1
|
Korkulu E, Şenlik Eİ, Adıgüzel E, Artut FG, Çetinaslan HD, Erdem-Şahinkesen E, Oğuzoğlu TÇ. Status Quo of Feline Leukaemia Virus Infection in Turkish Cats and Their Antigenic Prevalence. Animals (Basel) 2024; 14:385. [PMID: 38338028 PMCID: PMC10854556 DOI: 10.3390/ani14030385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
Feline leukaemia virus (FeLV) is a member of the Gammaretrovirus genus, which has two genotypes in cats: endogenous (replication-defective provirus) and exogenous (replication-competent). In this study, 550 cats were examined, and 112 of them (20.36%) were found to have the endogenous FeLV (enFeLV) genotype. EnFeLV-positive animals were also tested for additional viral infections, and 48 cats (42.85%) were discovered to be co-infected with other viruses. According to co-infection data, these cats were infected with feline coronavirus (FCoV) (27/112, 24.1%), feline panleukopenia virus (FPV) (14/112, 12.5%), feline immunodeficiency virus (FIV) (0/112, 0%), and domestic cat hepadnavirus (DCH) (13/112, 11.6%). Their age, sex, breed, clinical state, lifestyle (in/outdoor), and immunization data against FeLV were also evaluated. In line with our results, the prevalence of enFeLV and co-infection with other pathogens in cats admitted to the clinic for various reasons were discussed. The majority of positive animals in terms of FeLV (94/112, 83.93%) had clinical findings. We emphasized that the FeLV-positive situation of cats should be taken into consideration by veterinarians when planning treatment and vaccination programs. Additionally, in this study, we questioned the group in which our enFeLVs were phylogenetically located. Therefore, we performed a phylogenetic analysis based on a comparison with global FeLV sequences obtained from the GenBank database. The sequenced positive samples were in the AGTT subgroup within Group-II.
Collapse
Affiliation(s)
- Emrah Korkulu
- Institute of Health Sciences, Ankara University, Ankara 06110, Türkiye; (E.K.); (E.İ.Ş.); (H.D.Ç.)
| | - Elif İrem Şenlik
- Institute of Health Sciences, Ankara University, Ankara 06110, Türkiye; (E.K.); (E.İ.Ş.); (H.D.Ç.)
| | - Ece Adıgüzel
- Republic of Türkiye Ministry of Agriculture and Forestry, Atkaracalar District Directorate, Çankırı 18310, Türkiye;
| | | | | | - Eda Erdem-Şahinkesen
- Institute of Health Sciences, Ankara University, Ankara 06110, Türkiye; (E.K.); (E.İ.Ş.); (H.D.Ç.)
| | - Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06110, Türkiye
| |
Collapse
|
2
|
Wang J, Han GZ. Genome mining shows that retroviruses are pervasively invading vertebrate genomes. Nat Commun 2023; 14:4968. [PMID: 37591904 PMCID: PMC10435555 DOI: 10.1038/s41467-023-40732-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023] Open
Abstract
Endogenous retroviruses (ERVs) record past retroviral infections, providing molecular archives for interrogating the evolution of retroviruses and retrovirus-host interaction. However, the vast majority of ERVs are not active anymore due to various disruptive mutations, and ongoing retroviral invasion of vertebrate genomes has been rarely documented. Here we analyze genomics data from 2004 vertebrates for mining invading ERVs (ERVi). We find that at least 412 ERVi elements representing 217 viral operational taxonomic units are invading the genomes of 123 vertebrates, 18 of which have been assessed to be threatened species. Our results reveal an unexpected prevalence of ongoing retroviral invasion in vertebrates and expand the diversity of retroviruses recently circulating in the wild. We characterize the pattern and nature of ERVi in the historical and biogeographical context of their hosts, for instance, the generation of model organisms, sympatric speciation, and domestication. We suspect that these ERVi are relevant to conservation of threatened species, zoonoses in the wild, and emerging infectious diseases in humans.
Collapse
Affiliation(s)
- Jianhua Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Guan-Zhu Han
- College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
3
|
Canto-Valdés MC, Bolio González ME, Acevedo-Jiménez GE, Ramírez Álvarez H. What role do endogenous retroviruses play in domestic cats infected with feline leukaemia virus? N Z Vet J 2023; 71:1-7. [DOI: https:/doi.org/10.1080/00480169.2022.2131648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/20/2022] [Indexed: 01/16/2023]
Affiliation(s)
- MC Canto-Valdés
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Mexico
| | - ME Bolio González
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Mexico
| | - GE Acevedo-Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| | - H Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| |
Collapse
|
4
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2023; 168:2. [DOI: https:/doi.org/10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 01/16/2023]
|
5
|
Canto-Valdés MC, Bolio González ME, Acevedo-Jiménez GE, Ramírez Álvarez H. What role do endogenous retroviruses play in domestic cats infected with feline leukaemia virus? N Z Vet J 2023; 71:1-7. [PMID: 36178295 DOI: 10.1080/00480169.2022.2131648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 09/20/2022] [Indexed: 10/31/2022]
Abstract
Feline leukaemia virus (FeLV) is a retrovirus that infects domestic and wild cats around the world. FeLV infection is associated with the development of neoplasms, bone marrow disorders and immunosuppression. Viral subgroups arise from mutations in the FeLV genome or from recombination of FeLV with ancestral endogenous retroviruses in the cat genome. The retroviral endogenisation process has allowed generation of a diversity of endogenous viruses, both functional and defective. These elements may be part of the normal functioning of the feline genome and may also interact with FeLV to form recombinant FeLV subgroups, enhance pathogenicity of viral subgroups, or inhibit and/or regulate other retroviral infections. Recombination of the env gene occurs most frequently and appears to be the most significant in terms of both the quantity and diversification of pathogenic effects in the viral population, as well as affecting cell tropism and types of disease that occur in infected cats. This review focuses on available information regarding genetic diversity, pathogenesis and diagnosis of FeLV as a result of the interaction between endogenous and exogenous viruses.
Collapse
Affiliation(s)
- M C Canto-Valdés
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Mexico
| | - M E Bolio González
- Department of Animal Health, Faculty of Veterinary Medicine, Autonomous University of Yucatán, Mérida, Mexico
| | - G E Acevedo-Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| | - H Ramírez Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Education Cuautitlán, National Autonomous University of Mexico, Cuautitlán Izcalli, Mexico
| |
Collapse
|
6
|
Acevedo-Jiménez GE, Sarmiento-Silva RE, Alonso-Morales RA, Córdova-Ponce R, Ramírez-Álvarez H. Detection and genetic characterization of feline retroviruses in domestic cats with different clinical signs and hematological alterations. Arch Virol 2022; 168:2. [PMID: 36534205 DOI: 10.1007/s00705-022-05627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/17/2022] [Indexed: 12/23/2022]
Abstract
Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are globally distributed retroviruses that infect domestic cats and cause various syndromes that can lead to death. The aim of this study was to detect and genotype feline retroviruses in Mexican domestic cats. We used PCR assays to identify proviral DNA and viral RNA in 50 domestic cats with different clinical signs and hematological alterations. Endogenous FeLV (enFeLV) was identified in the genomic DNA of all cats in the study, and we detected transcripts of the LTR region of enFeLV in 48 individuals. Exogenous FeLV (exFeLV) was found in 13 cats. Furthermore, we detected FIV proviral DNA in 10 cats. The enFeLV sequences were shown to be the most variable, while the exFeLV sequences were highly conserved and related to previously reported subgroup A sequences. Sequencing of the FIV gag gene revealed the presence of subtype B in the infected cats.
Collapse
Affiliation(s)
- Gabriel Eduardo Acevedo-Jiménez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico
| | - Rosa Elena Sarmiento-Silva
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, University City, 04510, Mexico City, Mexico
| | - Rogelio Alejandro Alonso-Morales
- Department of Genetics and Biostatistics, Faculty of Veterinary Medicine and Zootechnics, National Autonomous University of Mexico, University City, 04510, Mexico City, Mexico
| | - Rodolfo Córdova-Ponce
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico
| | - Hugo Ramírez-Álvarez
- Virology, Genetics and Molecular Biology Laboratory, Faculty of Higher Studies, Veterinary Medicine, Campus 4. National Autonomous University of Mexico, 54714, Cuautitlan Izcalli, Mexico, Mexico.
| |
Collapse
|
7
|
Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines (Basel) 2022; 10:vaccines10101717. [PMID: 36298582 PMCID: PMC9611692 DOI: 10.3390/vaccines10101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
Collapse
|
8
|
Zheng J, Wei Y, Han GZ. The diversity and evolution of retroviruses: perspectives from viral “fossils”. Virol Sin 2022; 37:11-18. [PMID: 35234634 PMCID: PMC8922424 DOI: 10.1016/j.virs.2022.01.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/12/2021] [Indexed: 01/19/2023] Open
Abstract
Retroviruses exclusively infect vertebrates, causing a variety of diseases. The replication of retroviruses requires reverse transcription and integration into host genomes. When infecting germline cells, retroviruses become inherited vertically, forming endogenous retroviruses (ERVs). ERVs document past viral infections, providing molecular fossils for studying the evolutionary history of retroviruses. In this review, we summarize the recent advances in understanding the diversity and evolution of retroviruses from the perspectives of viral fossils, and discuss the effects of ERVs on the evolution of host biology. Recent advances in understanding the diversity and evolution of retroviruses. Methods to analyze ERVs. The effects of ERVs on the evolution of host biology.
Collapse
Affiliation(s)
- Jialu Zheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Yutong Wei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Guan-Zhu Han
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Feline Leukemia Virus (FeLV) Endogenous and Exogenous Recombination Events Result in Multiple FeLV-B Subtypes during Natural Infection. J Virol 2021; 95:e0035321. [PMID: 34232703 DOI: 10.1128/jvi.00353-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Feline leukemia virus (FeLV) is associated with a range of clinical signs in felid species. Differences in disease processes are closely related to genetic variation in the envelope (env) region of the genome of six defined subgroups. The primary hosts of FeLV are domestic cats of the Felis genus that also harbor endogenous FeLV (enFeLV) elements stably integrated in their genomes. EnFeLV elements display 86% nucleotide identity to exogenous, horizontally transmitted FeLV (FeLV-A). Variation between enFeLV and FeLV-A is primarily in the long terminal repeat (LTR) and env regions, which potentiates generation of the FeLV-B recombinant subgroup during natural infection. The aim of this study was to examine recombination behavior of exogenous FeLV (exFeLV) and enFeLV in a natural FeLV epizootic. We previously described that of 65 individuals in a closed colony, 32 had productive FeLV-A infection, and 22 of these individuals had detectable circulating FeLV-B. We cloned and sequenced the env gene of FeLV-B, FeLV-A, and enFeLV spanning known recombination breakpoints and examined between 1 and 13 clones in 22 animals with FeLV-B to assess sequence diversity and recombination breakpoints. Our analysis revealed that FeLV-A sequences circulating in the population, as well as enFeLV env sequences, are highly conserved. We documented many recombination breakpoints resulting in the production of unique FeLV-B genotypes. More than half of the cats harbored more than one FeLV-B variant, suggesting multiple recombination events between enFeLV and FeLV-A. We concluded that FeLV-B was predominantly generated de novo within each host, although we could not definitively rule out horizontal transmission, as nearly all cats harbored FeLV-B sequences that were genetically highly similar to those identified in other individuals. This work represents a comprehensive analysis of endogenous-exogenous retroviral interactions with important insights into host-virus interactions that underlie disease pathogenesis in a natural setting. IMPORTANCE Feline leukemia virus (FeLV) is a felid retrovirus with a variety of disease outcomes. Exogenous FeLV-A is the virus subgroup almost exclusively transmitted between cats. Recombination between FeLV-A and endogenous FeLV analogues in the cat genome may result in emergence of largely replication-defective but highly virulent subgroups. FeLV-B is formed when the 3' envelope (env) region of endogenous FeLV (enFeLV) recombines with that of the exogenous FeLV (exFeLV) during viral reverse transcription and integration. Both domestic cats and wild relatives of the Felis genus harbor enFeLV, which has been shown to limit FeLV-A disease outcome. However, enFeLV also contributes genetic material to the recombinant FeLV-B subgroup. This study evaluates endogenous-exogenous recombination outcomes in a naturally infected closed colony of cats to determine mechanisms and risk of endogenous retroviral recombination during exogenous virus exposure that leads to enhanced virulence. While FeLV-A and enFeLV env regions were highly conserved from cat to cat, nearly all individuals with emergent FeLV-B had unique combinations of genotypes, representative of a wide range of recombination sites within env. The findings provide insight into unique recombination patterns for emergence of new pathogens and can be related to similar viruses across species.
Collapse
|
10
|
Qu M, Wang W, Li W, Cao J, Zhang X, Wang C, Wu J, Yu B, Zhang H, Wu H, Kong W, Yu X. Antiviral Activity of Feline BCA2 Is Mainly Dependent on Its Interference With Proviral Transcription Rather Than Degradation of FIV Gag. Front Microbiol 2020; 11:1230. [PMID: 32595622 PMCID: PMC7301684 DOI: 10.3389/fmicb.2020.01230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/12/2022] Open
Abstract
Human BCA2/RNF115/Rabring7 (hBCA2) is a RING type E3 ubiquitin ligase with the ability of autoubiquitination or promoting protein ubiquitination. It also acts as a host restriction factor has BST2-dependent and BST2-independent antiviral activity to inhibit the release of HIV-1. In a previous study, we demonstrated that feline BCA2 (fBCA2) also has E3 ubiquitin ligase activity, although its antiviral mechanism remained unclear. In this study, we showed that fBCA2 can interact with feline BST2 (fBST2) and exhibits an fBST2-independent antiviral function, and the RING domain is necessary for the antiviral activity of fBCA2. fBCA2 could degrade HIV-1 Gag and restrict HIV-1 transcription to counteract HIV-1 but not promote the degradation of HIV-1 through lysosomal. Furthermore, for both fBCA2 and hBCA2, restricting viral transcription is the main anti-FIV mechanism compared to degradation of FIV Gag or promoting viral degradation. Consequently, transcriptional regulation of HIV or FIV by BCA2 should be the primary restriction mechanism, even though the degradation mechanism is different when BCA2 counteracts HIV or FIV. This may be due to BCA2 has a special preference in antiviral mechanism in the transmission of primate or non-primate retroviruses.
Collapse
Affiliation(s)
- Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiran Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Weiting Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaming Cao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
11
|
Tracking the Fate of Endogenous Retrovirus Segregation in Wild and Domestic Cats. J Virol 2019; 93:JVI.01324-19. [PMID: 31534037 DOI: 10.1128/jvi.01324-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Endogenous retroviruses (ERVs) of domestic cats (ERV-DCs) are one of the youngest feline ERV groups in domestic cats (Felis silvestris catus); some members are replication competent (ERV-DC10, ERV-DC18, and ERV-DC14), produce the antiretroviral soluble factor Refrex-1 (ERV-DC7 and ERV-DC16), or can generate recombinant feline leukemia virus (FeLV). Here, we investigated ERV-DC in European wildcats (Felis silvestris silvestris) and detected four loci: ERV-DC6, ERV-DC7, ERV-DC14, and ERV-DC16. ERV-DC14 was detected at a high frequency in European wildcats; however, it was replication defective due to a single G → A nucleotide substitution, resulting in an E148K substitution in the ERV-DC14 envelope (Env). This mutation results in a cleavage-defective Env that is not incorporated into viral particles. Introduction of the same mutation into feline and murine infectious gammaretroviruses resulted in a similar Env dysfunction. Interestingly, the same mutation was found in an FeLV isolate from naturally occurring thymic lymphoma and a mouse ERV, suggesting a common mechanism of virus inactivation. Refrex-1 was present in European wildcats; however, ERV-DC16, but not ERV-DC7, was unfixed in European wildcats. Thus, Refrex-1 has had an antiviral role throughout the evolution of the genus Felis, predating cat exposure to feline retroviruses. ERV-DC sequence diversity was present across wild and domestic cats but was locus dependent. In conclusion, ERVs have evolved species-specific phenotypes through the interplay between ERVs and their hosts. The mechanism of viral inactivation may be similar irrespective of the evolutionary history of retroviruses. The tracking of ancestral retroviruses can shed light on their roles in pathogenesis and host-virus evolution.IMPORTANCE Domestic cats (Felis silvestris catus) were domesticated from wildcats approximately 9,000 years ago via close interaction between humans and cats. During cat evolution, various exogenous retroviruses infected different cat lineages and generated numerous ERVs in the host genome, some of which remain replication competent. Here, we detected several ERV-DC loci in Felis silvestris silvestris Notably, a species-specific single nucleotide polymorphism in the ERV-DC14 env gene, which results in a replication-defective product, is highly prevalent in European wildcats, unlike the replication-competent ERV-DC14 that is commonly present in domestic cats. The presence of the same lethal mutation in the env genes of both FeLV and murine ERV provides a common mechanism shared by endogenous and exogenous retroviruses by which ERVs can be inactivated after endogenization. The antiviral role of Refrex-1 predates cat exposure to feline retroviruses. The existence of two ERV-DC14 phenotypes provides a unique model for understanding both ERV fate and cat domestication.
Collapse
|
12
|
Ngo MH, Soma T, Youn HY, Endo T, Makundi I, Kawasaki J, Miyake A, Nga BTT, Nguyen H, Arnal M, Fernández de Luco D, Deshapriya RMC, Hatoya S, Nishigaki K. Distribution of infectious endogenous retroviruses in mixed-breed and purebred cats. Arch Virol 2019; 165:157-167. [PMID: 31748876 DOI: 10.1007/s00705-019-04454-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/02/2019] [Indexed: 11/24/2022]
Abstract
Endogenous retroviruses of domestic cats (ERV-DCs) are members of the genus Gammaretrovirus that infect domestic cats (Felis silvestris catus). Uniquely, domestic cats harbor replication-competent proviruses such as ERV-DC10 (ERV-DC18) and ERV-DC14 (xenotropic and nonecotropic viruses, respectively). The purpose of this study was to assess invasion by two distinct infectious ERV-DCs, ERV-DC10 and ERV-DC14, in domestic cats. Of a total sample of 1646 cats, 568 animals (34.5%) were positive for ERV-DC10 (heterozygous: 377; homozygous: 191), 68 animals (4.1%) were positive for ERV-DC14 (heterozygous: 67; homozygous: 1), and 10 animals (0.6%) were positive for both ERV-DC10 and ERV-DC14. ERV-DC10 and ERV-DC14 were detected in domestic cats in Japan as well as in Tanzania, Sri Lanka, Vietnam, South Korea and Spain. Breeding cats, including Singapura, Norwegian Forest and Ragdoll cats, showed high frequencies of ERV-DC10 (60-100%). By contrast, ERV-DC14 was detected at low frequency in breeding cats. Our results suggest that ERV-DC10 is widely distributed while ERV-DC14 is maintained in a minor population of cats. Thus, ERV-DC10 and ERV-DC14 have invaded cat populations independently.
Collapse
Affiliation(s)
- Minh Ha Ngo
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Takehisa Soma
- Veterinary Diagnostic Laboratory, Marupi Lifetech Co., Ltd., 103 Fushiocho, Ikeda, Osaka, 563-0011, Japan
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, Seoul National University Hospital for Animals, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Taiji Endo
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Isaac Makundi
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Junna Kawasaki
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Ariko Miyake
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Bui Thi To Nga
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, 100000, Vietnam
| | - Huyen Nguyen
- Animal Care Clinic, 20/424 Thuy Khue Street, Tay Ho District, Hanoi, 100000, Vietnam
| | - MaríaCruz Arnal
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - Daniel Fernández de Luco
- Departamento de Patología Animal, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain
| | - R M C Deshapriya
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Shingo Hatoya
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Izumisano, Osaka, 598-8531, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan.
| |
Collapse
|
13
|
Chiu ES, Fox K, Wolfe L, Vandewoude S. A novel test for determination of wild felid-domestic cat hybridization. Forensic Sci Int Genet 2019; 44:102160. [PMID: 31683165 DOI: 10.1016/j.fsigen.2019.102160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/23/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
In October 2018, Colorado Parks and Wildlife seized an animal believed to be an illegally possessed bobcat. The owner claimed the animal was a bobcat/domestic cat hybrid, exempted from license requirements. Burden of proof lay with CPW to determine the lineage of the animal. Commercial microsatellite arrays and DNA barcoding have not been developed for identification of bobcat/domestic cat hybrids, and limited time and resources prevented development of such tests for this application. Instead, we targeted endogenous feline leukemia virus (enFeLV) to quickly and inexpensively demonstrate the absence of domestic cat DNA in the contested animal. Using this assay, we were able to confirm that the contested animal lacked enFeLV, and therefore was not a domestic cat hybrid.
Collapse
Affiliation(s)
- E S Chiu
- Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523 USA
| | - K Fox
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526 USA
| | - L Wolfe
- Colorado Parks and Wildlife, 317 W Prospect Rd, Fort Collins, CO 80526 USA
| | - S Vandewoude
- Colorado State University, 1619 Campus Delivery, Fort Collins, CO 80523 USA.
| |
Collapse
|
14
|
Carneiro CS, de Queiroz GF, Pinto ACBCF, Dagli MLZ, Matera JM. Feline injection site sarcoma: immunohistochemical characteristics. J Feline Med Surg 2019; 21:314-321. [PMID: 29788832 PMCID: PMC10814634 DOI: 10.1177/1098612x18774709] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
OBJECTIVES Feline injection site sarcoma (FISS) is a rapid growing locally aggressive tumor with a low metastatic rate. Its histologic features are clearly defined, but there are few studies regarding its immunohistochemical characteristics. The present study investigated the immunohistochemical characteristics of 21 cases of FISS. METHODS FISSs from 12 male and nine female cats, 20 mixed-breed and one Siamese, were included in the study. After histopathological diagnosis, additional histologic sections were immunostained for vimentin, cytokeratin, desmin, S100 protein, viral feline leukemia virus (FeLV) particles, cyclooxygenase 2 (COX-2) and c-KIT. Positive and negative controls were adopted accordingly. Immunostainings were classified as positive or negative according to the number of positive cells from a total of 1000 cells per tumor section. RESULTS Histopathologic diagnosis of the tumors revealed 18 (85.7%) fibrosarcomas and three (14.3%) other sarcomas; four fibrosarcomas (22.2%) were grade III, five (27.8%) were grade II and nine (50.0%) were grade I. Two sarcomas were grade III and one was grade II. Seventeen (81%) tumors were negative for desmin. All samples were positive for vimentin. Twenty tumors (95.2%) were positive for S-100 protein. Positivity for c-KIT was observed in four (19%) samples; COX-2 was positive in 13 (61.9%) and FeLV viral particles were positive in nine (42.9%) FISSs. CONCLUSIONS AND RELEVANCE Immunohistochemical findings of FISSs revealed positive immunostainings for desmin, vimentin, S-100 protein, c-KIT, COX-2 and FeLV viral particles.
Collapse
Affiliation(s)
- Carolina S Carneiro
- Department of Veterinary Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Genilson F de Queiroz
- Department of Animal Science, Federal Rural University of Semi-Arid, Mossoró, Brazil
| | - Ana CBCF Pinto
- Department of Veterinary Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Maria LZ Dagli
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Julia M Matera
- Department of Veterinary Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Halo JV, Pendleton AL, Jarosz AS, Gifford RJ, Day ML, Kidd JM. Origin and recent expansion of an endogenous gammaretroviral lineage in domestic and wild canids. Retrovirology 2019; 16:6. [PMID: 30845962 PMCID: PMC6407205 DOI: 10.1186/s12977-019-0468-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/28/2019] [Indexed: 01/20/2023] Open
Abstract
Background Vertebrate genomes contain a record of retroviruses that invaded the germlines of ancestral hosts and are passed to offspring as endogenous retroviruses (ERVs). ERVs can impact host function since they contain the necessary sequences for expression within the host. Dogs are an important system for the study of disease and evolution, yet no substantiated reports of infectious retroviruses in dogs exist. Here, we utilized Illumina whole genome sequence data to assess the origin and evolution of a recently active gammaretroviral lineage in domestic and wild canids. Results We identified numerous recently integrated loci of a canid-specific ERV-Fc sublineage within Canis, including 58 insertions that were absent from the reference assembly. Insertions were found throughout the dog genome including within and near gene models. By comparison of orthologous occupied sites, we characterized element prevalence across 332 genomes including all nine extant canid species, revealing evolutionary patterns of ERV-Fc segregation among species as well as subpopulations. Conclusions Sequence analysis revealed common disruptive mutations, suggesting a predominant form of ERV-Fc spread by trans complementation of defective proviruses. ERV-Fc activity included multiple circulating variants that infected canid ancestors from the last 20 million to within 1.6 million years, with recent bursts of germline invasion in the sublineage leading to wolves and dogs. Electronic supplementary material The online version of this article (10.1186/s12977-019-0468-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia V Halo
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Amanda L Pendleton
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Abigail S Jarosz
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Robert J Gifford
- Centre for Virus Research, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
| | - Malika L Day
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, 100 Washtenaw Ave., Ann Arbor, MI, 48109, USA
| |
Collapse
|
16
|
Feline Leukemia Virus (FeLV) Disease Outcomes in a Domestic Cat Breeding Colony: Relationship to Endogenous FeLV and Other Chronic Viral Infections. J Virol 2018; 92:JVI.00649-18. [PMID: 29976676 DOI: 10.1128/jvi.00649-18] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
Exogenous feline leukemia virus (FeLV) is a feline gammaretrovirus that results in a variety of disease outcomes. Endogenous FeLV (enFeLV) is a replication-defective provirus found in species belonging to the Felis genus, which includes the domestic cat (Felis catus). There have been few studies examining interaction between enFeLV genotype and FeLV progression. We examined point-in-time enFeLV and FeLV viral loads, as well as occurrence of FeLV/enFeLV recombinants (FeLV-B), to determine factors relating to clinical disease in a closed breeding colony of cats during a natural infection of FeLV. Coinfections with feline foamy virus (FFV), feline gammaherpesvirus 1 (FcaGHV-1), and feline coronavirus (FCoV) were also documented and analyzed for impact on cat health and FeLV disease. Correlation analysis and structural equation modeling techniques were used to measure interactions among disease parameters. Progressive FeLV disease and FeLV-B presence were associated with higher FeLV proviral and plasma viral loads. Female cats were more likely to have progressive disease and FeLV-B. Conversely, enFeLV copy number was higher in male cats and negatively associated with progressive FeLV disease. Males were more likely to have abortive FeLV disease. FFV proviral load was found to correlate positively with higher FeLV proviral and plasma viral load, detection of FeLV-B, and FCoV status. Male cats were much more likely to be infected with FcaGHV-1 than female cats. This analysis provides insights into the interplay between endogenous and exogenous FeLV during naturally occurring disease and reveals striking variation in the infection patterns among four chronic viral infections of domestic cats.IMPORTANCE Endogenous retroviruses are harbored by many animals, and their interactions with exogenous retroviral infections have not been widely studied. Feline leukemia virus (FeLV) is a relevant model system to examine this question, as endogenous and exogenous forms of the virus exist. In this analysis of a large domestic cat breeding colony naturally infected with FeLV, we documented that enFeLV copy number was higher in males and inversely related to FeLV viral load and associated with better FeLV disease outcomes. Females had lower enFeLV copy numbers and were more likely to have progressive FeLV disease and FeLV-B subtypes. FFV viral load was correlated with FeLV progression. FFV, FcaGHV-1, and FeLV displayed markedly different patterns of infection with respect to host demographics. This investigation revealed complex coinfection outcomes and viral ecology of chronic infections in a closed population.
Collapse
|
17
|
Chiu ES, Hoover EA, VandeWoude S. A Retrospective Examination of Feline Leukemia Subgroup Characterization: Viral Interference Assays to Deep Sequencing. Viruses 2018; 10:E29. [PMID: 29320424 PMCID: PMC5795442 DOI: 10.3390/v10010029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/10/2023] Open
Abstract
Feline leukemia virus (FeLV) was the first feline retrovirus discovered, and is associated with multiple fatal disease syndromes in cats, including lymphoma. The original research conducted on FeLV employed classical virological techniques. As methods have evolved to allow FeLV genetic characterization, investigators have continued to unravel the molecular pathology associated with this fascinating agent. In this review, we discuss how FeLV classification, transmission, and disease-inducing potential have been defined sequentially by viral interference assays, Sanger sequencing, PCR, and next-generation sequencing. In particular, we highlight the influences of endogenous FeLV and host genetics that represent FeLV research opportunities on the near horizon.
Collapse
Affiliation(s)
- Elliott S Chiu
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Edward A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80524, USA.
| |
Collapse
|
18
|
Filoni C, Helfer-Hungerbuehler AK, Catão-Dias JL, Marques MC, Torres LN, Reinacher M, Hofmann-Lehmann R. Putative progressive and abortive feline leukemia virus infection outcomes in captive jaguarundis (Puma yagouaroundi). Virol J 2017; 14:226. [PMID: 29149857 PMCID: PMC5693524 DOI: 10.1186/s12985-017-0889-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Feline leukemia virus (FeLV) is an exogenous gammaretrovirus of domestic cats (Felis catus) and some wild felids. The outcomes of FeLV infection in domestic cats vary according to host susceptibility, virus strain, and infectious challenge dose. Jaguarundis (Puma yagouaroundi) are small wild felids from South and Central America. We previously reported on FeLV infections in jaguarundis. We hypothesized here that the outcomes of FeLV infection in P. yagouaroundi mimic those observed in domestic cats. The aim of this study was to investigate the population of jaguarundis at Fundação Parque Zoológico de São Paulo for natural FeLV infection and resulting outcomes. METHODS We investigated the jaguarundis using serological and molecular methods and monitored them for FeLV-related diseases for 5 years. We retrieved relevant biological and clinical information for the entire population of 23 jaguarundis held at zoo. Post-mortem findings from necropsies were recorded and histopathological and immunohistopathological analyses were performed. Sequencing and phylogenetic analyses were performed for FeLV-positive samples. For sample prevalence, 95% confidence intervals (CI) were calculated. Fisher's exact test was used to compare frequencies between infected and uninfected animals. P-values <0.05 were considered significant. RESULTS In total, we detected evidence of FeLV exposure in four out of 23 animals (17%; 95% CI 5-39%). No endogenous FeLV (enFeLV) sequences were detected. An intestinal B-cell lymphoma in one jaguarundi was not associated with FeLV. Two jaguarundis presented FeLV test results consistent with an abortive FeLV infection with seroconversion, and two other jaguarundis had results consistent with a progressive infection and potentially FeLV-associated clinical disorders and post-mortem changes. Phylogenetic analysis of env revealed the presence of FeLV-A, a common origin of the virus in both animals (100% identity) and the closest similarity to FeLV-FAIDS and FeLV-3281 (98.4% identity), originally isolated from cats in the USA. CONCLUSIONS We found evidence of progressive and abortive FeLV infection outcomes in jaguarundis, and domestic cats were probably the source of infection in these jaguarundis.
Collapse
Affiliation(s)
- Claudia Filoni
- Institute of Biosciences, Department of Microbiology and Immunology, São Paulo State University (UNESP), Campus Botucatu, Rua Professor Doutor Antonio Celso Wagner Zanin SN, Botucatu, São Paulo, 18618-689, Brazil.
| | - A Katrin Helfer-Hungerbuehler
- Vetsuisse Faculty, Clinical Laboratory and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - José Luiz Catão-Dias
- School of Veterinary Medicine and Animal Sciences, Department of Pathology, University of São Paulo (USP), Av. Prof. Orlando Marques de Paiva 87, São Paulo, 05508-270, São Paulo, Brazil
| | - Mara Cristina Marques
- Fundação Parque Zoológico de São Paulo (FPZSP), Av. Miguel Stéfano 4241, São Paulo, São Paulo, 04301-905, Brazil
| | - Luciana Neves Torres
- School of Veterinary Medicine and Animal Sciences, Veterinary Hospital (HOVET), University of São Paulo (USP), Av. Prof. Orlando Marques de Paiva 87, São Paulo, 05508-270, São Paulo, Brazil
| | - Manfred Reinacher
- Institute of Veterinary Pathology, University of Giessen, Frankfurter Strasse 96, Giessen, 35392, Germany
| | - Regina Hofmann-Lehmann
- Vetsuisse Faculty, Clinical Laboratory and Center for Clinical Studies, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| |
Collapse
|
19
|
Existence of Two Distinct Infectious Endogenous Retroviruses in Domestic Cats and Their Different Strategies for Adaptation to Transcriptional Regulation. J Virol 2016; 90:9029-45. [PMID: 27466428 DOI: 10.1128/jvi.00716-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/22/2016] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED Endogenous retroviruses (ERVs) are the remnants of ancient retroviral infections of germ cells. Previous work identified one of the youngest feline ERV groups, ERV-DC, and reported that two ERV-DC loci, ERV-DC10 and ERV-DC18 (ERV-DC10/DC18), can replicate in cultured cells. Here, we identified another replication-competent provirus, ERV-DC14, on chromosome C1q32. ERV-DC14 differs from ERV-DC10/DC18 in its phylogeny, receptor usage, and, most notably, transcriptional activities; although ERV-DC14 can replicate in cultured cells, it cannot establish a persistent infection owing to its low transcriptional activity. Furthermore, we examined ERV-DC transcription and its regulation in feline tissues. Quantitative reverse transcription-PCR (RT-PCR) detected extremely low ERV-DC10 expression levels in feline tissues, and bisulfite sequencing showed that 5' long terminal repeats (LTRs) of ERV-DC10/DC18 are significantly hypermethylated in feline blood cells. Reporter assays found that the 5'-LTR promoter activities of ERV-DC10/DC18 are high, whereas that of ERV-DC14 is low. This difference in promoter activity is due to a single substitution from A to T in the LTR, and reverse mutation at this nucleotide in ERV-DC14 enhanced its replication and enabled it to persistently infect cultured cells. Therefore, ERV-DC LTRs can be divided into two types based on this nucleotide, the A type or T type, which have strong or attenuated promoter activity, respectively. Notably, ERV-DCs with T-type LTRs, such as ERV-DC14, have expanded in the cat genome significantly more than A-type ERV-DCs, despite their low promoter activities. Our results provide insights into how the host controls potentially infectious ERVs and, conversely, how ERVs adapt to and invade the host genome. IMPORTANCE The domestic cat genome contains many endogenous retroviruses, including ERV-DCs. These ERV-DCs have been acquired through germ cell infections with exogenous retroviruses. Some of these ERV-DCs are still capable of producing infectious virions. Hosts must tightly control these ERVs because replication-competent viruses in the genome pose a risk to the host. Here, we investigated how ERV-DCs are adapted by their hosts. Replication-competent viruses with strong promoter activity, such as ERV-DC10 and ERV-DC18, were suppressed by promoter methylation in LTRs. On the other hand, replication-competent viruses with weak promoter activity, such as ERV-DC14, seemed to escape strict control via promoter methylation by the host. Interestingly, ERV-DCs with weak promoter activity, such as ERV-DC14, have expanded in the cat genome significantly more than ERV-DCs with strong promoter activity. Our results improve the understanding of the host-virus conflict and how ERVs adapt in their hosts over time.
Collapse
|
20
|
Campos-Sánchez R, Cremona MA, Pini A, Chiaromonte F, Makova KD. Integration and Fixation Preferences of Human and Mouse Endogenous Retroviruses Uncovered with Functional Data Analysis. PLoS Comput Biol 2016; 12:e1004956. [PMID: 27309962 PMCID: PMC4911145 DOI: 10.1371/journal.pcbi.1004956] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/29/2016] [Indexed: 01/24/2023] Open
Abstract
Endogenous retroviruses (ERVs), the remnants of retroviral infections in the germ line, occupy ~8% and ~10% of the human and mouse genomes, respectively, and affect their structure, evolution, and function. Yet we still have a limited understanding of how the genomic landscape influences integration and fixation of ERVs. Here we conducted a genome-wide study of the most recently active ERVs in the human and mouse genome. We investigated 826 fixed and 1,065 in vitro HERV-Ks in human, and 1,624 fixed and 242 polymorphic ETns, as well as 3,964 fixed and 1,986 polymorphic IAPs, in mouse. We quantitated >40 human and mouse genomic features (e.g., non-B DNA structure, recombination rates, and histone modifications) in ±32 kb of these ERVs' integration sites and in control regions, and analyzed them using Functional Data Analysis (FDA) methodology. In one of the first applications of FDA in genomics, we identified genomic scales and locations at which these features display their influence, and how they work in concert, to provide signals essential for integration and fixation of ERVs. The investigation of ERVs of different evolutionary ages (young in vitro and polymorphic ERVs, older fixed ERVs) allowed us to disentangle integration vs. fixation preferences. As a result of these analyses, we built a comprehensive model explaining the uneven distribution of ERVs along the genome. We found that ERVs integrate in late-replicating AT-rich regions with abundant microsatellites, mirror repeats, and repressive histone marks. Regions favoring fixation are depleted of genes and evolutionarily conserved elements, and have low recombination rates, reflecting the effects of purifying selection and ectopic recombination removing ERVs from the genome. In addition to providing these biological insights, our study demonstrates the power of exploiting multiple scales and localization with FDA. These powerful techniques are expected to be applicable to many other genomic investigations.
Collapse
Affiliation(s)
- Rebeca Campos-Sánchez
- Genetics Graduate Program, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Marzia A. Cremona
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Alessia Pini
- MOX—Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Milano, Italy
| | - Francesca Chiaromonte
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
| | - Kateryna D. Makova
- Center for Medical Genomics, The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania, United States of America
- Department of Biology, Penn State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
21
|
Wang W, Wang J, Qu M, Li X, Zhang J, Zhang H, Wu J, Yu B, Wu H, Kong W, Yu X. Viral Restriction Activity of Feline BST2 Is Independent of Its N-Glycosylation and Induction of NF-κB Activation. PLoS One 2015; 10:e0138190. [PMID: 26379128 PMCID: PMC4574558 DOI: 10.1371/journal.pone.0138190] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/26/2015] [Indexed: 11/18/2022] Open
Abstract
BST2 (CD317, tetherin, HM1.24) is an interferon-inducible transmembrane protein which can directly inhibit the release of enveloped virus particles from infected cells, and its anti-viral activity is reported to be related to the specific topological arrangement of its four structural domains. The N-terminal cytoplasmic tail of feline BST2 (fBST2) is characterized by a shorter N-terminal region compared to those of other known homologs. In this study, we investigated the functional impact of modifying the cytoplasmic tail region of fBST2 and its molecular mechanism. The fBST2 protein with the addition of a peptide at the N-terminus retained anti-release activity against human immunodeficiency virus type-1 and pseudovirus based on feline immunodeficiency virus at a weaker level compared with the wild-type fBST2. However, the fBST2 protein with addition of a peptide internally in the ectodomain proximal to the GPI anchor still retained its anti-viral activity well. Notably, the N-glycosylation state and the cell surface level of the N-terminally modified variants were unlike those of the wild-type protein, while no difference was observed in their intracellular localizations. However, in contrast to human BST2, the wild-type fBST2 did not show the ability to activate NF-κB. Consistent with previous reports, our findings showed that adding a peptide in the cytoplasmic tail region of fBST2 may influence its anti-viral activity. The shorter N-terminal cytoplasmic region of fBST2 compared with human BST2 did not apparently affect its anti-viral activity, which is independent of its N-glycosylation and ability to activate NF-κB.
Collapse
Affiliation(s)
- Weiran Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jiawen Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Center for New Medicine Research, Changchun University of Chinese Medicine, Changchun, Jilin Province, People’s Republic of China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaojun Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jingyao Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Haihong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Hui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail: (WK); (XHY)
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Science, Jilin University, Changchun, Jilin Province, People’s Republic of China
- * E-mail: (WK); (XHY)
| |
Collapse
|
22
|
Abstract
The human-animal interface is as ancient as the first bipedal steps taken by humans. Born with the human species, it has grown and expanded with the human species' prehistoric and historical development to reach the unprecedented scope of current times. Several facets define the human-animal interface, guiding the scope and range of human interactions with animal species. These facets have not ceased to evolve and expand since their emergence, all the more favoring disease emergence. Placing the human-animal interface in its historical perspective allows us to realize its versatile and dynamic nature. Changes in the scope and range of domestication, agriculture, urbanization, colonization, trade, and industrialization have been accompanied by evolving risks for cross-species transmission of pathogens. Because these risks are unlikely to decrease, improving our technologies to identify and monitor pathogenic threats lurking at the human-animal interface should be a priority.
Collapse
|
23
|
Kawamura M, Watanabe S, Odahara Y, Nakagawa S, Endo Y, Tsujimoto H, Nishigaki K. Genetic diversity in the feline leukemia virus gag gene. Virus Res 2015; 204:74-81. [PMID: 25892717 DOI: 10.1016/j.virusres.2015.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/30/2022]
Abstract
Feline leukemia virus (FeLV) belongs to the Gammaretrovirus genus and is horizontally transmitted among cats. FeLV is known to undergo recombination with endogenous retroviruses already present in the host during FeLV-subgroup A infection. Such recombinant FeLVs, designated FeLV-subgroup B or FeLV-subgroup D, can be generated by transduced endogenous retroviral env sequences encoding the viral envelope. These recombinant viruses have biologically distinct properties and may mediate different disease outcomes. The generation of such recombinant viruses resulted in structural diversity of the FeLV particle and genetic diversity of the virus itself. FeLV env diversity through mutation and recombination has been studied, while gag diversity and its possible effects are less well understood. In this study, we investigated recombination events in the gag genes of FeLVs isolated from naturally infected cats and reference isolates. Recombination and phylogenetic analyses indicated that the gag genes often contain endogenous FeLV sequences and were occasionally replaced by entire endogenous FeLV gag genes. Phylogenetic reconstructions of FeLV gag sequences allowed for classification into three distinct clusters, similar to those previously established for the env gene. Analysis of the recombination junctions in FeLV gag indicated that these variants have similar recombination patterns within the same genotypes, indicating that the recombinant viruses were horizontally transmitted among cats. It remains to be investigated whether the recombinant sequences affect the molecular mechanism of FeLV transmission. These findings extend our understanding of gammaretrovirus evolutionary patterns in the field.
Collapse
Affiliation(s)
- Maki Kawamura
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Shinya Watanabe
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yuka Odahara
- Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - So Nakagawa
- Department of Molecular Life Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yasuyuki Endo
- Laboratory of Small Animal Internal Medicine, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Hajime Tsujimoto
- Department of Veterinary Internal Medicine, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kazuo Nishigaki
- Laboratory of Molecular Immunology and Infectious Disease, The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan; Laboratory of Molecular Immunology and Infectious Disease, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
24
|
Krunic M, Ertl R, Hagen B, Sedlazeck FJ, Hofmann-Lehmann R, von Haeseler A, Klein D. Decreased expression of endogenous feline leukemia virus in cat lymphomas: a case control study. BMC Vet Res 2015; 11:90. [PMID: 25879730 PMCID: PMC4424575 DOI: 10.1186/s12917-015-0378-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 02/26/2015] [Indexed: 11/18/2022] Open
Abstract
Background Cats infected with exogenous feline leukemia virus (exFeLV) have a higher chance of lymphoma development than uninfected cats. Furthermore, an increased exFeLV transcription has been detected in lymphomas compared to non-malignant tissues. The possible mechanisms of lymphoma development by exFeLV are insertional mutagenesis or persistent stimulation of host immune cells by viral antigens, bringing them at risk for malignant transformation. Vaccination of cats against exFeLV has in recent years decreased the overall infection rate in most countries. Nevertheless, an increasing number of lymphomas have been diagnosed among exFeLV-negative cats. Endogenous feline leukemia virus (enFeLV) is another retrovirus for which transcription has been observed in cat lymphomas. EnFeLV provirus elements are present in the germline of various cat species and share a high sequence similarity with exFeLV but, due to mutations, are incapable of producing infectious viral particles. However, recombination between exFeLV and enFeLV could produce infectious particles. Results We examined the FeLV expression in cats that have developed malignant lymphomas and discussed the possible mechanisms that could have induced malignant transformation. For expression analysis we used next-generation RNA-sequencing (RNA-Seq) and for validation reverse transcription quantitative PCR (RT-qPCR). First, we showed that there was no expression of exFeLV in all samples, which eliminates the possibility of recombination between exFeLV and enFeLV. Next, we analyzed the difference in expression of three enFeLV genes between control and lymphoma samples. Our analysis showed an average of 3.40-fold decreased viral expression for the three genes in lymphoma compared to control samples. The results were confirmed by RT-qPCR. Conclusions There is a decreased expression of enFeLV genes in lymphomas versus control samples, which contradicts previous observations for the exFeLV. Our results suggest that a persistent stimulation of host immune cells is not an appropriate mechanism responsible for malignant transformation caused by feline endogenous retroviruses. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0378-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Milica Krunic
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria.
| | - Reinhard Ertl
- VetCore Facility for Research, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria.
| | - Benedikt Hagen
- VetCore Facility for Research, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria.
| | - Fritz J Sedlazeck
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria.
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, CH-8057, Zurich, Switzerland.
| | - Arndt von Haeseler
- Center for Integrative Bioinformatics Vienna, Max F. Perutz Laboratories, University of Vienna, Medical University of Vienna, A-1030, Vienna, Austria. .,Bioinformatics and Computational Biology, Faculty of Computer Science, University of Vienna, A-1090, Vienna, Austria.
| | - Dieter Klein
- VetCore Facility for Research, University of Veterinary Medicine Vienna, A-1210, Vienna, Austria.
| |
Collapse
|
25
|
Mata H, Gongora J, Eizirik E, Alves BM, Soares MA, Ravazzolo AP. Identification and characterization of diverse groups of endogenous retroviruses in felids. Retrovirology 2015; 12:26. [PMID: 25808580 PMCID: PMC4373062 DOI: 10.1186/s12977-015-0152-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/23/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Endogenous retroviruses (ERVs) are genetic elements with a retroviral origin that are integrated into vertebrate genomes. In felids (Mammalia, Carnivora, Felidae), ERVs have been described mostly in the domestic cat, and only rarely in wild species. To gain insight into the origins and evolutionary dynamics of endogenous retroviruses in felids, we have identified and characterized partial pro/pol ERV sequences from eight Neotropical wild cat species, belonging to three distinct lineages of Felidae. We also compared them with publicly available genomic sequences of Felis catus and Panthera tigris, as well as with representatives of other vertebrate groups, and performed phylogenetic and molecular dating analyses to investigate the pattern and timing of diversification of these retroviral elements. RESULTS We identified a high diversity of ERVs in the sampled felids, with a predominance of Gammaretrovirus-related sequences, including class I ERVs. Our data indicate that the identified ERVs arose from at least eleven horizontal interordinal transmissions from other mammals. Furthermore, we estimated that the majority of the Gamma-like integrations took place during the diversification of modern felids. Finally, our phylogenetic analyses indicate the presence of a genetically divergent group of sequences whose position in our phylogenetic tree was difficult to establish confidently relative to known retroviruses, and another lineage identified as ERVs belonging to class II. CONCLUSIONS Retroviruses have circulated in felids along with their evolution. The majority of the deep clades of ERVs exist since the primary divergence of felids' base and cluster with retroviruses of divergent mammalian lineages, suggesting horizontal interordinal transmission. Our findings highlight the importance of additional studies on the role of ERVs in the genome landscaping of other carnivore species.
Collapse
|
26
|
A novel endogenous betaretrovirus in the common vampire bat (Desmodus rotundus) suggests multiple independent infection and cross-species transmission events. J Virol 2015; 89:5180-4. [PMID: 25717107 DOI: 10.1128/jvi.03452-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
The Desmodus rotundus endogenous betaretrovirus (DrERV) is fixed in the vampire bat D. rotundus population and in other phyllostomid bats but is not present in all species from this family. DrERV is not phylogenetically related to Old World bat betaretroviruses but to betaretroviruses from rodents and New World primates, suggesting recent cross-species transmission. A recent integration age estimation of the provirus in some taxa indicates that an exogenous counterpart might have been in recent circulation.
Collapse
|
27
|
Sakaguchi S, Shojima T, Fukui D, Miyazawa T. A soluble envelope protein of endogenous retrovirus (FeLIX) present in serum of domestic cats mediates infection of a pathogenic variant of feline leukemia virus. J Gen Virol 2014; 96:681-687. [PMID: 25395593 DOI: 10.1099/vir.0.071688-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
T-lymphotropic feline leukemia virus (FeLV-T), a highly pathogenic variant of FeLV, induces severe immunosuppression in cats. FeLV-T is fusion defective because in its PHQ motif, a gammaretroviral consensus motif in the N terminus of an envelope protein, histidine is replaced with aspartate. Infection by FeLV-T requires FeLIX, a truncated envelope protein encoded by an endogenous FeLV, for transactivation of infectivity and Pit1 for binding FeLIX. Although Pit1 is present in most tissues in cats, the expression of FeLIX is limited to certain cells in lymphoid organs. Therefore, the host cell range of FeLV-T was thought to be restricted to cells expressing FeLIX. However, because FeLIX is a soluble factor and is expressed constitutively in lymphoid organs, we presumed it to be present in blood and evaluated its activities in sera of various mammalian species using a pseudotype assay. We demonstrated that cat serum has FeLIX activity at a functional level, suggesting that FeLIX is present in the blood and that FeLV-T may be able to infect cells expressing Pit1 regardless of the expression of FeLIX in vivo. In addition, FeLIX activities in sera were detected only in domestic cats and not in other feline species tested. To our knowledge, this is the first report to prove that a large amount of truncated envelope protein of endogenous retrovirus is circulating in the blood to facilitate the infection of a pathogenic exogenous retrovirus.
Collapse
Affiliation(s)
- Shoichi Sakaguchi
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Takayuki Shojima
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Daisuke Fukui
- Asahikawa Municipal Asahiyama Zoological Park and Wildlife Conservation Center, Kuranuma, Higashiasahikawa-cho, Asahikawa, Hokkaido 070-8205, Japan
| | - Takayuki Miyazawa
- Laboratory of Signal Transduction, Department of Cell Biology, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan.,Laboratory of Virolution, Experimental Research Center for Infectious Diseases, Institute for Virus Research, Kyoto University, 53 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
28
|
Ishida Y, Zhao K, Greenwood AD, Roca AL. Proliferation of endogenous retroviruses in the early stages of a host germ line invasion. Mol Biol Evol 2014; 32:109-20. [PMID: 25261407 DOI: 10.1093/molbev/msu275] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Endogenous retroviruses (ERVs) comprise 8% of the human genome and are common in all vertebrate genomes. The only retrovirus known to be currently transitioning from exogenous to endogenous form is the koala retrovirus (KoRV), making koalas (Phascolarctos cinereus) ideal for examining the early stages of retroviral endogenization. To distinguish endogenous from exogenous KoRV proviruses, we isolated koala genomic regions flanking KoRV integration sites. In three wild southern Australian koalas, there were fewer KoRV loci than in three captive Queensland koalas, consistent with reports that southern Australian koalas carry fewer KoRVs. Of 39 distinct KoRV proviral loci examined in a sire-dam-progeny triad, all proved to be vertically transmitted and endogenous; none was exogenous. Of the 39 endogenous KoRVs (enKoRVs), only one was present in the genomes of both the sire and the dam, suggesting that, at this early stage in the retroviral invasion of a host germ line, very large numbers of ERVs have proliferated at very low frequencies in the koala population. Sequence divergence between the 5'- and 3'-long terminal repeats (LTRs) of a provirus can be used as a molecular clock. Within each of ten enKoRVs, the 5'-LTR sequence was identical to the 3'-LTR sequence, suggesting a maximum age for enKoRV invasion of the koala germ line of approximately 22,200-49,900 years ago, although a much younger age is possible. Across the ten proviruses, seven LTR haplotypes were detected, indicating that at least seven different retroviral sequences had entered the koala germ line.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign
| | - Kai Zhao
- Department of Animal Sciences, University of Illinois at Urbana-Champaign
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign The Institute for Genomic Biology, University of Illinois at Urbana-Champaign
| |
Collapse
|
29
|
|
30
|
Kamath PL, Elleder D, Bao L, Cross PC, Powell JH, Poss M. The population history of endogenous retroviruses in mule deer (Odocoileus hemionus). J Hered 2013; 105:173-87. [PMID: 24336966 DOI: 10.1093/jhered/est088] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mobile elements are powerful agents of genomic evolution and can be exceptionally informative markers for investigating species and population-level evolutionary history. While several studies have utilized retrotransposon-based insertional polymorphisms to resolve phylogenies, few population studies exist outside of humans. Endogenous retroviruses are LTR-retrotransposons derived from retroviruses that have become stably integrated in the host genome during past infections and transmitted vertically to subsequent generations. They offer valuable insight into host-virus co-evolution and a unique perspective on host evolutionary history because they integrate into the genome at a discrete point in time. We examined the evolutionary history of a cervid endogenous gammaretrovirus (CrERVγ) in mule deer (Odocoileus hemionus). We sequenced 14 CrERV proviruses (CrERV-in1 to -in14), and examined the prevalence and distribution of 13 proviruses in 262 deer among 15 populations from Montana, Wyoming, and Utah. CrERV absence in white-tailed deer (O. virginianus), identical 5' and 3' long terminal repeat (LTR) sequences, insertional polymorphism, and CrERV divergence time estimates indicated that most endogenization events occurred within the last 200000 years. Population structure inferred from CrERVs (F ST = 0.008) and microsatellites (θ = 0.01) was low, but significant, with Utah, northwestern Montana, and a Helena herd being particularly differentiated. Clustering analyses indicated regional structuring, and non-contiguous clustering could often be explained by known translocations. Cluster ensemble results indicated spatial localization of viruses, specifically in deer from northeastern and western Montana. This study demonstrates the utility of endogenous retroviruses to elucidate and provide novel insight into both ERV evolutionary history and the history of contemporary host populations.
Collapse
Affiliation(s)
- Pauline L Kamath
- the US Geological Survey, Northern Rocky Mountain Science Center, Bozeman, MT 59715
| | | | | | | | | | | |
Collapse
|
31
|
Feline leukaemia virus: Half a century since its discovery. Vet J 2013; 195:16-23. [DOI: 10.1016/j.tvjl.2012.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 11/30/2022]
|
32
|
Reperant LA, Cornaglia G, Osterhaus ADME. The importance of understanding the human-animal interface : from early hominins to global citizens. Curr Top Microbiol Immunol 2013. [PMID: 23042568 DOI: 10.1007/82-2012-269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
The complex relationships between the human and animal species have never ceased to evolve since the emergence of the human species and have resulted in a human-animal interface that has promoted the cross-species transmission, emergence and eventual evolution of a plethora of infectious pathogens. Remarkably, most of the characteristics of the human-animal interface-as we know it today-have been established long before the end of our species pre-historical development took place, to be relentlessly shaped throughout the history of our species. More recently, changes affecting the modern human population worldwide as well as their dramatic impact on the global environment have taken domestication, agriculture, urbanization, industrialization, and colonization to unprecedented levels. This has created a unique global multi-faceted human-animal interface, associated with a major epidemiological transition that is accompanied by an unexpected rise of new and emerging infectious diseases. Importantly, these developments are largely paralleled by medical, technological, and scientific progress, continuously spurred by our never-ending combat against pathogens. The human-animal interface has most likely contributed significantly to the evolutionary shaping and historical development of our species. Investment in a better understanding of this human-animal interface will offer humankind a future head-start in the never-ending battle against infectious diseases.
Collapse
Affiliation(s)
- Leslie A Reperant
- Department of Virology, Erasmus Medical Centre, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Stewart H, Jarrett O, Hosie MJ, Willett BJ. Complete genome sequences of two feline leukemia virus subgroup B isolates with novel recombination sites. GENOME ANNOUNCEMENTS 2013; 1:e00036-12. [PMID: 23405366 PMCID: PMC3569371 DOI: 10.1128/genomea.00036-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 10/25/2012] [Indexed: 11/20/2022]
Abstract
It is generally accepted that all primary isolates of feline leukemia virus (FeLV) contain a subgroup A virus (FeLV-A) that is essential for transmission. In contrast, FeLV-B is thought to arise de novo in the infected animal through RNA recombination events with endogenous FeLV transcripts, presumably through copackaging of RNA from endogenous FeLV and exogenous FeLV-A. Here, we report the complete genome sequences of two novel strains of FeLV-B (FeLV-2518 and FeLV-4314) that were isolated in the absence of FeLV-A. The env genes of these isolates have been characterized previously, and the 3' recombination sites have been identified. We describe herein the 5' recombination breakpoints of each virus. These breakpoints were found to be within the signal peptide of the env gene and the reverse transcriptase-coding region, respectively. This is the first report of a recombination site within the pol gene of an FeLV-B genome and the first genetic characterization of multiple independently arising FeLV-B isolates that have been identified without a functional FeLV-A ancestral virus.
Collapse
Affiliation(s)
- H Stewart
- Medical Research Council, University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | |
Collapse
|
34
|
The importance of understanding the human-animal interface : from early hominins to global citizens. Curr Top Microbiol Immunol 2012; 365:49-81. [PMID: 23042568 PMCID: PMC7120531 DOI: 10.1007/82_2012_269] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The complex relationships between the human and animal species have never ceased to evolve since the emergence of the human species and have resulted in a human-animal interface that has promoted the cross-species transmission, emergence and eventual evolution of a plethora of infectious pathogens. Remarkably, most of the characteristics of the human-animal interface-as we know it today-have been established long before the end of our species pre-historical development took place, to be relentlessly shaped throughout the history of our species. More recently, changes affecting the modern human population worldwide as well as their dramatic impact on the global environment have taken domestication, agriculture, urbanization, industrialization, and colonization to unprecedented levels. This has created a unique global multi-faceted human-animal interface, associated with a major epidemiological transition that is accompanied by an unexpected rise of new and emerging infectious diseases. Importantly, these developments are largely paralleled by medical, technological, and scientific progress, continuously spurred by our never-ending combat against pathogens. The human-animal interface has most likely contributed significantly to the evolutionary shaping and historical development of our species. Investment in a better understanding of this human-animal interface will offer humankind a future head-start in the never-ending battle against infectious diseases.
Collapse
|
35
|
Reperant LA, Cornaglia G, Osterhaus ADME. The Importance of Understanding the Human–Animal Interface. Curr Top Microbiol Immunol 2012. [DOI: 10.1007/978-3-662-45792-4_269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
The Feline Genome and Clinical Implications. THE CAT 2012. [PMCID: PMC7152298 DOI: 10.1016/b978-1-4377-0660-4.00043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Polymorphic integrations of an endogenous gammaretrovirus in the mule deer genome. J Virol 2011; 86:2787-96. [PMID: 22190723 DOI: 10.1128/jvi.06859-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Endogenous retroviruses constitute a significant genomic fraction in all mammalian species. Typically they are evolutionarily old and fixed in the host species population. Here we report on a novel endogenous gammaretrovirus (CrERVγ; for cervid endogenous gammaretrovirus) in the mule deer (Odocoileus hemionus) that is insertionally polymorphic among individuals from the same geographical location, suggesting that it has a more recent evolutionary origin. Using PCR-based methods, we identified seven CrERVγ proviruses and demonstrated that they show various levels of insertional polymorphism in mule deer individuals. One CrERVγ provirus was detected in all mule deer sampled but was absent from white-tailed deer, indicating that this virus originally integrated after the split of the two species, which occurred approximately one million years ago. There are, on average, 100 CrERVγ copies in the mule deer genome based on quantitative PCR analysis. A CrERVγ provirus was sequenced and contained intact open reading frames (ORFs) for three virus genes. Transcripts were identified covering the entire provirus. CrERVγ forms a distinct branch of the gammaretrovirus phylogeny, with the closest relatives of CrERVγ being endogenous gammaretroviruses from sheep and pig. We demonstrated that white-tailed deer (Odocoileus virginianus) and elk (Cervus canadensis) DNA contain proviruses that are closely related to mule deer CrERVγ in a conserved region of pol; more distantly related sequences can be identified in the genome of another member of the Cervidae, the muntjac (Muntiacus muntjak). The discovery of a novel transcriptionally active and insertionally polymorphic retrovirus in mammals could provide a useful model system to study the dynamic interaction between the host genome and an invading retrovirus.
Collapse
|
38
|
Murine gammaretrovirus group G3 was not found in Swedish patients with myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia. PLoS One 2011; 6:e24602. [PMID: 22022360 PMCID: PMC3192035 DOI: 10.1371/journal.pone.0024602] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/15/2011] [Indexed: 01/08/2023] Open
Abstract
Background The recent report of gammaretroviruses of probable murine origin in humans, called xenotropic murine retrovirus related virus (XMRV) and human murine leukemia virus related virus (HMRV), necessitated a bioinformatic search for this virus in genomes of the mouse and other vertebrates, and by PCR in humans. Results Three major groups of murine endogenous gammaretroviruses were identified. The third group encompassed both exogenous and endogenous Murine Leukemia Viruses (MLVs), and most XMRV/HMRV sequences reported from patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Two sensitive real-time PCRs for this group were developed. The predicted and observed amplification range for these and three published XMRV/HMRV PCRs demonstrated conspicuous differences between some of them, partly explainable by a recombinatorial origin of XMRV. Three reverse transcription real-time PCRs (RTQPCRs), directed against conserved and not overlapping stretches of env, gag and integrase (INT) sequences of XMRV/HMRV were used on human samples. White blood cells from 78 patients suffering from ME/CFS, of which 30 patients also fulfilled the diagnostic criteria for fibromyalgia (ME/CFS/FM) and in 7 patients with fibromyalgia (FM) only, all from the Gothenburg area of Sweden. As controls we analyzed 168 sera from Uppsala blood donors. We controlled for presence and amplifiability of nucleic acid and for mouse DNA contamination. To score as positive, a sample had to react with several of the XMRV/HMRV PCRs. None of the samples gave PCR reactions which fulfilled the positivity criteria. Conclusions XMRV/HMRV like proviruses occur in the third murine gammaretrovirus group, characterized here. PCRs developed by us, and others, approximately cover this group, except for the INT RTQPCR, which is rather strictly XMRV specific. Using such PCRs, XMRV/HMRV could not be detected in PBMC and plasma samples from Swedish patients suffering from ME/CFS/FM, and in sera from Swedish blood donors.
Collapse
|
39
|
Stewart H, Jarrett O, Hosie M, Willett B. Are endogenous feline leukemia viruses really endogenous? Vet Immunol Immunopathol 2011; 143:325-31. [DOI: 10.1016/j.vetimm.2011.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Phylogeny-directed search for murine leukemia virus-like retroviruses in vertebrate genomes and in patients suffering from myalgic encephalomyelitis/chronic fatigue syndrome and prostate cancer. Adv Virol 2011; 2011:341294. [PMID: 22315600 PMCID: PMC3265301 DOI: 10.1155/2011/341294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/11/2011] [Accepted: 06/22/2011] [Indexed: 01/20/2023] Open
Abstract
Gammaretrovirus-like sequences occur in most vertebrate genomes. Murine Leukemia Virus (MLV) like retroviruses (MLLVs) are a subset, which may be pathogenic and spread cross-species. Retroviruses highly similar to MLLVs (xenotropic murine retrovirus related virus (XMRV) and Human Mouse retrovirus-like RetroViruses (HMRVs)) reported from patients suffering from prostate cancer (PC) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) raise the possibility that also humans have been infected. Structurally intact, potentially infectious MLLVs occur in the genomes of some mammals, especially mouse. Mouse MLLVs contain three major groups. One, MERV G3, contained MLVs and XMRV/HMRV. Its presence in mouse DNA, and the abundance of xenotropic MLVs in biologicals, is a source of false positivity. Theoretically, XMRV/HMRV could be one of several MLLV transspecies infections. MLLV pathobiology and diversity indicate optimal strategies for investigating XMRV/HMRV in humans and raise ethical concerns. The alternatives that XMRV/HMRV may give a hard-to-detect “stealth” infection, or that XMRV/HMRV never reached humans, have to be considered.
Collapse
|
41
|
Fadel HJ, Poeschla EM. Retroviral restriction and dependency factors in primates and carnivores. Vet Immunol Immunopathol 2011; 143:179-89. [PMID: 21715018 DOI: 10.1016/j.vetimm.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Recent studies have extended the rapidly developing retroviral restriction factor field to cells of carnivore species. Carnivoran genomes, and the domestic cat genome in particular, are revealing intriguing properties vis-à-vis the primate and feline lentiviruses, not only with respect to their repertoires of virus-blocking restriction factors but also replication-enabling dependency factors. Therapeutic application of restriction factors is envisioned for human immunodeficiency virus (HIV) disease and the feline immunodeficiency virus (FIV) model has promise for testing important hypotheses at the basic and translational level. Feline cell-tropic HIV-1 clones have also been generated by a strategy of restriction factor evasion. We review progress in this area in the context of what is known about retroviral restriction factors such as TRIM5α, TRIMCyp, APOBEC3 proteins and BST-2/Tetherin.
Collapse
Affiliation(s)
- Hind J Fadel
- Department of Molecular Medicine and Division of Infectious Diseases, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| | | |
Collapse
|
42
|
Martínez Barrio Á, Ekerljung M, Jern P, Benachenhou F, Sperber GO, Bongcam-Rudloff E, Blomberg J, Andersson G. The first sequenced carnivore genome shows complex host-endogenous retrovirus relationships. PLoS One 2011; 6:e19832. [PMID: 21589882 PMCID: PMC3093408 DOI: 10.1371/journal.pone.0019832] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 04/18/2011] [Indexed: 11/25/2022] Open
Abstract
Host-retrovirus interactions influence the genomic landscape and have contributed substantially to mammalian genome evolution. To gain further insights, we analyzed a female boxer (Canis familiaris) genome for complexity and integration pattern of canine endogenous retroviruses (CfERV). Intriguingly, the first such in-depth analysis of a carnivore species identified 407 CfERV proviruses that represent only 0.15% of the dog genome. In comparison, the same detection criteria identified about six times more HERV proviruses in the human genome that has been estimated to contain a total of 8% retroviral DNA including solitary LTRs. These observed differences in man and dog are likely due to different mechanisms to purge, restrict and protect their genomes against retroviruses. A novel group of gammaretrovirus-like CfERV with high similarity to HERV-Fc1 was found to have potential for active retrotransposition and possibly lateral transmissions between dog and human as a result of close interactions during at least 10.000 years. The CfERV integration landscape showed a non-uniform intra- and inter-chromosomal distribution. Like in other species, different densities of ERVs were observed. Some chromosomal regions were essentially devoid of CfERVs whereas other regions had large numbers of integrations in agreement with distinct selective pressures at different loci. Most CfERVs were integrated in antisense orientation within 100 kb from annotated protein-coding genes. This integration pattern provides evidence for selection against CfERVs in sense orientation relative to chromosomal genes. In conclusion, this ERV analysis of the first carnivorous species supports the notion that different mammals interact distinctively with endogenous retroviruses and suggests that retroviral lateral transmissions between dog and human may have occurred.
Collapse
Affiliation(s)
- Álvaro Martínez Barrio
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Marie Ekerljung
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Patric Jern
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Farid Benachenhou
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran O. Sperber
- Department of Neuroscience, Physiology, Uppsala University, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Jonas Blomberg
- Section of Virology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Biomedical Centre, Swedish University of Agricultural Sciences, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
43
|
Feline tetherin efficiently restricts release of feline immunodeficiency virus but not spreading of infection. J Virol 2011; 85:5840-52. [PMID: 21490095 DOI: 10.1128/jvi.00071-11] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Domestic cats endure infections by all three subfamilies of the retroviridae: lentiviruses (feline immunodeficiency virus [FIV]), gammaretroviruses (feline leukemia virus [FeLV]), and spumaretroviruses (feline foamy virus [FFV]). Thus, cats present an insight into the evolution of the host-retrovirus relationship and the development of intrinsic/innate immune mechanisms. Tetherin (BST-2) is an interferon-inducible transmembrane protein that inhibits the release of enveloped viruses from infected cells. Here, we characterize the feline homologue of tetherin and assess its effects on the replication of FIV. Tetherin was expressed in many feline cell lines, and expression was induced by interferons, including alpha interferon (IFN-α), IFN-ω, and IFN-γ. Like human tetherin, feline tetherin displayed potent inhibition of FIV and HIV-1 particle release; however, this activity resisted antagonism by either HIV-1 Vpu or the FIV Env and "OrfA" proteins. Further, as overexpression of complete FIV genomes in trans could not overcome feline tetherin, these data suggest that FIV lacks a functional tetherin antagonist. However, when expressed stably in feline cell lines, tetherin did not abrogate the replication of FIV; indeed, syncytium formation was significantly enhanced in tetherin-expressing cells infected with cell culture-adapted (CD134-independent) strains of FIV (FIV Fca-F14 and FIV Pco-CoLV). Thus, while tetherin may prevent the release of nascent viral particles, cell-to-cell spread remains efficient in the presence of abundant viral receptors and tetherin upregulation may enhance syncytium formation. Accordingly, tetherin expression in vivo may promote the selective expansion of viral variants capable of more efficient cell-to-cell spread.
Collapse
|
44
|
Polani S, Roca AL, Rosensteel BB, Kolokotronis SO, Bar-Gal GK. Evolutionary dynamics of endogenous feline leukemia virus proliferation among species of the domestic cat lineage. Virology 2010; 405:397-407. [DOI: 10.1016/j.virol.2010.06.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 04/22/2010] [Accepted: 06/03/2010] [Indexed: 01/18/2023]
|
45
|
Ahmad S, Levy LS. The frequency of occurrence and nature of recombinant feline leukemia viruses in the induction of multicentric lymphoma by infection of the domestic cat with FeLV-945. Virology 2010; 403:103-10. [PMID: 20451235 DOI: 10.1016/j.virol.2010.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 02/22/2010] [Accepted: 04/12/2010] [Indexed: 12/24/2022]
Abstract
During feline leukemia virus (FeLV) infection in the domestic cat, viruses with a novel envelope gene arise by recombination between endogenous FeLV-related elements and the exogenous infecting species. These recombinant viruses (FeLV-B) are of uncertain disease association, but have been linked to the induction of thymic lymphoma. To assess the role of FeLV-B in the induction of multicentric lymphoma and other non-T-cell disease, the frequency of occurrence and nature of FeLV-B were examined in diseased tissues from a large collection of FeLV-infected animals. Diseased tissues were examined by Southern blot and PCR amplification to detect the presence of FeLV-B. Further analysis was performed to establish the recombination junctions and infectivity of FeLV-B in diseased tissues. The results confirmed the frequent association of FeLV-B with thymic lymphoma but showed infrequent generation, low levels and lack of infectivity of FeLV-B in non-T-cell diseases including multicentric lymphoma.
Collapse
Affiliation(s)
- Shamim Ahmad
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA.
| | | |
Collapse
|
46
|
Molecular characterization of a novel gammaretrovirus in killer whales (Orcinus orca). J Virol 2009; 83:12956-67. [PMID: 19812152 DOI: 10.1128/jvi.01354-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
There are currently no published data documenting the presence of retroviruses in cetaceans, though the occurrences of cancers and immunodeficiency states suggest the potential. We examined tissues from adult killer whales and detected a novel gammaretrovirus by degenerate PCR. Reverse transcription-PCR also demonstrated tissue and serum expression of retroviral mRNA. The full-length sequence of the provirus was obtained by PCR, and a TaqMan-based copy number assay did not demonstrate evidence of productive infection. PCR on blood samples from 11 healthy captive killer whales and tissues from 3 free-ranging animals detected the proviral DNA in all tissues examined from all animals. A survey of multiple cetacean species by PCR for gag, pol, and env sequences showed homologs of this virus in the DNA of eight species of delphinids, pygmy and dwarf sperm whales, and harbor porpoises, but not in beluga or fin whales. Analysis of the bottlenose dolphin genome revealed two full-length proviral sequences with 97.4% and 96.9% nucleotide identity to the killer whale gammaretrovirus. The results of single-cell PCR on killer whale sperm and Southern blotting are also consistent with the conclusion that the provirus is endogenous. We suggest that this gammaretrovirus entered the delphinoid ancestor's genome before the divergence of modern dolphins or that an exogenous variant existed following divergence that was ultimately endogenized. However, the transcriptional activity demonstrated in tissues and the nearly intact viral genome suggest a more recent integration into the killer whale genome, favoring the latter hypothesis. The proposed name for this retrovirus is killer whale endogenous retrovirus.
Collapse
|
47
|
Yuhki N, Mullikin JC, Beck T, Stephens R, O'Brien SJ. Sequences, annotation and single nucleotide polymorphism of the major histocompatibility complex in the domestic cat. PLoS One 2008; 3:e2674. [PMID: 18629345 PMCID: PMC2453318 DOI: 10.1371/journal.pone.0002674] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Accepted: 06/12/2008] [Indexed: 11/19/2022] Open
Abstract
Two sequences of major histocompatibility complex (MHC) regions in the domestic cat, 2.976 and 0.362 Mbps, which were separated by an ancient chromosome break (55-80 MYA) and followed by a chromosomal inversion were annotated in detail. Gene annotation of this MHC was completed and identified 183 possible coding regions, 147 human homologues, possible functional genes and 36 pseudo/unidentified genes) by GENSCAN and BLASTN, BLASTP RepeatMasker programs. The first region spans 2.976 Mbp sequence, which encodes six classical class II antigens (three DRA and three DRB antigens) lacking the functional DP, DQ regions, nine antigen processing molecules (DOA/DOB, DMA/DMB, TAPASIN, and LMP2/LMP7,TAP1/TAP2), 52 class III genes, nineteen class I genes/gene fragments (FLAI-A to FLAI-S). Three class I genes (FLAI-H, I-K, I-E) may encode functional classical class I antigens based on deduced amino acid sequence and promoter structure. The second region spans 0.362 Mbp sequence encoding no class I genes and 18 cross-species conserved genes, excluding class I, II and their functionally related/associated genes, namely framework genes, including three olfactory receptor genes. One previously identified feline endogenous retrovirus, a baboon retrovirus derived sequence (ECE1) and two new endogenous retrovirus sequences, similar to brown bat endogenous retrovirus (FERVmlu1, FERVmlu2) were found within a 140 Kbp interval in the middle of class I region. MHC SNPs were examined based on comparisons of this BAC sequence and MHC homozygous 1.9x WGS sequences and found that 11,654 SNPs in 2.84 Mbp (0.00411 SNP per bp), which is 2.4 times higher rate than average heterozygous region in the WGS (0.0017 SNP per bp genome), and slightly higher than the SNP rate observed in human MHC (0.00337 SNP per bp).
Collapse
Affiliation(s)
- Naoya Yuhki
- Laboratory of Genomic Diversity, National Cancer Institute at Frederick, Frederick, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
48
|
Tandon R, Cattori V, Pepin AC, Riond B, Meli ML, McDonald M, Doherr MG, Lutz H, Hofmann-Lehmann R. Association between endogenous feline leukemia virus loads and exogenous feline leukemia virus infection in domestic cats. Virus Res 2008; 135:136-43. [DOI: 10.1016/j.virusres.2008.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 11/25/2022]
|
49
|
Tandon R, Cattori V, Willi B, Lutz H, Hofmann-Lehmann R. Quantification of endogenous and exogenous feline leukemia virus sequences by real-time PCR assays. Vet Immunol Immunopathol 2008; 123:129-33. [PMID: 18295344 DOI: 10.1016/j.vetimm.2008.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Endogenous retroviruses are integrated in the genome of most vertebrates. They represent footprints of ancient retroviral infection and are vertically transmitted from parents to their offspring. In the genome of all domestic cats, sequences closely related to exogenous FeLV known as endogenous feline leukemia virus (enFeLV), are present. enFeLV are incapable of giving rise to infectious virus particles. However, transcription and translation of enFeLV have been demonstrated in tissues of healthy cats and in feline cell lines. The presence of enFeLV-env has been shown in specific embryonic tissues and adult thymic cells. In addition, the enFeLV-env region recombines with FeLV subgroup A giving rise to an infectious FeLV-B virus. enFeLV envelope protein, FeLIX (FeLV infectivity X-essory protein) is also involved in mediating FeLV-T infection. In order to test the hypothesis that the enFeLV loads play a role in exogenous FeLV-A infection and pathogenesis, quantitative real-time PCR and RT-PCR assays were developed. An assay, specific to U3 region of all different subtypes of exogenous FeLV, was designed and applied to quantify exogenous FeLV proviral or viral load in cats, while three real-time PCR assays were designed to quantify U3 and env enFeLV loads (two within U3 amplifying different sequences; one within env). enFeLV loads were investigated in blood samples derived from Swiss privately owned domestic cats, specific pathogen-free (SPF) cats and European wildcats (Felis silvestris silvestris). Significant differences in enFeLV loads were observed between privately owned cats and SPF cats as well as among SPF cats originating from different catteries and among domestic cats of different breeds. When privately owned cats were compared, FeLV-infected cats had higher loads than uninfected cats. In addition, wildcats had higher enFeLV loads than domestic cats. In conclusion, the quantitative real-time PCR assays described herein are important prerequisites to quantify enFeLV proviral loads in felids and thus are important tools to investigate the role of enFeLV loads in FeLV infection.
Collapse
Affiliation(s)
- Ravi Tandon
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
50
|
Katzourakis A, Pereira V, Tristem M. Effects of recombination rate on human endogenous retrovirus fixation and persistence. J Virol 2007; 81:10712-7. [PMID: 17634225 PMCID: PMC2045447 DOI: 10.1128/jvi.00410-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 07/10/2007] [Indexed: 02/07/2023] Open
Abstract
Endogenous retroviruses (ERVs) result from germ line infections by exogenous retroviruses. They can proliferate within the genome of their host species until they are either inactivated by mutation or removed by recombinational deletion. ERVs belong to a diverse group of mobile genetic elements collectively termed transposable elements (TEs). Numerous studies have attempted to elucidate the factors determining the genomic distribution and persistence of TEs. Here we show that, within humans, gene density and not recombination rate correlates with fixation of endogenous retroviruses, whereas the local recombination rate determines their persistence in a full-length state. Recombination does not appear to influence fixation either via the ectopic exchange model or by indirect models based on the efficacy of selection. We propose a model linking rates of meiotic recombination to the probability of recombinational deletion to explain the effect of recombination rate on persistence. Chromosomes 19 and Y are exceptions, possessing more elements than other regions, and we suggest this is due to low gene density and elevated rates of human ERV integration in males for chromosome Y and segmental duplication for chromosome 19.
Collapse
|