)-interacting motifs (SIMs) revealed two SIMs in IE2, and a real-time SUMOylation assay indicated that the N-terminal SIM (IE2-SIM1) enhances IE2 SUMOylation up to 4-fold. Kinetic analysis and structural studies disclosed that IE2 is a SUMO cis-E3 ligase. We also found that two putative casein kinase 2 (CK2) sites adjacent to IE2-SIM1 are phosphorylated in vitro and in cells. The phosphorylation drastically increased IE2-SUMO affinity, IE2 SUMOylation, and cis-E3 activity of IE2. Additional salt bridges between the phosphoserines and SUMO accounted for the increased IE2-SUMO affinity. Phosphorylation also enhanced the SUMO-dependent transactivation activity and auto-repression activity of IE2. Together, our findings highlight a novel mechanism whereby SUMOylation and phosphorylation of the viral cis-E3 ligase and transactivator protein IE2 work in tandem to enable transcriptional regulation of viral gene.
Collapse
Affiliation(s)
- Vasvi Tripathi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Kiran Sankar Chatterjee
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| | - Ranabir Das
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru-560065, India
| |
Collapse
|
8
|
Requirement of the N-terminal residues of human cytomegalovirus UL112-113 proteins for viral growth and oriLyt-dependent DNA replication. J Microbiol 2015. [PMID: 26224459 DOI: 10.1007/s12275-015-5301-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The UL112-113 region of the human cytomegalovirus (HCMV) genome encodes four phosphoproteins of 34, 43, 50, and 84 kDa that promote viral DNA replication. Co-transfection assays have demonstrated that self-interaction of these proteins via the shared N-termini is necessary for their intranuclear distribution as foci and for the efficient relocation of a viral DNA polymerase processivity factor (UL44) to the viral replication sites. However, the requirement of UL112-113 N-terminal residues for viral growth and DNA replication has not been fully elucidated. Here, we investigated the effect of deletion of the N-terminal regions of UL112-113 proteins on viral growth and oriLyt-dependent DNA replication. A deletion of the entire UL112 region or the region encoding the 25 N-terminal amino-acid residues from the HCMV (Towne strain) bacmid impaired viral growth in bacmid-transfected human fibroblast cells, indicating their requirement for viral growth. In co-immunoprecipitation assays using the genomic gene expressing the four UL112-113 proteins together, the 25 N-terminal amino-acid residues were found to be necessary for stable expression of UL112-113 proteins and their self-interaction. These residues were also required for efficient binding to and relocation of UL44, but not for interaction with IE2, an origin-binding transcription factor. In co-transfection/replication assays, replication of the oriLyt-containing plasmid was promoted by expression of intact UL112-113 proteins, but not by the expression of 25-amino-acid residue-deleted proteins. Our results demonstrate that the 25 N-terminal amino-acid residues of UL112-113 proteins that mediate self-interaction contribute to viral growth by promoting their binding to UL44 and the initiation of oriLyt-dependent DNA replication.
Collapse
|
9
|
Spector DJ. UL84-independent replication of human cytomegalovirus strains conferred by a single codon change in UL122. Virology 2015; 476:345-354. [PMID: 25577152 DOI: 10.1016/j.virol.2014.12.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/11/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
Abstract
The UL84 gene of human cytomegalovirus (HCMV) is thought to be involved in the initiation of viral DNA replication, and is essential for replication of strains AD169 and Towne. Hence, discovery that strain TB40-BAC4 is viable in the absence of UL84 presented an enigma requiring an explanation. Data reported here show that strain TR also tolerated loss of UL84, whereas strains FIX, Merlin, Ph, and Toledo did not. UL84-independent growth required the viral replication origin. The genetic locus in TB40 that controls UL84 dependence was mapped to codon 388 of the UL122 gene, which encodes the immediate early 2 (IE2) 86kD protein. Introduction of this TB40-BAC4 variant (H388D) into FIX and Toledo clones converted these strains to UL84 independence. These results provide genetic evidence in virus-infected cells that supports the hypothesis that UL122 participates in the initiation of viral DNA replication by a mechanism involving transcription-mediated activation of the origin.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, H107, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
10
|
Genomic organization and molecular characterization of porcine cytomegalovirus. Virology 2014; 460-461:165-72. [DOI: 10.1016/j.virol.2014.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 10/17/2013] [Accepted: 05/07/2014] [Indexed: 11/22/2022]
|
11
|
Abstract
Human cytomegalovirus (HCMV) genome replication requires host DNA damage responses (DDRs) and raises the possibility that DNA repair pathways may influence viral replication. We report here that a nucleotide excision repair (NER)-associated-factor is required for efficient HCMV DNA replication. Mutations in genes encoding NER factors are associated with xeroderma pigmentosum (XP). One of the XP complementation groups, XPE, involves mutation in ddb2, which encodes DNA damage binding protein 2 (DDB2). Infectious progeny virus production was reduced by >2 logs in XPE fibroblasts compared to levels in normal fibroblasts. The levels of immediate early (IE) (IE2), early (E) (pp65), and early/late (E/L) (gB55) proteins were decreased in XPE cells. These replication defects were rescued by infection with a retrovirus expressing DDB2 cDNA. Similar patterns of reduced viral gene expression and progeny virus production were also observed in normal fibroblasts that were depleted for DDB2 by RNA interference (RNAi). Mature replication compartments (RCs) were nearly absent in XPE cells, and there were 1.5- to 2.0-log reductions in viral DNA loads in infected XPE cells relative to those in normal fibroblasts. The expression of viral genes (UL122, UL44, UL54, UL55, and UL84) affected by DDB2 status was also sensitive to a viral DNA replication inhibitor, phosphonoacetic acid (PAA), suggesting that DDB2 affects gene expression upstream of or events associated with the initiation of DNA replication. Finally, a novel, infection-associated feedback loop between DDB2 and ataxia telangiectasia mutated (ATM) was observed in infected cells. Together, these results demonstrate that DDB2 and a DDB2-ATM feedback loop influence HCMV replication.
Collapse
|
12
|
Strang BL, Bender BJ, Sharma M, Pesola JM, Sanders RL, Spector DH, Coen DM. A mutation deleting sequences encoding the amino terminus of human cytomegalovirus UL84 impairs interaction with UL44 and capsid localization. J Virol 2012; 86:11066-77. [PMID: 22855486 PMCID: PMC3457161 DOI: 10.1128/jvi.01379-12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/23/2012] [Indexed: 01/10/2023] Open
Abstract
Protein-protein interactions are required for many biological functions. Previous work has demonstrated an interaction between the human cytomegalovirus DNA polymerase subunit UL44 and the viral replication factor UL84. In this study, glutathione S-transferase pulldown assays indicated that residues 1 to 68 of UL84 are both necessary and sufficient for efficient interaction of UL84 with UL44 in vitro. We created a mutant virus in which sequences encoding these residues were deleted. This mutant displayed decreased virus replication compared to wild-type virus. Immunoprecipitation assays showed that the mutation decreased but did not abrogate association of UL84 with UL44 in infected cell lysate, suggesting that the association in the infected cell can involve other protein-protein interactions. Further immunoprecipitation assays indicated that IRS1, TRS1, and nucleolin are candidates for such interactions in infected cells. Quantitative real-time PCR analysis of viral DNA indicated that the absence of the UL84 amino terminus does not notably affect viral DNA synthesis. Western blotting experiments and pulse labeling of infected cells with [(35)S]methionine demonstrated a rather modest downregulation of levels of multiple proteins and particularly decreased levels of the minor capsid protein UL85. Electron microscopy demonstrated that viral capsids assemble but are mislocalized in nuclei of cells infected with the mutant virus, with fewer cytoplasmic capsids detected. In sum, deletion of the sequences encoding the amino terminus of UL84 affects interaction with UL44 and virus replication unexpectedly, not viral DNA synthesis. Mislocalization of viral capsids in infected cell nuclei likely contributes to the observed decrease in virus replication.
Collapse
Affiliation(s)
- Blair L. Strang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian J. Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mayuri Sharma
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jean M. Pesola
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rebecca L. Sanders
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA
| | - Deborah H. Spector
- Department of Cellular and Molecular Medicine and Skaggs School of Pharmacy and Pharmaceutical Sciences
| | - Donald M. Coen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Kagele D, Rossetto CC, Tarrant MT, Pari GS. Analysis of the interactions of viral and cellular factors with human cytomegalovirus lytic origin of replication, oriLyt. Virology 2012; 424:106-14. [PMID: 22236369 DOI: 10.1016/j.virol.2011.12.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 09/27/2011] [Accepted: 12/13/2011] [Indexed: 01/08/2023]
Abstract
Human cytomegalovirus transient lytic DNA replication relies on the cis-acting element oriLyt, six viral-encoded core proteins, the proposed DNA replication initiator protein UL84, IE2, IRS1 and the gene products from the UL112/113 loci. In an effort to elucidate cellular and viral-encoded factors that may play a role in oriLyt-dependent replication we used DNA-affinity purification and mass spectrometry to isolate and identify several previously unknown cellular and viral factors that interact with HCMV oriLyt DNA. These proteins include the multifunctional hnRNP-K, BUB3, HMGB1, PTB-1, UL83, UL112/113, and IRS1. Chromatin immunoprecipitation (ChIP) assays confirmed an interaction of several of these factors with oriLyt. Co-immunoprecipitation experiments detected an interaction between UL84 and hnRNP-K in infected and transfected cells. Knockdown of hnRNP K expression by siRNA inhibited the amplification of oriLyt in the transient assay. Together, these data suggest a possible regulatory role in DNA replication for several previously unidentified viral and cellular factors.
Collapse
Affiliation(s)
- Dominique Kagele
- University of Nevada, Reno School of Medicine, Department of Microbiology & Immunology, Reno, NV 89557, USA
| | | | | | | |
Collapse
|
14
|
Abstract
INTRODUCTION Cytomegalovirus (CMV) is a ubiquitous pathogen that establishes a lifelong asymptomatic infection in healthy individuals. Infection of immunesuppressed individuals causes serious illness. Transplant and AIDS patients are highly susceptible to CMV leading to life-threatening end-organ disease. Another vulnerable population is the developing fetus in utero, where congenital infection can result in surviving newborns with long-term developmental problems. There is no vaccine licensed for CMV and current antivirals suffer from complications associated with prolonged treatment. These include drug toxicity and emergence of resistant strains. There is an obvious need for new antivirals. Candidate intervention strategies are tested in controlled preclinical animal models but species specificity of human CMV precludes the direct study of the virus in an animal model. AREAS COVERED This review explores the current status of CMV antivirals and development of new drugs. This includes the use of animal models and the development of new improved models such as humanized animal CMV and bioluminescent imaging of virus in animals in real time. EXPERT OPINION Various new CMV antivirals are in development, some with greater spectrum of activity against other viruses. Although the greatest need is in the setting of transplant patients, there remains an unmet need for a safe antiviral strategy against congenital CMV. This is especially important as an effective CMV vaccine remains an elusive goal. In this regard, greater emphasis should be placed on suitable preclinical animal models and greater collaboration between industry and academia.
Collapse
Affiliation(s)
- Alistair McGregor
- University of Minnesota Medical School, Center for Infectious Diseases and Microbiology Translational Research, 2001 6th Street SE, MN 55455, USA.
| | | |
Collapse
|
15
|
Mutation of glutamine to arginine at position 548 of IE2 86 in human cytomegalovirus leads to decreased expression of IE2 40, IE2 60, UL83, and UL84 and increased transcription of US8-9 and US29-32. J Virol 2011; 85:11098-110. [PMID: 21865379 DOI: 10.1128/jvi.05315-11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The IE2 86 protein of human cytomegalovirus (HCMV) is essential for productive infection. The mutation of glutamine to arginine at position 548 of IE2 86 causes the virus to grow both slowly and to very low titers, making it difficult to study this mutant via infection. In this study, Q548R IE2 86 HCMV was produced on the complementing cell line 86F/40HA, which allowed faster and higher-titer production of mutant virus. The main defects observed in this mutant were greatly decreased expression of IE2 40, IE2 60, UL83, and UL84. Genome replication and the induction of cell cycle arrest were found to proceed at or near wild-type levels, and there was no defect in transitioning to early or late protein expression. Q548R IE2 86 was still able to interact with UL84. Furthermore, Q548R IE2 40 maintained the ability to enhance UL84 expression in a cotransfection assay. Microarray analysis of Q548R IE2 HCMV revealed that the US8, US9, and US29-32 transcripts were all significantly upregulated. These results further confirm the importance of IE2 in UL83 and UL84 expression as well as pointing to several previously unknown regions of the HCMV genome that may be regulated by IE2.
Collapse
|
16
|
Rossetto CC, Susilarini NK, Pari GS. Interaction of Kaposi's sarcoma-associated herpesvirus ORF59 with oriLyt is dependent on binding with K-Rta. J Virol 2011; 85:3833-41. [PMID: 21289111 PMCID: PMC3126130 DOI: 10.1128/jvi.02361-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 01/27/2011] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)/human herpesvirus 8 (HHV-8) displays two distinct life stages, latency and lytic reactivation. Progression through the lytic cycle and replication of the viral genome constitute an essential step toward the production of infectious virus and human disease. KSHV K-RTA has been shown to be the major transactivator required for the initiation of lytic reactivation. In the transient-cotransfection replication assay, K-Rta is the only noncore protein required for DNA synthesis. K-Rta was shown to interact with both C/EBPα binding motifs and the R response elements (RRE) within oriLyt. It is postulated that K-Rta acts in part to facilitate the recruitment of replication factors to oriLyt. In order to define the role of K-Rta in the initiation of lytic DNA synthesis, we show an interaction with ORF59, the DNA polymerase processivity factor (PF), one of the eight virally encoded proteins necessary for origin-dependent DNA replication. Using the chromatin immunoprecipitation (ChIP) assay, both K-Rta and ORF59 interact with the RRE and C/EBPα binding motifs within oriLyt in cells harboring the KSHV bacterial artificial chromosome (BAC). A transient-transfection ChIP assay demonstrated that the interaction of ORF59 with oriLyt is dependent on binding with K-Rta and that ORF59 fails to bind to oriLyt in the absence of K-Rta. Also, using the cotransfection replication assay, overexpression of the interaction domain of K-Rta with ORF59 has a dominant negative effect on oriLyt amplification, suggesting that the interaction of K-Rta with ORF59 is essential for DNA synthesis and supporting the hypothesis that K-Rta facilitates the formation of a replication complex at oriLyt.
Collapse
Affiliation(s)
- Cyprian C. Rossetto
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| | - Ni Ketut Susilarini
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| | - Gregory S. Pari
- University of Nevada—Reno, School of Medicine, Department of Microbiology and Immunology, Reno Nevada 89557
| |
Collapse
|
17
|
Lee SB, Lee CF, Ou DSC, Dulal K, Chang LH, Ma CH, Huang CF, Zhu H, Lin YS, Juan LJ. Host-viral effects of chromatin assembly factor 1 interaction with HCMV IE2. Cell Res 2011; 21:1230-47. [PMID: 21445097 DOI: 10.1038/cr.2011.53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Chromatin assembly factor 1 (CAF1) consisting of p150, p60 and p48 is known to assemble histones onto newly synthesized DNA and thus maintain the chromatin structure. Here, we show that CAF1 expression was induced in human cytomegalovirus (HCMV)-infected cells, concomitantly with global chromatin decondensation. This apparent conflict was thought to result, in part, from CAF1 mislocalization to compartments of HCMV DNA synthesis through binding of its largest subunit p150 to viral immediate-early protein 2 (IE2). p150 interaction with p60 and IE2 facilitated HCMV DNA synthesis. The IE2Q548R mutation, previously reported to result in impaired HCMV growth with unknown mechanism, disrupted IE2/p150 and IE2/histones association in our study. Moreover, IE2 interaction with histones partly depends on p150, and the HCMV-induced chromatin decondensation was reduced in cells ectopically expressing the p150 mutant defective in IE2 binding. These results not only indicate that CAF1 was hijacked by IE2 to facilitate the replication of the HCMV genome, suggesting chromatin assembly plays an important role in herpesviral DNA synthesis, but also provide a model of the virus-induced chromatin instability through CAF1.
Collapse
Affiliation(s)
- Sung-Bau Lee
- Genomics Research Center, Academia Sinica, Taipei 115
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McGregor A, Choi KY, Schleiss MR. Guinea pig cytomegalovirus GP84 is a functional homolog of the human cytomegalovirus (HCMV) UL84 gene that can complement for the loss of UL84 in a chimeric HCMV. Virology 2010; 410:76-87. [PMID: 21094510 DOI: 10.1016/j.virol.2010.10.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 07/23/2010] [Accepted: 10/15/2010] [Indexed: 01/01/2023]
Abstract
The guinea pig cytomegalovirus (GPCMV) co-linear gene and potential functional homolog of HCMV UL84 (GP84) was investigated. The GP84 gene had delayed early transcription kinetics and transient expression studies of GP84 protein (pGP84) demonstrated that it targeted the nucleus and co-localized with the viral DNA polymerase accessory protein as described for HCMV pUL84. Additionally, pGP84 exhibited a transdominant inhibitory effect on viral growth as described for HCMV. The inhibitory domain could be localized to a minimal peptide sequence of 99 aa. Knockout of GP84 generated virus with greatly impaired growth kinetics. Lastly, the GP84 ORF was capable of complementing for the loss of the UL84 coding sequence in a chimeric HCMV. Based on this research and previous studies we conclude that GPCMV is similar to HCMV by encoding single copy co-linear functional homologs of HCMV UL82 (pp71), UL83 (pp65) and UL84 genes.
Collapse
Affiliation(s)
- A McGregor
- Center for Infectious Diseases and Microbiology, Translational Research and Division of Infectious Diseases, University of Minnesota Medical School, Department of Pediatrics, 2001 Sixth Street SE, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
19
|
Spector DJ, Yetming K. UL84-independent replication of human cytomegalovirus strain TB40/E. Virology 2010; 407:171-7. [PMID: 20855098 DOI: 10.1016/j.virol.2010.08.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/23/2010] [Accepted: 08/24/2010] [Indexed: 10/19/2022]
Abstract
The UL84 gene of human cytomegalovirus is implicated in the initiation of viral DNA replication during lytic infection. UL84 is essential for replication of a cloned viral origin of lytic replication (oriLyt) in vitro and mutants of strains AD169 or Towne with deletions or insertions in UL84 fail to grow in cells permissive for wild type virus. Here we show that UL84 is dispensable for replication of a strain TB40/E clone derived from a bacterial artificial chromosome. The genomes of the fibroblast-adapted strains AD169 and Towne are altered substantially from the consensus for strains that have not been propagated extensively in cell culture. The parental TB40/E genome conforms to the consensus genomic organization. Accordingly, natural HCMV strains may possess replication capability that extends beyond the known oriLyt-dependent replication system of laboratory strains.
Collapse
Affiliation(s)
- David J Spector
- Department of Microbiology and Immunology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA.
| | | |
Collapse
|
20
|
Nucleocytoplasmic shuttling of human cytomegalovirus UL84 is essential for virus growth. J Virol 2010; 84:8484-94. [PMID: 20573826 DOI: 10.1128/jvi.00738-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human cytomegalovirus (HCMV) UL84 is a multifunctional protein that is the proposed initiator for lytic viral DNA synthesis. Recently it was shown that UL84 displays nucleocytoplasmic shuttling. The role of shuttling in lytic DNA replication and virus growth is unknown. We now show that expression of the nonshuttling UL84 mutant failed to complement oriLyt-dependent DNA replication in the transient assay under conditions where core replication and ancillary proteins were expressed under the control of their native promoters. However, constitutive expression of the core replication proteins, along with the nonshuttling UL84 mutant, resulted in efficient oriLyt amplification, suggesting that shuttling may contribute to the activity of one of the auxiliary replication proteins. A recombinant HCMV bacterial artificial chromosome plasmid (BACmid) expressing the nonshuttling UL84 mutant (NS84 BAC) was defective for production of infectious virus. Quantitative PCR showed that NS84 BAC had decreased accumulation of viral DNA in both cellular and supernatant samples. Analysis of the accumulation of select viral mRNAs showed no difference in total cellular mRNA accumulation for IE2, IRS1, TRS1, UL102, UL105, and UL75 in cells transfected with the NS84 BAC. However, examination of cytoplasmic RNA and subcellular localization of IRS1 revealed a decrease in IRS1 mRNA accumulation and displaced protein localization, strongly suggesting that UL84 facilitated the localization of IRS1 mRNA to the cytoplasm. RNA pulldown assays showed that UL84 interacted with IRS1 mRNA. These results indicate that nucleocytoplasmic shuttling is essential for virus growth and strongly suggest that UL84 is responsible for localization of at least one virus-encoded transcript, IRS1 mRNA.
Collapse
|
21
|
Human cytomegalovirus IE2 86 and IE2 40 proteins differentially regulate UL84 protein expression posttranscriptionally in the absence of other viral gene products. J Virol 2010; 84:5158-70. [PMID: 20200242 DOI: 10.1128/jvi.00090-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
It has previously been demonstrated that, during human cytomegalovirus infection, the viral IE2 86 and IE2 40 proteins are both important for the expression of an early-late viral protein, UL84. Here, we show that expression of the UL84 protein is enhanced upon cotransfection with either IE2 86 or IE2 40, although IE2 40 appears to play a more important role. The UL84 protein levels are tightly linked to the amount of IE2 40 present, but this does not appear to be true for IE2 86. RNA remains constant for all corresponding proteins, indicating posttranscriptional regulation of UL84. The first 105 amino acids of UL84 are necessary and sufficient for this phenotype, and this region is also required for an interaction with IE2 86 and IE2 40. Treatment with proteasome inhibitors shows that UL84 exhibits some proteasome-dependent degradation, and UL84 is not protected against this degradation when coexpressed with IE2 86 or IE2 40. UL84 also exhibits an inhibitory effect on IE2 86 and IE2 40 protein levels in these cotransfection assays. Further, we show that the amino acid sequence of UL84 is important for the enhancement governed by IE2 40. These results indicate that IE2 86, IE2 40, and UL84 serve to regulate protein expression in a posttranscriptional fashion and that this regulation is independent of other viral proteins.
Collapse
|
22
|
Rennekamp AJ, Lieberman PM. Initiation of lytic DNA replication in Epstein-Barr virus: search for a common family mechanism. Future Virol 2010; 5:65-83. [PMID: 22468146 PMCID: PMC3314400 DOI: 10.2217/fvl.09.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Herpesviruses are a complex family of dsDNA viruses that are a major cause of human disease. All family members share highly related viral replication proteins, such as DNA polymerase, ssDNA-binding proteins and processivity factors. Consequently, it is generally thought that lytic replication occurs through a common and conserved mechanism. However, considerable evidence indicates that proteins controlling initiation of DNA replication vary greatly among the herepesvirus subfamilies. In this article, we focus on some of the known mechanisms that regulate Epstein-Barr virus lytic-cycle replication, and compare this to other herpesvirus family members. Our reading of the literature leads us to conclude that diverse viral mechanisms generate a common nucleoprotein prereplication structure that can be recognized by a highly conserved family of viral replication enzymes.
Collapse
Affiliation(s)
- Andrew J Rennekamp
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA and The University of Pennsylvania, Biomedical Graduate Program in Cell & Molecular Biology, The School of Medicine, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9523, Fax: +1 251 898 0663,
| | - Paul M Lieberman
- The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, USA, Tel.: +1 215 898 9491, Fax: +1 215 898 0663,
| |
Collapse
|
23
|
Inhibition of human cytomegalovirus replication via peptide aptamers directed against the nonconventional nuclear localization signal of the essential viral replication factor pUL84. J Virol 2009; 83:11902-13. [PMID: 19740994 DOI: 10.1128/jvi.01378-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The UL84 open reading frame of human cytomegalovirus encodes an essential multifunctional regulatory protein that is thought to act in the nucleus as an initiator of lytic viral replication. Nuclear trafficking of pUL84 is facilitated by a complex nonconventional nuclear localization signal (NLS) that mediates its interaction with the cellular importin-alpha/beta pathway. Since binding of pUL84 to importin-alpha proteins mechanistically differs from that of cellular proteins containing a classical NLS, we assumed that specific interference with the nuclear import of pUL84 might be possible and that this could constitute a novel principle for antiviral therapy. In order to test this hypothesis, we employed peptide aptamer technology and isolated several peptide aptamers from a randomized peptide expression library that specifically bind with high affinity to the unconventional pUL84 NLS under intracellular conditions. Coimmunoprecipitation experiments confirmed these interactions in mammalian cells, and the antiviral potential of the identified peptide aptamers was determined using three independent experimental approaches. (i) Infection experiments with a recombinant human cytomegalovirus expressing green fluorescent protein demonstrated 50 to 60% decreased viral replication in primary human fibroblasts stably expressing pUL84-specific aptamers. (ii) A 50 to 70% reduction of viral plaque formation, as well as a 70 to 90% inhibition of virus release in the presence of pUL84-specific aptamers, was observed. (iii) Immunofluorescence analyses revealed a shift from an almost exclusively nuclear pUL84 staining pattern to a nucleocytoplasmic distribution upon coexpression of the identified molecules, indicating that interference with the nuclear import of pUL84 contributes to the observed antiviral activity of the identified pUL84-binding aptamer molecules.
Collapse
|
24
|
Interaction of HCMV UL84 with C/EBPalpha transcription factor binding sites within oriLyt is essential for lytic DNA replication. Virology 2009; 392:16-23. [PMID: 19631360 DOI: 10.1016/j.virol.2009.06.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/15/2009] [Accepted: 06/19/2009] [Indexed: 11/23/2022]
Abstract
Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the cis-acting oriLyt region and requires six core replication proteins along with UL84 and IE2. Although UL84 is thought to be the replication initiator protein, little is known about its interaction with oriLyt. We have now performed chromatin immunoprecipitation assays (ChIP) using antibodies specific to UL84, IE2, UL44, CCAAT/enhancer binding protein (C/EBPalpha) and PCR primers that span the entire oriLyt region to reveal an evaluation of specific protein binding across oriLyt. UL84 interacted with several regions of oriLyt that contain C/EBPalpha transcription factor binding sites. Mutation of either of one of C/EBPalpha (92,526 or 92,535) sites inactivated oriLyt and resulted in the loss of binding of UL84. These data reveal the regions of interaction within oriLyt for several key replication proteins and show that the interaction between UL84 and C/EBPalpha sites within oriLyt is essential for lytic DNA replication.
Collapse
|
25
|
Analysis of the association of the human cytomegalovirus DNA polymerase subunit UL44 with the viral DNA replication factor UL84. J Virol 2009; 83:7581-9. [PMID: 19457994 DOI: 10.1128/jvi.00663-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The central enzyme responsible for human cytomegalovirus (HCMV) DNA synthesis is a virally encoded DNA polymerase that includes a catalytic subunit, UL54, and a homodimeric accessory subunit, UL44, the presumptive HCMV DNA polymerase processivity factor. The structure of UL44 is similar to that of the eukaryotic processivity factor proliferating cell nuclear antigen (PCNA), which interacts with numerous other proteins required for faithful DNA replication. We sought to determine whether, like PCNA, UL44 is capable of interacting with multiple DNA replication proteins and, if so, whether these proteins bind UL44 at the site corresponding to where multiple proteins bind to PCNA. Initially, several proteins, including the viral DNA replication factors UL84 and UL57, were identified by mass spectrometry in immunoprecipitates of UL44 from infected cell lysate. The association of UL44/UL84, but not UL44/UL57, was confirmed by reciprocal coimmunoprecipitation of these proteins from infected cell lysates and was resistant to nuclease treatment. Yeast two-hybrid analyses demonstrated that the substitution of residues in UL44 that prevent UL44 homodimerization or abrogate the binding of UL54 to UL44 do not abrogate the UL44/UL84 interaction. Reciprocal glutathione-S-transferase (GST) pulldown experiments using bacterially expressed UL44 and UL84 confirmed these results and, further, demonstrated that a UL54-derived peptide that competes with UL54 for UL44 binding does not prevent the association of UL84 with UL44. Taken together, our results strongly suggest that UL44 and UL84 interact directly using a region of UL44 different from the UL54 binding site. Thus, UL44 can bind interacting replication proteins using a mechanism different from that of PCNA.
Collapse
|
26
|
Interaction of human cytomegalovirus pUL84 with casein kinase 2 is required for oriLyt-dependent DNA replication. J Virol 2008; 83:2393-6. [PMID: 19091862 DOI: 10.1128/jvi.02339-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus pUL84 is a phosphorylated protein that is required for lytic DNA replication and participates in regulation of virus gene expression. We previously used a proteomics assay to show that human cytomegalovirus pUL84 interacts with casein kinase 2 (CK2). We now have demonstrated that pUL84 is a substrate for CK2 in vitro, and we have determined that two putative CK2 phosphorylation sites within pUL84 mediate binding to CK2. Mutation of a threonine residue at amino acid (aa) 148 and a serine residue at aa 157 within the pUL84 protein resulted in the inability of the protein to interact with the CK2alpha subunit in transfected cells. Interaction of pUL84 with CK2 was essential for complementation of oriLyt-dependent DNA replication, suggesting that phosphorylation is an essential modification.
Collapse
|
27
|
Internal deletions of IE2 86 and loss of the late IE2 60 and IE2 40 proteins encoded by human cytomegalovirus affect the levels of UL84 protein but not the amount of UL84 mRNA or the loading and distribution of the mRNA on polysomes. J Virol 2008; 82:11383-97. [PMID: 18787008 DOI: 10.1128/jvi.01293-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major immediate-early (IE) region of human cytomegalovirus encodes two IE proteins, IE1 72 and IE2 86, that are translated from alternatively spliced transcripts that differ in their 3' ends. Two other proteins that correspond to the C-terminal region of IE2 86, IE2 60 and IE2 40, are expressed at late times. In this study, we used IE2 mutant viruses to examine the mechanism by which IE2 86, IE2 60, and IE2 40 affect the expression of a viral DNA replication factor, UL84. Deletion of amino acids (aa) 136 to 290 of IE2 86 results in a significant decrease in UL84 protein during the infection. This loss of UL84 is both proteasome and calpain independent, and the stability of the protein in the context of infection with the mutant remains unaffected. The RNA for UL84 is expressed to normal levels in the mutant virus-infected cells, as are the RNAs for two other proteins encoded by this region, UL85 and UL86. Moreover, nuclear-to-cytoplasmic transport and the distribution of the UL84 mRNA on polysomes are unaffected. A region between aa 290 and 369 of IE2 86 contributes to the UL84-IE2 86 interaction in vivo and in vitro. IE2 86, IE2 60, and IE2 40 are each able to interact with UL84 in the mutant-infected cells, suggesting that these interactions may be important for the roles of UL84 and the IE2 proteins. Thus, these data have defined the contribution of IE2 86, IE2 60, and IE2 40 to the efficient expression of UL84 throughout the infection.
Collapse
|
28
|
Mercorelli B, Sinigalia E, Loregian A, Palù G. Human cytomegalovirus DNA replication: antiviral targets and drugs. Rev Med Virol 2008; 18:177-210. [PMID: 18027349 DOI: 10.1002/rmv.558] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human cytomegalovirus (HCMV) infection is associated with severe morbidity and mortality in immunocompromised individuals, in particular transplant recipients and AIDS patients, and is the most frequent congenital viral infection in humans. There are currently five drugs approved for HCMV treatment: ganciclovir and its prodrug valganciclovir, foscarnet, cidofovir and fomivirsen. These drugs have provided a major advance in HCMV disease management, but they suffer from poor bioavailability, significant toxicity and limited effectiveness, mainly due to the development of drug resistance. Fortunately, there are several novel and potentially very effective new compounds which are under pre-clinical and clinical evaluation and may address these limitations. This review focuses on HCMV proteins that are directly or indirectly involved in viral DNA replication and represent already established or potential novel antiviral targets, and describes both currently available drugs and new compounds against such protein targets.
Collapse
Affiliation(s)
- Beatrice Mercorelli
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35121 Padua, Italy
| | | | | | | |
Collapse
|
29
|
Woon HG, Scott GM, Yiu KL, Miles DH, Rawlinson WD. Identification of putative functional motifs in viral proteins essential for human cytomegalovirus DNA replication. Virus Genes 2008; 37:193-202. [PMID: 18618235 DOI: 10.1007/s11262-008-0255-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Accepted: 06/23/2008] [Indexed: 01/07/2023]
Abstract
Six of the eleven genes essential for Human cytomegalovirus (HCMV) DNA synthesis have been analyzed for putative structural motifs that may have a significant functional role in DNA replication. The genes studied encode for the DNA polymerase accessory protein (UL44), single-stranded DNA binding protein (UL57), primase-helicase complex (UL70, UL102, and UL105), and the putative initiator protein (UL84). The full-length open reading frames of these genes were highly conserved between ten isolates with amino acid sequence identity of >97% for all genes. Using ScanProsite software from the Expert Protein Analysis System (ExPASy) proteomics server, we have mapped putative motifs throughout these HCMV replication genes. Interesting motifs identified include casein kinase-2 (CKII) phosphorylation sites, a microbodies signal motif in UL57, and an ATP binding site in the putative UL105 helicase. Our investigations have also elucidated motif-rich regions of the UL44 DNA polymerase accessory protein and identified cysteine motifs that have potential implications for UL57 and UL70 primase. Taken together, these findings provide insights to regions of these HCMV replication proteins that are important for post-translation modification, activation, and overall function, and this information can be utilized to target further research into these proteins and advance the development of novel antiviral agents that target these processes.
Collapse
Affiliation(s)
- Heng-Giap Woon
- Virology Division, Department of Microbiology, SEALS, POWH and UNSW Research Laboratories, Prince of Wales Hospital, Randwick, NSW, Australia
| | | | | | | | | |
Collapse
|
30
|
Identification of human cytomegalovirus UL84 virus- and cell-encoded binding partners by using proteomics analysis. J Virol 2007; 82:96-104. [PMID: 17959680 DOI: 10.1128/jvi.01559-07] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human cytomegalovirus (HCMV) UL84 is a phosphoprotein that shuttles from the nucleus to the cytoplasm and is required for oriLyt-dependent DNA replication and viral growth. UL84 was previously shown to interact with IE2 (IE86) in infected cells, and this interaction down-regulates IE2-mediated transcriptional activation in transient assays. UL84 and IE2 were also shown to cooperatively activate a promoter within HCMV oriLyt. UL84 alone can interact with an RNA stem-loop within oriLyt and is bound to this structure within the virion. In an effort to investigate the binding partners for UL84 in infected cells, we pulled down UL84 from protein lysates prepared from HCMV-infected human fibroblasts by using a UL84-specific antibody and resolved the immunoprecipitated protein complexes by two-dimensional gel electrophoresis. We subsequently identified individual proteins by matrix-assisted laser desorption ionization-tandem time of flight analysis. This analysis revealed that UL84 interacts with viral proteins UL44, pp65, and IE2. In addition, a number of cell-encoded proteins were identified, including ubiquitin-conjugating enzyme E2, casein kinase II (CKII), and the multifunctional protein p32. We also confirmed the interaction between UL84 and IE2 as well as the interaction of UL84 with importin alpha. UL44, pp65, and CKII interactions were confirmed to occur in infected and cotransfected cells by coimmunoprecipitation assays followed by Western blotting. Ubiquitination of UL84 occurred in the presence and absence of the proteasome activity inhibitor MG132 in infected cells. The identification of UL84 binding partners is a significant step toward the understanding of the function of this significant replication protein.
Collapse
|
31
|
Kato-Noah T, Xu Y, Rossetto CC, Colletti K, Papousková I, Pari GS. Overexpression of the kaposi's sarcoma-associated herpesvirus transactivator K-Rta can complement a K-bZIP deletion BACmid and yields an enhanced growth phenotype. J Virol 2007; 81:13519-32. [PMID: 17913803 PMCID: PMC2168825 DOI: 10.1128/jvi.00832-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 (HHV8) ORF50 encodes a transactivator, K-Rta, which functions as the switch from latent to lytic virus replication. K-bZIP interacts with K-Rta and can repress its transactivation activity for some viral promoters. Both K-Rta and K-bZIP are required for origin-dependent DNA replication. To determine the role of K-bZIP in the context of the viral genome, we generated a recombinant HHV8 bacterial artificial chromosome (BAC) with a deletion in the K-bZIP open reading frame. This BACmid, BAC36DeltaK8, displayed an enhanced growth phenotype with respect to virus production and accumulation of virus-encoded mRNAs measured by real-time PCR when K-Rta was used to induce the virus lytic cycle. Conversely, induction of the virus lytic cycle using tetradecanoyl phorbol acetate/n-butyrate resulted in no virus production and an aberrant gene expression pattern from BAC36DeltaK8-containing cells compared to wild-type (wt) BAC. This null virus phenotype was efficiently complemented by the expression of K-bZIP in trans, restoring virus production to wt BAC levels. Immunofluorescence staining revealed that subcellular localization of K-Rta was unchanged; however, a disruption of LANA subcellular localization was observed in cells harboring BAC36DeltaK8, suggesting that K-bZIP influences LANA localization. Coimmunoprecipitation experiments confirmed that K-bZIP interacts with LANA in BCBL-1 cells and in cotransfection assays. Lastly, the chromatin immunoprecipitation assay revealed that, in an environment where K-Rta is overexpressed and in the absence of K-bZIP, K-Rta binds to CAAT enhancer binding protein alpha sites within oriLyt, suggesting that it is K-Rta that supplies an essential replication function and that K-bZIP may serve to augment or facilitate the interaction of K-Rta with oriLyt.
Collapse
Affiliation(s)
- Taeko Kato-Noah
- Department of Microbiology, Cell and Molecular Biology Program, University of Nevada School of Medicine, Reno, Nevada 89557, USA
| | | | | | | | | | | |
Collapse
|
32
|
Colletti KS, Smallenburg KE, Xu Y, Pari GS. Human cytomegalovirus UL84 interacts with an RNA stem-loop sequence found within the RNA/DNA hybrid region of oriLyt. J Virol 2007; 81:7077-85. [PMID: 17459920 PMCID: PMC1933308 DOI: 10.1128/jvi.00058-07] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Human cytomegalovirus (HCMV) lytic DNA replication is initiated at the complex cis-acting oriLyt region, which spans nearly 3 kb. DNA synthesis requires six core proteins together with UL84 and IE2. Previously, two essential regions were identified within oriLyt. Essential region I (nucleotides [nt] 92209 to 92573) can be replaced with the constitutively active simian virus 40 promoter, which in turn eliminates the requirement for IE2 in the origin-dependent transient-replication assay. Essential region II (nt 92979 to 93513) contains two elements of interest: an RNA/DNA hybrid domain and an inverted repeat sequence capable of forming a stem-loop structure. Our studies now reveal for the first time that UL84 interacts with a stem-loop RNA oligonucleotide in vitro, and although UL84 interacted with other nucleic acid substrates, a specific interaction occurred only with the RNA stem-loop. Increasing concentrations of purified UL84 produced a remarkable downward-staircase pattern, which is not due to a nuclease activity but is dependent upon the presence of secondary structures, suggesting that UL84 modifies the conformation of the RNA substrate. Cross-linking experiments show that UL84 possibly changes the conformation of the RNA substrate. The addition of purified IE2 to the in vitro binding reaction did not affect binding to the stem-loop structure. Chromatin immunoprecipitation assays performed using infected cells and purified virus show that UL84 is bound to oriLyt in a region adjacent to the RNA/DNA hybrid and the stem-loop structure. These results solidify UL84 as the potential initiator of HCMV DNA replication through a unique interaction with a conserved RNA stem-loop structure within oriLyt.
Collapse
Affiliation(s)
- Kelly S Colletti
- University of Nevada--Reno, Department of Microbiology, School of Medicine, Howard Bldg., Reno, NV 89557, USA
| | | | | | | |
Collapse
|
33
|
White EA, Del Rosario CJ, Sanders RL, Spector DH. The IE2 60-kilodalton and 40-kilodalton proteins are dispensable for human cytomegalovirus replication but are required for efficient delayed early and late gene expression and production of infectious virus. J Virol 2007; 81:2573-83. [PMID: 17202222 PMCID: PMC1865986 DOI: 10.1128/jvi.02454-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human cytomegalovirus (HCMV) IE2 86-kDa protein is an essential transactivator of viral and cellular gene expression. Additional proteins of 60 and 40 kDa are expressed from the IE2 gene at late times postinfection and are identical to the C terminus of IE2 86. We have constructed HCMV recombinants that express wild-type full-length IE2 86 but do not express the IE2 40- and 60-kDa proteins. Each of these recombinants is viable, indicating that neither the 60-kDa nor the 40-kDa protein is required for virus replication, either alone or in combination. Cells infected with the IE2 60 and IE2 40 deletion mutants, however, exhibit decreased expression of selected viral genes at late times. In particular, expression of the viral DNA replication factor UL84 is affected by the deletion of IE2 40, and expression of the tegument protein pp65 (ppUL83) is affected by the deletion of both IE2 40 and IE2 60. IE2 60 and IE2 40 are also required for the production of normal levels of infectious virus. Finally, IE2 40 appears to function as a repressor of major immediate-early transcription in the infected cell. These results begin to define functions for the IE2 60- and IE2 40-kDa proteins and indicate that these products contribute both to the expression of selected viral genes and to the overall progression of the infection.
Collapse
Affiliation(s)
- Elizabeth A White
- Cellular and Molecular Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
34
|
Scalzo AA, Corbett AJ, Rawlinson WD, Scott GM, Degli-Esposti MA. The interplay between host and viral factors in shaping the outcome of cytomegalovirus infection. Immunol Cell Biol 2006; 85:46-54. [PMID: 17146464 DOI: 10.1038/sj.icb.7100013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytomegalovirus (CMV) remains a major human pathogen causing significant morbidity and mortality in immunosuppressed or immunoimmature individuals. Although significant advances have been made in dissecting out certain features of the host response to human CMV (HCMV) infection, the strict species specificity of CMVs means that most aspects of antiviral immunity are best assessed in animal models. The mouse model of murine CMV (MCMV) infection is an important tool for analysis of in vivo features of host-virus interactions and responses to antiviral drugs that are difficult to assess in humans. Important studies of the contribution of host resistance genes to infection outcome, interplays between innate and adaptive host immune responses, the contribution of virus immune evasion genes and genetic variation in these genes to the establishment of persistence and in vivo studies of resistance to antiviral drugs have benefited from the well-developed MCMV model. In this review, we discuss recent advances in the immunobiology of host-CMV interactions that provide intriguing insights into the complex interplay between host and virus that ultimately facilitates viral persistence. We also discuss recent studies of genetic responses to antiviral therapy, particularly changes in DNA polymerase and protein kinase genes of MCMV and HCMV.
Collapse
Affiliation(s)
- Anthony A Scalzo
- Immunology and Virology Program, Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, Western Australia, Australia.
| | | | | | | | | |
Collapse
|
35
|
Abstract
Published work (D. J. McGeoch, Nucleic Acids Res. 18:4105-4110, 1990; J. E. McGeehan, N. W. Depledge, and D. J. McGeoch, Curr. Protein Peptide Sci. 2:325-333, 2001) has indicated that evolution of dUTPase in the class of herpesviruses that infect mammals and birds involved capture of a host gene followed by a duplication event that resulted in a coding region comprising two fused dUTPase domains. Some of the conserved residues required for enzyme activity were then lost, resulting in a dUTPase containing a single active site with different elements contributed by each half of the protein. Further conserved residues were lost in one subfamily (the Betaherpesvirinae), yielding a protein that is related to herpesvirus dUTPases but has a different and as yet unrecognized function. Evidence from sequence similarities and structural predictions now indicates that several additional genes were derived from the herpesvirus dUTPase gene, probably by duplication. These are UL31, UL82, UL83, and UL84 in human cytomegalovirus (and counterparts in other members of the Betaherpesvirinae) and ORF10 and ORF11 in human herpesvirus 8 (and counterparts in other members of the Gammaherpesvirinae). The findings clarify the evolutionary history of these genes and provide novel insights for structural and functional studies.
Collapse
Affiliation(s)
- Andrew J Davison
- MRC Virology Unit, Institute of Virology, University of Glasgow, UK.
| | | |
Collapse
|
36
|
Colletti KS, Xu Y, Yamboliev I, Pari GS. Human cytomegalovirus UL84 is a phosphoprotein that exhibits UTPase activity and is a putative member of the DExD/H box family of proteins. J Biol Chem 2005; 280:11955-60. [PMID: 15778228 DOI: 10.1074/jbc.c400603200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL84 is required for lytic DNA replication and is proposed to be the key factor in initiation of viral DNA synthesis. We now show that UL84 has a high degree of homology to the DExD/H (where x can be any amino acid) box family of helicases, displays UTPase activity, and is phosphorylated at serine residues. Affinity column-purified UL84-FLAG fusion protein was used in an in vitro nucleoside triphosphatase (NTPase) assay to show that UL84 has NTPase activity, preferring UTP. This UTPase activity was linear with respect to enzyme concentration and slightly enhanced by the addition of nucleic acid substrates. UL84 UTPase was the highest at low salt concentrations, a pH of 7.5, and a temperature of 45 degrees C. The enzyme preferred Mg2+ as the divalent cation but was also able to catalyze the UTPase reaction in the presence of Mn2+, Ca2+, and Zn2+ albeit at lower levels. The evidence presented here suggests that the UL84 UTPase activity may be part of an energy-generating system for helicase activity associated with the initiation of HCMV DNA replication.
Collapse
Affiliation(s)
- Kelly S Colletti
- University of Nevada-Reno, Department of Microbiology & Immunology and the Cell and Molecular Biology Program, Reno, Nevada 89557, USA
| | | | | | | |
Collapse
|