1
|
Shen X, Gill U, Arens M, Yan Z, Bai Y, Hutton SF, Wolters AMA. The tomato gene Ty-6, encoding DNA polymerase delta subunit 1, confers broad resistance to Geminiviruses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:22. [PMID: 39775891 PMCID: PMC11711579 DOI: 10.1007/s00122-024-04803-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE The tomato Ty-6 gene conferring resistance against begomoviruses has been cloned and shown to be a variant of DNA polymerase delta subunit 1. Ty-6 is a major resistance gene of tomato that provides resistance against monopartite and bipartite begomoviruses. The locus was previously mapped on chromosome 10, and in this study, we fine-mapped Ty-6 to a region of 47 kb, including four annotated candidate genes. Via whole-genome resequencing of Ty-6 breeding lines and several susceptible breeding lines, the polymorphisms in gene sequences were discovered and gene-associated markers were developed for marker-assistant breeding. Further, virus-induced gene silencing and candidate gene overexpressing in susceptible tomatoes revealed that Ty-6-mediated resistance is controlled by Solyc10g081250, encoding the DNA polymerase delta subunit 1, SlPOLD1. The single nucleotide polymorphism of Ty-6 results in an amino acid change that might influence the fidelity of virus DNA replication.
Collapse
Affiliation(s)
- Xuexue Shen
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, The Netherlands
- KWS, Wageningen, The Netherlands
| | - Upinder Gill
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
- North Dakota State University, Fargo, ND, USA
| | - Marjon Arens
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Zhe Yan
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Yuling Bai
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Samuel F Hutton
- Department of Horticultural Sciences, Gulf Coast Research and Education Center, University of Florida, Wimauma, FL, USA
| | - Anne-Marie A Wolters
- Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Davis TW, Thompson AN. Begomoviruses associated with okra yellow vein mosaic disease (OYVMD): diversity, transmission mechanism, and management strategies. MOLECULAR HORTICULTURE 2024; 4:36. [PMID: 39497157 PMCID: PMC11536920 DOI: 10.1186/s43897-024-00112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/02/2024] [Indexed: 11/06/2024]
Abstract
Okra yellow vein mosaic disease (OYVMD) is a major constraint to okra production globally. It is caused by several distinct begomoviruses, including okra yellow vein mosaic virus (OYVMV), that are transmitted by the whitefly. This study synthesizes current knowledge on the complex interactions between whiteflies, begomoviruses, and okra plants that enable viral spread and cause OYVMD. The acquisition and transmission cycle involves specific processes including virion ingestion during phloem-feeding, endocytosis and passage across insect tissues, secretion in saliva, and inoculation into plants. Molecular compatibilities between vector coat proteins, midgut proteins, and plant factors modulate virus replication and movement through barrier tissues. Abiotic stresses and host traits also impact whitefly behavior and virus epidemiology. Begomoviruses such as OYVMV have spread globally wherever whitefly vectors and susceptible okra varieties occur. Integrated management of the tripartite pathosystem that incorporates host resistance, cultural tactics, and biological control is required to mitigate the transmission of begomoviruses and OYVMD impact. Finally, resolving vector-virus interactions and developing interference strategies will help contribute to strengthening okra germplasm resistance which can support sustainable food production.
Collapse
Affiliation(s)
- Thomas Wilbur Davis
- Doctor of Plant Health, University of Nebraska - Lincoln, Lincoln, NE, 68508, United States.
| | - Andrew Nasa Thompson
- Resource Utilization and Plant Protection, China Agricultural University, 17 Qinghua Donglu, Beijing, 100083, China
| |
Collapse
|
3
|
Kamal H, Zafar MM, Razzaq A, Parvaiz A, Ercisli S, Qiao F, Jiang X. Functional role of geminivirus encoded proteins in the host: Past and present. Biotechnol J 2024; 19:e2300736. [PMID: 38900041 DOI: 10.1002/biot.202300736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/19/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024]
Abstract
During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan, Pakistan
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication, School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
4
|
Wang Z, Castillo-González CM, Zhao C, Tong CY, Li C, Zhong S, Liu Z, Xie K, Zhu J, Wu Z, Peng X, Jacob Y, Michaels SD, Jacobsen SE, Zhang X. H3.1K27me1 loss confers Arabidopsis resistance to Geminivirus by sequestering DNA repair proteins onto host genome. Nat Commun 2023; 14:7484. [PMID: 37980416 PMCID: PMC10657422 DOI: 10.1038/s41467-023-43311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/06/2023] [Indexed: 11/20/2023] Open
Abstract
The H3 methyltransferases ATXR5 and ATXR6 deposit H3.1K27me1 to heterochromatin to prevent genomic instability and transposon re-activation. Here, we report that atxr5 atxr6 mutants display robust resistance to Geminivirus. The viral resistance is correlated with activation of DNA repair pathways, but not with transposon re-activation or heterochromatin amplification. We identify RAD51 and RPA1A as partners of virus-encoded Rep protein. The two DNA repair proteins show increased binding to heterochromatic regions and defense-related genes in atxr5 atxr6 vs wild-type plants. Consequently, the proteins have reduced binding to viral DNA in the mutant, thus hampering viral amplification. Additionally, RAD51 recruitment to the host genome arise via BRCA1, HOP2, and CYCB1;1, and this recruitment is essential for viral resistance in atxr5 atxr6. Thus, Geminiviruses adapt to healthy plants by hijacking DNA repair pathways, whereas the unstable genome, triggered by reduced H3.1K27me1, could retain DNA repairing proteins to suppress viral amplification in atxr5 atxr6.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA
| | | | - Changjiang Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Chun-Yip Tong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Changhao Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Songxiao Zhong
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhiyang Liu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Kaili Xie
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jiaying Zhu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Zhongshou Wu
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xu Peng
- Department of Molecular Physiology, College of Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Yannick Jacob
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, 06511, USA
| | - Scott D Michaels
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Xiuren Zhang
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Molecular and Environmental Plant Sciences, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
5
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
6
|
Rizvi I, Hisamuddin M, Malik A, Khan RH. Identification of mungbean yellow mosaic India virus (MYMIV) Rep interacting partners using phage display and influence of Arabidopsis thaliana MCM3 on geminivirus DNA replication. J Biomol Struct Dyn 2022; 40:10507-10517. [PMID: 34121621 DOI: 10.1080/07391102.2021.1935319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Geminiviruses consist of a single-stranded DNA genome that replicates by a rolling circle (RCR) and recombination-dependent (RDR) modes of replication. The AC1 or Rep is the indispensable viral protein required for the RCR mode of replication. Since these viruses encode only a few proteins, they depend on several host factors for replication, transcription, and other physiological processes. To get insights into the repertoire of host factors influencing the replication of geminiviruses, we performed phage display experiments which led to the identification of putative mungbean yellow mosaic India virus (MYMIV) Rep interacting host proteins. These proteins might directly or indirectly participate in geminivirus biology. MCM3 was one of the Rep-interacting partners obtained in the phage display results. Using bimolecular fluorescence complementation (BiFC), the interaction of the MYMIV Rep with Arabidopsis thaliana MCM3 (AtMCM3) was confirmed. We report the involvement of AtMCM3 in the replication of MYMIV DNA through an ex vivo system. The physiological relevance of the interaction between AtMCM3 and MYMIV Rep is reflected by yeast replication assay.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Irum Rizvi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India.,International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Malik Hisamuddin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Ajamaluddin Malik
- Department of Biochemistry, King Saud University, Riyadh, Saudi Arabia
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
7
|
Wang C, Fan S, Xu N, Li Z, Zhang S, Zhu S. Structural basis of DNA recognition of tomato yellow leaf curl virus replication-associated protein. Int J Biol Macromol 2022; 205:316-328. [PMID: 35192905 DOI: 10.1016/j.ijbiomac.2022.02.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/05/2022]
Abstract
Conserved and multifunctional Geminivirus Replication-associated Protein (Rep) specifically recognizes the replication origin and initiates viral DNA replication. We report the X-ray crystallography-based structures of two complexes containing the N-terminal domain (5-117aa) of Tomato yellow leaf curl virus (TYLCV) Rep: the catalytically-dead Rep in complex with nonanucleotide ssDNA (Rep5-117 Y101F-ssDNA) as well as the catalytically-active phosphotyrosine covalent adduct (Rep5-117-ssDNA). These structures provide functional insight into the role of Rep in viral replication. Metal ions stabilize the DNA conformation by interacting with the phosphate group of adenine and thus promote formation of the catalytic center. Furthermore, we identified a compound that inhibits the binding of Rep to ssDNA and dsDNA and found that the addition of metal ions compromises the inhibitory effectiveness of this compound. This study demonstrates the mechanism of DNA recognition and cleavage process of viral Rep, emphasizing the role of metal ions.
Collapse
Affiliation(s)
- Chaonan Wang
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shilong Fan
- The Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Ning Xu
- Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhihong Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Senyan Zhang
- Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shuifang Zhu
- College of Plant Protection, China Agricultural University, Beijing 100193, China; Institute of Plant Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
8
|
Roy B, Chakraborty P, Ghosh A. How many begomovirus copies are acquired and inoculated by its vector, whitefly (Bemisia tabaci) during feeding? PLoS One 2021; 16:e0258933. [PMID: 34699546 PMCID: PMC8547624 DOI: 10.1371/journal.pone.0258933] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/08/2021] [Indexed: 11/19/2022] Open
Abstract
Begomoviruses are transmitted by whitefly (Bemisia tabaci Gennadius, Hemiptera: Aleyrodidae) in a persistent-circulative way. Once B. tabaci becomes viruliferous, it remains so throughout its life span. Not much is known about the copies of begomoviruses ingested and/or released by B. tabaci during the process of feeding. The present study reports the absolute quantification of two different begomoviruses viz. tomato leaf curl New Delhi virus (ToLCNDV, bipartite) and chilli leaf curl virus (ChiLCV, monopartite) at different exposure of active acquisition and inoculation feeding using a detached leaf assay. A million copies of both the begomoviruses were acquired by a single B. tabaci with only 5 min of active feeding and virus copy number increased in a logarithmic model with feeding exposure. Whereas, a single B. tabaci could inoculate 8.21E+09 and 4.19E+11 copies of ToLCNDV and ChiLCV, respectively in detached leaves by 5 min of active feeding. Virus copies in inoculated leaves increased with an increase in feeding duration. Comparative dynamics of these two begomoviruses indicated that B. tabaci adult acquired around 14-fold higher copies of ChiLCV than ToLCNDV 24 hrs post feeding. Whereas, the rate of inoculation of ToLCNDV by individual B. tabaci was significantly higher than ChiLCV. The study provides a better understanding of begomovirus acquisition and inoculation dynamics by individual B. tabaci and would facilitate research on virus-vector epidemiology and screening host resistance.
Collapse
Affiliation(s)
- Buddhadeb Roy
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prosenjit Chakraborty
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amalendu Ghosh
- Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
9
|
Insights into the roles of histone chaperones in nucleosome assembly and disassembly in virus infection. Virus Res 2021; 297:198395. [PMID: 33737155 DOI: 10.1016/j.virusres.2021.198395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/23/2022]
Abstract
Nucleosomes are assembled or disassembled with the aid of histone chaperones in a cell. Viruses can exist either as minichromosomes/episomes or can integrate into the host genome and in both the cases the viral proteins interact and manipulate the cellular nucleosome assembly machinery to ensure their survival and propagation. Recent studies have provided insight into the mechanism and role of histone chaperones in nucleosome assembly and disassembly on the virus genome. Further, the interactions between viral proteins and histone chaperones have been implicated in the integration of the virus genome into the host genome. This review highlights the recent progress and future challenges in understanding the role of histone chaperones in viruses with DNA or RNA genome and their role in governing viral pathogenesis.
Collapse
|
10
|
Shakir S, Jander G, Nahid N, Mubin M, Younus A, Nawaz-Ul-Rehman MS. Interaction of eukaryotic proliferating cell nuclear antigen (PCNA) with the replication-associated protein (Rep) of cotton leaf curl Multan virus and pedilanthus leaf curl virus. 3 Biotech 2021; 11:14. [PMID: 33442513 DOI: 10.1007/s13205-020-02499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 10/19/2020] [Indexed: 11/28/2022] Open
Abstract
The replication-associated (Rep) proteins of pathogenic begomoviruses, including cotton leaf curl Multan virus (CLCuMuV) and pedilanthus leaf curl virus (PeLCV), interact with the DNA replication machinery of their eukaryotic hosts. The analysis of Rep protein sequences showed that there is 13-28% sequence variation among CLCuMuV and PeLCV isolates, with phylogenetic clusters that can separated at least in part based on the country of origin of the respective viruses. To identify specific host factors involved in the virus replication cycle, we conducted yeast two-hybrid assays to detect possible interactions between the CLCuMuV and PeLCV Rep proteins and 30 protein components of the Saccharomyces cerevisiae DNA replication machinery. This showed that the proliferating cell nuclear antigen (PCNA) protein of S. cerevisiae interacts with Rep proteins from both CLCuMuV and PeLCV. We used the yeast PCNA sequence in BLAST comparisons to identify two PCNA orthologs each in Gossypium hirsutum (cotton), Arabidopsis thaliana (Arabidopsis), and Nicotiana benthamiana (tobacco). Sequence comparisons showed 38-40% identity between the yeast and plant PCNA proteins, and > 91% identity among the plant PCNA proteins, which clustered together in one phylogenetic group. The expression of the six plant PCNA proteins in the yeast two-hybrid system confirmed interactions with the CLCuMuV and PeLCV Rep proteins. Our results demonstrate that the interaction of begomovirus Rep proteins with eukaryotic PCNA proteins is strongly conserved, despite significant evolutionary variation in the protein sequences of both of the interacting partners.
Collapse
Affiliation(s)
- Sara Shakir
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
- Present Address: Plant Genetics, Lab, Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Georg Jander
- Boyce Thompson Institutute, Ithaca, NY 14853 USA
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University, Faisalabad, Pakistan
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| | - Ayesha Younus
- Laser Matter Interaction and Nano-Sciences Lab, Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Shah Nawaz-Ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, 38000 Pakistan
| |
Collapse
|
11
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
12
|
A plant DNA virus replicates in the salivary glands of its insect vector via recruitment of host DNA synthesis machinery. Proc Natl Acad Sci U S A 2020; 117:16928-16937. [PMID: 32636269 PMCID: PMC7382290 DOI: 10.1073/pnas.1820132117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Viruses pose a great threat to animal and plant health worldwide. Whereas most plant viruses only replicate in plant hosts, some also replicate in their animal (insect) vector. A detailed knowledge of host expansion will give a better understanding of virus evolution, and identification of virus and host components involved in this process can lead to new strategies to combat virus spread. Here, we reveal that a plant DNA virus has evolved to induce and recruit insect DNA synthesis machinery to support its replication in vector salivary glands. Our study sheds light on the understanding of TYLCV–whitefly interactions and provides insights into how a plant virus may evolve to infect and replicate in an insect vector. Whereas most of the arthropod-borne animal viruses replicate in their vectors, this is less common for plant viruses. So far, only some plant RNA viruses have been demonstrated to replicate in insect vectors and plant hosts. How plant viruses evolved to replicate in the animal kingdom remains largely unknown. Geminiviruses comprise a large family of plant-infecting, single-stranded DNA viruses that cause serious crop losses worldwide. Here, we report evidence and insight into the replication of the geminivirus tomato yellow leaf curl virus (TYLCV) in the whitefly (Bemisia tabaci) vector and that replication is mainly in the salivary glands. We found that TYLCV induces DNA synthesis machinery, proliferating cell nuclear antigen (PCNA) and DNA polymerase δ (Polδ), to establish a replication-competent environment in whiteflies. TYLCV replication-associated protein (Rep) interacts with whitefly PCNA, which recruits DNA Polδ for virus replication. In contrast, another geminivirus, papaya leaf curl China virus (PaLCuCNV), does not replicate in the whitefly vector. PaLCuCNV does not induce DNA-synthesis machinery, and the Rep does not interact with whitefly PCNA. Our findings reveal important mechanisms by which a plant DNA virus replicates across the kingdom barrier in an insect and may help to explain the global spread of this devastating pathogen.
Collapse
|
13
|
Sun M, Jiang K, Li C, Du J, Li M, Ghanem H, Wu G, Qing L. Tobacco curly shoot virus C3 protein enhances viral replication and gene expression in Nicotiana benthamiana plants. Virus Res 2020; 281:197939. [PMID: 32198077 DOI: 10.1016/j.virusres.2020.197939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/10/2020] [Accepted: 03/14/2020] [Indexed: 11/24/2022]
Abstract
Geminiviruses are single-stranded DNA viruses that cause devastating diseases in many crops worldwide. The replication enhancer proteins (REn), encoded by the C3 (AC3, and AL3) ORFs of geminiviruses, have critical roles in viral DNA accumulation and symptom development in infected plants. In the current study, we have constructed an infectious clone of the Tobacco curly shoot virus (TbCSV) C3 mutant, TbCSVΔC3, that contains two start codon mutations that abrogated C3 ORF expression, but did not alter the amino acid sequence of the C2 ORF. As predicted, the absence of the C3 protein reduced TbCSV DNA accumulation, and over-expression of the C3 protein enhanced TbCSV DNA accumulation in infected leaves of Nicotiana benthamiana. The C3 mutation reduced the expression levels of both virion- and complementary-sense TbCSV genes whereas over-expression of the C3 protein increased TbCSV gene expression. Furthermore, the expression of the wild-type and site-directed mutants of C3 proteins using the potato virus X (PVX) system showed that Y93A mutation reduced the replication enhancement activity of the C3 protein in N. benthamiana. All the available evidence demonstrates that the C3 protein is tightly coupled with TbCSV DNA accumulation. However, the TbCSVΔC3 mutant was nearly as infectious in N. benthamiana as TbCSVWT and only had slightly delayed and attenuated symptom expression. Our findings demonstrate that TbCSV C3 protein enhances viral replication and gene expression, but has only moderate effects on symptom development in N. benthamiana.
Collapse
Affiliation(s)
- Miao Sun
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Kairong Jiang
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Chunji Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Jiang Du
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Mingjun Li
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Hussein Ghanem
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Gentu Wu
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| | - Ling Qing
- Chongqing Key Laboratory of Plant Disease Biology, College of Plant Protection, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
14
|
Abstract
The geminivirus capsid architecture is unique and built from twinned pseudo T=1 icosahedrons with 110 copies of the coat protein (CP). The CP is multifunctional. It performs various functions during the infection of a wide range of agriculturally important plant hosts. The CP multimerizes via pentameric intermediates during assembly and encapsulates the ssDNA genome to generate the unique capsid morphology. The virus capsid protects and transports the genome in the insect vector and plant host enroute to the plant nucleus for replication and the production of progeny. This review further explores CP:CP and CP:DNA interactions, and the environmental conditions that govern the assembly of the geminivirus capsid. This analysis was facilitated by new data available for the family, including three-dimensional structures and molecular biology data for several members. In addition, current and promising new control strategies of plant crop infection, which can lead to starvation for subsistence farmers, are discussed.
Collapse
Affiliation(s)
- Antonette Bennett
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, College of Medicine, Center for Structural Biology, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
15
|
Lee CC, Wang JW, Leu WM, Huang YT, Huang YW, Hsu YH, Meng M. Proliferating Cell Nuclear Antigen Suppresses RNA Replication of Bamboo Mosaic Virus through an Interaction with the Viral Genome. J Virol 2019; 93:e00961-19. [PMID: 31511381 PMCID: PMC6819918 DOI: 10.1128/jvi.00961-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Bamboo mosaic virus (BaMV), a member of the Potexvirus genus, has a monopartite positive-strand RNA genome on which five open reading frames (ORFs) are organized. ORF1 encodes a 155-kDa nonstructural protein (REPBaMV) that plays a core function in replication/transcription of the viral genome. To find out cellular factors modulating the replication efficiency of BaMV, a putative REPBaMV-associated protein complex from Nicotiana benthamiana leaf was isolated on an SDS-PAGE gel, and a few proteins preferentially associated with REPBaMV were identified by tandem mass spectrometry. Among them, proliferating cell nuclear antigen (PCNA) was particularly noted. Overexpression of PCNA strongly suppressed the accumulation of BaMV coat protein and RNAs in leaf protoplasts. In addition, PCNA exhibited an inhibitory effect on BaMV polymerase activity. A pulldown assay confirmed a binding capability of PCNA toward BaMV genomic RNA. Mutations at D41 or F114 residues, which are critical for PCNA to function in nuclear DNA replication and repair, disabled PCNA from binding BaMV genomic RNA as well as suppressing BaMV replication. This suggests that PCNA bound to the viral RNA may interfere with the formation of a potent replication complex or block the replication process. Interestingly, BaMV is almost invisible in the newly emerging leaves where PCNA is actively expressed. Accordingly, PCNA is probably one of the factors restricting the proliferation of BaMV in young leaves. Foxtail mosaic virus and Potato virus X were also suppressed by PCNA in the protoplast experiment, suggesting a general inhibitory effect of PCNA on the replication of potexviruses.IMPORTANCE Knowing the dynamic interplay between plant RNA viruses and their host is a basic step toward first understanding how the viruses survive the plant defense mechanisms and second gaining knowledge of pathogenic control in the field. This study found that plant proliferating cell nuclear antigen (PCNA) imposes a strong inhibition on the replication of several potexviruses, including Bamboo mosaic virus, Foxtail mosaic virus, and Potato virus X Based on the tests on Bamboo mosaic virus, PCNA is able to bind the viral genomic RNA, and this binding is a prerequisite for the protein to suppress the virus replication. This study also suggests that PCNA plays an important role in restricting the proliferation of potexviruses in the rapidly dividing tissues of plants.
Collapse
Affiliation(s)
- Cheng-Cheng Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Jhih-Wei Wang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Ming Leu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ting Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - Menghsiao Meng
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
16
|
Maio F, Arroyo-Mateos M, Bobay BG, Bejarano ER, Prins M, van den Burg HA. A Lysine Residue Essential for Geminivirus Replication Also Controls Nuclear Localization of the Tomato Yellow Leaf Curl Virus Rep Protein. J Virol 2019; 93:e01910-18. [PMID: 30842320 PMCID: PMC6498046 DOI: 10.1128/jvi.01910-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/20/2019] [Indexed: 02/07/2023] Open
Abstract
Geminiviruses are single-stranded DNA (ssDNA) viruses that infect a wide range of plants. To promote viral replication, geminiviruses manipulate the host cell cycle. The viral protein Rep is essential to reprogram the cell cycle and then initiate viral DNA replication by interacting with a plethora of nuclear host factors. Even though many protein domains of Rep have been characterized, little is known about its nuclear targeting. Here, we show that one conserved lysine in the N-terminal part of Rep is pivotal for nuclear localization of the Rep protein from Tomato yellow leaf curl virus (TYLCV), with two other lysines also contributing to its nuclear import. Previous work had identified that these residues are essential for Rep from Tomato golden mosaic virus (TGMV) to interact with the E2 SUMO-conjugating enzyme (SCE1). We here show that mutating these lysines leads to nuclear exclusion of TYLCV Rep without compromising its interaction with SCE1. Moreover, the ability of TYLCV Rep to promote viral DNA replication also depends on this highly conserved lysine independently of its role in nuclear import of Rep. Our data thus reveal that this lysine potentially has a broad role in geminivirus replication, but its role in nuclear import and SCE1 binding differs depending on the Rep protein examined.IMPORTANCE Nuclear activity of the replication initiator protein (Rep) of geminiviruses is essential for viral replication. We now define that one highly conserved lysine is important for nuclear import of Rep from three different begomoviruses. To our knowledge, this is the first time that nuclear localization has been mapped for any geminiviral Rep protein. Our data add another key function to this lysine residue, besides its roles in viral DNA replication and interaction with host factors, such as the SUMO E2-conjugating enzyme.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biochemistry, Duke University, Durham, North Carolina, USA
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
- Keygene N.V., Wageningen, the Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Li F, Xu X, Yang X, Li Z, Zhou X. Identification of a cis-Acting Element Derived from Tomato Leaf Curl Yunnan Virus that Mediates the Replication of a Deficient Yeast Plasmid in Saccharomyces cerevisiae. Viruses 2018; 10:v10100536. [PMID: 30274361 PMCID: PMC6213642 DOI: 10.3390/v10100536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/03/2022] Open
Abstract
Geminiviruses are a group of small single-stranded DNA viruses that replicate in the host cell nucleus. It has been reported that the viral replication initiator protein (Rep) and the conserved common region (CR) are required for rolling circle replication (RCR)-dependent geminivirus replication, but the detailed mechanisms of geminivirus replication are still obscure owing to a lack of a eukaryotic model system. In this study, we constructed a bacterial–yeast shuttle plasmid with the autonomous replication sequence (ARS) deleted, which failed to replicate in Saccharomyces cerevisiae cells and could not survive in selective media either. Tandemly repeated copies of 10 geminivirus genomic DNAs were inserted into this deficient plasmid to test whether they were able to replace the ARS to execute genomic DNA replication in yeast cells. We found that yeast cells consisting of the recombinant plasmid with 1.9 tandemly repeated copies of tomato leaf curl Yunnan virus isolate Y194 (TLCYnV-Y194, hereafter referred to as Y194) can replicate well and survive in selective plates. Furthermore, we showed that the recombinant plasmid harboring the Y194 genome with the mutation of the viral Rep or CR was still able to replicate in yeast cells, indicating the existence of a non-canonic RCR model. By a series of mutations, we mapped a short fragment of 174 nucleotides (nts) between the V1 and C3 open reading frames (ORFs), including an ARS-like element that can substitute the function of the ARS responsible for stable replication of extrachromosomal DNAs in yeast. The results of this study established a geminivirus replication system in yeast cells and revealed that Y194 consisting of an ARS-like element was able to support the replication a bacterial–yeast shuttle plasmid in yeast cells.
Collapse
Affiliation(s)
- Fangfang Li
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Xiongbiao Xu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
| | - Zhenghe Li
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Xueping Zhou
- State Key Laboratory for Biology of Plant Disease and Insect Pest, Institute of Plant Protection, China Academy of Agricultural Sciences, Beijing 100193, China.
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Arroyo-Mateos M, Sabarit B, Maio F, Sánchez-Durán MA, Rosas-Díaz T, Prins M, Ruiz-Albert J, Luna AP, van den Burg HA, Bejarano ER. Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. J Virol 2018. [PMID: 29950424 DOI: 10.1101/305789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.
Collapse
Affiliation(s)
- Manuel Arroyo-Mateos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Blanca Sabarit
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Miguel A Sánchez-Durán
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Tabata Rosas-Díaz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Keygene NV, Wageningen, The Netherlands
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Ana P Luna
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Deptartmento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, Málaga, Spain
| |
Collapse
|
19
|
Geminivirus Replication Protein Impairs SUMO Conjugation of Proliferating Cellular Nuclear Antigen at Two Acceptor Sites. J Virol 2018; 92:JVI.00611-18. [PMID: 29950424 DOI: 10.1128/jvi.00611-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 02/08/2023] Open
Abstract
Geminiviruses are DNA viruses that replicate in nuclei of infected plant cells using the plant DNA replication machinery, including PCNA (proliferating cellular nuclear antigen), a cofactor that orchestrates genome duplication and maintenance by recruiting crucial players to replication forks. These viruses encode a multifunctional protein, Rep, which is essential for viral replication, induces the accumulation of the host replication machinery, and interacts with several host proteins, including PCNA and the SUMO E2 conjugation enzyme (SCE1). Posttranslational modification of PCNA by ubiquitin or SUMO plays an essential role in the switching of PCNA between interacting partners during DNA metabolism processes (e.g., replication, recombination, and repair, etc.). In yeast, PCNA sumoylation has been associated with DNA repair involving homologous recombination (HR). Previously, we reported that ectopic Rep expression results in very specific changes in the sumoylation pattern of plant cells. In this work, we show, using a reconstituted sumoylation system in Escherichia coli, that tomato PCNA is sumoylated at two residues, K254 and K164, and that coexpression of the geminivirus protein Rep suppresses sumoylation at these lysines. Finally, we confirm that PCNA is sumoylated in planta and that Rep also interferes with PCNA sumoylation in plant cells.IMPORTANCE SUMO adducts have a key role in regulating the activity of animal and yeast PCNA on DNA repair and replication. Our work demonstrates for the first time that sumoylation of plant PCNA occurs in plant cells and that a plant virus interferes with this modification. This work marks the importance of sumoylation in allowing viral infection and replication in plants. Moreover, it constitutes a prime example of how viral proteins interfere with posttranslational modifications of selected host factors to create a proper environment for infection.
Collapse
|
20
|
Ruhel R, Chakraborty S. Multifunctional roles of geminivirus encoded replication initiator protein. Virusdisease 2018; 30:66-73. [PMID: 31143833 DOI: 10.1007/s13337-018-0458-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/28/2018] [Indexed: 12/31/2022] Open
Abstract
Geminivirus infection has been a threat to cultivation worldwide by causing huge losses to the crop. The single-stranded DNA genome of a geminivirus possesses a limited coding potential and many of the open reading frames (ORFs) are overlapping. Out of 5-7 ORFs that a geminivirus genome codes for, the AC1 ORF encodes for the replication initiator protein (Rep) which is involved in the replication of virus within the infected plant cell. Rep is the only viral protein absolutely required for the in planta viral replication. Across different genera of the Geminiviridae family, the AC1 ORF exhibits a high degree of sequence conservation thus it has been used as an effective target for developing broad spectrum resistance against the invading geminiviruses. This multifunctional protein is required for initiation, elongation as well as termination of the viral replication process. Rep is also involved in stimulation of viral transcription. In addition, it also functions as suppressor of gene silencing and is involved in the process of transcription by regulating the expression of certain viral genes. Rep protein also interacts with few viral proteins such as coat protein, replication enhancer protein and with several host factors involved in different pathways and processes for its replication and efficient infection. This review will summarise our current understanding about the role of this early viral protein in viral propagation as well as in establishment of pathogenesis in a permissive host.
Collapse
Affiliation(s)
- Rajrani Ruhel
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| |
Collapse
|
21
|
|
22
|
Ramesh SV, Sahu PP, Prasad M, Praveen S, Pappu HR. Geminiviruses and Plant Hosts: A Closer Examination of the Molecular Arms Race. Viruses 2017; 9:E256. [PMID: 28914771 PMCID: PMC5618022 DOI: 10.3390/v9090256] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/02/2017] [Accepted: 09/06/2017] [Indexed: 11/24/2022] Open
Abstract
Geminiviruses are plant-infecting viruses characterized by a single-stranded DNA (ssDNA) genome. Geminivirus-derived proteins are multifunctional and effective regulators in modulating the host cellular processes resulting in successful infection. Virus-host interactions result in changes in host gene expression patterns, reprogram plant signaling controls, disrupt central cellular metabolic pathways, impair plant's defense system, and effectively evade RNA silencing response leading to host susceptibility. This review summarizes what is known about the cellular processes in the continuing tug of war between geminiviruses and their plant hosts at the molecular level. In addition, implications for engineered resistance to geminivirus infection in the context of a greater understanding of the molecular processes are also discussed. Finally, the prospect of employing geminivirus-based vectors in plant genome engineering and the emergence of powerful genome editing tools to confer geminivirus resistance are highlighted to complete the perspective on geminivirus-plant molecular interactions.
Collapse
Affiliation(s)
- Shunmugiah V Ramesh
- ICAR-Indian Institute of Soybean Research, Indian Council of Agricultural Research, Indore 452001, India.
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Pranav P Sahu
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi110067, India.
| | - Shelly Praveen
- Division of Plant Pathology, Advanced Centre for Plant Virology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India.
| | - Hanu R Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA.
| |
Collapse
|
23
|
Patil BL, Bagewadi B, Yadav JS, Fauquet CM. Mapping and identification of cassava mosaic geminivirus DNA-A and DNA-B genome sequences for efficient siRNA expression and RNAi based virus resistance by transient agro-infiltration studies. Virus Res 2015; 213:109-115. [PMID: 26581664 DOI: 10.1016/j.virusres.2015.11.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 11/30/2022]
Abstract
Geminiviruses are among the most serious pathogens of many economically important crop plants and RNA interference (RNAi) is an important strategy for their control. Although any fragment of a viral genome can be used to generate a double stranded (ds) RNA trigger, the precursor for generation of siRNAs, the exact sequence and size requirements for efficient gene silencing and virus resistance have so far not been investigated. Previous efforts to control geminiviruses by gene silencing mostly targeted AC1, the gene encoding replication-associated protein. In this study we made RNAi constructs for all the genes of both the genomic components (DNA-A and DNA-B) of African cassava mosaic virus (ACMV-CM), one of the most devastating geminiviruses causing cassava mosaic disease (CMD) in Africa. Using transient agro-infiltration studies, RNAi constructs were evaluated for their ability to trigger gene silencing against the invading virus and protection against it. The results show that the selection of the DNA target sequence is an important determinant for the amount of siRNA produced and the extent of resistance. The ACMV genes AC1, AC2, AC4 from DNA-A and BC1 from DNA-B were effective targets for RNAi-mediated resistance and their siRNA expression was higher compared to other RNAi constructs. The RNAi construct targeting AC2, the suppressor of gene silencing of ACMV-CM gave highest level of resistance in the transient studies. This is the first report of targeting DNA-B to confer resistance to a bipartite geminivirus infection.
Collapse
Affiliation(s)
- Basavaprabhu L Patil
- ICAR-National Research Centre on Plant Biotechnology, Pusa, New Delhi 110012, India; Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| | | | | | | |
Collapse
|
24
|
Jeyabharathy C, Shakila H, Usha R. Development of a VIGS vector based on the β-satellite DNA associated with bhendi yellow vein mosaic virus. Virus Res 2015; 195:73-8. [PMID: 25169741 DOI: 10.1016/j.virusres.2014.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 08/17/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
Abstract
Bhendi yellow vein mosaic virus (BYMV) is a monopartite begomovirus with an associated β-satellite. βC1 ORF encoded by the β-satellite is the symptom determinant and a strong suppressor of post transcriptional gene silencing. To create a virus induced gene silencing vector based upon the β-satellite associated with BYVMV the βC1 ORF was replaced with multiple cloning sites. GFP transgene and plant endogenous genes Su, PDS, PCNA and AGO1 were cloned into β-satellite based VIGS vector. GFP expression was silenced in the GFP expressing transgenic 16c Nicotiana benthamiana plants infiltrated with VIGS vector carrying GFP gene inside. N. benthamiana plants infiltrated with the VIGS vector harboring the endogenous genes Su, PDS, PCNA and AGO1 produced the phenotypic symptoms yellowing of the veins, photobleaching of the veins, stunting of the plant and upward leaf curling, respectively. Real time PCR analyses revealed a reduction in the levels of the corresponding transgene or endogenous target mRNA. The β-satellite based VIGS vector was able to silence the target genes effectively. Hence, BYVMV β-satellite based VIGS vector can be used in functional genomics studies.
Collapse
Affiliation(s)
- C Jeyabharathy
- School of Biotechnology, Madurai Kamaraj University, Department of Plant Biotechnology, Madurai 625021, Tamil Nadu, India
| | - H Shakila
- School of Biotechnology, Madurai Kamaraj University, Department of Plant Biotechnology, Madurai 625021, Tamil Nadu, India
| | - R Usha
- School of Biotechnology, Madurai Kamaraj University, Department of Plant Biotechnology, Madurai 625021, Tamil Nadu, India.
| |
Collapse
|
25
|
Insights into the functional characteristics of geminivirus rolling-circle replication initiator protein and its interaction with host factors affecting viral DNA replication. Arch Virol 2014; 160:375-87. [PMID: 25449306 DOI: 10.1007/s00705-014-2297-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022]
Abstract
Geminiviruses are DNA viruses that infect several economically important crops, resulting in a reduction in their overall yield. These plant viruses have circular, single-stranded DNA genomes that replicate mainly by a rolling-circle mechanism. Geminivirus infection results in crosstalk between viral and cellular factors to complete the viral life cycle or counteract the infection as part of defense mechanisms of host plants. The geminiviral replication initiator protein Rep is the only essential viral factor required for replication. It is multifunctional and is known to interact with a number of host factors to modulate the cellular environment or to function as a part of the replication machinery. This review provides a holistic view of the research related to the viral Rep protein and various host factors involved in geminiviral DNA replication. Studies on the promiscuous nature of geminiviral satellite DNAs are also reviewed.
Collapse
|
26
|
Arabidopsis thaliana NAC083 protein interacts with Mungbean yellow mosaic India virus (MYMIV) Rep protein. Virus Genes 2014; 48:486-93. [PMID: 24442717 DOI: 10.1007/s11262-013-1028-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/17/2013] [Indexed: 02/06/2023]
Abstract
Geminiviral replication initiator protein (Rep) is a key player in geminiviral rolling circle mode of replication. However, the virus exploits various host cellular machineries for its replication. Study of these host factors is important to understand the geminiviral DNA replication in greater details. With this view, we screened for the peptides interacting with the Rep protein of a representative of geminivirus, namely, Mungbean yellow mosaic India virus (MYMIV), employing phage display technique. Through this screen, we have identified a host transcription factor, NAC083, as a potential MYMIV-Rep-binding partner. In silico docking studies also suggested possible binding of NAC083 peptide to MYMIV-Rep. We validated the interaction between MYMIV-Rep and Arabidopsis thaliana full-length NAC083 protein using in vitro pull-down assay and yeast two-hybrid analysis. NAC proteins are well-known transcription factors belonging to the largest gene families in plants. This study demonstrates for the first time the interaction of NAC083, a member of NAC transcription factor family, with MYMIV-Rep protein thereby indicating its possible role in MYMIV DNA replication.
Collapse
|
27
|
Lucioli A, Berardi A, Gatti F, Tavazza R, Pizzichini D, Tavazza M. Tomato yellow leaf curl Sardinia virus-resistant tomato plants expressing the multifunctional N-terminal domain of the replication-associated protein show transcriptional changes resembling stress-related responses. MOLECULAR PLANT PATHOLOGY 2014; 15:31-43. [PMID: 23910556 PMCID: PMC6638761 DOI: 10.1111/mpp.12063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The N-terminal domain (amino acids 1-130) of the replication-associated protein (Rep130 ) of Tomato yellow leaf curl Sardinia virus (TYLCSV) retains the ability of full-length Rep to localize to the nucleus and to down-regulate C1 transcription when ectopically expressed in plants, both functions being required to inhibit homologous viral replication. In this study, we analysed the effect of Rep130 expression on virus resistance and the plant transcriptome in the natural and agronomically important host species of TYLCSV, Solanum lycopersicum. Tomato plants accumulating high levels of Rep130 were generated and proved to be resistant to TYLCSV. Using an in vitro assay, we showed that plant-expressed Rep130 also retains the catalytic activity of Rep, thus supporting the notion that this protein domain is fully functional. Interestingly, Rep130 -expressing tomatoes were characterized by an altered transcriptional profile resembling stress-related responses. Notably, the serine-type protease inhibitor (Ser-PI) category was over-represented among the 20 up-regulated genes. The involvement of Rep130 in the alteration of host mRNA steady-state levels was confirmed using a distinct set of virus-resistant transgenic tomato plants expressing the same TYLCSV Rep130 , but from a different, synthetic, gene. Eight genes were found to be up-regulated in both types of transgenic tomato and two encoded Ser-PIs. Four of these eight genes were also up-regulated in TYLCSV-infected wild-type tomato plants. Implications with regard to the ability of this Rep domain to interfere with viral infections and to alter the host transcriptome are discussed.
Collapse
Affiliation(s)
- Alessandra Lucioli
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e l'Ambiente (ENEA), UTAGRI-INN, C.R. Casaccia, Via Anguillarese 301, 00123, Rome, Italy
| | | | | | | | | | | |
Collapse
|
28
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
29
|
Hanley-Bowdoin L, Bejarano ER, Robertson D, Mansoor S. Geminiviruses: masters at redirecting and reprogramming plant processes. Nat Rev Microbiol 2013; 11:777-88. [DOI: 10.1038/nrmicro3117] [Citation(s) in RCA: 484] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Suyal G, Mukherjee SK, Choudhury NR. The host factor RAD51 is involved in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 2013; 158:1931-41. [PMID: 23575883 DOI: 10.1007/s00705-013-1675-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/12/2013] [Indexed: 11/26/2022]
Abstract
Geminiviruses replicate their single-stranded genomes with the help of only a few viral factors and various host cellular proteins primarily by rolling-circle replication (RCR) and/or recombination-dependent replication. AtRAD51 has been identified, using the phage display technique, as a host factor that potentially interacts with the Rep protein of mungbean yellow mosaic India virus (MYMIV), a member of the genus Begomovirus. In this study, we demonstrate the interaction between MYMIV Rep and a host factor, AtRAD51, using yeast two-hybrid and β-galactosidase assays, and this interaction was confirmed using a co-immunoprecipitation assay. The AtRAD51 protein complemented the rad51∆ mutation of Saccharomyces cerevisiae in an ex vivo yeast-based geminivirus DNA replication restoration assay. The semiquantitative RT-PCR and northern hybridization data revealed a higher level of expression of the Rad51 transcript in MYMIV-infected mungbean than in uninfected, healthy plants. Our findings provide evidence for a possible cross-talk between RAD51 and MYMIV Rep, which essentially controls viral DNA replication in plants, presumably in conjunction with other host factors. The present study demonstrates for the first time the involvement of a eukaryotic RAD51 protein in MYMIV replication, and this is expected to shed light on the machinery involved in begomovirus DNA replication.
Collapse
Affiliation(s)
- Geetika Suyal
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology ICGEB, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | | | | |
Collapse
|
31
|
Borah BK, Dasgupta I. Begomovirus research in India: a critical appraisal and the way ahead. J Biosci 2013; 37:791-806. [PMID: 22922204 DOI: 10.1007/s12038-012-9238-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Begomoviruses are a large group of whitefly-transmitted plant viruses containing single-stranded circular DNA encapsidated in geminate particles. They are responsible for significant yield losses in a wide variety of crops in India. Research on begomoviruses has focussed on the molecular characterization of the viruses, their phylogenetic analyses, infectivities on host plants, DNA replication, transgenic resistance, promoter analysis and development of virus-based gene silencing vectors. There have been a number of reports of satellite molecules associated with begomoviruses. This article aims to summarize the major developments in begomoviral research in India in the last approximately 15 years and identifies future areas that need more attention.
Collapse
Affiliation(s)
- Basanta K Borah
- Department of Plant Molecular Biology, University of Delhi South Campus, Delhi 110 021, India
| | | |
Collapse
|
32
|
Zaman A, Rahaman MH, Razzaque S. Kaposi's sarcoma: a computational approach through protein-protein interaction and gene regulatory networks analysis. Virus Genes 2012; 46:242-54. [PMID: 23266878 DOI: 10.1007/s11262-012-0865-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 12/07/2012] [Indexed: 12/27/2022]
Abstract
Interactomic data for Kaposi's Sarcoma Associated Herpes virus (KSHV)-the causative agent of vascular origin tumor called Kaposi's sarcoma-is relatively modest to date. The objective of this study was to assign functions to the previously uncharacterized ORFs in the virus using computational approaches and subsequently fit them to the host interactome landscape on protein, gene, and cellular level. On the basis of expression data, predicted RNA interference data, reported experimental data, and sequence based functional annotation we also tried to hypothesize the ORFs role in lytic and latent cycle during viral infection. We studied 17 previously uncharacterized ORFs in KSHV and the host-virus interplay seems to work in three major functional pathways-cell division, transport, metabolic and enzymatic in general. Studying the host-virus crosstalk for lytic phase predicts ORF 10 and ORF 11 as a predicted virus hub whereas PCNA is predicted as a host hub. On the other hand, ORF31 has been predicted as a latent phase inducible protein. KSHV invests a lion's share of its coding potential to suppress host immune response; various inflammatory mediators such as IFN-γ, TNF, IL-6, and IL-8 are negatively regulated by the ORFs while Il-10 secretion is stimulated in contrast. Although, like any other computational prediction, the study requires further validation, keeping into account the reproducibility and vast sample size of the systems biology approach the study allows us to propose an integrated network for host-virus interaction with good confidence. We hope that the study, in the long run, would help us identify effective dug against potential molecular targets.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | | |
Collapse
|
33
|
Suyal G, Mukherjee SK, Srivastava PS, Choudhury NR. Arabidopsis thaliana MCM2 plays role(s) in mungbean yellow mosaic India virus (MYMIV) DNA replication. Arch Virol 2012; 158:981-92. [PMID: 23242774 DOI: 10.1007/s00705-012-1563-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/24/2012] [Indexed: 02/02/2023]
Abstract
Geminiviruses are plant pathogens with single-stranded (ss) DNA genomes of about 2.7 kb in size. They replicate primarily via rolling-circle replication (RCR) with the help of a few virally encoded factors and various host-cell machineries. The virally encoded replication initiator protein (Rep) is essential for geminivirus replication. In this study, by interaction screening of an Arabidopsis thaliana cDNA library, we have identified a host factor, MCM2, that interacts with the Rep protein of the geminivirus mungbean yellow mosaic India virus (MYMIV). Using yeast two-hybrid, β-galactosidase and co-immunoprecipitation assays, we demonstrated an interaction between MYMIV-Rep and the host factor AtMCM2. We investigated the possible role of AtMCM2 in geminiviral replication using a yeast-based geminivirus DNA replication restoration assay and observed that the AtMCM2 protein complemented the mcm2∆ mutation of S. cerevisiae. Our data suggest the involvement of AtMCM2 in the replication of MYMIV ex vivo. The role of MCM2 in replication was confirmed in planta by a transient replication assay in both wild-type and mutant Arabidopsis plants through agroinoculation. Our data provide evidence for the involvement of AtMCM2 in geminiviral DNA replication, presumably in conjunction with other host factors, and suggest its importance in MYMIV DNA replication.
Collapse
Affiliation(s)
- Geetika Suyal
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology ICGEB, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| | | | | | | |
Collapse
|
34
|
Lozano-Duran R, Caracuel Z, Bejarano ER. C2 from Beet curly top virus meddles with the cell cycle: a novel function for an old pathogenicity factor. PLANT SIGNALING & BEHAVIOR 2012; 7:1705-1708. [PMID: 23073019 PMCID: PMC3578914 DOI: 10.4161/psb.22100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Geminiviruses are ssDNA plant viruses that infect a wide range of crops. Since geminiviruses often infect terminally differentiated cells, they must induce cell cycle re-entry in order to replicate; until recently, only two viral proteins, the replication-associated protein Rep and the curtoviral pathogenicity factor C4, had been assigned a role in the restoration of cell competency. In a recent work, we demonstrated that C2 from Beet curly top virus activates the expression of host genes involved in DNA replication and/or control of the G2/M transition in a manner consistent with cell cycle re-entry. As expected, expression of BCTV C2 results in enhanced replication of DNA viruses. We conclude that BCTV C2 acts as a re-activator of the cell cycle in infected cells, enhancing the DNA replication competency and providing a cell environment favorable for replication of geminiviruses. Potential mechanisms for this novel function are discussed in light of our findings.
Collapse
|
35
|
García-Gómez C, Parages ML, Jiménez C, Palma A, Mata MT, Segovia M. Cell survival after UV radiation stress in the unicellular chlorophyte Dunaliella tertiolecta is mediated by DNA repair and MAPK phosphorylation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5259-74. [PMID: 22859678 PMCID: PMC3430997 DOI: 10.1093/jxb/ers185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ultraviolet radiation (UVR) induces damage in a variety of organisms, and cells may adapt by developing repair or tolerance mechanisms to counteract such damage; otherwise, the cellular fate is cell death. Here, the effect of UVR-induced cell damage and the associated signalling and repair mechanisms by which cells are able to survive was studied in Dunaliella tertiolecta. UVR did not cause cell death, as shown by the absence of SYTOX Green-positive labelling cells. Ultrastructure analysis by transmission electron microscopy demonstrated that the cells were alive but were subjected to morphological changes such as starch accumulation, chromatin disaggregation, and chloroplast degradation. This behaviour paralleled a decrease in F(v)/F(m) and the formation of cyclobutane-pyrimidine dimers, showing a 10-fold increase at the end of the time course. There was a high accumulation of the repressor of transcriptional gene silencing (ROS1), as well as the cell proliferation nuclear antigen (PCNA) in UVR-treated cells, revealing activation of DNA repair mechanisms. The degree of phosphorylation of c-Jun N-terminal kinase (JNK) and p38-like mitogen-activated protein kinases was higher in UVR-exposed cells; however, the opposite occurred with the phosphorylated extracellular signal-regulated kinase (ERK). This confirmed that both JNK and p38 need to be phosphorylated to trigger the stress response, as well as the fact that cell division is arrested when an ERK is dephosphorylated. In parallel, both DEVDase and WEHDase caspase-like enzymatic activities were active even though the cells were not dead, suggesting that these proteases must be considered within a wider frame of stress proteins, rather than specifically being involved in cell death in these organisms.
Collapse
Affiliation(s)
| | | | | | | | | | - María Segovia
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
36
|
Caracuel Z, Lozano-Durán R, Huguet S, Arroyo-Mateos M, Rodríguez-Negrete EA, Bejarano ER. C2 from Beet curly top virus promotes a cell environment suitable for efficient replication of geminiviruses, providing a novel mechanism of viral synergism. THE NEW PHYTOLOGIST 2012; 194:846-858. [PMID: 22404507 DOI: 10.1111/j.1469-8137.2012.04080.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
• Geminiviruses are plant viruses with circular, single-stranded (ss) DNA genomes that infect a wide range of species and cause important losses in agriculture. Geminiviruses do not encode their own DNA polymerase, and rely on the host cell machinery for their replication. • Here, we identify a positive effect of the curtovirus Beet curly top virus (BCTV) on the begomovirus Tomato yellow leaf curl Sardinia virus (TYLCSV) infection in Nicotiana benthamiana plants. • Our results show that this positive effect is caused by the promotion of TYLCSV replication by BCTV C2. Transcriptomic analyses of plants expressing C2 unveil an up-regulation of cell cycle-related genes induced on cell cycle re-entry; experiments with two mutated versions of C2 indicate that this function resides in the N-terminal part of C2, which is also sufficient to enhance geminiviral replication. Moreover, C2 expression promotes the replication of other geminiviral species, but not of RNA viruses. • We conclude that BCTV C2 has a novel function in the promotion of viral replication, probably by restoring the DNA replication competency of the infected cells and thus creating a favourable cell environment for viral spread. Because C2 seems to have a broad impact on the replication of geminiviruses, this mechanism might have important epidemiological implications.
Collapse
Affiliation(s)
- Zaira Caracuel
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Rosa Lozano-Durán
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Stéphanie Huguet
- Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165 - Université d'Evry Val d'Essonne - ERL CNRS 8196, 2 rue G. Crémieux, CP 5708, F-91057 Evry Cedex, France
| | - Manuel Arroyo-Mateos
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Edgar A Rodríguez-Negrete
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Eduardo R Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departamento Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| |
Collapse
|
37
|
Bruce G, Gu M, Shi N, Liu Y, Hong Y. Influence of retinoblastoma-related gene silencing on the initiation of DNA replication by African cassava mosaic virus Rep in cells of mature leaves in Nicotiana benthamiana plants. Virol J 2011; 8:561. [PMID: 22204717 PMCID: PMC3286440 DOI: 10.1186/1743-422x-8-561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 12/28/2011] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Geminiviruses mainly infect terminally differentiated tissues and cells in plants. They need to reprogramme host cellular machinery for DNA replication. This process is thought to be mediated by inactivation of cell-cycle repressor proteins and by induction of host DNA synthesis protein expression through actions of the geminviral replication initiator protein (Rep). FINDINGS Exploiting a Nicotiana benthamiana pOri2 line, which is transformed with a transgene consisting of a direct repeat of the African cassava mosaic virus (ACMV)-replication origin (Ori) flanking a non-viral DNA region, and virus-induced RNA silencing (VIGS), the impact of host gene expression on replication of the ACMV-derived replicon was investigated. The ACMV Rep trans-replicated the viral episomal replicon in leaves of young but not older pOri2 plants. Upon VIGS-mediated down-regulation of N. benthamiana NbRBR1, the retinoblastoma-related protein gene coding for a negative cell-cycle suppressor, recovered the ability of ACMV Rep for trans DNA replication, whereas the silencing of NbPCNA coding for the sliding clamp of DNA polymerase had no effect. CONCLUSIONS These results suggest that the cellular machinery for DNA replication in differentiated tissues of older leaves cannot be reprogrammed by Rep alone but may need other uncharacterised viral and plant factors.
Collapse
Affiliation(s)
- Gareth Bruce
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
- Biological Sciences Research Unit, University of Glamorgan, Pontypridd, CF37 1DL Wales, UK
| | - Mei Gu
- Clinical Sciences Research Institute, University of Warwick, Coventry CV2 2DX, UK
| | - Nongnong Shi
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Yule Liu
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yiguo Hong
- Research Centre for Plant RNA Signalling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|
38
|
Rouhibakhsh A, Choudhury NR, Mukherjee SK, Malathi VG. Enhanced nicking activity of Rep in presence of pre-coat protein of Mungbean yellow mosaic India virus. Virus Genes 2011; 44:356-61. [DOI: 10.1007/s11262-011-0701-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
|
39
|
Kaliappan K, Choudhury NR, Suyal G, Mukherjee SK. A novel role for RAD54: this host protein modulates geminiviral DNA replication. FASEB J 2011; 26:1142-60. [PMID: 22171001 DOI: 10.1096/fj.11-188508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Geminiviruses primarily encode only few factors, such as replication initiator protein (Rep), and need various host cellular machineries for rolling-circle replication (RCR) and/or recombination-dependent replication (RDR). We have identified a host factor, RAD54, in a screen for Rep-interacting partners and observed its role in DNA replication of the geminivirus mungbean yellow mosaic India virus (MYMIV). We identified the interacting domains ScRAD54 and MYMIV-Rep and observed that ScRAD54 enhanced MYMIV-Rep nicking, ATPase, and helicase activities. An in vitro replication assay demonstrated that the geminiviral DNA replication reaction depends on the viral Rep protein, viral origin of replication sequences, and host cell-cycle proteins. Rad54-deficient yeast nuclear extract did not support in vitro viral DNA replication, while exogenous addition of the purified ScRAD54 protein enhanced replication. The role of RAD54 in in planta replication was confirmed by the transient replication assay; i.e., agroinoculation studies. RAD54 is a well-known recombination/repair protein that uses its DNA-dependent ATPase activity in conjunction with several other host factors. However, this study demonstrates for the first time that the eukaryotic rolling-circle replicon depends on the RAD54 protein.
Collapse
Affiliation(s)
- Kosalai Kaliappan
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110 067, India
| | | | | | | |
Collapse
|
40
|
Krenz B, Neugart F, Kleinow T, Jeske H. Self-interaction of Abutilon mosaic virus replication initiator protein (Rep) in plant cell nuclei. Virus Res 2011; 161:194-7. [PMID: 21840354 DOI: 10.1016/j.virusres.2011.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 11/30/2022]
Abstract
Geminiviruses replicate their circular single-stranded DNA genome in nuclei of infected plant cells. Their replication initiator proteins (Reps) possess interaction domains for homo- and hetero-oligomerization as shown previously by in vitro studies and yeast two hybrid assays. Here, homo-oligomerization and cellular localization of the Abutilon mosaic virus (AbMV) Rep was analysed with bimolecular fluorescence complementation (BiFC) in epidermal tissues of Nicotiana benthamiana. BiFC revealed that Rep oligomers accumulated within the nucleoplasm, but were excluded from nucleoli as indicated by a nucleoli/cajal body marker. A similar subcellular distribution was observed for Rep fused to full-length cyan fluorescent protein. To examine whether tagged Reps were functionally active, N. benthamiana plants transgenic for a dimeric AbMV DNA B were inoculated with the BiFC expression constructs and nucleic acids were analysed by rolling circle amplification/restriction fragment length polymorphism as well as Southern blot hybridization. The results confirmed that the modified AbMV Rep was able to transreplicate DNA B.
Collapse
Affiliation(s)
- Björn Krenz
- Institute of Biology, Dpt. of Molecular Biology and Plant Virology, Pfaffenwaldring 57, University of Stuttgart, D-70550 Stuttgart, Germany
| | | | | | | |
Collapse
|
41
|
Sánchez-Durán MA, Dallas MB, Ascencio-Ibañez JT, Reyes MI, Arroyo-Mateos M, Ruiz-Albert J, Hanley-Bowdoin L, Bejarano ER. Interaction between geminivirus replication protein and the SUMO-conjugating enzyme is required for viral infection. J Virol 2011; 85:9789-800. [PMID: 21775461 PMCID: PMC3196459 DOI: 10.1128/jvi.02566-10] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 07/08/2011] [Indexed: 12/11/2022] Open
Abstract
Geminiviruses are small DNA viruses that replicate in nuclei of infected plant cells by using plant DNA polymerases. These viruses encode a protein designated AL1, Rep, or AC1 that is essential for viral replication. AL1 is an oligomeric protein that binds to double-stranded DNA, catalyzes the cleavage and ligation of single-stranded DNA, and induces the accumulation of host replication machinery. It also interacts with several host proteins, including the cell cycle regulator retinoblastoma-related protein (RBR), the DNA replication protein PCNA (proliferating cellular nuclear antigen), and the sumoylation enzyme that conjugates SUMO to target proteins (SUMO-conjugating enzyme [SCE1]). The SCE1-binding motif was mapped by deletion to a region encompassing AL1 amino acids 85 to 114. Alanine mutagenesis of lysine residues in the binding region either reduced or eliminated the interaction with SCE1, but no defects were observed for other AL1 functions, such as oligomerization, DNA binding, DNA cleavage, and interaction with AL3 or RBR. The lysine mutations reduced or abolished virus infectivity in plants and viral DNA accumulation in transient-replication assays, suggesting that the AL1-SCE1 interaction is required for viral DNA replication. Ectopic AL1 expression did not result in broad changes in the sumoylation pattern of plant cells, but specific changes were detected, indicating that AL1 modifies the sumoylation state of selected host proteins. These results established the importance of AL1-SCE1 interactions during geminivirus infection of plants and suggested that AL1 alters the sumoylation of selected host factors to create an environment suitable for viral infection.
Collapse
Affiliation(s)
- Miguel A. Sánchez-Durán
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departmento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Mary B. Dallas
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - José T. Ascencio-Ibañez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Maria Ines Reyes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Manuel Arroyo-Mateos
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departmento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Javier Ruiz-Albert
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departmento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7622
| | - Eduardo R. Bejarano
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Departmento de Biología Celular, Genética y Fisiología, Universidad de Málaga, Campus Teatinos, 29071 Málaga, Spain
| |
Collapse
|
42
|
Pasumarthy KK, Mukherjee SK, Choudhury NR. The presence of tomato leaf curl Kerala virus AC3 protein enhances viral DNA replication and modulates virus induced gene-silencing mechanism in tomato plants. Virol J 2011; 8:178. [PMID: 21496351 PMCID: PMC3102638 DOI: 10.1186/1743-422x-8-178] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 04/18/2011] [Indexed: 12/21/2022] Open
Abstract
Background Geminiviruses encode few viral proteins. Most of the geminiviral proteins are multifunctional and influence various host cellular processes for the successful viral infection. Though few viral proteins like AC1 and AC2 are well characterized for their multiple functions, role of AC3 in the successful viral infection has not been investigated in detail. Results We performed phage display analysis with the purified recombinant AC3 protein with Maltose Binding Protein as fusion tag (MBP-AC3). Putative AC3 interacting peptides identified through phage display were observed to be homologous to peptides of proteins from various metabolisms. We grouped these putative AC3 interacting peptides according to the known metabolic function of the homologous peptide containing proteins. In order to check if AC3 influences any of these particular metabolic pathways, we designed vectors for assaying DNA replication and virus induced gene-silencing of host gene PCNA. Investigation with these vectors indicated that AC3 enhances viral replication in the host plant tomato. In the PCNA gene-silencing experiment, we observed that the presence of functional AC3 ORF strongly manifested the stunted phenotype associated with the virus induced gene-silencing of PCNA in tomato plants. Conclusions Through the phage display analysis proteins from various metabolic pathways were identified as putative AC3 interacting proteins. By utilizing the vectors developed, we could analyze the role of AC3 in viral DNA replication and host gene-silencing. Our studies indicate that AC3 is also a multifunctional protein.
Collapse
Affiliation(s)
- Kalyan K Pasumarthy
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | |
Collapse
|
43
|
Nash TE, Dallas MB, Reyes MI, Buhrman GK, Ascencio-Ibañez JT, Hanley-Bowdoin L. Functional analysis of a novel motif conserved across geminivirus Rep proteins. J Virol 2011; 85:1182-92. [PMID: 21084480 PMCID: PMC3020519 DOI: 10.1128/jvi.02143-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/09/2010] [Indexed: 12/28/2022] Open
Abstract
Members of the Geminiviridae have single-stranded DNA genomes that replicate in nuclei of infected plant cells. All geminiviruses encode a conserved protein (Rep) that catalyzes initiation of rolling-circle replication. Earlier studies showed that three conserved motifs-motifs I, II, and III-in the N termini of geminivirus Rep proteins are essential for function. In this study, we identified a fourth sequence, designated GRS (geminivirus Rep sequence), in the Rep N terminus that displays high amino acid sequence conservation across all geminivirus genera. Using the Rep protein of Tomato golden mosaic virus (TGMV AL1), we show that GRS mutants are not infectious in plants and do not support viral genome replication in tobacco protoplasts. GRS mutants are competent for protein-protein interactions and for both double- and single-stranded DNA binding, indicating that the mutations did not impair its global conformation. In contrast, GRS mutants are unable to specifically cleave single-stranded DNA, which is required to initiate rolling-circle replication. Interestingly, the Rep proteins of phytoplasmal and algal plasmids also contain GRS-related sequences. Modeling of the TGMV AL1 N terminus suggested that GRS mutations alter the relative positioning of motif II, which coordinates metal ions, and motif III, which contains the tyrosine involved in DNA cleavage. Together, these results established that the GRS is a conserved, essential motif characteristic of an ancient lineage of rolling-circle initiators and support the idea that geminiviruses may have evolved from plasmids associated with phytoplasma or algae.
Collapse
Affiliation(s)
- Tara E. Nash
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7688
| | - Mary B. Dallas
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7688
| | - Maria Ines Reyes
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7688
| | - Gregory K. Buhrman
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7688
| | - J. Trinidad Ascencio-Ibañez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7688
| | - Linda Hanley-Bowdoin
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695-7688
| |
Collapse
|
44
|
Chen H, Zhang Z, Teng K, Lai J, Zhang Y, Huang Y, Li Y, Liang L, Wang Y, Chu C, Guo H, Xie Q. Up-regulation of LSB1/GDU3 affects geminivirus infection by activating the salicylic acid pathway. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:12-23. [PMID: 20042021 DOI: 10.1111/j.1365-313x.2009.04120.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Geminiviruses include a large number of single-stranded DNA viruses that are emerging as useful tools to dissect many fundamental processes in plant hosts. However, there have been no reports yet regarding the genetic dissection of the geminivirus-plant interaction. Here, a high-throughput approach was developed to screen Arabidopsis activation-tagged mutants which are resistant to geminivirus Beet severe curly top virus (BSCTV) infection. A mutant, lsb1 (less susceptible to BSCTV 1), was identified, in which BSCTV replication was impaired and BSCTV infectivity was reduced. We found that the three genes closest to the T-DNA were up-regulated in lsb1, and the phenotypes of lsb1 could only be recapitulated by the overexpression of GDU3 (GLUTAMINE DUMPER 3), a gene implicated in amino acid transport. We further demonstrated that activation of LSB1/GDU3 increased the expression of components in the salicylic acid (SA) pathway, which is known to counter geminivirus infection, including the upstream regulator ACD6. These data indicate that up-regulation of LSB1/GDU3 affects BSCTV infection by activating the SA pathway. This study thus provides a new approach to study of the geminivirus-host interaction.
Collapse
Affiliation(s)
- Hao Chen
- Stake Key Laboratory for Biocontrol, Sun Yat-sen (Zhongshan) University, 135 West Xin-Gang Road, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gupta V, Kalaiarasan P, Faheem M, Singh N, Iqbal MA, Bamezai RNK. Dominant negative mutations affect oligomerization of human pyruvate kinase M2 isozyme and promote cellular growth and polyploidy. J Biol Chem 2010; 285:16864-73. [PMID: 20304929 DOI: 10.1074/jbc.m109.065029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
This study was designed to understand the mechanism and functional implication of the two heterozygous mutations (H391Y and K422R) of human pyruvate kinase M2 isozyme (PKM(2)) observed earlier in a Bloom syndrome background. The co-expression of homotetrameric wild type and mutant PKM(2) in the cellular milieu resulting in the interaction between the two at the monomer level was substantiated further by in vitro experiments. The cross-monomer interaction significantly altered the oligomeric state of PKM(2) by favoring dimerization and heterotetramerization. In silico study provided an added support in showing that hetero-oligomerization was energetically favorable. The hetero-oligomeric populations of PKM(2) showed altered activity and affinity, and their expression resulted in an increased growth rate of Escherichia coli as well as mammalian cells, along with an increased rate of polyploidy. These features are known to be essential to tumor progression. This study provides insight in understanding the modulated role of large oligomeric multifunctional proteins such as PKM(2) by affecting cellular behavior, which is an essential observation to understand tumor sustenance and progression and to design therapeutic intervention in future.
Collapse
Affiliation(s)
- Vibhor Gupta
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | | | |
Collapse
|
46
|
Huang C, Xie Y, Zhou X. Efficient virus-induced gene silencing in plants using a modified geminivirus DNA1 component. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:254-65. [PMID: 19175519 DOI: 10.1111/j.1467-7652.2008.00395.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Virus-induced gene silencing (VIGS) is currently recognized as a powerful reverse genetics tool for application in functional genomics. DNA1, a satellite-like and single-stranded DNA molecule associated with begomoviruses (Family Geminiviridae), has been shown to replicate autonomously but requires the helper virus for its dissemination. We developed a VIGS vector based on the DNA1 component of tobacco curly shoot virus (TbCSV), a monopartite begomovirus, by inserting a multiple cloning site between the replication-associated protein open reading frame and the A-rich region for subsequent insertion of DNA fragments of genes targeted for silencing. When a host gene (sulphur, Su) or transgene (green fluorescent protein, GFP) was inserted into the modified DNA1 vector and co-agroinoculated with TbCSV, efficient silencing of the cognate gene was observed in Nicotiana benthamiana plants. More interestingly, we demonstrated that this modified DNA1 could effectively suppress GFP in transgenic N. benthamiana or endogenous Su in tobacco plants when co-agroinoculated with tomato yellow leaf curl China virus (TYLCCNV), another monopartite begomovirus that does not induce any viral symptoms. A gene-silencing system in Nicotiana spp., Solanum lycopersicum and Petunia hybrida plants was then established using TYLCCNV and the modified DNA1 vector. The system can be used to silence genes involved in meristem and flower development. The modified DNA1 vector was used to silence the AtTOM homologous genes (NbTOM1 and NbTOM3) in N. benthamiana. Silencing of NbTOM1 or NbTOM3 can reduce tobamovirus multiplication to a lower level, and silencing of both genes simultaneously can completely inhibit tobamovirus multiplication. Previous studies have reported that DNA1 is associated with both monopartite and bipartite begomoviruses, as well as curtoviruses. This vector system can therefore be applied for the study, analysis and discovery of gene function in a variety of important crop plants.
Collapse
Affiliation(s)
- Changjun Huang
- Statel Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310029, China
| | | | | |
Collapse
|
47
|
Jin M, Li C, Shi Y, Ryabov E, Huang J, Wu Z, Fan Z, Hong Y. A single amino acid change in a geminiviral Rep protein differentiates between triggering a plant defence response and initiating viral DNA replication. J Gen Virol 2008; 89:2636-2641. [PMID: 18796734 DOI: 10.1099/vir.0.2008/001966-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have devised an in planta system for functional analysis of the replication-associated protein (Rep) of African cassava mosaic virus (ACMV). Using this assay and PCR-based random mutagenesis, we have identified an ACMV Rep mutant that failed to trigger the hypersensitive response (HR), but had an enhanced ability to initiate DNA replication. The mutant Rep-green fluorescent protein (GFP) fusion protein was localized to the nucleus. Sequence analysis showed that the mutated Rep gene had three nucleotide changes (A6-->T, T375-->G and G852-->A); only the A6-->T transversion resulted in an amino acid substitution (Arg to Ser), which is at the second residue in the 358 amino acid ACMV Rep protein. Our results indicate that a single amino acid can alter the differential ability of ACMV Rep to trigger the host-mediated HR defence mechanism and to initiate viral DNA replication. The implications of this finding are discussed in the context of plant-virus interactions.
Collapse
Affiliation(s)
- Mingfei Jin
- School of Life Science, East China Normal University, Shanghai 200062, PR China.,Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Chunyang Li
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Yan Shi
- Department of Plant Pathology and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100094, PR China.,Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Eugene Ryabov
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Jing Huang
- School of Life Science, East China Normal University, Shanghai 200062, PR China
| | - Zirong Wu
- School of Life Science, East China Normal University, Shanghai 200062, PR China
| | - Zaifeng Fan
- Department of Plant Pathology and State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100094, PR China.,Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Yiguo Hong
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| |
Collapse
|
48
|
MYMIV replication initiator protein (Rep): roles at the initiation and elongation steps of MYMIV DNA replication. Virology 2008; 380:75-83. [PMID: 18703212 DOI: 10.1016/j.virol.2008.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2008] [Revised: 06/06/2008] [Accepted: 07/07/2008] [Indexed: 11/21/2022]
Abstract
In order to explore the mechanism of geminivirus DNA replication, we show that the Replication initiator (Rep) protein encoded by Mungbean yellow mosaic India virus (MYMIV), a member of the family Geminiviridae, binds specifically to the iterons present in the viral DNA replication origin (CR-A) in a highly ordered manner that might be a prerequisite for the initiation of replication. MYMIV Rep also acts as a helicase during the post-initiation stage and is upregulated in presence of the RPA32 subunit of Replication Protein A. The implication of these findings on the initiation and elongation stages of MYMIV DNA replication has been discussed.
Collapse
|
49
|
Abstract
The yeast Saccharomyces cerevisiae is invaluable for understanding fundamental cellular processes and disease states of relevance to higher eukaryotes. Plant viruses are intracellular parasites that take advantage of resources of the host cell, and a simple eukaryotic cell, such as yeast, can provide all or most of the functions for successful plant virus replication. Thus, yeast has been used as a model to unravel the interactions of plant viruses with their hosts. Indeed, genome-wide and proteomics studies using yeast as a model host with bromoviruses and tombusviruses have facilitated the identification of replication-associated factors that affect host-virus interactions, virus pathology, virus evolution, and host range. Many of the host genes that affect the replication of the two viruses, which belong to two dissimilar virus families, are distinct, suggesting that plant viruses have developed different ways to utilize the resources of host cells. In addition, a surprisingly large number of yeast genes have been shown to affect RNA-RNA recombination in tombusviruses; this opens an opportunity to study the role of the host in virus evolution. The knowledge gained about host-virus interactions likely will lead to the development of new antiviral methods and applications in biotechnology and nanotechnology, as well as new insights into cellular functions of individual genes and the basic biology of the host cell.
Collapse
Affiliation(s)
- Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546, USA.
| |
Collapse
|
50
|
Roy S, Roy Choudhury S, Mukherjee SK, Sengupta DN. Tobacco proliferating cell nuclear antigen binds directly and stimulates both activity and processivity of ddNTP-sensitive mungbean DNA polymerase. Arch Biochem Biophys 2007; 468:22-31. [PMID: 17945180 DOI: 10.1016/j.abb.2007.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 09/10/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
Abstract
PCNA is well known as a component of DNA replication system and plays important roles in multiple cellular pathways in addition to replication and repair. In this work we have demonstrated the physical and functional interaction between tobacco PCNA and mungbean ddNTP-sensitive DNA polymerase which shares many physicochemical properties with family X-DNA polymerases except with the moderately processive mode of nucleotide incorporation. We have shown here that recombinant PCNA binds directly to mungbean DNA polymerase as revealed in affinity chromatography, pull-down and co-immunoprecipitation approaches. In vitro DNA polymerase activity assay and processivity analyses indicated recombinant PCNA specifically stimulates both activity and processivity of mungbean DNA polymerase. These observations lead to interesting speculation about the functional significance of the ddNTP-sensitive enzyme in replication event in higher plants since the enzyme has been shown to be active and expressed at an elevated level during the endoreduplication stages in developing mungbean seeds.
Collapse
Affiliation(s)
- Sujit Roy
- Department of Botany, Bose Institute, 93/1 Acharya Prafulla Chandra Road, Kolkata 700-009, West Bengal, India
| | | | | | | |
Collapse
|