1
|
Kissi-Twum AA, Pionek K, Loeb DD. The HBV variant CpF97L supports the secretion of pgRNA-containing virions at a level much greater than WT HBV. J Virol 2025; 99:e0010025. [PMID: 40231820 PMCID: PMC12090816 DOI: 10.1128/jvi.00100-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/21/2025] [Indexed: 04/16/2025] Open
Abstract
Viruses in the Hepadnaviridae family, including hepatitis B virus (HBV), replicate their double-stranded DNA (dsDNA) genomes through reverse transcription of an RNA intermediate, the pregenomic RNA (pgRNA), in the viral capsid within an infected cell. In the cell, capsids containing pgRNA, single-stranded DNA (ssDNA), and dsDNA are present. However, capsids containing dsDNA (referred to as mature genomes) are preferentially secreted in virions while only small amounts of capsids with pgRNA and ssDNA (referred to as immature genomes) are enveloped and secreted. The naturally occurring HBV core protein variant, CpF97L, is an exception; HBV CpF97L secretes high levels of ssDNA-containing virions in addition to dsDNA virions. We asked whether HBV CpF97L is capable of secreting pgRNA-containing virions as well. We found that HBV CpF97L secretes high levels of pgRNA-containing virions compared to wild-type (WT) HBV when reverse transcription was inhibited by entecavir or by the Y63F change in P protein. We detected pgRNA virions in Huh7 and HepG2 cell lines, indicating that RNA virion secretion was independent of the cell line used in virion propagation. More importantly, pgRNA virions were detected when dsDNA virions were synthesized as well. Our findings suggest that the capsids of CpF97L are constitutively matured, allowing for virions with immature genomes (ssDNA and pgRNA) to be secreted in addition to dsDNA virions.IMPORTANCEFinding a cure for hepatitis B is critical, as over 250 million people live with a hepatitis B virus (HBV) infection. HBV replicates through a series of nascent RNA and DNA intermediates in capsids, resulting in the secretion of a DNA virion to propagate the infection. HBV infections have been managed with nucleos(t)ide analogs (NAs), which terminate DNA synthesis during replication. During NA treatment, DNA levels plummet, RNA-containing capsids accumulate in infected cells and are secreted, albeit inefficiently, as virions. RNA virions in serum have therefore been proposed to be used as an indicator for covalently closed circular DNA (cccDNA) (HBV's minichromosome in hepatocytes) to determine patients who can be withdrawn from NAs without virological rebound. However, it is unknown if RNA virions are efficiently secreted by the frequent HBV variants that secrete high levels of ssDNA-containing virions, as these will lead to an erroneous overestimate of the cccDNA reservoir; hence, the need for our study.
Collapse
Affiliation(s)
- Abena Adomah Kissi-Twum
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karolyn Pionek
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Pusara S, Wenzel W, Kozlowska M. Impact of DNA on interactions between core proteins of Hepatitis B virus-like particles comprising different C-terminals. Int J Biol Macromol 2024; 263:130365. [PMID: 38401590 DOI: 10.1016/j.ijbiomac.2024.130365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Hepatitis B virus (HBV) virus-like particles (VLPs) are promising therapeutic agents derived from HBV core proteins (Cp). This study investigates the assembly dynamics of HBV VLPs, which is crucial for their potential as drug carriers or gene delivery systems. Coarse-grained molecular dynamics simulations explore the impact of C-terminal domain length (in the Cp ranging from Cp149 to wild-type Cp183) on Cp assembly and stability, particularly in the presence of DNA. Our findings reveal that the C-terminal nucleic acid binding region significantly influences Cp assembly and stability of trimers comprising Cp dimers. Shorter C-terminal domains (Cp164, Cp167) enhance stability and protein-protein interactions, while interactions between naturally occurring Cp183 are destabilized in the absence of DNA. Interestingly, DNA addition further stabilizes Cp assemblies, and this effect is influenced by the length of the nucleic acid binding region. Shorter C-terminal domains show less dependency on DNA content. This stabilization is attributed to electrostatic forces between positively charged C-terminal chains and negatively charged nucleic acids. Our study sheds light on the molecular mechanisms governing protein-protein and protein-DNA interactions in HBV VLP assembly, providing insights into Cp processability and informing the development of efficient gene therapy carriers using VLP technology.
Collapse
Affiliation(s)
- Srdjan Pusara
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Wolfgang Wenzel
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany
| | - Mariana Kozlowska
- Institute of Nanotechnology, Karlsruhe Institute of Technology KIT, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
3
|
Neira JL. Fluorescence, Circular Dichroism and Mass Spectrometry as Tools to Study Virus Structure. Subcell Biochem 2024; 105:207-245. [PMID: 39738948 DOI: 10.1007/978-3-031-65187-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry, as an analytical tool to determine molecular mass, are important biophysical methods in structural virology. Although they do not provide atomic or near-atomic details as cryogenic electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can, they do deliver important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation and interactions with other viral and cellular biomolecules. They can also be used to investigate the molecular determinants of virus particle structure and properties and the changes induced in them by external factors. In this chapter, the physical foundations of these three techniques will be described, alongside examples demonstrating their contribution in understanding the structure and physicochemical properties of virus particles.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, Elche, Alicante, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos, Zaragoza, Spain.
| |
Collapse
|
4
|
Luo H, Ma Y, Ren Y, Li Z, Sheng Y, Wang Y, Su Z, Bi J, Zhang S. Study of self-assembling properties of HBc-VLP derivatives aided by molecular dynamic simulations from a thermodynamic perspective. J Biomol Struct Dyn 2023; 42:12822-12835. [PMID: 37908124 DOI: 10.1080/07391102.2023.2273438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/14/2023] [Indexed: 11/02/2023]
Abstract
Self-assembling protein nanoparticles showed promise for vaccine design due to efficient antigen presentations and safety. However, the unpredictable formations of epitopes-fused protein assemblies remain challenging in the upstream design. This study suggests employing molecular dynamic (MD) simulations to investigate the assembly properties of Hepatitis B core protein (HBc) from thermodynamic perspectives. Eight HBc derivatives were expressed in E. coli, with their self-assembly properties characterised by high-performance liquid chromatography and transmission electron microscopy. MD simulations on the dimers, based on AlphaFold-predicted 3D structures, analysed the derivative at the atomic level. Results revealed that HBc derivatives can form dissociative polymers or large multi-subunit structures due to assembly failures. The instability of the dimer in aqueous solvents or inappropriate intradimer distances could cause major assembly failures. Polar solvation energies played a vital role too in forming assemble-incompetent dimers. Importantly, our study demonstrated that MD simulations on dimers can provide preliminary predictions on the assembly properties of HBc derivatives, thus aiding vaccine design by lowering the risk of self-assembling failures in engineered proteins.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hong Luo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Yanyan Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Ying Ren
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yanan Sheng
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Yingli Wang
- Institute of Pharmaceutical and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, PR China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| | - Jingxiu Bi
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, University of Adelaide, Adelaide, Australia
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
5
|
Moharana M, Pattanayak SK, Khan F. Computational efforts to identify natural occurring compounds from phyllanthus niruri that target hepatitis B viral infections: DFT, docking and dynamics simulation study. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
Su PY, Yen SCB, Yang CC, Chang CH, Lin WC, Shih C. Hepatitis B virus virion secretion is a CRM1-spike-mediated late event. J Biomed Sci 2022; 29:44. [PMID: 35729569 PMCID: PMC9210616 DOI: 10.1186/s12929-022-00827-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatitis B virus (HBV) is a major human pathogen worldwide. To date, there is no curative treatment for chronic hepatitis B. The mechanism of virion secretion remains to be investigated. Previously, we found that nuclear export of HBc particles can be facilitated via two CRM1-specific nuclear export signals (NES) at the spike tip. Methods In this study, we used site-directed mutagenesis at the CRM1 NES, as well as treatment with CRM1 inhibitors at a low concentration, or CRM1-specific shRNA knockdown, in HBV-producing cell culture, and measured the secretion of various HBV viral and subviral particles via a native agarose gel electrophoresis assay. Separated HBV particles were characterized by Western blot analysis, and their genomic DNA contents were measured by Southern blot analysis. Secreted extracellular particles were compared with intracellular HBc capsids for DNA synthesis and capsid formation. Virion secretion and the in vivo interactions among HBc capsids, CRM1 and microtubules, were examined by proximity ligation assay, immunofluorescence microscopy, and nocodazole treatment. Results We report here that the tip of spike of HBV core (HBc) particles (capsids) contains a complex sensor for secretion of both HBV virions and naked capsids. HBV virion secretion is closely associated with HBc nuclear export in a CRM1-dependent manner. At the conformationally flexible spike tips of HBc particles, NES motifs overlap extensively with motifs important for secretion of HBV virions and naked capsids. Conclusions We provided experimental evidence that virions and naked capsids can egress via two distinct, yet overlapping, pathways. Unlike the secretion of naked capsids, HBV virion secretion is highly CRM1- and microtubule-dependent. CRM1 is well known for its involvement in nuclear transport in literature. To our knowledge, this is the first report that CRM1 is required for virion secretion. CRM1 inhibitors could be a promising therapeutic candidate for chronic HBV patients in clinical medicine. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00827-w.
Collapse
Affiliation(s)
- Pei-Yi Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shin-Chwen Bruce Yen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Chun Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Hsu Chang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Chang Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chiaho Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, No.100, Shih-Chuan 1st Road, Sanmin, 80708, Kaohsiung, Taiwan. .,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
7
|
Chen J, Liu B, Tang X, Zheng X, Lu J, Zhang L, Wang W, Candotti D, Fu Y, Allain JP, Li C, Li L, Li T. Role of core protein mutations in the development of occult HBV infection. J Hepatol 2021; 74:1303-1314. [PMID: 33453326 DOI: 10.1016/j.jhep.2020.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/04/2020] [Accepted: 12/14/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND & AIMS Occult HBV infection (OBI) is associated with transfusion-transmitted HBV infection and hepatocellular carcinoma. Studies on OBI genesis have concentrated on mutations in the S region and the regulatory elements. Herein, we aimed to determine the role of mutations in the core region on OBIs. METHODS An OBI strain (SZA) carrying 9 amino acid (aa) substitutions in the core protein/capsid (Cp) was selected by sequence alignment and Western blot analysis from 26 genotype B OBI samples to extensively explore the impact of Cp mutations on viral antigen production in vitro and in vivo. RESULTS A large panel of 30 Cp replicons were generated by a replication-competent pHBV1.3 carrying SZA or wild-type (WT) Cp in a 1.3-fold over-length of HBV genome, in which the various Cp mutants were individually introduced by repairing site mutations of SZA-Cp or creating site mutations of WT-Cp by site-directed mutagenesis. The expression of HBcAg, HBeAg, and HBsAg and viral RNA was quantified from individual SZA and WT Cp mutant replicons in transfected Huh7 cells or infected mice, respectively. An analysis of the effect of Cp mutants on intracellular or extracellular viral protein production indicated that the W62R mutation in Cp had a critical impact on the reduction of HBcAg and HBeAg production during HBV replication, whereas P50H and/or S74G mutations played a limited role in influencing viral protein production invivo. CONCLUSIONS W62R and its combination mutations in HBV Cp might massively affect HBcAg and HBeAg production during viral replication, which, in turn, might contribute to the occurrence of OBI. LAY SUMMARY Occult hepatitis B virus infections (OBIs) have been found to be associated with amino acid mutations in the S region of the HBV, but the role of mutations in the core protein (Cp) remains unclear. In this study, an OBI strain (SZA) carrying 9 amino acid substitutions in Cp has been examined comprehensively in vitro and in vivo. The W62R mutation in Cp majorly reduces HBcAg and HBeAg production during HBV replication, potentially contributing to the occurrence of OBI.
Collapse
Affiliation(s)
- Jingna Chen
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China; Department of Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Bochao Liu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xi Tang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Infectious Diseases, The First Foshan People's Hospital, Foshan, China
| | - Xin Zheng
- Shenzhen Blood Center, Shenzhen, China
| | - Jinhui Lu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Ling Zhang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wenjing Wang
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Daniel Candotti
- Department of Blood Transmitted Agents, National Institute of Blood Transfusion, Paris, France
| | - Yongshui Fu
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Guangzhou Blood Center, Guangzhou, China
| | - Jean-Pierre Allain
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Chengyao Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| | - Linhai Li
- Department of Laboratory Medicine, General Hospital of Southern Theatre Command of PLA, Guangzhou, China.
| | - Tingting Li
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Pérez-Segura C, Goh BC, Hadden-Perilla JA. All-Atom MD Simulations of the HBV Capsid Complexed with AT130 Reveal Secondary and Tertiary Structural Changes and Mechanisms of Allostery. Viruses 2021; 13:564. [PMID: 33810481 PMCID: PMC8065791 DOI: 10.3390/v13040564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022] Open
Abstract
The hepatitis B virus (HBV) capsid is an attractive drug target, relevant to combating viral hepatitis as a major public health concern. Among small molecules known to interfere with capsid assembly, the phenylpropenamides, including AT130, represent an important antiviral paradigm based on disrupting the timing of genome packaging. Here, all-atom molecular dynamics simulations of an intact AT130-bound HBV capsid reveal that the compound increases spike flexibility and improves recovery of helical secondary structure in the spike tips. Regions of the capsid-incorporated dimer that undergo correlated motion correspond to established sub-domains that pivot around the central chassis. AT130 alters patterns of correlated motion and other essential dynamics. A new conformational state of the dimer is identified, which can lead to dramatic opening of the intradimer interface and disruption of communication within the spike tip. A novel salt bridge is also discovered, which can mediate contact between the spike tip and fulcrum even in closed conformations, revealing a mechanism of direct communication across these sub-domains. Altogether, results describe a dynamical connection between the intra- and interdimer interfaces and enable mapping of allostery traversing the entire core protein dimer.
Collapse
Affiliation(s)
- Carolina Pérez-Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA;
| | - Boon Chong Goh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology Centre, Singapore 138602, Singapore;
| | - Jodi A. Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA;
| |
Collapse
|
9
|
Shih C, Wu SY, Chou SF, Yuan TTT. Virion Secretion of Hepatitis B Virus Naturally Occurring Core Antigen Variants. Cells 2020; 10:cells10010043. [PMID: 33396864 PMCID: PMC7823318 DOI: 10.3390/cells10010043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 02/07/2023] Open
Abstract
In natural infection, hepatitis B virus (HBV) core protein (HBc) accumulates frequent mutations. The most frequent HBc variant in chronic hepatitis B patients is mutant 97L, changing from an isoleucine or phenylalanine to a leucine (L) at HBc amino acid 97. One dogma in the HBV research field is that wild type HBV secretes predominantly virions containing mature double-stranded DNA genomes. Immature genomes, containing single-stranded RNA or DNA, do not get efficiently secreted until reaching genome maturity. Interestingly, HBc variant 97L does not follow this dogma in virion secretion. Instead, it exhibits an immature secretion phenotype, which preferentially secretes virions containing immature genomes. Other aberrant behaviors in virion secretion were also observed in different naturally occurring HBc variants. A hydrophobic pocket around amino acid 97 was identified by bioinformatics, genetic analysis, and cryo-EM. We postulated that this hydrophobic pocket could mediate the transduction of the genome maturation signal for envelopment from the capsid interior to its surface. Virion morphogenesis must involve interactions between HBc, envelope proteins (HBsAg) and host factors, such as components of ESCRT (endosomal sorting complex required for transport). Immature secretion can be offset by compensatory mutations, occurring at other positions in HBc or HBsAg. Recently, we demonstrated in mice that the persistence of intrahepatic HBV DNA is related to virion secretion regulated by HBV genome maturity. HBV virion secretion could be an antiviral drug target.
Collapse
Affiliation(s)
- Chiaho Shih
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
- Correspondence: (C.S.); (T.-T.T.Y.)
| | - Szu-Yao Wu
- Chimera Bioscience Inc., No. 18 Siyuan St., Zhongzheng Dist., Taipei 10087, Taiwan;
| | - Shu-Fan Chou
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA;
| | - Ta-Tung Thomas Yuan
- TFBS Bioscience, Inc. 3F, No. 103, Ln 169, Kangning St., Xizhi Dist., New Taipei City 221, Taiwan
- Correspondence: (C.S.); (T.-T.T.Y.)
| |
Collapse
|
10
|
Zhao Z, Wang JCY, Segura CP, Hadden-Perilla JA, Zlotnick A. The Integrity of the Intradimer Interface of the Hepatitis B Virus Capsid Protein Dimer Regulates Capsid Self-Assembly. ACS Chem Biol 2020; 15:3124-3132. [PMID: 32459465 DOI: 10.1021/acschembio.0c00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
During the hepatitis B virus lifecycle, 120 copies of homodimeric capsid protein assemble around a copy of reverse transcriptase and viral RNA and go on to produce an infectious virion. Assembly needs to be tightly regulated by protein conformational change to ensure symmetry, fidelity, and reproducibility. Here, we show that structures at the intradimer interface regulate conformational changes at the distal interdimer interface and so regulate assembly. A pair of interacting charged residues, D78 from each monomer, conspicuously located at the top of a four-helix bundle that forms the intradimer interface, were mutated to serine to disrupt communication between the two monomers. The mutation slowed assembly and destabilized the dimer to thermal and chemical denaturation. Mutant dimers showed evidence of transient partial unfolding based on the appearance of new proteolytically sensitive sites. Though the mutant dimer was less stable, the resulting capsids were as stable as the wildtype, based on assembly and thermal denaturation studies. Cryo-EM image reconstructions of capsid indicated that the subunits adopted an "open" state more usually associated with a free dimer and that the spike tips were either disordered or highly flexible. Molecular dynamics simulations provide mechanistic explanations for these results, suggesting that D78 stabilizes helix 4a, which forms part of the intradimer interface, by capping its N-terminus and hydrogen-bonding to nearby residues, whereas the D78S mutation disrupts these interactions, leading to partial unwinding of helix 4a. This in turn weakens the connection from helix 4 and the intradimer interface to helix 5, which forms the interdimer interface.
Collapse
Affiliation(s)
- Zhongchao Zhao
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| | - Joseph Che-Yen Wang
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
- Indiana University Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, United States
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Carolina Pérez Segura
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jodi A. Hadden-Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
11
|
Viswanathan U, Mani N, Hu Z, Ban H, Du Y, Hu J, Chang J, Guo JT. Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Res 2020; 182:104917. [PMID: 32818519 DOI: 10.1016/j.antiviral.2020.104917] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
The core (capsid) protein of hepatitis B virus (HBV) is the building block of nucleocapsids where viral DNA reverse transcriptional replication takes place and mediates virus-host cell interaction important for the persistence of HBV infection. The pleiotropic role of core protein (Cp) in HBV replication makes it an attractive target for antiviral therapies of chronic hepatitis B, a disease that affects more than 257 million people worldwide without a cure. Recent clinical studies indicate that core protein allosteric modulators (CpAMs) have a great promise as a key component of hepatitis B curative therapies. Particularly, it has been demonstrated that modulation of Cp dimer-dimer interactions by several chemical series of CpAMs not only inhibit nucleocapsid assembly and viral DNA replication, but also induce the disassembly of double-stranded DNA-containing nucleocapsids to prevent the synthesis of cccDNA. Moreover, the different chemotypes of CpAMs modulate Cp assembly by interaction with distinct amino acid residues at the HAP pocket between Cp dimer-dimer interfaces, which results in the assembly of Cp dimers into either non-capsid Cp polymers (type I CpAMs) or empty capsids with distinct physical property (type II CpAMs). The different CpAMs also differentially modulate Cp metabolism and subcellular distribution, which may impact cccDNA metabolism and host antiviral immune responses, the critical factors for the cure of chronic HBV infection. This review article highlights the recent research progress on the structure and function of core protein in HBV replication cycle, the mode of action of CpAMs, as well as the current status and perspectives on the discovery and development of core protein-targeting antivirals. This article forms part of a symposium in Antiviral Research on "Wide-ranging immune and direct-acting antiviral approaches to curing HBV and HDV infections."
Collapse
Affiliation(s)
- Usha Viswanathan
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Nagraj Mani
- Arbutus Biopharma Inc., 701 Veterans Circle, Warminster, PA, 18974, USA
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Haiqun Ban
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jin Hu
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Easton Road, Doylestown, PA, 18902, USA.
| |
Collapse
|
12
|
Persistence of Hepatitis B Virus DNA and the Tempos between Virion Secretion and Genome Maturation in a Mouse Model. J Virol 2019; 93:JVI.01001-19. [PMID: 31462567 PMCID: PMC6819939 DOI: 10.1128/jvi.01001-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022] Open
Abstract
Chronic infection with human hepatitis B virus (HBV) could lead to cirrhosis and hepatoma. At present, there is no effective treatment to eradicate the virus from patients. HBV in chronic carriers does not exist as a single homogeneous population. The most frequent naturally occurring mutation in HBV core protein occurs at amino acid 97, changing an isoleucine to leucine (I97L). One dogma in the field is that only virions containing a mature genome are preferentially secreted into the medium. Here, we demonstrated that mutant I97L can secrete immature genome in mice. Although viral DNA of mutant I97L with immature genome is less persistent than wild-type HBV in time course experiments, viral DNA of mutant P130T with genome hypermaturation, surprisingly, is more persistent. Therefore, virion secretion regulated by genome maturity could influence viral persistence. It remains an open issue whether virion secretion could be a drug target for HBV therapy. Hepatitis B virus (HBV) core protein (HBc) accumulates frequent mutations in natural infection. Wild-type HBV is known to secrete predominantly virions containing mature DNA genome. However, a frequent naturally occurring HBc variant, I97L, changing from an isoleucine to a leucine at amino acid 97, exhibited an immature secretion phenotype in culture, which preferentially secretes virions containing immature genomes. In contrast, mutant P130T, changing from a proline to a threonine at amino acid 130, exhibited a hypermaturation phenotype by accumulating an excessive amount of intracellular fully mature DNA genome. Using a hydrodynamic delivery mouse model, we studied the in vivo behaviors of these two mutants, I97L and P130T. We detected no naked core particles in all hydrodynamically injected mice. Mutant I97L in mice exhibited pleiotropic phenotypes: (i) excessive numbers of serum HBV virions containing immature genomes, (ii) significantly reduced numbers of intracellular relaxed-circle and single-stranded DNAs, and (iii) less persistent intrahepatic and secreted HBV DNAs than wild-type HBV. These pleiotropic phenotypes were observed in both immunocompetent and immunodeficient mice. Although mutant P130T also displayed a hypermaturation phenotype in vivo, it cannot efficiently rescue the immature virion secretion of mutant I97L. Unexpectedly, the single mutant P130T exhibited in vivo a novel phenotype in prolonging the persistence of HBV genome in hepatocytes. Taken together, our studies provide a plausible rationale for HBV to regulate envelopment morphogenesis and virion secretion via genome maturity, which is likely to play an important role in the persistence of viral DNA in this mouse model. IMPORTANCE Chronic infection with human hepatitis B virus (HBV) could lead to cirrhosis and hepatoma. At present, there is no effective treatment to eradicate the virus from patients. HBV in chronic carriers does not exist as a single homogeneous population. The most frequent naturally occurring mutation in HBV core protein occurs at amino acid 97, changing an isoleucine to leucine (I97L). One dogma in the field is that only virions containing a mature genome are preferentially secreted into the medium. Here, we demonstrated that mutant I97L can secrete immature genome in mice. Although viral DNA of mutant I97L with immature genome is less persistent than wild-type HBV in time course experiments, viral DNA of mutant P130T with genome hypermaturation, surprisingly, is more persistent. Therefore, virion secretion regulated by genome maturity could influence viral persistence. It remains an open issue whether virion secretion could be a drug target for HBV therapy.
Collapse
|
13
|
Lau D, Walsh JC, Peng W, Shah VB, Turville S, Jacques DA, Böcking T. Fluorescence Biosensor for Real-Time Interaction Dynamics of Host Proteins with HIV-1 Capsid Tubes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34586-34594. [PMID: 31483592 DOI: 10.1021/acsami.9b08521] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human immunodeficiency virus 1 (HIV-1) capsid serves as a binding platform for proteins and small molecules from the host cell that regulate various steps in the virus life cycle. However, there are currently no quantitative methods that use assembled capsid lattices to measure host-pathogen interaction dynamics. Here we developed a single-molecule fluorescence biosensor using self-assembled capsid tubes as biorecognition elements and imaged capsid binders using total internal reflection fluorescence microscopy in a microfluidic setup. The method is highly sensitive in its ability to observe and quantify binding, to obtain dissociation constants, and to extract kinetics with an extended application of using more complex analytes that can accelerate characterization of novel capsid binders.
Collapse
|
14
|
Zhang X, Cheng J, Ma J, Hu Z, Wu S, Hwang N, Kulp J, Du Y, Guo JT, Chang J. Discovery of Novel Hepatitis B Virus Nucleocapsid Assembly Inhibitors. ACS Infect Dis 2019; 5:759-768. [PMID: 30525438 DOI: 10.1021/acsinfecdis.8b00269] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) core protein is a small protein with 183 amino acid residues and assembles the pregenomic (pg) RNA and viral DNA polymerase to form nucleocapsids. During the last decades, several groups have reported HBV core protein allosteric modulators (CpAMs) with distinct chemical structures. CpAMs bind to the hydrophobic HAP pocket located at the dimer-dimer interface and induce allosteric conformational changes in the core protein subunits. While Type I CpAMs, heteroaryldihydropyrimidine (HAP) derivatives, misdirect core protein dimers to assemble noncapsid polymers, Type II CpAMs, represented by sulfamoylbenzamides, phenylpropenamides, and several other chemotypes, induce the assembly of empty capsids with global structural alterations and faster mobility in native agarose gel electrophoresis. Through high throughput screening of an Asinex small molecule library containing 19 920 compounds, we identified 8 structurally distinct CpAMs. While 7 of those compounds are typical Type II CpAMs, a novel benzamide derivative, designated as BA-53038B, induced the formation of morphologically "normal" empty capsids with slow electrophoresis mobility. Drug resistant profile analyses indicated that BA-53038B most likely bound to the HAP pocket but obviously modulated HBV capsid assembly in a distinct manner. BA-53038B and other CpAMs reported herein provide novel structure scaffolds for the development of core protein-targeted antiviral agents for the treatment of chronic hepatitis B.
Collapse
Affiliation(s)
- Xuexiang Zhang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Junjun Cheng
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Julia Ma
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Zhanying Hu
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Shuo Wu
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Nicky Hwang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - John Kulp
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Yanming Du
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Ju-Tao Guo
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| | - Jinhong Chang
- Baruch S. Blumberg Institute, 3805 Old Eastern Road, Doylestown, Pennsylvania 18902, United States
| |
Collapse
|
15
|
Seo HW, Seo JP, Cho Y, Ko E, Kim YJ, Jung G. Cetylpyridinium chloride interaction with the hepatitis B virus core protein inhibits capsid assembly. Virus Res 2019; 263:102-111. [DOI: 10.1016/j.virusres.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 01/11/2023]
|
16
|
Zhang Y, Zhang H, Zhang J, Zhang J, Guo H. Naturally occurring core protein mutations compensate for the reduced replication fitness of a lamivudine-resistant HBV isolate. Antiviral Res 2019; 165:47-54. [PMID: 30902704 DOI: 10.1016/j.antiviral.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) replicates its DNA genome through reverse transcription of an RNA intermediate. The lack of proofreading capacity of the viral DNA polymerase results in a high mutation rate of HBV genome. Under the selective pressure created by the nucleos(t)ide analogue (NA) antiviral drugs, viruses with resistance mutations are selected. However, the replication fitness of NA-resistant mutants is markedly reduced compared to wild-type. Compensatory mutations in HBV polymerase, which restore the viral replication capacity, have been reported to arise under continuous treatment with lamivudine (LMV). We have previously identified a highly replicative LMV-resistant HBV isolate from a chronic hepatitis B patient experiencing acute disease exacerbation. Besides the common YMDD drug-resistant mutations, this isolate possesses multiple additional mutations in polymerase and core regions. The transcomplementation assay demonstrated that the enhanced viral replication is due to the mutations of core protein. Further mutagenesis study revealed that the P5T mutation of core protein plays an important role in the enhanced viral replication through increasing the levels of capsid formation and pregenomic RNA encapsidation. However, the LMV-resistant virus harboring compensatory core mutations remains sensitive to capsid assembly modulators (CpAMs). Taken together, our study suggests that the enhanced HBV nucleocapsid formation resulting from core mutations represents an important viral strategy to surmount the antiviral drug pressure and contribute to viral pathogenesis, and CpAMs hold promise for developing the combinational antiviral therapy for hepatitis B.
Collapse
Affiliation(s)
- Yongmei Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Hu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Junjie Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jiming Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOH & MOE), Fudan University, Shanghai, China.
| | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
17
|
Heger-Stevic J, Zimmermann P, Lecoq L, Böttcher B, Nassal M. Hepatitis B virus core protein phosphorylation: Identification of the SRPK1 target sites and impact of their occupancy on RNA binding and capsid structure. PLoS Pathog 2018; 14:e1007488. [PMID: 30566530 PMCID: PMC6317823 DOI: 10.1371/journal.ppat.1007488] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/03/2019] [Accepted: 11/27/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatitis B virus (HBV) replicates its 3 kb DNA genome through capsid-internal reverse transcription, initiated by assembly of 120 core protein (HBc) dimers around a complex of viral pregenomic (pg) RNA and polymerase. Following synthesis of relaxed circular (RC) DNA capsids can be enveloped and secreted as stable virions. Upon infection of a new cell, however, the capsid disintegrates to release the RC-DNA into the nucleus for conversion into covalently closed circular (ccc) DNA. HBc´s interactions with nucleic acids are mediated by an arginine-rich C terminal domain (CTD) with intrinsically strong non-specific RNA binding activity. Adaptation to the changing demands for nucleic acid binding during the viral life cycle is thought to involve dynamic phosphorylation / dephosphorylation events. However, neither the relevant enzymes nor their target sites in HBc are firmly established. Here we developed a bacterial coexpression system enabling access to definably phosphorylated HBc. Combining Phos-tag gel electrophoresis, mass spectrometry and mutagenesis we identified seven of the eight hydroxy amino acids in the CTD as target sites for serine-arginine rich protein kinase 1 (SRPK1); fewer sites were phosphorylated by PKA and PKC. Phosphorylation of all seven sites reduced nonspecific RNA encapsidation as drastically as deletion of the entire CTD and altered CTD surface accessibility, without major structure changes in the capsid shell. The bulk of capsids from human hepatoma cells was similarly highly, yet non-identically, phosphorylated as by SRPK1. While not proving SRPK1 as the infection-relevant HBc kinase the data suggest a mechanism whereby high-level HBc phosphorylation principally suppresses RNA binding whereas one or few strategic dephosphorylation events enable selective packaging of the pgRNA/polymerase complex. The tools developed in this study should greatly facilitate the further deciphering of the role of HBc phosphorylation in HBV infection and its evaluation as a potential new therapeutic target.
Collapse
Affiliation(s)
- Julia Heger-Stevic
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Peter Zimmermann
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Biological Faculty, University of Freiburg, Freiburg, Germany
| | - Lauriane Lecoq
- Institut de Biologie et Chimie des Protéines, University of Lyon1, Lyon, France
| | - Bettina Böttcher
- Department of Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Michael Nassal
- University Hospital Freiburg, Department of Medicine II / Molecular Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
18
|
Eren E, Watts NR, Dearborn AD, Palmer IW, Kaufman JD, Steven AC, Wingfield PT. Structures of Hepatitis B Virus Core- and e-Antigen Immune Complexes Suggest Multi-point Inhibition. Structure 2018; 26:1314-1326.e4. [PMID: 30100358 DOI: 10.1016/j.str.2018.06.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/22/2022]
Abstract
Hepatitis B virus (HBV) is the leading cause of liver disease worldwide. While an adequate vaccine is available, current treatment options are limited, not highly effective, and associated with adverse effects, encouraging the development of alternative therapeutics. The HBV core gene encodes two different proteins: core, which forms the viral nucleocapsid, and pre-core, which serves as an immune modulator with multiple points of action. The two proteins mostly have the same sequence, although they differ at their N and C termini and in their dimeric arrangements. Previously, we engineered two human-framework antibody fragments (Fab/scFv) with nano- to picomolar affinities for both proteins. Here, by means of X-ray crystallography, analytical ultracentrifugation, and electron microscopy, we demonstrate that the antibodies have non-overlapping epitopes and effectively block biologically important assemblies of both proteins. These properties, together with the anticipated high tolerability and long half-lives of the antibodies, make them promising therapeutics.
Collapse
Affiliation(s)
- Elif Eren
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Norman R Watts
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Altaira D Dearborn
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ira W Palmer
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joshua D Kaufman
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alasdair C Steven
- Laboratory of Structural Biology Research, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Paul T Wingfield
- Protein Expression Laboratory, NIAMS, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Sun X, Li D, Wang Z, Yin P, Hu R, Li H, Liu Q, Gao Y, Ren B, Zheng J, Wei Y, Liu T. Role of Protein Charge Density on Hepatitis B Virus Capsid Formation. ACS OMEGA 2018; 3:4384-4391. [PMID: 31458664 PMCID: PMC6641633 DOI: 10.1021/acsomega.8b00021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/11/2018] [Indexed: 05/03/2023]
Abstract
The role of electrostatic interactions in the viral capsid assembly process was studied by comparing the assembly process of a truncated hepatitis B virus capsid protein Cp149 with its mutant protein D2N/D4N, which has the same conformational structure but four fewer charges per dimer. The capsid protein self-assembly was investigated under a wide range of protein surface charge densities by changing the protein concentration, buffer pH, and solution ionic strength. Lowering the protein charge density favored the capsid formation. However, lowering charge beyond a certain point resulted in capsid aggregation and precipitation. Interestingly, both the wild-type and D2N/D4N mutant displayed identical assembly profiles when their charge densities matched each other. These results indicated that the charge density was optimized by nature to ensure an efficient and effective capsid proliferation under the physiological pH and ionic strength.
Collapse
Affiliation(s)
- Xinyu Sun
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Li
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Zhaoshuai Wang
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Panchao Yin
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Rundong Hu
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hui Li
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Qiao Liu
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yunyi Gao
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Baiping Ren
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Jie Zheng
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yinan Wei
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506, United States
- E-mail: (Y.W.)
| | - Tianbo Liu
- Department
of Polymer Science and Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, United States
- E-mail: (T.L.)
| |
Collapse
|
20
|
Schlicksup CJ, Wang JCY, Francis S, Venkatakrishnan B, Turner WW, VanNieuwenhze M, Zlotnick A. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids. eLife 2018; 7:31473. [PMID: 29377794 PMCID: PMC5788503 DOI: 10.7554/elife.31473] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/22/2017] [Indexed: 12/23/2022] Open
Abstract
Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (<4 Å), we introduced a disulfide crosslink that rescued particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. Viruses are simple structures formed of genetic information wrapped inside a shell. For the hepatitis B virus, this casing looks like a soccer ball. It is composed of 240 copies of the same protein, arranged in a pattern of pentagons and hexagons. These proteins form a protective shield for the virus’ genetic information: they also interact with the cells of the host during key events of the virus’ life cycle. When the hepatitis B virus infects a cell, it hijacks the cellular machinery to replicate. New shell proteins are produced and assemble within the cell. A type of potential antiviral drug called a CpAM disrupts this process: it causes the shell to assemble too early and inaccurately, which impairs the life cycle of the virus. However, a CpAM can bind to the shell even after it has already assembled. How this binding affects the virus is still unclear. Here, Schlicksup et al. attach a fluorescent molecule to a CpAM, and use a cutting-edge microscopy method to look at the structures at the atomic level. This makes it possible to examine in detail how the CpAM attaches to a correctly formed virus shell. Schlicksup et al. show that when the CpAM binds to the shell, it disrupts and sometimes even breaks the soccer-like pattern of the shell: the hexagons flatten, and the pentagons buckle. These misshaped shells could prevent the virus from interacting with the cellular structures necessary for infection or prevent it from releasing the virus’ genetic information. This is a new antiviral mechanism for a CpAM. By acting both before and after the shell has assembled, the CpAM targets the virus at different points of its life cycle. Hepatitis B affects over 240 million people worldwide. While a vaccine exists, there is still no cure for it. A better understanding of the physics of the virus’ shell and the mode of action of CpAMs could lead to better drugs against the disease.
Collapse
Affiliation(s)
| | - Joseph Che-Yen Wang
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States.,Indiana University Electron Microscopy Center, Bloomington, United States
| | | | | | | | | | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, United States
| |
Collapse
|
21
|
Rath SL, Liu H, Okazaki S, Shinoda W. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals. J Chem Inf Model 2018; 58:328-337. [DOI: 10.1021/acs.jcim.7b00471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Soumya Lipsa Rath
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Huihui Liu
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| | - Wataru Shinoda
- Department of Materials Chemistry, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
22
|
Discovery and Mechanistic Study of Benzamide Derivatives That Modulate Hepatitis B Virus Capsid Assembly. J Virol 2017; 91:JVI.00519-17. [PMID: 28566379 DOI: 10.1128/jvi.00519-17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a global public health problem. Although the currently approved medications can reliably reduce the viral load and prevent the progression of liver diseases, they fail to cure the viral infection. In an effort toward discovery of novel antiviral agents against HBV, a group of benzamide (BA) derivatives that significantly reduced the amount of cytoplasmic HBV DNA were discovered. The initial lead optimization efforts identified two BA derivatives with improved antiviral activity for further mechanistic studies. Interestingly, similar to our previously reported sulfamoylbenzamides (SBAs), the BAs promote the formation of empty capsids through specific interaction with HBV core protein but not other viral and host cellular components. Genetic evidence suggested that both SBAs and BAs inhibited HBV nucleocapsid assembly by binding to the heteroaryldihydropyrimidine (HAP) pocket between core protein dimer-dimer interfaces. However, unlike SBAs, BA compounds uniquely induced the formation of empty capsids that migrated more slowly in native agarose gel electrophoresis from A36V mutant than from the wild-type core protein. Moreover, we showed that the assembly of chimeric capsids from wild-type and drug-resistant core proteins was susceptible to multiple capsid assembly modulators. Hence, HBV core protein is a dominant antiviral target that may suppress the selection of drug-resistant viruses during core protein-targeting antiviral therapy. Our studies thus indicate that BAs are a chemically and mechanistically unique type of HBV capsid assembly modulators and warranted for further development as antiviral agents against HBV.IMPORTANCE HBV core protein plays essential roles in many steps of the viral replication cycle. In addition to packaging viral pregenomic RNA (pgRNA) and DNA polymerase complex into nucleocapsids for reverse transcriptional DNA replication to take place, the core protein dimers, existing in several different quaternary structures in infected hepatocytes, participate in and regulate HBV virion assembly, capsid uncoating, and covalently closed circular DNA (cccDNA) formation. It is anticipated that small molecular core protein assembly modulators may disrupt one or multiple steps of HBV replication, depending on their interaction with the distinct quaternary structures of core protein. The discovery of novel core protein-targeting antivirals, such as benzamide derivatives reported here, and investigation of their antiviral mechanism may lead to the identification of antiviral therapeutics for the cure of chronic hepatitis B.
Collapse
|
23
|
Jia J, Li H, Wang H, Chen S, Wang M, Feng H, Gao Y, Wang Y, Fang M, Gao C. Hepatitis B virus core antigen mutations predict post-operative prognosis of patients with primary hepatocellular carcinoma. J Gen Virol 2017; 98:1399-1409. [PMID: 28640739 PMCID: PMC5656792 DOI: 10.1099/jgv.0.000790] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/26/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to explore the relationship between hepatitis B virus (HBV) core antigen (HBc) mutations and the post-operative prognosis of HBV-related hepatocellular carcinoma (HCC). In total, 98 patients suffering from HBV-related HCC and treated with surgery were enrolled, with a 48 month follow-up. The preCore/Core region of the HBV genome from tumour tissue (TT) and paired adjacent non-tumour tissue (ANTT) of these patients was sequenced, and a phylogenetic tree was reconstructed. The correlations between the viral features and evolutionary divergence of preCore/Core amino acid sequences from 67 paired TTs and ANTTs were analysed. Cox proportional hazard model analysis was applied for post-operative hazard risk evaluation. Phylogenetic analysis revealed that all of the sequences were ascribed to genotype C. The evolutionary divergence of amino acid sequences from matched TTs and ANTTs was significantly negatively correlated with serum and intrahepatic HBV DNA levels. Multivariate analysis showed that the HBc E77 mutation was associated with shorter overall survival, and HBc S87 and P156 mutations were independent risk factors for relapse. Furthermore, in contrast to with patients without the S87 mutation, no correlation was observed between serum HBV DNA and intrahepatic HBV DNA in HCC patients with the S87 mutation. Analysis of the intrahepatic sequence may advance our understanding of viral status; thus, it is useful for prognosis prediction for HBV-related HCC.
Collapse
Affiliation(s)
- Jian’an Jia
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
- Department of Laboratory Medicine, 105th Hospital of PLA, Hefei 230031, PR China
| | - Huiming Li
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Hui Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
- Department of Clinical Laboratory, First Affiliated Hospital of Chinese PLA’s General Hospital, Beijing 100048, PR China
| | - Shipeng Chen
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Mengmeng Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Huijuan Feng
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Yuzhen Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Yunjiu Wang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Meng Fang
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| | - Chunfang Gao
- Department of Laboratory Medicine, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, PR China
| |
Collapse
|
24
|
Abstract
During the life cycle of a virus, viral proteins and other components self-assemble to form an ordered protein shell called a capsid. This assembly process is subject to multiple competing constraints, including the need to form a thermostable shell while avoiding kinetic traps. It has been proposed that viral assembly satisfies these constraints through allosteric regulation, including the interconversion of capsid proteins among conformations with different propensities for assembly. In this article, we use computational and theoretical modeling to explore how such allostery affects the assembly of icosahedral shells. We simulate assembly under a wide range of protein concentrations, protein binding affinities, and two different mechanisms of allosteric control. We find that above a threshold strength of allosteric control, assembly becomes robust over a broad range of subunit binding affinities and concentrations, allowing the formation of highly thermostable capsids. Our results suggest that allostery can significantly shift the range of protein binding affinities that lead to successful assembly and thus should be taken into account in models that are used to estimate interaction parameters from experimental data.
Collapse
Affiliation(s)
- Guillermo R Lazaro
- Martin Fisher School of Physics, Brandeis University , Waltham, Massachusetts 02454, United States
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University , Waltham, Massachusetts 02454, United States
| |
Collapse
|
25
|
Kim H, Lee SA, Do SY, Kim BJ. Precore/core region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol 2016; 22:4287-4296. [PMID: 27158197 PMCID: PMC4853686 DOI: 10.3748/wjg.v22.i17.4287] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 03/10/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of an effective vaccine, hepatitis B virus (HBV) infection remains a major health problem, with more than 350 million chronically infected people worldwide and over 1 million annual deaths due to cirrhosis and liver cancer. HBV mutations are primarily generated due both to a lack of proofreading capacity by HBV polymerase and to host immune pressure, which is a very important factor for predicting disease progression and therapeutic outcomes. Several types of HBV precore/core (preC/C) mutations have been described to date. The host immune response against T cells drives mutation in the preC/C region. Specifically, preC/C mutations in the MHC class II restricted region are more common than in other regions and are significantly related to hepatocellular carcinoma. Certain mutations, including preC G1896A, are also significantly related to HBeAg-negative chronic infection. This review article mainly focuses on the HBV preC/C mutations that are related to disease severity and on the HBeAg serostatus of chronically infected patients.
Collapse
|
26
|
Guan H, Zhao G, Chen W, Wu G, Liu H, Jiang X, Li S, Wang LL. The novel compound Z060228 inhibits assembly of the HBV capsid. Life Sci 2015; 133:1-7. [DOI: 10.1016/j.lfs.2015.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 04/01/2015] [Accepted: 04/07/2015] [Indexed: 01/17/2023]
|
27
|
Zlotnick A, Venkatakrishnan B, Tan Z, Lewellyn E, Turner W, Francis S. Core protein: A pleiotropic keystone in the HBV lifecycle. Antiviral Res 2015; 121:82-93. [PMID: 26129969 DOI: 10.1016/j.antiviral.2015.06.020] [Citation(s) in RCA: 203] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/22/2015] [Accepted: 06/26/2015] [Indexed: 12/21/2022]
Abstract
Hepatitis B Virus (HBV) is a small virus whose genome has only four open reading frames. We argue that the simplicity of the virion correlates with a complexity of functions for viral proteins. We focus on the HBV core protein (Cp), a small (183 residue) protein that self-assembles to form the viral capsid. However, its functions are a little more complicated than that. In an infected cell Cp modulates almost every step of the viral lifecycle. Cp is bound to nuclear viral DNA and affects its epigenetics. Cp correlates with RNA specificity. Cp assembles specifically on a reverse transcriptase-viral RNA complex or, apparently, nothing at all. Indeed Cp has been one of the model systems for investigation of virus self-assembly. Cp participates in regulation of reverse transcription. Cp signals completion of reverse transcription to support virus secretion. Cp carries both nuclear localization signals and HBV surface antigen (HBsAg) binding sites; both of these functions appear to be regulated by contents of the capsid. Cp can be targeted by antivirals - while self-assembly is the most accessible of Cp activities, we argue that it makes sense to engage the broader spectrum of Cp function. This article forms part of a symposium in Antiviral Research on "From the discovery of the Australia antigen to the development of new curative therapies for hepatitis B: an unfinished story."
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States.
| | | | - Zhenning Tan
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Eric Lewellyn
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - William Turner
- Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| | - Samson Francis
- Molecular & Cellular Biology, Indiana University, Bloomington, IN, United States; Assembly BioSciences, Bloomington, IN, United States; Assembly BioSciences, San Francisco, CA, United States
| |
Collapse
|
28
|
Holmes K, Shepherd DA, Ashcroft AE, Whelan M, Rowlands DJ, Stonehouse NJ. Assembly Pathway of Hepatitis B Core Virus-like Particles from Genetically Fused Dimers. J Biol Chem 2015; 290:16238-45. [PMID: 25953902 PMCID: PMC4481223 DOI: 10.1074/jbc.m114.622035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/08/2015] [Indexed: 01/17/2023] Open
Abstract
Macromolecular complexes are responsible for many key biological processes. However, in most cases details of the assembly/disassembly of such complexes are unknown at the molecular level, as the low abundance and transient nature of assembly intermediates make analysis challenging. The assembly of virus capsids is an example of such a process. The hepatitis B virus capsid (core) can be composed of either 90 or 120 dimers of coat protein. Previous studies have proposed a trimer of dimers as an important intermediate species in assembly, acting to nucleate further assembly by dimer addition. Using novel genetically-fused coat protein dimers, we have been able to trap higher-order assembly intermediates and to demonstrate for the first time that both dimeric and trimeric complexes are on pathway to virus-like particle (capsid) formation.
Collapse
Affiliation(s)
- Kris Holmes
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Dale A Shepherd
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Alison E Ashcroft
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Mike Whelan
- iQur Ltd, London Bioscience Innovation Centre, 2 Royal College Street, London NW1 0NH, United Kingdom
| | - David J Rowlands
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| | - Nicola J Stonehouse
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom and
| |
Collapse
|
29
|
Kim J, Wu J. A molecular thermodynamic model for the stability of hepatitis B capsids. J Chem Phys 2015; 140:235101. [PMID: 24952568 DOI: 10.1063/1.4882068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.
Collapse
Affiliation(s)
- Jehoon Kim
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521, USA
| |
Collapse
|
30
|
The interface between hepatitis B virus capsid proteins affects self-assembly, pregenomic RNA packaging, and reverse transcription. J Virol 2015; 89:3275-84. [PMID: 25568211 DOI: 10.1128/jvi.03545-14] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Hepatitis B virus (HBV) capsid proteins (Cps) assemble around the pregenomic RNA (pgRNA) and viral reverse transcriptase (P). pgRNA is then reverse transcribed to double-stranded DNA (dsDNA) within the capsid. The Cp assembly domain, which forms the shell of the capsid, regulates assembly kinetics and capsid stability. The Cp, via its nucleic acid-binding C-terminal domain, also affects nucleic acid organization. We hypothesize that the structure of the capsid may also have a direct effect on nucleic acid processing. Using structure-guided design, we made a series of mutations at the interface between Cp subunits that change capsid assembly kinetics and thermodynamics in a predictable manner. Assembly in cell culture mirrored in vitro activity. However, all of these mutations led to defects in pgRNA packaging. The amount of first-strand DNA synthesized was roughly proportional to the amount of RNA packaged. However, the synthesis of second-strand DNA, which requires two template switches, was not supported by any of the substitutions. These data demonstrate that the HBV capsid is far more than an inert container, as mutations in the assembly domain, distant from packaged nucleic acid, affect reverse transcription. We suggest that capsid molecular motion plays a role in regulating genome replication. IMPORTANCE The hepatitis B virus (HBV) capsid plays a central role in the virus life cycle and has been studied as a potential antiviral target. The capsid protein (Cp) packages the viral pregenomic RNA (pgRNA) and polymerase to form the HBV core. The role of the capsid in subsequent nucleic acid metabolism is unknown. Here, guided by the structure of the capsid with bound antiviral molecules, we designed Cp mutants that enhanced or attenuated the assembly of purified Cp in vitro. In cell culture, assembly of mutants was consistent with their in vitro biophysical properties. However, all of these mutations inhibited HBV replication. Specifically, changing the biophysical chemistry of Cp caused defects in pgRNA packaging and synthesis of the second strand of DNA. These results suggest that the HBV Cp assembly domain potentially regulates reverse transcription, extending the activities of the capsid protein beyond its presumed role as an inert compartment.
Collapse
|
31
|
Structurally similar woodchuck and human hepadnavirus core proteins have distinctly different temperature dependences of assembly. J Virol 2014; 88:14105-15. [PMID: 25253350 DOI: 10.1128/jvi.01840-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
UNLABELLED Woodchuck hepatitis virus (WHV), a close relative of human hepatitis B virus (HBV), has been a key model for disease progression and clinical studies. Sequences of the assembly domain of WHV and HBV core proteins (wCp149 and hCp149, respectively) have 65% identity, suggesting similar assembly behaviors. We report a cryo-electron microscopy (cryo-EM) structure of the WHV capsid at nanometer resolution and characterization of wCp149 assembly. At this resolution, the T=4 capsid structures of WHV and HBV are practically identical. In contrast to their structural similarity, wCp149 demonstrates enhanced assembly kinetics and stronger dimer-dimer interactions than hCp149: at 23 °C and at 100 mM ionic strength, the pseudocritical concentrations of assembly of wCp149 and hCp149 are 1.8 μM and 43.3 μM, respectively. Transmission electron microscopy reveals that wCp149 assembles into predominantly T=4 capsids with a sizeable population of larger, nonicosahedral structures. Charge detection mass spectrometry indicates that T=3 particles are extremely rare compared to the ∼ 5% observed in hCp149 reactions. Unlike hCp149, wCp149 capsid assembly is favorable over a temperature range of 4 °C to 37 °C; van't Hoff analyses relate the differences in temperature dependence to the high positive values for heat capacity, enthalpy, and entropy of wCp149 assembly. Because the final capsids are so similar, these findings suggest that free wCp149 and hCp149 undergo different structural transitions leading to assembly. The difference in the temperature dependence of wCp149 assembly may be related to the temperature range of its hibernating host. IMPORTANCE In this paper, we present a cryo-EM structure of a WHV capsid showing its similarity to HBV. We then observe that the assembly properties of the two homologous proteins are very different. Unlike human HBV, the capsid protein of WHV has evolved to function in a nonhomeostatic environment. These studies yield insight into the interplay between core protein self-assembly and the host environment, which may be particularly relevant to plant viruses and viruses with zoonotic cycles involving insect vectors.
Collapse
|
32
|
Selzer L, Katen S, Zlotnick A. The hepatitis B virus core protein intradimer interface modulates capsid assembly and stability. Biochemistry 2014; 53:5496-504. [PMID: 25102363 PMCID: PMC4151697 DOI: 10.1021/bi500732b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/05/2014] [Indexed: 12/19/2022]
Abstract
During the hepatitis B virus (HBV) life cycle, capsid assembly and disassembly must ensure correct packaging and release of the viral genome. Here we show that changes in the dynamics of the core protein play an important role in regulating these processes. The HBV capsid assembles from 120 copies of the core protein homodimer. Each monomer contains a conserved cysteine at position 61 that can form an intradimer disulfide that we use as a marker for dimer conformational states. We show that dimers in the context of capsids form intradimer disulfides relatively rapidly. Surprisingly, compared to reduced dimers, fully oxidized dimers assembled slower and into capsids that were morphologically similar but less stable. We hypothesize that oxidized protein adopts a geometry (or constellation of geometries) that is unfavorable for capsid assembly, resulting in weaker dimer-dimer interactions as well as slower assembly kinetics. Our results suggest that structural flexibility at the core protein intradimer interface is essential for regulating capsid assembly and stability. We further suggest that capsid destabilization by the C61-C61 disulfide has a regulatory function to support capsid disassembly and release of the viral genome.
Collapse
Affiliation(s)
- Lisa Selzer
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Sarah
P. Katen
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Adam Zlotnick
- Department
of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, United States
- Department
of Biology and Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
33
|
Bereszczak JZ, Watts NR, Wingfield PT, Steven AC, Heck AJR. Assessment of differences in the conformational flexibility of hepatitis B virus core-antigen and e-antigen by hydrogen deuterium exchange-mass spectrometry. Protein Sci 2014; 23:884-96. [PMID: 24715628 DOI: 10.1002/pro.2470] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/02/2014] [Accepted: 04/02/2014] [Indexed: 01/17/2023]
Abstract
Hepatitis B virus core-antigen (capsid protein) and e-antigen (an immune regulator) have almost complete sequence identity, yet the dimeric proteins (termed Cp149d and Cp(-10)149d , respectively) adopt quite distinct quaternary structures. Here we use hydrogen deuterium exchange-mass spectrometry (HDX-MS) to study their structural properties. We detect many regions that differ substantially in their HDX dynamics. Significantly, whilst all regions in Cp(-10)149d exchange by EX2-type kinetics, a number of regions in Cp149d were shown to exhibit a mixture of EX2- and EX1-type kinetics, hinting at conformational heterogeneity in these regions. Comparison of the HDX of the free Cp149d with that in assembled capsids (Cp149c ) indicated increased resistance to exchange at the C-terminus where the inter-dimer contacts occur. Furthermore, evidence of mixed exchange kinetics were not observed in Cp149c , implying a reduction in flexibility upon capsid formation. Cp(-10)149d undergoes a drastic structural change when the intermolecular disulphide bridge is reduced, adopting a Cp149d -like structure, as evidenced by the detected HDX dynamics being more consistent with Cp149d in many, albeit not all, regions. These results demonstrate the highly dynamic nature of these similar proteins. To probe the effect of these structural differences on the resulting antigenicity, we investigated binding of the antibody fragment (Fab E1) that is known to bind a conformational epitope on the four-helix bundle. Whilst Fab E1 binds to Cp149c and Cp149d , it does not bind non-reduced and reduced Cp(-10)149d , despite unhindered access to the epitope. These results imply a remarkable sensitivity of this epitope to its structural context.
Collapse
Affiliation(s)
- Jessica Z Bereszczak
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Netherlands Proteomics Centre, The Netherlands
| | | | | | | | | |
Collapse
|
34
|
Shepherd DA, Holmes K, Rowlands DJ, Stonehouse NJ, Ashcroft AE. Using ion mobility spectrometry-mass spectrometry to decipher the conformational and assembly characteristics of the hepatitis B capsid protein. Biophys J 2014; 105:1258-67. [PMID: 24010669 DOI: 10.1016/j.bpj.2013.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/02/2013] [Accepted: 07/09/2013] [Indexed: 01/04/2023] Open
Abstract
The structural and functional analysis of the core protein of hepatitis B virus is important for a full understanding of the viral life cycle and the development of novel therapeutic agents. The majority of the core protein (CP149) comprises the capsid assembly domain, and the C-terminal region (residues 150-183) is responsible for nucleic acid binding. Protein monomers associate to form dimeric structural subunits, and helices 3 and 4 (residues 50-111 of the assembly domain) have been shown to be important for this as they constitute the interdimer interface. Here, using mass spectrometry coupled with ion mobility spectrometry, we demonstrate the conformational flexibility of the CP149 dimer. Limited proteolysis was used to locate involvement in this feature to the C-terminal region. A genetically fused CP dimer was found to show decreased disorder, consistent with a more restricted C-terminus at the fusion junction. Incubation of CP149 dimer with heteroaryldihydropyrimidine-1, a small molecule known to interfere with the assembly process, was shown to result in oligomers different in shape to the capsid assembly-competent oligomers of the fused CP dimer. We suggest that heteroaryldihydropyrimidine-1 affects the dynamics of CP149 dimer in solution, likely affecting the ratio between assembly active and inactive states. Therefore, assembly of the less dynamic fused dimer is less readily misdirected by heteroaryldihydropyrimidine-1. These studies of the flexibility and oligomerization properties of hepatitis B virus core protein illustrate both the importance of C-terminal dynamics in function and the utility of gas-phase techniques for structural and dynamical biomolecular analysis.
Collapse
Affiliation(s)
- Dale A Shepherd
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Interaction between nucleophosmin and HBV core protein increases HBV capsid assembly. FEBS Lett 2014; 588:851-8. [DOI: 10.1016/j.febslet.2014.01.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/01/2014] [Accepted: 01/06/2014] [Indexed: 12/30/2022]
|
36
|
Thermodynamic origins of protein folding, allostery, and capsid formation in the human hepatitis B virus core protein. Proc Natl Acad Sci U S A 2013; 110:E2782-91. [PMID: 23824290 DOI: 10.1073/pnas.1308846110] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
HBc, the capsid-forming "core protein" of human hepatitis B virus (HBV), is a multidomain, α-helical homodimer that aggressively forms human HBV capsids. Structural plasticity has been proposed to be important to the myriad functions HBc mediates during viral replication. Here, we report detailed thermodynamic analyses of the folding of the dimeric HBc protomer under conditions that prevented capsid formation. Central to our success was the use of ion mobility spectrometry-mass spectrometry and microscale thermophoresis, which allowed folding mechanisms to be characterized using just micrograms of protein. HBc folds in a three-state transition with a stable, dimeric, α-helical intermediate. Extensive protein engineering showed thermodynamic linkage between different structural domains. Unusual effects associated with mutating some residues suggest structural strain, arising from frustrated contacts, is present in the native dimer. We found evidence of structural gatekeepers that, when mutated, alleviated native strain and prevented (or significantly attenuated) capsid formation by tuning the population of alternative native conformations. This strain is likely an evolved feature that helps HBc access the different structures associated with its diverse essential functions. The subtle balance between native and strained contacts may provide the means to tune conformational properties of HBc by molecular interactions or mutations, thereby conferring allosteric regulation of structure and function. The ability to trap HBc conformers thermodynamically by mutation, and thereby ablate HBV capsid formation, provides proof of principle for designing antivirals that elicit similar effects.
Collapse
|
37
|
Abstract
Hepatitis B virus core gene products can adopt different conformations to perform their functional roles. In this issue of Structure, DiMattia and colleagues show the crystal structure of immuno-modulating HBeAg and thereby reveal the similarities and differences between it and HBcAg, the variant found in virions.
Collapse
Affiliation(s)
- Adam Zlotnick
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47401, USA.
| | - Zhenning Tan
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47401, USA
| | - Lisa Selzer
- Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47401, USA
| |
Collapse
|
38
|
Tan Z, Maguire ML, Loeb DD, Zlotnick A. Genetically altering the thermodynamics and kinetics of hepatitis B virus capsid assembly has profound effects on virus replication in cell culture. J Virol 2013; 87:3208-16. [PMID: 23283960 PMCID: PMC3592155 DOI: 10.1128/jvi.03014-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 12/26/2012] [Indexed: 12/17/2022] Open
Abstract
Capsid (core) assembly is essential for hepatitis B virus (HBV) replication. We hypothesize that assembly kinetics and stability are tuned for optimal viral replication, not maximal assembly. Assembly effectors (AEfs) are small molecules proposed to disrupt this balance by inappropriately enhancing core assembly. Guided by the structure of an AEf-bound core, we designed a structural mimic of AEf-bound core protein, the V124W mutant. In biochemical studies, the V124W mutant recapitulated the effects of AEfs, with fast assembly kinetics and a strong protein-protein association energy. Also, the mutant was resistant to exogenous AEfs. In cell culture, the V124W mutant behaved like a potent AEf: expression of HBV carrying the V124W mutant was defective for genome replication. Critically, the V124W mutant interfered with replication of wild-type HBV in a dose-dependent manner, mimicking AEf activity. In addition, the V124W mutant was shown to adopt a more compact conformation than that of the wild type, confirming the allosteric regulation in capsid assembly. These studies show that the heteroaryldihydropyrimidine (HAP) binding pocket is a promiscuous target for inducing assembly. Suppression of viral replication by the V124W mutant suggests that mutations that fill the HAP site are not a path for HBV to escape from AEfs.
Collapse
Affiliation(s)
- Zhenning Tan
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| | - Megan L. Maguire
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Daniel D. Loeb
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Adam Zlotnick
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
39
|
Neira JL. Fluorescence, circular dichroism and mass spectrometry as tools to study virus structure. Subcell Biochem 2013; 68:177-202. [PMID: 23737052 DOI: 10.1007/978-94-007-6552-8_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Fluorescence and circular dichroism, as analytical spectroscopic techniques, and mass spectrometry as an analytical tool to determine the molecular mass, provide important biophysical approaches in structural virology. Although they do not provide atomic, or near-atomic, details as electron microscopy, X-ray crystallography or nuclear magnetic resonance spectroscopy can do, they do provide important insights into virus particle composition, structure, conformational stability and dynamics, assembly and maturation, and interactions with other viral and cellular biomolecules. They can be used also to investigate the molecular determinants of virus particle structure and properties, and the changes induced in them by external factors. In this chapter, I describe the physical bases of these three techniques, and some examples on how they have helped us to understand virus particle structure and physicochemical properties.
Collapse
Affiliation(s)
- José L Neira
- Instituto de Biología Molecular y Celular, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain,
| |
Collapse
|
40
|
Phase diagrams map the properties of antiviral agents directed against hepatitis B virus core assembly. Antimicrob Agents Chemother 2012. [PMID: 23208717 DOI: 10.1128/aac.01766-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Assembly effectors are small molecules that induce inappropriate virus capsid assembly to antiviral effect. To identify attributes of hepatitis B virus (HBV) assembly effectors, assembly reaction products (normal capsid, noncapsid polymer, intermediates, and free dimeric core protein) were quantified in the presence of three experimental effectors: HAP12, HAP13, and AT-130. Effectors bound stoichiometrically to capsid protein polymers, but not free protein. Thermodynamic and kinetic effects, not aberrant assembly, correlate with maximal antiviral activity.
Collapse
|
41
|
Kim DW, Lee SA, Hwang ES, Kook YH, Kim BJ. Naturally occurring precore/core region mutations of hepatitis B virus genotype C related to hepatocellular carcinoma. PLoS One 2012; 7:e47372. [PMID: 23071796 PMCID: PMC3468518 DOI: 10.1371/journal.pone.0047372] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 09/12/2012] [Indexed: 12/12/2022] Open
Abstract
Previous studies have proved the presence of several distinct types of mutations in hepatitis B virus (HBV) infections, which are related to the progression of liver disease. However, few reports have detailed the mutation frequencies and mutation patterns in the precore/core (preC/C) region, which are based on the clinical status and HBeAg serostatus. Our aim in this study is to investigate the relationships between the preC/C mutations and clinical severity or HBeAg serostatus from patients chronically infected with HBV genotype C. A total of 70 Korean chronic patients, including 35 with hepatocellular carcinoma (HCC), participated in this study. HBV genotyping and precore/core mutations were analyzed by direct sequencing. All patients were confirmed to have genotype C infections. Mutations in the C region were distributed in a non-random manner. In particular, mutations in the MHC class II restricted region were found to be significantly related to HCC. Six (preC-W28*, C-P5H/L/T, C-E83D, C-I97F/L, C-L100I and C-Q182K/*) and seven types (preC-W28*, preC-G29D, C-D32N/H, C-E43K, C-P50A/H/Y, C-A131G/N/P and C-S181H/P) of mutations in the preC/C region were found to be related to HCC and to affect the HBeAg serostatus, respectively. In conclusion, our data indicated that HBV variants in the C region, particularly in the MHC class II restricted region, may contribute to the progress of HCC in chronic patients infected with genotype C. In addition, we found several distinct preC/C mutations in the Korean chronic cohort, which affect the clinical status of HCC and HBeAg serostatus of patients infected with genotype C.
Collapse
Affiliation(s)
- Dong-Won Kim
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Seoung-Ae Lee
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Eung-Soo Hwang
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Yoon-Hoh Kook
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, Liver Research Institute and Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
42
|
Katen SP, Chirapu SR, Finn M, Zlotnick A. Trapping of hepatitis B virus capsid assembly intermediates by phenylpropenamide assembly accelerators. ACS Chem Biol 2010; 5:1125-36. [PMID: 20845949 PMCID: PMC3003741 DOI: 10.1021/cb100275b] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the biological self-assembly process of virus capsids is key to understanding the viral life cycle, as well as serving as a platform for the design of assembly-based antiviral drugs. Here we identify and characterize the phenylpropenamide family of small molecules, known to have antiviral activity in vivo, as assembly effectors of the hepatitis B virus (HBV) capsid. We have found two representative phenylpropenamides to be assembly accelerators, increasing the rate of assembly with only modest increases in the stability of the HBV capsids; these data provide a physical-chemical basis for their antiviral activity. Unlike previously described HBV assembly effectors, the phenylpropenamides do not misdirect assembly; rather, the accelerated reactions proceed on-path to produce morphologically normal capsids. However, capsid assembly in the presence of phenylpropenamides is characterized by kinetic trapping of assembly intermediates. These traps resolve under conditions close to physiological, but we found that trapped intermediates persist under conditions that favor phenylpropenamide binding and strong core protein-protein interactions. The phenylpropenamides serve as chemical probes of the HBV capsid assembly pathway by trapping on-path assembly intermediates, illustrating the governing influence of reaction kinetics on capsid assembly.
Collapse
Affiliation(s)
- Sarah P. Katen
- Department of Biochemistry Indiana University, Bloomington, Indiana, 47405
| | - Srinivas Reddy Chirapu
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037
| | - M.G. Finn
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037
| | - Adam Zlotnick
- Department of Biochemistry Indiana University, Bloomington, Indiana, 47405
| |
Collapse
|
43
|
Affiliation(s)
- Adam Zlotnick
- Department of Biology, Indiana University Bloomington IN 47405 USA
| | - Bentley A. Fane
- Division of Plant Pathology and Microbiology, Department of Plant Sciences and The BIO5 Institute, University of Arizona Tucson AZ 85721 USA
| |
Collapse
|
44
|
Hagan MF, Elrad OM. Understanding the concentration dependence of viral capsid assembly kinetics--the origin of the lag time and identifying the critical nucleus size. Biophys J 2010; 98:1065-74. [PMID: 20303864 DOI: 10.1016/j.bpj.2009.11.023] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 11/17/2009] [Accepted: 11/18/2009] [Indexed: 10/19/2022] Open
Abstract
The kinetics for the assembly of viral proteins into a population of capsids can be measured in vitro with size exclusion chromatography or dynamic light scattering, but extracting mechanistic information from these studies is challenging. For example, it is not straightforward to determine the critical nucleus size or the elongation time (the time required for a nucleus to grow to completion). In this work, we study theoretical and computational models for capsid assembly to show that the critical nucleus size can be determined from the concentration dependence of the assembly half-life and that the elongation time is revealed by the length of the lag phase. Furthermore, we find that the system becomes kinetically trapped when nucleation becomes fast compared to elongation. Implications of this constraint for determining elongation mechanisms from experimental assembly data are discussed.
Collapse
Affiliation(s)
- Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts, USA.
| | | |
Collapse
|
45
|
Packianathan C, Katen SP, Dann CE, Zlotnick A. Conformational changes in the hepatitis B virus core protein are consistent with a role for allostery in virus assembly. J Virol 2010; 84:1607-15. [PMID: 19939922 PMCID: PMC2812345 DOI: 10.1128/jvi.02033-09] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2009] [Accepted: 11/16/2009] [Indexed: 12/19/2022] Open
Abstract
In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.
Collapse
Affiliation(s)
- Charles Packianathan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Sarah P. Katen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Charles E. Dann
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| | - Adam Zlotnick
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
46
|
Hagan MF. A theory for viral capsid assembly around electrostatic cores. J Chem Phys 2009; 130:114902. [PMID: 19317561 DOI: 10.1063/1.3086041] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We develop equilibrium and kinetic theories that describe the assembly of viral capsid proteins on a charged central core, as seen in recent experiments in which brome mosaic virus capsids assemble around nanoparticles functionalized with polyelectrolyte. We model interactions between capsid proteins and nanoparticle surfaces as the interaction of polyelectrolyte brushes with opposite charge using the nonlinear Poisson Boltzmann equation. The models predict that there is a threshold density of functionalized charge, above which capsids efficiently assemble around nanoparticles, and that light scatter intensity increases rapidly at early times without the lag phase characteristic of empty capsid assembly. These predictions are consistent with and enable interpretation of preliminary experimental data. However, the models predict a stronger dependence of nanoparticle incorporation efficiency on functionalized charge density than measured in experiments and do not completely capture a logarithmic growth phase seen in experimental light scatter. These discrepancies may suggest the presence of metastable disordered states in the experimental system. In addition to discussing future experiments for nanoparticle-capsid systems, we discuss broader implications for understanding assembly around charged cores such as nucleic acids.
Collapse
Affiliation(s)
- Michael F Hagan
- Department of Physics, Brandeis University, Waltham, Massachusetts 02454, USA.
| |
Collapse
|
47
|
Bourne CR, Katen SP, Fultz MJ, Packianathan C, Zlotnick A. A mutant hepatitis B virus core protein mimics inhibitors of icosahedral capsid self-assembly. Biochemistry 2009; 48:1736-42. [PMID: 19196007 PMCID: PMC2880625 DOI: 10.1021/bi801814y] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Understanding self-assembly of icosahedral virus capsids is critical to developing assembly directed antiviral approaches and will also contribute to the development of self-assembling nanostructures. One approach to controlling assembly would be through the use of assembly inhibitors. Here we use Cp149, the assembly domain of the hepatitis B virus capsid protein, together with an assembly defective mutant, Cp149-Y132A, to examine the limits of the efficacy of assembly inhibitors. By itself, Cp149-Y132A will not form capsids. However, Cp-Y132A will coassemble with the wild-type protein on the basis of light scattering and size exclusion chromatography. The resulting capsids appear to be indistinguishable from normal capsids. However, coassembled capsids are more fragile, with disassembly observed by chromatography under mildly destabilizing conditions. The relative persistence of capsids assembled under conditions where association energy is weak compared to the fragility of those where association is strong suggests a mechanism of "thermodynamic editing" that allows replacement of defective proteins in a weakly associated complex. There is fine line between weak assembly, where assembly defective protein is edited from a growing capsid, and relatively strong assembly, where assembly defective subunits may dramatically compromise virus stability. Thus, attempts to control virus self-assembly (with small molecules or defective proteins) must take into account the competing process of thermodynamic editing.
Collapse
Affiliation(s)
- Christina R. Bourne
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
| | - Sarah P. Katen
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Matthew J. Fultz
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
| | | | - Adam Zlotnick
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104
- Department of Biology, Indiana University, Bloomington, IN 47405
| |
Collapse
|
48
|
Abstract
Virus capsid assembly is a critical step in the viral life cycle. The underlying basis of capsid stability is key to understanding this process. Capsid subunits interact with weak individual contact energies to form a globally stable icosahedral lattice; this structure is ideal for encapsidating the viral genome and host partners and protecting its contents upon secretion, yet the unique properties of its assembly and inter-subunit contacts allow the capsid to dissociate upon entering a new host cell. The stability of the capsid can be analyzed by treating capsid assembly as an equilibrium polymerization reaction, modified from the traditional polymer model to account for the fact that a separate nucleus is formed for each individual capsid. From the concentrations of reactants and products in an equilibrated assembly reaction, it is possible to extract the thermodynamic parameters of assembly for a wide array of icosahedral viruses using well-characterized biochemical and biophysical methods. In this chapter we describe this basic analysis and provide examples of thermodynamic assembly data for several different icosahedral viruses. These data provide new insights into the assembly mechanisms of spherical virus capsids, as well as into the biology of the viral life cycle.
Collapse
Affiliation(s)
- Sarah Katen
- Department of Biology, Indiana University, Bloomington, IN 47405
| | - Adam Zlotnick
- Department of Biology, Indiana University, Bloomington, IN 47405
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
49
|
Hilmer JK, Zlotnick A, Bothner B. Conformational equilibria and rates of localized motion within hepatitis B virus capsids. J Mol Biol 2008; 375:581-94. [PMID: 18022640 PMCID: PMC2238684 DOI: 10.1016/j.jmb.2007.10.044] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 10/22/2022]
Abstract
Functional analysis of hepatitis B virus (HBV) core particles has associated a number of biological roles with the C terminus of the capsid protein. One set of functions require the C terminus to be on the exterior of the capsid, while others place this domain on the interior. According to the crystal structure of the capsid, this segment is strictly internal to the capsid shell and buried at a protein-protein interface. Using kinetic hydrolysis, a form of protease digestion assayed by SDS-PAGE and mass spectrometry, the structurally and biologically important C-terminal region of HBV capsid protein assembly domain (Cp149, residues 1-149) has been shown to be dynamic in both dimer and capsid forms. HBV is an enveloped virus with a T=4 icosahedral core that is composed of 120 copies of a homodimer capsid protein. Free dimer and assembled capsid forms of the protein are readily hydrolyzed by trypsin and thermolysin, around residues 127-128, indicating that this region is dynamic and exposed to the capsid surface. The measured conformational equilibria have an opposite temperature dependence between free dimer and assembled capsid. This work helps to explain the previously described allosteric regulation of assembly and functional properties of a buried domain. These observations make a critical connection between structure, dynamics, and function: made possible by the first quantitative measurements of conformational equilibria and rates of conversion between protein conformers for a megaDalton complex.
Collapse
Affiliation(s)
- Jonathan K Hilmer
- Montana State University, Department of Chemistry and Biochemistry, Chemistry and Biochemistry Building, Bozeman, MT 59717, USA
| | | | | |
Collapse
|
50
|
Zhang T, Kim WT, Schwartz R. Investigating Scaling Effects on Virus Capsid-Like Self-Assembly Using Discrete Event Simulations. IEEE Trans Nanobioscience 2007; 6:235-41. [DOI: 10.1109/tnb.2007.903484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|