1
|
Identification of Specific Tumor Markers in Vulvar Carcinoma Through Extensive Human Papillomavirus DNA Characterization Using Next Generation Sequencing Method. J Low Genit Tract Dis 2020; 24:53-60. [PMID: 31860576 DOI: 10.1097/lgt.0000000000000498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES A subset of vulvar carcinomas (VC) are associated with human papillomavirus (HPV) DNA. This trait can be used to identify tumor markers for patient's follow-up. A large diversity of HPV prevalence in VC has been reported, but no data are available concerning the insertional HPV status in this tumor type. Therefore, we have used an innovative next generation sequencing (NGS)-based CaptHPV method able to provide an extensive characterization of HPV DNA in tumors. MATERIAL AND METHODS Tumor tissue specimens from 55 patients with VC were analyzed using p16 immunohistochemistry, in situ hybridization, polymerase chain reaction, and CaptHPV-NGS assays. RESULTS Our analyses showed that 8 (14.5%) of 55 cases were associated with HPV 16 DNA. No other HPV genotypes were identified. The HPV genome was in a free episomal state only in one case and both episomal and integrated into the tumor cell genome in 7. There was a single insertion in 5 cases and multiple sites, scattered at different chromosomal loci in two. ISH data suggest that some of these might reflect tumor heterogeneity. Viral integration targeted cellular genes among which were TP63, CCDC148, LOC100133091, PKP1, and POLA2. Viral integration at the PKP1 locus was associated with partial gene deletion, and no PKP1 protein was detected in tumor tissue. CONCLUSIONS Using the NGS-based innovative capture-HPV approach, we established a cartography of HPV 16 DNA in 8 VC cases and identified novel genes targeted by integration that may be used as specific tumor markers. In addition, we established a rationale strategy for optimal characterization of HPV status in VC.
Collapse
|
2
|
Jacobs A, Hoover H, Smith E, Clemmer DE, Kim CH, Kao CC. The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication. Nucleic Acids Res 2018; 46:324-335. [PMID: 29140480 PMCID: PMC5758871 DOI: 10.1093/nar/gkx1087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/28/2017] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA of the CP were found to preferentially bind to an RNA hairpin motif that directs the initiation of BMV RNA synthesis. RNA binding causes the peptide to change from heterogeneous structures to a single family of structures. Fluorescence anisotropy, fluorescence quenching and size exclusion chromatography experiments all confirm that the NTA can specific recognize the RNA motif. The peptide introduced into plants along with BMV virion increased accumulation of the BMV CP and accelerated the rate of minus-strand RNA synthesis. The intrinsically disordered BMV NTA could thus specifically recognize BMV RNAs to affect viral infection.
Collapse
Affiliation(s)
- Alexander Jacobs
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Edward Smith
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Chul-Hyun Kim
- Department of Chemistry and Biochemistry, California State University East Bay, Hayward, CA 94542, USA
| | - C Cheng Kao
- Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
3
|
Phosphorylation of the Brome Mosaic Virus Capsid Regulates the Timing of Viral Infection. J Virol 2016; 90:7748-60. [PMID: 27334588 DOI: 10.1128/jvi.00833-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/10/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The four brome mosaic virus (BMV) RNAs (RNA1 to RNA4) are encapsidated in three distinct virions that have different disassembly rates in infection. The mechanism for the differential release of BMV RNAs from virions is unknown, since 180 copies of the same coat protein (CP) encapsidate each of the BMV genomic RNAs. Using mass spectrometry, we found that the BMV CP contains a complex pattern of posttranslational modifications. Treatment with phosphatase was found to not significantly affect the stability of the virions containing RNA1 but significantly impacted the stability of the virions that encapsidated BMV RNA2 and RNA3/4. Cryo-electron microscopy reconstruction revealed dramatic structural changes in the capsid and the encapsidated RNA. A phosphomimetic mutation in the flexible N-terminal arm of the CP increased BMV RNA replication and virion production. The degree of phosphorylation modulated the interaction of CP with the encapsidated RNA and the release of three of the BMV RNAs. UV cross-linking and immunoprecipitation methods coupled to high-throughput sequencing experiments showed that phosphorylation of the BMV CP can impact binding to RNAs in the virions, including sequences that contain regulatory motifs for BMV RNA gene expression and replication. Phosphatase-treated virions affected the timing of CP expression and viral RNA replication in plants. The degree of phosphorylation decreased when the plant hosts were grown at an elevated temperature. These results show that phosphorylation of the capsid modulates BMV infection. IMPORTANCE How icosahedral viruses regulate the release of viral RNA into the host is not well understood. The selective release of viral RNA can regulate the timing of replication and gene expression. Brome mosaic virus (BMV) is an RNA virus, and its three genomic RNAs are encapsidated in separate virions. Through proteomic, structural, and biochemical analyses, this work shows that posttranslational modifications, specifically, phosphorylation, on the capsid protein regulate the capsid-RNA interaction and the stability of the virions and affect viral gene expression. Mutational analysis confirmed that changes in modification affected virion stability and the timing of viral infection. The mechanism for modification of the virion has striking parallels to the mechanism of regulation of chromatin packaging by nucleosomes.
Collapse
|
4
|
Kitayama M, Hoover H, Middleton S, Kao CC. Brome mosaic virus Infection of Rice Results in Decreased Accumulation of RNA1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2015; 28:626-632. [PMID: 26024443 DOI: 10.1094/mpmi-12-14-0389-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Brome mosaic virus (BMV) (the Russian strain) infects monocot plants and has been studied extensively in barley and wheat. Here, we report BMV can systemically infect rice (Oryza sativa var. japonica), including cultivars in which the genomes have been determined. The BMV capsid protein can be found throughout the inoculated plants. However, infection in rice exhibits delayed symptom expression or no symptoms when compared with wheat (Triticum aestivum). The sequences of BMV RNAs isolated from rice did not reveal any nucleotide changes in RNA1 or RNA2, while RNA3 had only one synonymous nucleotide change from the inoculum sequence. Preparations of purified BMV virions contained RNA1 at a significantly reduced level relative to the other two RNAs. Analysis of BMV RNA replication in rice revealed that minus-strand RNA1 was replicated at a reduced rate when compared with RNA2. Thus, rice appears to either inhibit RNA1 replication or lacks a sufficient amount of a factor needed to support efficient RNA1 replication.
Collapse
|
5
|
Newburn LR, White KA. Cis-acting RNA elements in positive-strand RNA plant virus genomes. Virology 2015; 479-480:434-43. [PMID: 25759098 DOI: 10.1016/j.virol.2015.02.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/19/2015] [Accepted: 02/17/2015] [Indexed: 11/25/2022]
Abstract
Positive-strand RNA viruses are the most common type of plant virus. Many aspects of the reproductive cycle of this group of viruses have been studied over the years and this has led to the accumulation of a significant amount of insightful information. In particular, the identification and characterization of cis-acting RNA elements within these viral genomes have revealed important roles in many fundamental viral processes such as virus disassembly, translation, genome replication, subgenomic mRNA transcription, and packaging. These functional cis-acting RNA elements include primary sequences, secondary and tertiary structures, as well as long-range RNA-RNA interactions, and they typically function by interacting with viral or host proteins. This review provides a general overview and update on some of the many roles played by cis-acting RNA elements in positive-strand RNA plant viruses.
Collapse
Affiliation(s)
- Laura R Newburn
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3
| | - K Andrew White
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3.
| |
Collapse
|
6
|
Narabayashi T, Kaido M, Okuno T, Mise K. Base-paired structure in the 5' untranslated region is required for the efficient amplification of negative-strand RNA3 in the bromovirus melandrium yellow fleck virus. Virus Res 2014; 188:162-9. [PMID: 24769254 DOI: 10.1016/j.virusres.2014.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
Abstract
Melandrium yellow fleck virus belongs to the genus Bromovirus, which is a group of tripartite plant RNA viruses. This virus has an approximately 200-nucleotide direct repeat sequence in the 5' untranslated region (UTR) of RNA3 that encodes the 3a movement protein. In the present study, protoplast assays suggested that the duplicated region contains amplification-enhancing elements. Deletion analyses of the 5' UTR of RNA3 showed that mutations in the short base-paired region, which is located dozens of bases upstream of the initiation codon of the 3a gene, greatly reduced the accumulation of RNA3. Disruption and restoration of the base-paired structure caused the accumulation of RNA3 to be decreased and restored, respectively. In vitro translation/replication assays demonstrated that the base-paired structure is important for the efficient amplification of negative-stand RNA3. A similar base-paired structure in RNA3 of another bromovirus, brome mosaic virus (BMV), also facilitated the efficient amplification of BMV RNA3, but only in combination with melandrium yellow fleck virus (MYFV) replicase and not with BMV replicase, thereby suggesting specific interactions between base-paired structures and MYFV replicase.
Collapse
Affiliation(s)
- Taiki Narabayashi
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
7
|
Saxena P, Lomonossoff GP. Virus infection cycle events coupled to RNA replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2014; 52:197-212. [PMID: 24906127 DOI: 10.1146/annurev-phyto-102313-050205] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Replication, the process by which the genetic material of a virus is copied to generate multiple progeny genomes, is the central part of the virus infection cycle. For an infection to be productive, it is essential that this process is coordinated with other aspects of the cycle, such as translation of the viral genome, encapsidation, and movement of the genome between cells. In the case of positive-strand RNA viruses, this represents a particular challenge, as the infecting genome must not only be replicated but also serve as an mRNA for the production of the replication-associated proteins. In recent years, it has become apparent that in positive-strand RNA plant viruses all the aspects of the infection cycle are intertwined. This article reviews the current state of knowledge regarding replication-associated events in such viruses.
Collapse
Affiliation(s)
- Pooja Saxena
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, United Kingdom; ,
| | | |
Collapse
|
8
|
Ni P, Vaughan RC, Tragesser B, Hoover H, Kao CC. The plant host can affect the encapsidation of brome mosaic virus (BMV) RNA: BMV virions are surprisingly heterogeneous. J Mol Biol 2014; 426:1061-76. [PMID: 24036424 PMCID: PMC3944473 DOI: 10.1016/j.jmb.2013.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/02/2013] [Accepted: 09/08/2013] [Indexed: 01/05/2023]
Abstract
Brome mosaic virus (BMV) packages its genomic and subgenomic RNAs into three separate viral particles. BMV purified from barley, wheat, and tobacco have distinct relative abundances of the encapsidated RNAs. We seek to identify the basis for the host-dependent differences in viral RNA encapsidation. Sequencing of the viral RNAs revealed recombination events in the 3' untranslated region of RNA1 of BMV purified from barley and wheat, but not from tobacco. However, the relative amounts of the BMV RNAs that accumulated in barley and wheat are similar and RNA accumulation is not sufficient to account for the difference in RNA encapsidation. Virions purified from barley and wheat were found to differ in their isoelectric points, resistance to proteolysis, and contacts between the capsid residues and the RNA. Mass spectrometric analyses revealed that virions from the three hosts had different post-translational modifications that should impact the physiochemical properties of the virions. Another major source of variation in RNA encapsidation was due to the purification of BMV particles to homogeneity. Highly enriched BMV present in lysates had a surprising range of sizes, buoyant densities, and distinct relative amounts of encapsidated RNAs. These results show that the encapsidated BMV RNAs reflect a combination of host effects on the physiochemical properties of the viral capsids and the enrichment of a subset of virions. The previously unexpected heterogeneity in BMV should influence the timing of the infection and also the host innate immune responses.
Collapse
Affiliation(s)
- Peng Ni
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Robert C Vaughan
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Brady Tragesser
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Haley Hoover
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
9
|
Kao CC, Ni P, Hema M, Huang X, Dragnea B. The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein. MOLECULAR PLANT PATHOLOGY 2011; 12:403-12. [PMID: 21453435 PMCID: PMC6640235 DOI: 10.1111/j.1364-3703.2010.00678.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box present in the 5' untranslated region (UTR) of BMV RNA1 and RNA2 that play important roles in the formation of the BMV replication factory, as well as the regulation of translation. A second element is within the tRNA-like 3' UTR of all BMV RNAs that is required for efficient RNA replication. The BMV CP can also encapsidate ligand-coated metal nanoparticles to form virus-like particles (VLPs). This update summarizes the interaction between the BMV CP and RNAs that can regulate RNA synthesis, translation and RNA encapsidation, as well as the formation of VLPs.
Collapse
Affiliation(s)
- C Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA.
| | | | | | | | | |
Collapse
|
10
|
Iwakawa HO, Mine A, Hyodo K, An M, Kaido M, Mise K, Okuno T. Template recognition mechanisms by replicase proteins differ between bipartite positive-strand genomic RNAs of a plant virus. J Virol 2011; 85:497-509. [PMID: 20980498 PMCID: PMC3014169 DOI: 10.1128/jvi.01754-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/21/2010] [Indexed: 01/14/2023] Open
Abstract
Recognition of RNA templates by viral replicase proteins is one of the key steps in the replication process of all RNA viruses. However, the mechanisms underlying this phenomenon, including primary RNA elements that are recognized by the viral replicase proteins, are not well understood. Here, we used aptamer pulldown assays with membrane fractionation and protein-RNA coimmunoprecipitation in a cell-free viral translation/replication system to investigate how viral replicase proteins recognize the bipartite genomic RNAs of the Red clover necrotic mosaic virus (RCNMV). RCNMV replicase proteins bound specifically to a Y-shaped RNA element (YRE) located in the 3' untranslated region (UTR) of RNA2, which also interacted with the 480-kDa replicase complexes that contain viral and host proteins. The replicase-YRE interaction recruited RNA2 to the membrane fraction. Conversely, RNA1 fragments failed to interact with the replicase proteins supplied in trans. The results of protein-RNA coimmunoprecipitation assays suggest that RNA1 interacts with the replicase proteins coupled with their translation. Thus, the initial template recognition mechanisms employed by the replicase differ between RCNMV bipartite genomic RNAs and RNA elements are primary determinants of the differential replication mechanism.
Collapse
Affiliation(s)
- Hiro-oki Iwakawa
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Akira Mine
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kiwamu Hyodo
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mengnan An
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masanori Kaido
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuyuki Mise
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tetsuro Okuno
- Laboratory of Plant Pathology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Sztuba-Solińska J, Urbanowicz A, Figlerowicz M, Bujarski JJ. RNA-RNA recombination in plant virus replication and evolution. ANNUAL REVIEW OF PHYTOPATHOLOGY 2011; 49:415-43. [PMID: 21529157 DOI: 10.1146/annurev-phyto-072910-095351] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
RNA-RNA recombination is one of the strongest forces shaping the genomes of plant RNA viruses. The detection of recombination is a challenging task that prompted the development of both in vitro and in vivo experimental systems. In the divided genome of Brome mosaic virus system, both inter- and intrasegmental crossovers are described. Other systems utilize satellite or defective interfering RNAs (DI-RNAs) of Turnip crinkle virus, Tomato bushy stunt virus, Cucumber necrosis virus, and Potato virus X. These assays identified the mechanistic details of the recombination process, revealing the role of RNA structure and proteins in the replicase-mediated copy-choice mechanism. In copy choice, the polymerase and the nascent RNA chain from which it is synthesized switch from one RNA template to another. RNA recombination was found to mediate the rearrangement of viral genes, the repair of deleterious mutations, and the acquisition of nonself sequences influencing the phylogenetics of viral taxa. The evidence for recombination, not only between related viruses but also among distantly related viruses, and even with host RNAs, suggests that plant viruses unabashedly test recombination with any genetic material at hand.
Collapse
Affiliation(s)
- Joanna Sztuba-Solińska
- Plant Molecular Biology Center, Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois 60115, USA
| | | | | | | |
Collapse
|
12
|
Recombination of 5' subgenomic RNA3a with genomic RNA3 of Brome mosaic bromovirus in vitro and in vivo. Virology 2010; 410:129-41. [PMID: 21111438 PMCID: PMC7111948 DOI: 10.1016/j.virol.2010.10.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Revised: 08/28/2010] [Accepted: 10/29/2010] [Indexed: 01/03/2023]
Abstract
RNA-RNA recombination salvages viral RNAs and contributes to their genomic variability. A recombinationally-active subgenomic promoter (sgp) has been mapped in Brome mosaic bromovirus (BMV) RNA3 (Wierzchoslawski et al., 2004. J. Virol.78, 8552-8864) and mRNA-like 5' sgRNA3a was characterized (Wierzchoslawski et al., 2006. J. Virol. 80, 12357-12366). In this paper we describe sgRNA3a-mediated recombination in both in vitro and in vivo experiments. BMV replicase-directed co-copying of (-) RNA3 with wt sgRNA3a generated RNA3 recombinants in vitro, but it failed to when 3'-truncated sgRNA3a was substituted, demonstrating a role for the 3' polyA tail. Barley protoplast co-transfections revealed that (i) wt sgRNA3a recombines at the 3' and the internal sites; (ii) 3'-truncated sgRNA3as recombine more upstream; and (iii) 5'-truncated sgRNA3 recombine at a low rate. In planta co-inoculations confirmed the RNA3-sgRNA3a crossovers. In summary, the non-replicating sgRNA3a recombines with replicating RNA3, most likely via primer extension and/or internal template switching.
Collapse
|
13
|
Jiang Y, Cheng CP, Serviene E, Shapka N, Nagy PD. Repair of lost 5' terminal sequences in tombusviruses: Rapid recovery of promoter- and enhancer-like sequences in recombinant RNAs. Virology 2010; 404:96-105. [PMID: 20537671 DOI: 10.1016/j.virol.2010.04.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 04/16/2010] [Accepted: 04/23/2010] [Indexed: 11/29/2022]
Abstract
Maintenance of genome integrity is of major importance for plus-stranded RNA viruses that are vulnerable to degradation by host ribonucleases or to replicase errors. We demonstrate that short truncations at the 5' end of a model Tomato bushy stunt virus (TBSV) RNA could be repaired during replication in yeast and plant cells. Although the truncations led to the loss of important cis-regulatory elements, the genome repair mechanisms led to the recovery of promoter and enhancer-like sequences in 92% of TBSV progeny. Using in vitro approaches, we demonstrate that the repaired TBSV RNAs are replication-competent. We propose three different mechanisms for genome repair: initiation of RNA synthesis from internal sequences and addition of nonviral nucleotides by the tombusvirus replicase; and via RNA recombination. The ability to repair cis-sequences makes the tombusvirus genome more flexible, which could be beneficial to increase the virus fitness and adaptation to new hosts.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, USA
| | | | | | | | | |
Collapse
|
14
|
Primer-independent initiation of RNA synthesis by SeMV recombinant RNA-dependent RNA polymerase. Virology 2010; 401:280-92. [DOI: 10.1016/j.virol.2010.02.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 01/16/2010] [Accepted: 02/21/2010] [Indexed: 11/22/2022]
|
15
|
Lettuce infectious yellows virus (LIYV) RNA 1-encoded P34 is an RNA-binding protein and exhibits perinuclear localization. Virology 2010; 403:67-77. [PMID: 20447670 DOI: 10.1016/j.virol.2010.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/02/2009] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
Abstract
The Crinivirus, Lettuce infectious yellows virus (LIYV) has a bipartite, positive-sense ssRNA genome. LIYV RNA 1 encodes replication-associated proteins while RNA 2 encodes proteins needed for other aspects of the LIYV life cycle. LIYV RNA 1 ORF 2 encodes P34, a trans enhancer for RNA 2 accumulation. Here we show that P34 is a sequence non-specific ssRNA-binding protein in vitro. P34 binds ssRNA in a cooperative manner, and the C-terminal region contains the RNA-binding domain. Topology predictions suggest that P34 is a membrane-associated protein and the C-terminal region is exposed outside of the membrane. Furthermore, fusions of P34 to GFP localized to the perinuclear region of transfected protoplasts, and colocalized with an ER-specific dye. This localization was of interest since LIYV RNA 1 replication (with or without P34 protein) induced strong ER rearrangement to the perinuclear region. Together, these data provide insight into LIYV replication and possible functions of P34.
Collapse
|
16
|
Weng Z, Xiong Z. Three discontinuous loop nucleotides in the 3' terminal stem-loop are required for Red clover necrotic mosaic virus RNA-2 replication. Virology 2009; 393:346-54. [PMID: 19733887 DOI: 10.1016/j.virol.2009.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 07/29/2009] [Accepted: 08/04/2009] [Indexed: 10/20/2022]
Abstract
The genome of Red clover necrotic mosaic virus (RCNMV) consists of positive-sense, single-stranded RNA-1 and RNA-2. The 29 nucleotides at the 3' termini of both RNAs are nearly identical and are predicted to form a stable stem-loop (SL) structure, which is required for RCNMV RNA replication. Here we performed a systematic mutagenesis of the RNA-2 3' SL to identify the nucleotides critical for replication. Infectivity and RNA replication assays indicated that the secondary structure of the 3' SL and its loop sequence UAUAA were required for RNA replication. Single-nucleotide substitution analyses of the loop further pinpointed three discontinuous nucleotides (L1U, L2A, and L4A) that were vital for RNA replication. A 3-D model of the 3' SL predicted the existence of a pocket formed by these three nucleotides that could be involved in RNA-protein interaction. The functional groups of the bases participating in this interaction at these positions are discussed.
Collapse
Affiliation(s)
- Ziming Weng
- Department of Plant Sciences, Division of Plant Pathology and Microbiology, and BIO5 Institute, Forbes 303, University of Arizona, Tucson, AZ 85721, USA
| | | |
Collapse
|
17
|
Piantanida I, Mašić L, Rusak G. Structure-spectrophotometric selectivity relationship in interactions of quercetin related flavonoids with double stranded and single stranded RNA. J Mol Struct 2009. [DOI: 10.1016/j.molstruc.2008.10.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Seo JK, Kwon SJ, Choi HS, Kim KH. Evidence for alternate states of Cucumber mosaic virus replicase assembly in positive- and negative-strand RNA synthesis. Virology 2009; 383:248-60. [PMID: 19022467 DOI: 10.1016/j.virol.2008.10.033] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/30/2008] [Accepted: 10/21/2008] [Indexed: 01/22/2023]
Abstract
Cucumber mosaic virus (CMV) encodes two viral replication proteins, 1a and 2a. Accumulating evidence implies that different aspects of 1a-2a interaction in replication complex assembly are involved in the regulation of virus replication. To further investigate CMV replicase assembly and to dissect the involvement of replicase activities in negative- and positive-strand synthesis, we transiently expressed CMV RNAs and/or proteins in Nicotiana benthamiana leaves using a DNA or RNA-mediated expression system. Surprisingly, we found that, even in the absence of 1a, 2a is capable of synthesizing positive-strand RNAs, while 1a and 2a are both required for negative-strand synthesis. We also report evidence that 1a capping activities function independently of 2a. Moreover, using 1a mutants, we show that capping activities of 1a are crucial for viral translation but not for RNA transcription. These results support the concept that two or more alternate states of replicase assembly are involved in CMV replication.
Collapse
Affiliation(s)
- Jang-Kyun Seo
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
19
|
Karran RA, Hudak KA. Depurination within the intergenic region of Brome mosaic virus RNA3 inhibits viral replication in vitro and in vivo. Nucleic Acids Res 2008; 36:7230-9. [PMID: 19004869 PMCID: PMC2602774 DOI: 10.1093/nar/gkn896] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pokeweed antiviral protein (PAP) is a glycosidase of plant origin that has been shown to depurinate some viral RNAs in vitro. We have demonstrated previously that treatment of Brome mosaic virus (BMV) RNAs with PAP inhibited their translation in a cell-free system and decreased their accumulation in barley protoplasts. In the current study, we map the depurination sites on BMV RNA3 and describe the mechanism by which replication of the viral RNA is inhibited by depurination. Specifically, we demonstrate that the viral replicase exhibited reduced affinity for depurinated positive-strand RNA3 compared with intact RNA3, resulting in less negative-strand product. This decrease was due to depurination within the intergenic region of RNA3, between ORF3 and 4, and distant from the 3′ terminal core promoter required for initiation of negative-strand RNA synthesis. Depurination within the intergenic region alone inhibited the binding of the replicase to full-length RNA3, whereas depurination outside the intergenic region permitted the replicase to initiate negative-strand synthesis; however, elongation of the RNA product was stalled at the abasic nucleotide. These results support a role of the intergenic region in controlling negative-strand RNA synthesis and contribute new insight into the effect of depurination by PAP on BMV replication.
Collapse
Affiliation(s)
- Rajita A Karran
- Department of Biology, York University, Toronto, Ontario, Canada
| | | |
Collapse
|
20
|
Sztuba-Solinska J, Bujarski JJ. Insights into the single-cell reproduction cycle of members of the family Bromoviridae: lessons from the use of protoplast systems. J Virol 2008; 82:10330-40. [PMID: 18684833 PMCID: PMC2573203 DOI: 10.1128/jvi.00746-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Joanna Sztuba-Solinska
- Department of Biological Sciences, Plant Molecular Biology Center, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | |
Collapse
|
21
|
Kim YC, Cheng Kao C. Biochemical analyses of the interactions between viral polymerases and RNAs. Methods Mol Biol 2008; 451:185-200. [PMID: 18370256 DOI: 10.1007/978-1-59745-102-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The interaction between viral polymerases and their cognate RNAs is vital to regulate the timing and abundance of viral replication products. Despite this, only minimal detailed information is available for the interaction between viral polymerases and cognate RNAs. We study the biochemical interactions using two viral polymerases that could serve as models for other plus-strand RNA viruses: the replicase from the tripartite brome mosaic virus (BMV), and the recombinant RNA-dependent RNA polymerase (RdRp) from hepatitis C virus (HCV). Replicase binding sites in the BMV RNAs were mapped using a template competition assay. The minimal length of RNA required for RNA binding by the HCV RdRp was determined using fluorescence spectroscopy. Lastly, regions of the HCV RdRp that contact the RNA were determined by a method coupling reversible protein-RNA crosslinking, affinity purification, and mass spectrometry. These analyses of RdRp-RNA interaction will be presented as three topics in this chapter.
Collapse
Affiliation(s)
- Young-Chan Kim
- Department of Biochemistry & Biophysics, 103 Biochemistry/Biophysics Building, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | |
Collapse
|
22
|
Gopinath K, Kao CC. Replication-independent long-distance trafficking by viral RNAs in Nicotiana benthamiana. THE PLANT CELL 2007; 19:1179-91. [PMID: 17416731 PMCID: PMC1913753 DOI: 10.1105/tpc.107.050088] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/07/2007] [Accepted: 03/21/2007] [Indexed: 05/14/2023]
Abstract
Viruses with separately encapsidated genomes could have their genomes introduced into different leaves of a plant, thus necessitating long-distance trafficking of the viral RNAs for successful infection. To examine this possibility, individual or combinations of genome segments from the tripartite Brome mosaic virus (BMV) were transiently expressed in leaves of Nicotiana benthamiana plants using engineered Agrobacterium tumefaciens. BMV RNA3 was found to traffic from the initial site of expression to other leaves of the plant, as detected by RNA gel blot analyses and also by the expression of an endoplasmic reticulum-targeted green fluorescent protein. When RNA3 trafficked into leaves containing the BMV replication enzymes, RNA replication, transcription, and virion production were observed. RNA3 trafficking occurred even when it did not encode the movement or capsid proteins. However, coexpression of the movement protein increased the trafficking of BMV RNAs. BMV RNA1 and RNA2 could also traffic throughout the plant, but less efficiently than RNA3. All three BMV RNAs trafficked bidirectionally to sink leaves near the apical meristem as well as to the source leaves at the bottom of the stem, suggesting that trafficking used the phloem. These results demonstrate that BMV RNAs can use a replication-independent mechanism to traffic in N. benthamiana.
Collapse
Affiliation(s)
- Kodetham Gopinath
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
23
|
Palani PV, Lin NS. Northern analysis of viral plus- and minus-strand RNAs. CURRENT PROTOCOLS IN MICROBIOLOGY 2007; Chapter 16:Unit 16E.3. [PMID: 18770617 DOI: 10.1002/9780471729259.mc16e03s4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Replication is a fundamental activity of viruses. Replication of positive-sense RNA viruses involves the synthesis of complementary minus-strand intermediates from the parental RNA template followed by synthesis of nascent plus strands. Negative-sense RNA genome and double-stranded RNA are copied into positive-sense mRNA before translation. To detect and estimate the abundance of plus- and minus-strand viral transcripts in the infected samples, northern analysis is the most commonly used method.
Collapse
|
24
|
Wierzchoslawski R, Urbanowicz A, Dzianott A, Figlerowicz M, Bujarski JJ. Characterization of a novel 5' subgenomic RNA3a derived from RNA3 of Brome mosaic bromovirus. J Virol 2006; 80:12357-66. [PMID: 17005659 PMCID: PMC1676258 DOI: 10.1128/jvi.01207-06] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The synthesis of 3' subgenomic RNA4 (sgRNA4) by initiation from an internal sg promoter in the RNA3 segment was first described for Brome mosaic bromovirus (BMV), a model tripartite positive-sense RNA virus (W. A. Miller, T. W. Dreher, and T. C. Hall, Nature 313:68-70, 1985). In this work, we describe a novel 5' sgRNA of BMV (sgRNA3a) that we propose arises by premature internal termination and that encapsidates in BMV virions. Cloning and sequencing revealed that, unlike any other BMV RNA segment, sgRNA3a carries a 3' oligo(A) tail, in which respect it resembles cellular mRNAs. Indeed, both the accumulation of sgRNA3a in polysomes and the synthesis of movement protein 3a in in vitro systems suggest active functions of sgRNA3a during protein synthesis. Moreover, when copied in the BMV replicase in vitro reaction, the minus-strand RNA3 template generated the sgRNA3a product, likely by premature termination at the minus-strand oligo(U) tract. Deletion of the oligo(A) tract in BMV RNA3 inhibited synthesis of sgRNA3a during infection. We propose a model in which the synthesis of RNA3 is terminated prematurely near the sg promoter. The discovery of 5' sgRNA3a sheds new light on strategies viruses can use to separate replication from the translation functions of their genomic RNAs.
Collapse
Affiliation(s)
- Rafal Wierzchoslawski
- Plant Molecular Biology Center and the Department of Biological Sciences, Montgomery Hall, Northern Illinois University, De Kalb, IL 60115, USA
| | | | | | | | | |
Collapse
|
25
|
Ahlquist P. Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses. Nat Rev Microbiol 2006; 4:371-82. [PMID: 16582931 PMCID: PMC7097367 DOI: 10.1038/nrmicro1389] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Viruses are exceptionally diverse and are grouped by genome replication and encapsidation strategies into seven distinct classes: two classes of DNA viruses (encapsidating single-stranded (ss)DNA or double-stranded (ds)DNA), three classes of RNA viruses (encapsidating mRNA-sense ssRNA, antisense ssRNA or dsRNA) and two classes of reverse-transcribing viruses (encapsidating RNA or DNA). Despite substantial life-cycle differences, positive-strand RNA ((+)RNA) viruses, dsRNA viruses and reverse-transcribing viruses share multiple similarities in genome replication. All replicate their genomes through RNA intermediates that also serve as mRNAs. Moreover, the intracellular RNA-replication complexes of (+)RNA viruses share similarities in structure, assembly and function with the polymerase-containing virion cores of dsRNA and reverse transcribing viruses. Brome mosaic virus (BMV) RNA-replication factors 1a and 2apol and cis-acting template-recruitment signals parallel retrovirus Gag, Pol and RNA-packaging signals in virion assembly: 1a localizes to specific membranes, self-interacts and induces ∼60-nm membrane invaginations to which it recruits 2apol and viral RNAs for replication. Therefore, like retroviruses and dsRNA viruses, BMV sequesters its genomic RNA and polymerase in a virus-induced compartment for replication. BMV and some other alphavirus-like (+)RNA viruses also parallel retroviruses in using tRNA-related sequences to initiate genome replication, and share with dsRNA reoviruses aspects of the function and interaction of their RNA polymerase and RNA-capping enzymes. Emerging results indicate that the genome-replication machineries of these viruses might share other mechanistic features. Whereas (+)RNA alphavirus-like viruses, dsRNA reoviruses and retroviruses are linked by the above similarities, (+)RNA picornaviruses, dsRNA birnaviruses and reverse-transcribing hepadnaviruses share some distinct features, including protein-primed nucleic-acid synthesis. Such parallels suggest that at least some (+)RNA viruses, dsRNA viruses and reverse-transcribing viruses might have evolved from common ancestors. The transitions required for such evolution can be readily envisioned and some have precedents. These underlying parallels in genome replication by four of the seven main virus classes might provide a basis for more generalizable or broader-spectrum approaches for virus control.
Despite major differences in the life cycles of the seven different classes of known viruses, the genome-replication processes of certain positive-strand RNA viruses, double-stranded RNA viruses and reverse-transcribing viruses show striking parallels. Paul Ahlquist highlights these similarities and discusses their intriguing evolutionary implications. Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA-replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control.
Collapse
Affiliation(s)
- Paul Ahlquist
- Institute for Molecular Virology and Howard Hughes Medical Institute, University of Wisconsin--Madison, Madison, Wisconsin 53706, USA.
| |
Collapse
|
26
|
Ranjith-Kumar CT, Kao CC. Recombinant viral RdRps can initiate RNA synthesis from circular templates. RNA (NEW YORK, N.Y.) 2006; 12:303-12. [PMID: 16373481 PMCID: PMC1370910 DOI: 10.1261/rna.2163106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The crystal structure of the recombinant hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) revealed extensive interactions between the fingers and the thumb subdomains, resulting in a closed conformation with an established template channel that should specifically accept single-stranded templates. We made circularized RNA templates and found that they were efficiently used by the HCV RdRp to synthesize product RNAs that are significantly longer than the template, suggesting that RdRp could exist in an open conformation prior to template binding. RNA synthesis using circular RNA templates had properties similar to those previously documented for linear RNA, including a need for higher GTP concentration for initiation, usage of GTP analogs, sensitivity to salt, and involvement of active-site residues for product formation. Some products were resistant to challenge with the template competitor heparin, indicating that the elongation complexes remain bound to template and are competent for RNA synthesis. Other products were not elongated in the presence of heparin, indicating that the elongation complex was terminated. Lastly, recombinant RdRps from two other flaviviruses and from the Pseudomonas phage phi6 also could use circular RNA templates for RNA-dependent RNA synthesis, although the phi6 RdRp could only use circular RNAs made from the 3'-terminal sequence of the phi6 genome.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843-2128, USA.
| | | |
Collapse
|
27
|
Gopinath K, Dragnea B, Kao C. Interaction between Brome mosaic virus proteins and RNAs: effects on RNA replication, protein expression, and RNA stability. J Virol 2005; 79:14222-34. [PMID: 16254357 PMCID: PMC1280218 DOI: 10.1128/jvi.79.22.14222-14234.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Accepted: 08/20/2005] [Indexed: 11/20/2022] Open
Abstract
Brome mosaic virus (BMV) RNA replication has been examined in a number of systems, including Saccharomyces cerevisiae. We developed an efficient T-DNA-based gene delivery system using Agrobacterium tumefaciens to transiently express BMV RNAs in Nicotiana benthamiana. The expressed RNAs can systemically infect plants and provide material to extract BMV replicase that can perform template-dependent RNA-dependent RNA synthesis in vitro. We also expressed the four BMV-encoded proteins from nonreplicating RNAs and analyzed their effects on BMV RNA accumulation. The capsid protein that coinfiltrated with constructs expressing RNA1 and RNA2 suppressed minus-strand levels but increased plus-strand RNA accumulation. The replication proteins 1a and 2a could function in trans to replicate and transcribe the BMV RNAs. None of the BMV proteins or RNA could efficiently suppress posttranscriptional silencing. However, 1a expressed in trans will suppress the production of a recombinant green fluorescent protein expressed from the nontranslated portions of BMV RNA1 and RNA2, suggesting that 1a may regulate translation from BMV RNAs. BMV replicase proteins 1a did not affect the accumulation of the BMV RNAs in the absence of RNA replication, unlike the situation reported for S. cerevisiae. This work demonstrates that the Agrobacterium-mediated gene delivery system can be used to study the cis- and trans-acting requirements for BMV RNA replication in plants and that significant differences can exist for BMV RNA replication in different hosts.
Collapse
Affiliation(s)
- K Gopinath
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|
28
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
29
|
Hema M, Gopinath K, Kao C. Repair of the tRNA-like CCA sequence in a multipartite positive-strand RNA virus. J Virol 2005; 79:1417-27. [PMID: 15650168 PMCID: PMC544147 DOI: 10.1128/jvi.79.3.1417-1427.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The 3' portions of plus-strand brome mosaic virus (BMV) RNAs mimic cellular tRNAs. Nucleotide substitutions or deletions in the 3'CCA of the tRNA-like sequence (TLS) affect minus-strand initiation unless repaired. We observed that 2-nucleotide deletions involving the CCA 3' sequence in one or all BMV RNAs still allowed RNA accumulation in barley protoplasts at significant levels. Alterations of CCA to GGA in only BMV RNA3 also allowed RNA accumulation at wild-type levels. However, substitutions in all three BMV RNAs severely reduced RNA accumulation, demonstrating that substitutions have different repair requirements than do small deletions. Furthermore, wild-type BMV RNA1 was required for the repair and replication of RNAs with nucleotide substitutions. Results from sequencing of progeny viral RNA from mutant input RNAs demonstrated that RNA1 did not contribute its sequence to the mutant RNAs. Instead, the repaired ends were heterogeneous, with one-third having a restored CCA and others having sequences with the only commonality being the restoration of one cytidylate. The role of BMV RNA1 in increased repair was examined.
Collapse
Affiliation(s)
- M Hema
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | | | | |
Collapse
|