1
|
Mizutani T, Ishizaka A. Poliovirus capsid protein VP3 can penetrate vascular endothelial cells. FEBS Lett 2024; 598:1909-1918. [PMID: 38955545 DOI: 10.1002/1873-3468.14974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024]
Abstract
The poliovirus (PV) enters the central nervous system (CNS) via the bloodstream, suggesting the existence of a mechanism to cross the blood-brain barrier. Here, we report that PV capsid proteins (VP1 and VP3) can penetrate cells, with VP3 being more invasive. Two independent parts of VP3 are responsible for this function. Both peptides can penetrate human umbilical cord vascular endothelial cells, and one peptide of VP3 could also penetrate peripheral blood mononuclear cells. In an in vitro blood-brain barrier model using rat-derived astrocytes, pericytes, and endothelial cells, both peptides were observed to traverse from the blood side to the brain side at 6 h after administration. These results provide insights into the molecular mechanisms underlying PV invasion into the CNS.
Collapse
Affiliation(s)
- Taketoshi Mizutani
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Aya Ishizaka
- Division of Infectious Diseases, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, Japan
| |
Collapse
|
2
|
Mandula JK, Sierra-Mondragon RA, Jimenez RV, Chang D, Mohamed E, Chang S, Vazquez-Martinez JA, Cao Y, Anadon CM, Lee SB, Das S, Rocha-Munguba L, Pham VM, Li R, Tarhini AA, Furqan M, Dalton W, Churchman M, Moran-Segura CM, Nguyen J, Perez B, Kojetin DJ, Obermayer A, Yu X, Chen A, Shaw TI, Conejo-Garcia JR, Rodriguez PC. Jagged2 targeting in lung cancer activates anti-tumor immunity via Notch-induced functional reprogramming of tumor-associated macrophages. Immunity 2024; 57:1124-1140.e9. [PMID: 38636522 PMCID: PMC11096038 DOI: 10.1016/j.immuni.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Signaling through Notch receptors intrinsically regulates tumor cell development and growth. Here, we studied the role of the Notch ligand Jagged2 on immune evasion in non-small cell lung cancer (NSCLC). Higher expression of JAG2 in NSCLC negatively correlated with survival. In NSCLC pre-clinical models, deletion of Jag2, but not Jag1, in cancer cells attenuated tumor growth and activated protective anti-tumor T cell responses. Jag2-/- lung tumors exhibited higher frequencies of macrophages that expressed immunostimulatory mediators and triggered T cell-dependent anti-tumor immunity. Mechanistically, Jag2 ablation promoted Nr4a-mediated induction of Notch ligands DLL1/4 on cancer cells. DLL1/4-initiated Notch1/2 signaling in macrophages induced the expression of transcription factor IRF4 and macrophage immunostimulatory functionality. IRF4 expression was required for the anti-tumor effects of Jag2 deletion in lung tumors. Antibody targeting of Jagged2 inhibited tumor growth and activated IRF4-driven macrophage-mediated anti-tumor immunity. Thus, Jagged2 orchestrates immunosuppressive systems in NSCLC that can be overcome to incite macrophage-mediated anti-tumor immunity.
Collapse
Affiliation(s)
- Jay K Mandula
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Rachel V Jimenez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Darwin Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Eslam Mohamed
- California Northstate University, Elk Grove, CA 95757, USA
| | - Shiun Chang
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Yu Cao
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Carmen M Anadon
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Sae Bom Lee
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Satyajit Das
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Léo Rocha-Munguba
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Vincent M Pham
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Roger Li
- Department of Genitourinary Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ahmad A Tarhini
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Muhammad Furqan
- Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Carlos M Moran-Segura
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jonathan Nguyen
- Advanced Analytical and Digital Laboratory, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Bradford Perez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Douglas J Kojetin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alyssa Obermayer
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Ann Chen
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Timothy I Shaw
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA; Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jose R Conejo-Garcia
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27708, USA
| | - Paulo C Rodriguez
- Department of Immunology, H. Lee Moffitt Cancer Center, Tampa, FL 33612, USA.
| |
Collapse
|
3
|
Vicente-Gil S, Nuñez-Ortiz N, Morel E, Serra CR, Docando F, Díaz-Rosales P, Tafalla C. Immunomodulatory properties of Bacillus subtilis extracellular vesicles on rainbow trout intestinal cells and splenic leukocytes. Front Immunol 2024; 15:1394501. [PMID: 38774883 PMCID: PMC11106384 DOI: 10.3389/fimmu.2024.1394501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/22/2024] [Indexed: 05/24/2024] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles that carry bioactive molecules. Among EVs, outer membrane vesicles (OMVs), specifically produced by Gram-negative bacteria, have been extensively characterized and their potential as vaccines, adjuvants or immunotherapeutic agents, broadly explored in mammals. Nonetheless, Gram-positive bacteria can also produce bilayered spherical structures from 20 to 400 nm involved in pathogenesis, antibiotic resistance, nutrient uptake and nucleic acid transfer. However, information regarding their immunomodulatory potential is very scarce, both in mammals and fish. In the current study, we have produced EVs from the Gram-positive probiotic Bacillus subtilis and evaluated their immunomodulatory capacities using a rainbow trout intestinal epithelial cell line (RTgutGC) and splenic leukocytes. B. subtilis EVs significantly up-regulated the transcription of several pro-inflammatory and antimicrobial genes in both RTgutGC cells and splenocytes, while also up-regulating many genes associated with B cell differentiation in the later. In concordance, B. subtilis EVs increased the number of IgM-secreting cells in splenocyte cultures, while at the same time increased the MHC II surface levels and antigen-processing capacities of splenic IgM+ B cells. Interestingly, some of these experiments were repeated comparing the effects of B. subtilis EVs to EVs obtained from another Bacillus species, Bacillus megaterium, identifying important differences. The data presented provides evidence of the immunomodulatory capacities of Gram-positive EVs, pointing to the potential of B. subtilis EVs as adjuvants or immunostimulants for aquaculture.
Collapse
Affiliation(s)
- Samuel Vicente-Gil
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Noelia Nuñez-Ortiz
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Cláudia R. Serra
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Matosinhos, Portugal
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Félix Docando
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Patricia Díaz-Rosales
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Group, Animal Health Research Centre (CISA-INIA-CSIC), Madrid, Spain
| |
Collapse
|
4
|
Laksono BM, Sooksawasdi Na Ayudhya S, Aguilar-Bretones M, Embregts CWE, van Nierop GP, van Riel D. Human B cells and dendritic cells are susceptible and permissive to enterovirus D68 infection. mSphere 2024; 9:e0052623. [PMID: 38259063 PMCID: PMC10900886 DOI: 10.1128/msphere.00526-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Enterovirus D68 (EV-D68) is predominantly associated with mild respiratory infections, but can also cause severe respiratory disease and extra-respiratory complications, including acute flaccid myelitis. Systemic dissemination of EV-D68 is crucial for the development of extra-respiratory diseases, but it is currently unclear how EV-D68 spreads systemically (viremia). We hypothesize that immune cells contribute to the systemic dissemination of EV-D68, as this is a mechanism commonly used by other enteroviruses. Therefore, we investigated the susceptibility and permissiveness of human primary immune cells for different EV-D68 isolates. In human peripheral blood mononuclear cells inoculated with EV-D68, only B cells were susceptible but virus replication was limited. However, in B cell-rich cultures, such as Epstein-Barr virus-transformed B-lymphoblastoid cell line (BLCL) and primary lentivirus-transduced B cells, which better represent lymphoid B cells, were productively infected. Subsequently, we showed that dendritic cells (DCs), particularly immature DCs, are susceptible and permissive for EV-D68 infection and that they can spread EV-D68 to autologous BLCL. Altogether, our findings suggest that immune cells, especially B cells and DCs, could play an important role in the pathogenesis of EV-D68 infection. Infection of these cells may contribute to systemic dissemination of EV-D68, which is an essential step toward the development of extra-respiratory complications.IMPORTANCEEnterovirus D68 (EV-D68) is an emerging respiratory virus that has caused outbreaks worldwide since 2014. EV-D68 infects primarily respiratory epithelial cells resulting in mild respiratory diseases. However, EV-D68 infection is also associated with extra-respiratory complications, including polio-like paralysis. It is unclear how EV-D68 spreads systemically and infects other organs. We hypothesized that immune cells could play a role in the extra-respiratory spread of EV-D68. We showed that EV-D68 can infect and replicate in specific immune cells, that is, B cells and dendritic cells (DCs), and that virus could be transferred from DCs to B cells. Our data reveal a potential role of immune cells in the pathogenesis of EV-D68 infection. Intervention strategies that prevent EV-D68 infection of immune cells will therefore potentially prevent systemic spread of virus and thereby severe extra-respiratory complications.
Collapse
Affiliation(s)
| | | | | | | | | | - Debby van Riel
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Dobrikov MI, Dobrikova EY, Nardone-White DT, McKay ZP, Brown MC, Gromeier M. Early enterovirus translation deficits extend viral RNA replication and elicit sustained MDA5-directed innate signaling. mBio 2023; 14:e0191523. [PMID: 37962360 PMCID: PMC10746184 DOI: 10.1128/mbio.01915-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/02/2023] [Indexed: 11/15/2023] Open
Abstract
IMPORTANCE Multiple pattern recognition receptors sense vRNAs and initiate downstream innate signaling: endosomal Toll-like receptors (TLRs) 3, 7, and 8 and cytoplasmic RIG-I-like receptors (RLRs) RIG-I, and MDA5. They engage distinct signaling scaffolds: mitochondrial antiviral signaling protein (RLR), MyD88, and TLR-adaptor interacting with SLC15A4 on the lysosome (TLR7 and TLR8) and toll/IL-1R domain-containing adaptor inducing IFN (TLR3). By virtue of their unusual vRNA structure and direct host cell entry path, the innate response to EVs uniquely is orchestrated by MDA5. We reported that PVSRIPO's profound attenuation and loss of cytopathogenicity triggers MDA5-directed polar TBK1-IRF3 signaling that generates priming of polyfunctional antitumor CD8+ T-cell responses and durable antitumor surveillance in vivo. Here we unraveled EV-host relations that control suppression of host type-I IFN responses and show that PVSRIPO's deficient immediate host eIF4G cleavage generates unopposed MDA5-directed downstream signaling cascades resulting in sustained type-I IFN release.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Dasean T. Nardone-White
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
6
|
Hooi YT, Balasubramaniam VRMT. In vitro and in vivo models for the study of EV-D68 infection. Pathology 2023; 55:907-916. [PMID: 37852802 DOI: 10.1016/j.pathol.2023.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 08/14/2023] [Indexed: 10/20/2023]
Abstract
Enterovirus D68 (EV-D68) is one of hundreds of non-polio enteroviruses that typically cause cold-like respiratory illness. The first EV-D68 outbreak in the United States in 2014 aroused widespread concern among the public and health authorities. The infection was found to be associated with increased surveillance of acute flaccid myelitis, a neurological condition that causes limb paralysis in conjunction with spinal cord inflammation. In vitro studies utilising two-dimensional (2D) and three-dimensional (3D) culture systems have been employed to elucidate the pathogenic mechanism of EV-D68. Various animal models have also been developed to investigate viral tropism and distribution, pathogenesis, and immune responses during EV-D68 infection. EV-D68 infections have primarily been investigated in respiratory, intestinal and neural cell lines/tissues, as well as in small-size immunocompetent rodent models that were limited to a young age. Some studies have implemented strategies to overcome the barriers by using immunodeficient mice or virus adaptation. Although the existing models may not fully recapitulate both respiratory and neurological disease observed in human EV-D68 infection, they have been valuable for studying pathogenesis and evaluating potential vaccine or therapeutic candidates. In this review, we summarise the methodologies and findings from each experimental model and discuss their applications and limitations.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Vinod R M T Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia.
| |
Collapse
|
7
|
Tang M, Chen B, Xia H, Pan M, Zhao R, Zhou J, Yin Q, Wan F, Yan Y, Fu C, Zhong L, Zhang Q, Wang Y. pH-gated nanoparticles selectively regulate lysosomal function of tumour-associated macrophages for cancer immunotherapy. Nat Commun 2023; 14:5888. [PMID: 37735462 PMCID: PMC10514266 DOI: 10.1038/s41467-023-41592-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023] Open
Abstract
Tumour-associated macrophages (TAMs), as one of the most abundant tumour-infiltrating immune cells, play a pivotal role in tumour antigen clearance and immune suppression. M2-like TAMs present a heightened lysosomal acidity and protease activity, limiting an effective antigen cross-presentation. How to selectively reprogram M2-like TAMs to reinvigorate anti-tumour immune responses is challenging. Here, we report a pH-gated nanoadjuvant (PGN) that selectively targets the lysosomes of M2-like TAMs in tumours rather than the corresponding organelles from macrophages in healthy tissues. Enabled by the PGN nanotechnology, M2-like TAMs are specifically switched to a M1-like phenotype with attenuated lysosomal acidity and cathepsin activity for improved antigen cross-presentation, thus eliciting adaptive immune response and sustained tumour regression in tumour-bearing female mice. Our findings provide insights into how to specifically regulate lysosomal function of TAMs for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Mingmei Tang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meijie Pan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ruiyang Zhao
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiayi Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Qingqing Yin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Fangjie Wan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Lijun Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
8
|
Yang Y, Brown MC, Zhang G, Stevenson K, Mohme M, Kornahrens R, Bigner DD, Ashley DM, López GY, Gromeier M. Polio virotherapy targets the malignant glioma myeloid infiltrate with diffuse microglia activation engulfing the CNS. Neuro Oncol 2023; 25:1631-1643. [PMID: 36864784 PMCID: PMC10479910 DOI: 10.1093/neuonc/noad052] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Malignant gliomas commandeer dense inflammatory infiltrates with glioma-associated macrophages and microglia (GAMM) promoting immune suppression, evasion, and tumor progression. Like all cells in the mononuclear phagocytic system, GAMM constitutively express the poliovirus receptor, CD155. Besides myeloid cells, CD155 is widely upregulated in the neoplastic compartment of malignant gliomas. Intratumor treatment with the highly attenuated rhino:poliovirus chimera, PVSRIPO, yielded long-term survival with durable radiographic responses in patients with recurrent glioblastoma (Desjardins et al. New England Journal of Medicine, 2018). This scenario raises questions about the contributions of myeloid versus neoplastic cells to polio virotherapy of malignant gliomas. METHODS We investigated PVSRIPO immunotherapy in immunocompetent mouse brain tumor models with blinded, board-certified neuropathologist review, a range of neuropathological, immunohistochemical, and immunofluorescence analyses, and RNAseq of the tumor region. RESULTS PVSRIPO treatment caused intense engagement of the GAMM infiltrate associated with substantial, but transient tumor regression. This was accompanied by marked microglia activation and proliferation in normal brain surrounding the tumor, in the ipsilateral hemisphere and extending into the contralateral hemisphere. There was no evidence for lytic infection of malignant cells. PVSRIPO-instigated microglia activation occurred against a backdrop of sustained innate antiviral inflammation, associated with induction of the Programmed Cell Death Ligand 1 (PD-L1) immune checkpoint on GAMM. Combining PVSRIPO with PD1/PD-L1 blockade led to durable remissions. CONCLUSIONS Our work implicates GAMM as active drivers of PVSRIPO-induced antitumor inflammation and reveals profound and widespread neuroinflammatory activation of the brain-resident myeloid compartment by PVSRIPO.
Collapse
Affiliation(s)
- Yuanfan Yang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael C Brown
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Gao Zhang
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Kevin Stevenson
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Reb Kornahrens
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Darell D Bigner
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Giselle Y López
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, NC, USA
| |
Collapse
|
9
|
Bolaños-Martínez OC, Strasser R. Plant-made poliovirus vaccines - Safe alternatives for global vaccination. FRONTIERS IN PLANT SCIENCE 2022; 13:1046346. [PMID: 36340406 PMCID: PMC9630729 DOI: 10.3389/fpls.2022.1046346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Human polioviruses are highly infectious viruses that are spread mainly through the fecal-oral route. Infection of the central nervous system frequently results in irreversible paralysis, a disease called poliomyelitis. Children under five years are mainly affected if they have not acquired immunity through natural infection or via vaccination. Current polio vaccines comprise the injectable inactivated polio vaccine (IPV, also called the Salk vaccine) and the live-attenuated oral polio vaccine (OPV, also called the Sabin vaccine). The main limitations of the IPV are the reduced protection at the intestinal mucosa, the site of virus replication, and the high costs for manufacturing due to use of live viruses. While the OPV is more effective and stimulates mucosal immunity, it is manufactured using live-attenuated strains that can revert into pathogenic viruses resulting in major safety concerns and vaccine-derived outbreaks. During the last fifteen years, plant-based poliovirus vaccines have been explored by several groups as a safe and low-cost alternative, and promising results in protection against challenges with viruses and induction of neutralizing antibodies have been obtained. However, low yields and a high frequency in dose administration highlight the need for improvements in polioviral antigen production. In this review, we provide insights into recent efforts to develop plant-made poliovirus candidates, with an emphasis on strategies to optimize the production of viral antigens.
Collapse
Affiliation(s)
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, Institute of Plant Biotechnology and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
10
|
GATA1 controls numbers of hematopoietic progenitors and their response to autoimmune neuroinflammation. Blood Adv 2022; 6:5980-5994. [PMID: 36206195 PMCID: PMC9691916 DOI: 10.1182/bloodadvances.2022008234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/13/2022] [Indexed: 12/14/2022] Open
Abstract
GATA-binding factor 1 (GATA1) is a transcription factor that governs the development and function of multiple hematopoietic cell lineages. GATA1 is expressed in hematopoietic stem and progenitor cells (HSPCs) and is essential for erythroid lineage commitment; however, whether it plays a role in hematopoietic stem cell (HSC) biology and the development of myeloid cells, and what that role might be, remains unclear. We initially set out to test the role of eosinophils in experimental autoimmune encephalomyelitis (EAE), a model of central nervous system autoimmunity, using mice lacking a double GATA-site (ΔdblGATA), which lacks eosinophils due to the deletion of the dblGATA enhancer to Gata1, which alters its expression. ΔdblGATA mice were resistant to EAE, but not because of a lack of eosinophils, suggesting that these mice have an additional defect. ΔdblGATA mice with EAE had fewer inflammatory myeloid cells than the control mice, suggesting that resistance to EAE is caused by a defect in myeloid cells. Naïve ΔdblGATA mice also showed reduced frequency of CD11b+ myeloid cells in the blood, indicating a defect in myeloid cell production. Examination of HSPCs revealed fewer HSCs and myeloid cell progenitors in the ΔdblGATA bone marrow (BM), and competitive BM chimera experiments showed a reduced capacity of the ΔdblGATA BM to reconstitute immune cells, suggesting that reduced numbers of ΔdblGATA HSPCs cause a functional deficit during inflammation. Taken together, our data show that GATA1 regulates the number of HSPCs and that reduced GATA1 expression due to dblGATA deletion results in a diminished immune response following the inflammatory challenge.
Collapse
|
11
|
Addison MM, Ellis GI, Leslie GJ, Zawadzky NB, Riley JL, Hoxie JA, Eisenlohr LC. HIV-1-Infected CD4 + T Cells Present MHC Class II-Restricted Epitope via Endogenous Processing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:864-873. [PMID: 36130133 PMCID: PMC9512365 DOI: 10.4049/jimmunol.2200145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/15/2022] [Indexed: 01/04/2023]
Abstract
HIV-1-specific CD4+ T cells (TCD4+s) play a critical role in controlling HIV-1 infection. Canonically, TCD4+s are activated by peptides derived from extracellular ("exogenous") Ags displayed in complex with MHC class II (MHC II) molecules on the surfaces of "professional" APCs such as dendritic cells (DCs). In contrast, activated human TCD4+s, which express MHC II, are not typically considered for their APC potential because of their low endocytic capacity and the exogenous Ag systems historically used for assessment. Using primary TCD4+s and monocyte-derived DCs from healthy donors, we show that activated human TCD4+s are highly effective at MHC II-restricted presentation of an immunodominant HIV-1-derived epitope postinfection and subsequent noncanonical processing and presentation of endogenously produced Ag. Our results indicate that, in addition to marshalling HIV-1-specific immune responses during infection, TCD4+s also act as APCs, leading to the activation of HIV-1-specific TCD4+s.
Collapse
Affiliation(s)
- Mary M. Addison
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Gavin I. Ellis
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - George J. Leslie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Noah B. Zawadzky
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, 19104
| | - James L. Riley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - James A. Hoxie
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| | - Laurence C. Eisenlohr
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
12
|
Dobrikov MI, Dobrikova EY, McKay ZP, Kastan JP, Brown MC, Gromeier M. PKR Binds Enterovirus IRESs, Displaces Host Translation Factors, and Impairs Viral Translation to Enable Innate Antiviral Signaling. mBio 2022; 13:e0085422. [PMID: 35652592 PMCID: PMC9239082 DOI: 10.1128/mbio.00854-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022] Open
Abstract
For RNA virus families except Picornaviridae, viral RNA sensing includes Toll-like receptors and/or RIG-I. Picornavirus RNAs, whose 5' termini are shielded by a genome-linked protein, are predominately recognized by MDA5. This has important ramifications for adaptive immunity, as MDA5-specific patterns of type-I interferon (IFN) release are optimal for CD4+T cell TH1 polarization and CD8+T cell priming. We are exploiting this principle for cancer immunotherapy with recombinant poliovirus (PV), PVSRIPO, the type 1 (Sabin) PV vaccine containing a rhinovirus type 2 internal ribosomal entry site (IRES). Here we show that PVSRIPO-elicited MDA5 signaling is preceded by early sensing of the IRES by the double-stranded (ds)RNA-activated protein kinase (PKR). PKR binding to IRES stem-loop domains 5-6 led to dimerization and autoactivation, displaced host translation initiation factors, and suppressed viral protein synthesis. Early PKR-mediated antiviral responses tempered incipient viral translation and the activity of cytopathogenic viral proteinases, setting up accentuated MDA5 innate inflammation in response to PVSRIPO infection. IMPORTANCE Among the RIG-I-like pattern recognition receptors, MDA5 stands out because it senses long dsRNA duplexes independent of their 5' features (RIG-I recognizes viral [v]RNA 5'-ppp blunt ends). Uniquely among RNA viruses, the innate defense against picornaviruses is controlled by MDA5. We show that prior to engaging MDA5, recombinant PV RNA is sensed upon PKR binding to the viral IRES at a site that overlaps with the footprint for host translation factors mediating 40S subunit recruitment. Our study demonstrates that innate antiviral type-I IFN responses orchestrated by MDA5 involve separate innate modules that recognize distinct vRNA features and interfere with viral functions at multiple levels.
Collapse
Affiliation(s)
- Mikhail I. Dobrikov
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Elena Y. Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Zachary P. McKay
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Jonathan P. Kastan
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Michael C. Brown
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University Medical School, Durham, North Carolina, USA
| |
Collapse
|
13
|
Lloyd RE, Tamhankar M, Lernmark Å. Enteroviruses and Type 1 Diabetes: Multiple Mechanisms and Factors? Annu Rev Med 2022; 73:483-499. [PMID: 34794324 DOI: 10.1146/annurev-med-042320015952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA; ,
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden;
| |
Collapse
|
14
|
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease characterized by insulin deficiency and resultant hyperglycemia. Complex interactions of genetic and environmental factors trigger the onset of autoimmune mechanisms responsible for development of autoimmunity to β cell antigens and subsequent development of T1D. A potential role of virus infections has long been hypothesized, and growing evidence continues to implicate enteroviruses as the most probable triggering viruses. Recent studies have strengthened the association between enteroviruses and development of autoimmunity in T1D patients, potentially through persistent infections. Enterovirus infections may contribute to different stages of disease development. We review data from both human cohort studies and experimental research exploring the potential roles and molecular mechanisms by which enterovirus infections can impact disease outcome.
Collapse
Affiliation(s)
- Richard E. Lloyd
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Manasi Tamhankar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital, Malmö 214 28, Sweden
| |
Collapse
|
15
|
Nath P, Chauhan NR, Jena KK, Datey A, Kumar ND, Mehto S, De S, Nayak TK, Priyadarsini S, Rout K, Bal R, Murmu KC, Kalia M, Patnaik S, Prasad P, Reggiori F, Chattopadhyay S, Chauhan S. Inhibition of IRGM establishes a robust antiviral immune state to restrict pathogenic viruses. EMBO Rep 2021; 22:e52948. [PMID: 34467632 PMCID: PMC8567234 DOI: 10.15252/embr.202152948] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
The type I interferon (IFN) response is the major host arsenal against invading viruses. IRGM is a negative regulator of IFN responses under basal conditions. However, the role of human IRGM during viral infection has remained unclear. In this study, we show that IRGM expression is increased upon viral infection. IFN responses induced by viral PAMPs are negatively regulated by IRGM. Conversely, IRGM depletion results in a robust induction of key viral restriction factors including IFITMs, APOBECs, SAMHD1, tetherin, viperin, and HERC5/6. Additionally, antiviral processes such as MHC‐I antigen presentation and stress granule signaling are enhanced in IRGM‐deficient cells, indicating a robust cell‐intrinsic antiviral immune state. Consistently, IRGM‐depleted cells are resistant to the infection with seven viruses from five different families, including Togaviridae, Herpesviridae, Flaviviverdae, Rhabdoviridae, and Coronaviridae. Moreover, we show that Irgm1 knockout mice are highly resistant to chikungunya virus (CHIKV) infection. Altogether, our work highlights IRGM as a broad therapeutic target to promote defense against a large number of human viruses, including SARS‐CoV‐2, CHIKV, and Zika virus.
Collapse
Affiliation(s)
- Parej Nath
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India.,School of Biotechnology, KIIT University, Bhubaneswar, India
| | - Nishant Ranjan Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kautilya Kumar Jena
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ankita Datey
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Subhash Mehto
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Saikat De
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Tapas Kumar Nayak
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Swatismita Priyadarsini
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Kshitish Rout
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Ramyasingh Bal
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Krushna C Murmu
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Manjula Kalia
- Virology Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | | | - Punit Prasad
- Epigenetic and Chromatin Biology Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Soma Chattopadhyay
- Molecular Virology Lab, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Santosh Chauhan
- Cell Biology and Infectious Diseases Unit, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| |
Collapse
|
16
|
Brinck Andersen NS, Jørgensen SE, Skipper KA, Larsen SM, Heinz J, Thomsen MM, Farahani E, Cai Y, Hait AS, Kay L, Giehm Mikkelsen J, Høgsbjerg Schleimann M, Thomsen MK, Paludan SR, Mogensen TH. Essential role of autophagy in restricting poliovirus infection revealed by identification of an ATG7 defect in a poliomyelitis patient. Autophagy 2021; 17:2449-2464. [PMID: 33016799 PMCID: PMC8496727 DOI: 10.1080/15548627.2020.1831800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/19/2020] [Accepted: 09/24/2020] [Indexed: 01/10/2023] Open
Abstract
Paralytic poliomyelitis is a rare disease manifestation following poliovirus (PV) infection. The disease determinants remain largely unknown. We used whole exome sequencing to uncover possible contributions of host genetics to the development of disease outcome in humans with poliomyelitis. We identified a patient with a variant in ATG7, an important regulatory gene in the macroautophagy/autophagy pathway. PV infection did not induce a prominent type I interferon response, but rather activated autophagy in neuronal-like cells, and this was essential for viral control. Importantly, virus-induced autophagy was impaired in patient fibroblasts and associated with increased viral burden and enhanced cell death following infection. Lack of ATG7 prevented control of infection in neuronal-like cells, and reconstitution of patient cells with wild-type ATG7 reestablished autophagy-mediated control of infection. Collectively, these data suggest that ATG7 defect contributes to host susceptibility to PV infection and propose autophagy as an unappreciated antiviral effector in viral infection in humans.
Collapse
Affiliation(s)
- Nanna-Sophie Brinck Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Sofie Eg Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | - Simon Müller Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Johanna Heinz
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
| | - Michelle Mølgaard Thomsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ensieh Farahani
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Yujia Cai
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Alon Schneider Hait
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Lise Kay
- Department of poliomyelitis survivors, Specialhospitalet, Værløse, Denmark
| | | | | | | | | | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus N, Denmark
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| |
Collapse
|
17
|
Zhang R, Mu J, Chi J, Jiang W, Chi X. The role of picornavirus infection in epileptogenesis. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractPicornaviridae are a family of small positive-strand RNA viruses, and transmitted via the respiratory or fecal-oral route. The neurotropic picornaviruses can induce acute or late recurrent seizures following central nervous system infection, by infecting the peripheral nerve, crossing the blood-brain barrier and migrating in the Trojan-horse method. Theiler’s murine encephalomyelitis virus (TMEV), as a member of Picornaviridae family, can cause encephalitis, leading to chronic spontaneous seizures. TMEV-infected C57BL/6 mice have been used as an animal model for exploring the mechanism of epileptogenesis and assessing new antiepileptic drugs. Astrogliosis, neuronal death and microglial recruitment have been detected in the hippocampus following the picornaviruse-induced encephalitis. The macrophages, monocytes, neutrophils, as well as IL-6 and TNF-α released by them, play an important role in the epileptogenesis. In this review, we summarize the clinical characteristics of picornavirus infection, and the immunopathology involved in the TMEV-induced epilepsy.
Collapse
|
18
|
Elrick MJ, Pekosz A, Duggal P. Enterovirus D68 molecular and cellular biology and pathogenesis. J Biol Chem 2021; 296:100317. [PMID: 33484714 PMCID: PMC7949111 DOI: 10.1016/j.jbc.2021.100317] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/13/2022] Open
Abstract
In recent years, enterovirus D68 (EV-D68) has advanced from a rarely detected respiratory virus to a widespread pathogen responsible for increasing rates of severe respiratory illness and acute flaccid myelitis (AFM) in children worldwide. In this review, we discuss the accumulating data on the molecular features of EV-D68 and place these into the context of enterovirus biology in general. We highlight similarities and differences with other enteroviruses and genetic divergence from own historical prototype strains of EV-D68. These include changes in capsid antigens, host cell receptor usage, and viral RNA metabolism collectively leading to increased virulence. Furthermore, we discuss the impact of EV-D68 infection on the biology of its host cells, and how these changes are hypothesized to contribute to motor neuron toxicity in AFM. We highlight areas in need of further research, including the identification of its primary receptor and an understanding of the pathogenic cascade leading to motor neuron injury in AFM. Finally, we discuss the epidemiology of the EV-D68 and potential therapeutic approaches.
Collapse
Affiliation(s)
- Matthew J Elrick
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Mosaheb MM, Brown MC, Dobrikova EY, Dobrikov MI, Gromeier M. Harnessing virus tropism for dendritic cells for vaccine design. Curr Opin Virol 2020; 44:73-80. [PMID: 32771959 DOI: 10.1016/j.coviro.2020.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/13/2023]
Abstract
Dendritic cells (DCs) are pivotal stimulators of T cell responses. They provide essential signals (epitope presentation, proinflammatory cytokines, co-stimulation) to T cells and prime adaptive immunity. Therefore, they are paramount to immunization strategies geared to generate T cell immunity. The inflammatory signals DCs respond to, classically occur in the context of acute virus infection. Yet, enlisting viruses for engaging DCs is hampered by their penchant for targeting DCs with sophisticated immune evasive and suppressive ploys. In this review, we discuss our work on devising vectors based on a recombinant polio:rhinovirus chimera for effectively targeting and engaging DCs. We are juxtaposing this approach with commonly used, recently studied dsDNA virus vector platforms.
Collapse
Affiliation(s)
- Mubeen M Mosaheb
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Michael C Brown
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Elena Y Dobrikova
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Mikhail I Dobrikov
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States
| | - Matthias Gromeier
- Departments of Molecular Genetics & Microbiology and Neurosurgery, Duke University Medical School, MSRB1 Room 423, Box 3020 Durham, NC 27710, United States.
| |
Collapse
|
20
|
Mosaheb MM, Dobrikova EY, Brown MC, Yang Y, Cable J, Okada H, Nair SK, Bigner DD, Ashley DM, Gromeier M. Genetically stable poliovirus vectors activate dendritic cells and prime antitumor CD8 T cell immunity. Nat Commun 2020; 11:524. [PMID: 31988324 PMCID: PMC6985231 DOI: 10.1038/s41467-019-13939-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 12/06/2019] [Indexed: 12/20/2022] Open
Abstract
Viruses naturally engage innate immunity, induce antigen presentation, and mediate CD8 T cell priming against foreign antigens. Polioviruses can provide a context optimal for generating antigen-specific CD8 T cells, as they have natural tropism for dendritic cells, preeminent inducers of CD8 T cell immunity; elicit Th1-promoting inflammation; and lack interference with innate or adaptive immunity. However, notorious genetic instability and underlying neuropathogenicity has hampered poliovirus-based vector applications. Here we devised a strategy based on the polio:rhinovirus chimera PVSRIPO, devoid of viral neuropathogenicity after intracerebral inoculation in human subjects, for stable expression of exogenous antigens. PVSRIPO vectors infect, activate, and induce epitope presentation in DCs in vitro; they recruit and activate DCs with Th1-dominant cytokine profiles at the injection site in vivo. They efficiently prime tumor antigen-specific CD8 T cells in vivo, induce CD8 T cell migration to the tumor site, delay tumor growth and enhance survival in murine tumor models. Experimental PVSRIPO oncolytic virus therapy of glioblastoma has shown long-term efficacy in a subset of patients. Here the authors engineer the virus to enable incorporation of tumor-specific antigens, and show proof-of-principle evidence that this modification increases anti-tumor immunity and extends survival in mice.
Collapse
Affiliation(s)
- Mubeen M Mosaheb
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, 27701, USA
| | - Elena Y Dobrikova
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Michael C Brown
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Yuanfan Yang
- Department of Pathology, Duke University Medical School, Durham, NC, 27701, USA
| | - Jana Cable
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, 27701, USA
| | - Hideho Okada
- Parker Institute for Cancer Immunotherapy, University of California at San Francisco, San Francisco, CA, 94129, USA.,Department of Neurological Surgery, University of California at San Francisco, San Francisco, CA, 94129, USA
| | - Smita K Nair
- Department of Surgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Darell D Bigner
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - David M Ashley
- Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA
| | - Matthias Gromeier
- Department of Molecular Genetics & Microbiology, Duke University Medical School, Durham, NC, 27701, USA. .,Department of Neurosurgery, Duke University Medical School, Durham, NC, 27701, USA.
| |
Collapse
|
21
|
Abstract
Mechanisms to elicit antiviral immunity, a natural host response to viral pathogen challenge, are of eminent relevance to cancer immunotherapy. "Oncolytic" viruses, naturally existing or genetically engineered viral agents with cell type-specific propagation in malignant cells, were ostensibly conceived for their tumor cytotoxic properties. Yet, their true therapeutic value may rest in their ability to provoke antiviral signals that engage antitumor immune responses within the immunosuppressive tumor microenvironment. Coopting oncolytic viral agents to instigate antitumor immunity is not an easy feat. In the course of coevolution with their hosts, viruses have acquired sophisticated strategies to block inflammatory signals, intercept innate antiviral interferon responses, and prevent antiviral effector responses, e.g., by interfering with antigen presentation and T cell costimulation. The resulting struggle of host innate inflammatory and antiviral responses versus viral immune evasion and suppression determines the potential for antitumor immunity to occur. Moreover, paradigms of early host:virus interaction established in normal immunocompetent organisms may not hold in the profoundly immunosuppressive tumor microenvironment. In this review, we explain the mechanisms of recombinant nonpathogenic poliovirus, PVSRIPO, which is currently in phase I clinical trials against recurrent glioblastoma. We focus on an unusual host:virus relationship defined by the simple and cytotoxic replication strategy of poliovirus, which generates inflammatory perturbations conducive to tumor antigen-specific immune priming.
Collapse
Affiliation(s)
- Matthias Gromeier
- Department of Neurosurgery.,Department of Molecular Genetics and Microbiology
| | - Smita K Nair
- Department of Surgery.,Department of Pathology, Duke University School of Medicine, Durham, North Carolina 27710;
| |
Collapse
|
22
|
Yanan W, Wenyong Z, Ze L, Jingxia G, Lei M, Shengjie O, Bingjie Z, Xiaohu D, Weidong L, Guoyang L. Identification of genes and pathways in human antigen-presenting cell subsets in response to polio vaccine by bioinformatical analysis. J Med Virol 2019; 91:1729-1736. [PMID: 31187886 DOI: 10.1002/jmv.25514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Polio eradication has been achieved in the world except for three countries due to the widespread use of the inactivated poliovirus vaccine (IPV) and the live-attenuated oral poliovirus vaccine. Following polio eradication, the IPV would be the only polio vaccine available. However, the mechanisms of the interactions between IPV and human antigen-presenting cells (APCs) remain largely unclear. METHODS To investigate the involvement of the IPV in human monocytes, we downloaded the gene chip GSE44721 from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified using the GEO2R analysis tool. Functional and pathway enrichment analyses were performed for DEGs using the Metascape database. DEG-associated protein-protein-interactions (PPIs) were established by the Search Tool for the Retrieval of Interacting Genes website and visualized by Cytoscape. RESULTS There were 240 DEGs (51 upregulated and 189 downregulated genes) identified from the GSE44721 data set, and they were significantly enriched in several biological processes, including antigen processing and presentation of lipid antigen via MHC class Ib, adaptive immune response, and response to interferon-gamma. One hundred thirty-six nodes were screened from the DEG PPI network. There were six significant hub proteins (WDR36, MRTO4, RPF2, PPAN, CD40, and BMS1) that regulated the IPV in human monocytes. CONCLUSIONS In summary, using bioinformatical analysis, we have information for the immunization activated by the IPV in monocytes. Moreover, hormones and cytokines regulate the activation of APCs.
Collapse
Affiliation(s)
- Wu Yanan
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhu Wenyong
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Liu Ze
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Gao Jingxia
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ma Lei
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Ouyang Shengjie
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Zhang Bingjie
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Dai Xiaohu
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Li Weidong
- The Department of Production Administration, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Liao Guoyang
- The Fifth Department of Biological Products, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| |
Collapse
|
23
|
Andersen NSB, Larsen SM, Nissen SK, Jørgensen SE, Mardahl M, Christiansen M, Kay L, Mogensen TH. Host Genetics, Innate Immune Responses, and Cellular Death Pathways in Poliomyelitis Patients. Front Microbiol 2019; 10:1495. [PMID: 31354645 PMCID: PMC6629967 DOI: 10.3389/fmicb.2019.01495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/14/2019] [Indexed: 01/04/2023] Open
Abstract
Purpose Poliovirus (PV) is one of the most studied viruses. Despite efforts to understand PV infection within the host, fundamental questions remain unanswered. These include the mechanisms determining the progression to viremia, the pathogenesis of neuronal infection and paralysis in only a minority of patients. Because of the rare disease phenotype of paralytic poliomyelitis (PPM), we hypothesize that a genetic etiology may contribute to the disease course and outcome. Methods We used whole-exome sequencing (WES) to investigate the genetic profile of 18 patients with PPM. Functional analyses were performed on peripheral blood mononuclear cells (PBMCs) and monocyte-derived macrophages (MdMs). Results We identified rare variants in host genes involved in interferon signaling, viral replication, apoptosis, and autophagy. Upon PV infection of MdMs, we observed a tendency toward increased viral burden in patients compared to controls, suggesting reduced control of PV infection. In MdMs from patients, the IFNβ response correlated with the viral burden. Conclusion We suggest that genetic variants in innate immune defenses and cell death pathways contribute to the clinical presentation of PV infection. Importantly, this study is the first to uncover the genetic profile in patients with PPM combined with investigations of immune responses and viral burden in primary cells.
Collapse
Affiliation(s)
- Nanna-Sophie B Andersen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Simon M Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Sara K Nissen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Maibritt Mardahl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Christiansen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Kay
- Specialized Hospital for Polio- and Accident Patients, Rødovre, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
24
|
Muñoz-Fontela C, McElroy AK. Ebola Virus Disease in Humans: Pathophysiology and Immunity. Curr Top Microbiol Immunol 2019; 411:141-169. [PMID: 28653186 PMCID: PMC7122202 DOI: 10.1007/82_2017_11] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Viruses of the Ebolavirus genus cause sporadic epidemics of severe and systemic febrile disease that are fueled by human-to-human transmission. Despite the notoriety of ebolaviruses, particularly Ebola virus (EBOV), as prominent viral hemorrhagic fever agents, and the international concern regarding Ebola virus disease (EVD) outbreaks, very little is known about the pathophysiology of EVD in humans and, in particular, about the human immune correlates of survival and immune memory. This lack of basic knowledge about physiological characteristics of EVD is probably attributable to the dearth of clinical and laboratory data gathered from past outbreaks. The unprecedented magnitude of the EVD epidemic that occurred in West Africa from 2013 to 2016 has allowed, for the first time, evaluation of clinical, epidemiological, and immunological parameters in a significant number of patients using state-of-the-art laboratory equipment. This review will summarize the data from the literature regarding human pathophysiologic and immunologic responses to filoviral infection.
Collapse
Affiliation(s)
- César Muñoz-Fontela
- Laboratory of Emerging Viruses, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Martinistraße 52, 20251, Hamburg, Germany.
| | - Anita K McElroy
- Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive NE, Atlanta, GA, 30322, USA.
| |
Collapse
|
25
|
Benkahla M, Elmastour F, Sane F, Vreulx AC, Engelmann I, Desailloud R, Jaidane H, Alidjinou E, Hober D. Coxsackievirus-B4E2 can infect monocytes and macrophages in vitro and in vivo. Virology 2018; 522:271-280. [DOI: 10.1016/j.virol.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
|
26
|
Jammal MP, Michelin MA, Nomelini RS, Murta EFC. Recombinant poliovirus for cancer immunotherapy. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:368. [PMID: 30370295 DOI: 10.21037/atm.2018.07.19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Millena Prata Jammal
- Research Institute of Oncology (IPON)/Discipline of Gynecology and Obstetrics, Uberaba, Brazil
| | | | | | | |
Collapse
|
27
|
Soleto I, Morel E, Martín D, Granja AG, Tafalla C. Regulation of IgM + B Cell Activities by Rainbow Trout APRIL Reveals Specific Effects of This Cytokine in Lower Vertebrates. Front Immunol 2018; 9:1880. [PMID: 30150995 PMCID: PMC6099200 DOI: 10.3389/fimmu.2018.01880] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor ligand superfamily members such as B cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) have been identified in mammals as key regulators of B cell homeostasis and activation. However, the immune functions of APRIL are not as well defined as those of BAFF. Furthermore, while BAFF is present in all vertebrates, APRIL is missing in some animal groups, suggesting that BAFF has compensated the functions of APRIL in these species. In this context, we thought of great interest to explore the effects of APRIL on teleost B cells, given that APRIL appears for the first time in evolution in bony fish. Thus, in this study, we have performed an extensive analysis of the effect of APRIL on B cells using rainbow trout (Oncorhynchus mykiss) as a model species. Our results demonstrate that APRIL induces a specific proliferation of IgM+ B cells by itself and increases IgM secretion without promoting a terminal differentiation to plasma cells. APRIL also increased the levels of surface MHC II and augmented the capacity of these cells to process antigen, effects that were exclusively exerted on IgM+ B cells. Although our results point to a highly conserved role of APRIL on B cell homeostasis and activation throughout evolution, some specific differential effects have been observed in fish in comparison to the effects of APRIL previously described in mammals. Finally, the effects that APRIL induces on rainbow trout IgM+ B cells described in this paper have been compared with those previously reported in response to BAFF.
Collapse
Affiliation(s)
- Irene Soleto
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Esther Morel
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Diana Martín
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Aitor G Granja
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| | - Carolina Tafalla
- Fish Immunology and Pathology Laboratory, Center for Animal Health Research (CISA-INIA), Madrid, Spain
| |
Collapse
|
28
|
Brown MC, Holl EK, Boczkowski D, Dobrikova E, Mosaheb M, Chandramohan V, Bigner DD, Gromeier M, Nair SK. Cancer immunotherapy with recombinant poliovirus induces IFN-dominant activation of dendritic cells and tumor antigen-specific CTLs. Sci Transl Med 2017; 9:eaan4220. [PMID: 28931654 PMCID: PMC6034685 DOI: 10.1126/scitranslmed.aan4220] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 04/10/2017] [Accepted: 08/07/2017] [Indexed: 12/11/2022]
Abstract
Tumors thrive in an immunosuppressive microenvironment that impedes antitumor innate and adaptive immune responses. Thus, approaches that can overcome immunosuppression and engage antitumor immunity are needed. This study defines the adjuvant and cancer immunotherapy potential of the recombinant poliovirus/rhinovirus chimera PVSRIPO. PVSRIPO is currently in clinical trials against recurrent World Health Organization grade IV malignant glioma, a notoriously treatment-refractory cancer. Cytopathogenic infection of neoplastic cells releases the proteome and exposes pathogen- and damage-associated molecular patterns. At the same time, sublethal infection of antigen-presenting cells, such as dendritic cells and macrophages, yields potent, sustained type I interferon-dominant activation in an immunosuppressed microenvironment and promotes the development of tumor antigen-specific T cell responses in vitro and antitumor immunity in vivo. PVSRIPO's immune adjuvancy stimulates canonical innate anti-pathogen inflammatory responses within the tumor microenvironment that culminate in dendritic cell and T cell infiltration. Our findings provide mechanistic evidence that PVSRIPO functions as a potent intratumor immune adjuvant that generates tumor antigen-specific cytotoxic T lymphocyte responses.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Eda K Holl
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - David Boczkowski
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Elena Dobrikova
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Mubeen Mosaheb
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Vidya Chandramohan
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Darell D Bigner
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Smita K Nair
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA.
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
29
|
Masemann D, Boergeling Y, Ludwig S. Employing RNA viruses to fight cancer: novel insights into oncolytic virotherapy. Biol Chem 2017; 398:891-909. [DOI: 10.1515/hsz-2017-0103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 04/08/2017] [Indexed: 12/13/2022]
Abstract
Abstract
Within recent decades, viruses that specifically target tumor cells have emerged as novel therapeutic agents against cancer. These viruses do not only act via their cell-lytic properties, but also harbor immunostimulatory features to re-direct the tumor microenvironment and stimulate tumor-directed immune responses. Furthermore, oncolytic viruses are considered to be superior to classical cancer therapies due to higher selectivity towards tumor cell destruction and, consequently, less collateral damage of non-transformed healthy tissue. In particular, the field of oncolytic RNA viruses is rapidly developing since these agents possess alternative tumor-targeting strategies compared to established oncolytic DNA viruses. Thus, oncolytic RNA viruses have broadened the field of virotherapy facilitating new strategies to fight cancer. In addition to several naturally occurring oncolytic viruses, genetically modified RNA viruses that are armed to express foreign factors such as immunostimulatory molecules have been successfully tested in early clinical trials showing promising efficacy. This review aims to provide an overview of the most promising RNA viruses in clinical development, to summarize the current knowledge of clinical trials using these viral agents, and to discuss the main issues as well as future perspectives of clinical approaches using oncolytic RNA viruses.
Collapse
|
30
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
31
|
Szulc-Dąbrowska L, Struzik J, Ostrowska A, Guzera M, Toka FN, Bossowska-Nowicka M, Gieryńska MM, Winnicka A, Nowak Z, Niemiałtowski MG. Functional paralysis of GM-CSF-derived bone marrow cells productively infected with ectromelia virus. PLoS One 2017; 12:e0179166. [PMID: 28604814 PMCID: PMC5467855 DOI: 10.1371/journal.pone.0179166] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/24/2017] [Indexed: 12/31/2022] Open
Abstract
Ectromelia virus (ECTV) is an orthopoxvirus responsible for mousepox, a lethal disease of certain strains of mice that is similar to smallpox in humans, caused by variola virus (VARV). ECTV, similar to VARV, exhibits a narrow host range and has co-evolved with its natural host. Consequently, ECTV employs sophisticated and host-specific strategies to control the immune cells that are important for induction of antiviral immune response. In the present study we investigated the influence of ECTV infection on immune functions of murine GM-CSF-derived bone marrow cells (GM-BM), comprised of conventional dendritic cells (cDCs) and macrophages. Our results showed for the first time that ECTV is able to replicate productively in GM-BM and severely impaired their innate and adaptive immune functions. Infected GM-BM exhibited dramatic changes in morphology and increased apoptosis during the late stages of infection. Moreover, GM-BM cells were unable to uptake and process antigen, reach full maturity and mount a proinflammatory response. Inhibition of cytokine/chemokine response may result from the alteration of nuclear translocation of NF-κB, IRF3 and IRF7 transcription factors and down-regulation of many genes involved in TLR, RLR, NLR and type I IFN signaling pathways. Consequently, GM-BM show inability to stimulate proliferation of purified allogeneic CD4+ T cells in a primary mixed leukocyte reaction (MLR). Taken together, our data clearly indicate that ECTV induces immunosuppressive mechanisms in GM-BM leading to their functional paralysis, thus compromising their ability to initiate downstream T-cell activation events.
Collapse
Affiliation(s)
- Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
- * E-mail:
| | - Justyna Struzik
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | | | - Maciej Guzera
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Felix N. Toka
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies
| | - Magdalena Bossowska-Nowicka
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Małgorzata M. Gieryńska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Anna Winnicka
- Department of Pathology and Veterinary Diagnostics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Zuzanna Nowak
- Department of Genetics and Animal Breeding, Faculty of Animal Sciences, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| | - Marek G. Niemiałtowski
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Warsaw, Poland
| |
Collapse
|
32
|
Dunn-Pirio AM, Vlahovic G. Immunotherapy approaches in the treatment of malignant brain tumors. Cancer 2016; 123:734-750. [PMID: 27875627 DOI: 10.1002/cncr.30371] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 07/16/2016] [Accepted: 09/01/2016] [Indexed: 12/28/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumor. Despite standard-of-care treatment, consisting of maximal surgical resection followed by chemoradiation, both morbidity and mortality associated with this disease remain very poor. Therefore, there is an urgent need for more efficacious and well tolerated therapies. Advancing knowledge of the intricate interplay between malignant gliomas and the immune system, coupled with the recent launch of immunotherapy research for other cancers, has led to a veritable increase in immunotherapy investigation for glioblastoma and other malignant gliomas. This clinical review highlights the recent breakthroughs in cancer immunotherapy and the complex correlation of the immune system with primary brain tumors, with special attention to multiple immunotherapy modalities currently being investigated for malignant glioma, including peptide vaccines, dendritic cell vaccines, oncolytic viruses, chimeric T-cell receptors, and checkpoint inhibitors. Cancer 2017;123:734-50. © 2016 American Cancer Society.
Collapse
Affiliation(s)
- Anastasie M Dunn-Pirio
- The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| | - Gordana Vlahovic
- The Preston Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
33
|
Wang J, Zhang Y, Zhang X, Hu Y, Dong C, Liu L, Yang E, Che Y, Pu J, Wang X, Song J, Liao Y, Feng M, Liang Y, Zhao T, Jiang L, He Z, Lu S, Wang L, Li Y, Fan S, Guo L, Li Q. Pathologic and immunologic characteristics of coxsackievirus A16 infection in rhesus macaques. Virology 2016; 500:198-208. [PMID: 27829175 DOI: 10.1016/j.virol.2016.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/02/2016] [Accepted: 10/31/2016] [Indexed: 11/26/2022]
Abstract
Coxsackievirus A16 (CV-A16) causes human hand, foot and mouth disease, but its pathogenesis is unclear. In rhesus macaques, CV-A16 infection causes characteristic vesicles in the oral mucosa and limbs as well as viremia and positive viral loads in the tissues, suggesting that these animals reflect the pathologic process of the infection. An immunologic analysis indicated a defective immune response, which included undetectable neutralizing antibodies and IFN-γ-specific memory T-cells in macaques infected with CV-A16. Furthermore, existing neutralizing antibodies in macaques immunized with the inactivated vaccine were surprisingly unable to protect against a viral challenge despite the presence of a positive T-cell memory response against viral antigens. The virus was capable of infecting pre-conventional dendritic cells and replicating within them, which may correlate with the immunological characteristics observed in the animals.
Collapse
Affiliation(s)
- Jingjing Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xiaolong Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yajie Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Chenghong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Longding Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Erxia Yang
- Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu, China
| | - Yanchun Che
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Jing Pu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Xi Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Jie Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Min Feng
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yan Liang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Ting Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Li Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China; Jiangsu Convac Biotechnology Co., Ltd., Taizhou, Jiangsu, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lichun Wang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Shengtao Fan
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Lei Guo
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China
| | - Qihan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, Yunnan, China.
| |
Collapse
|
34
|
Brown MC, Gromeier M. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13:81-5. [PMID: 26083317 DOI: 10.1016/j.coviro.2015.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
Abstract
An oncolytic virus (OV) based on poliovirus (PV), the highly attenuated polio/rhinovirus recombinant PVSRIPO, may deliver targeted inflammatory cancer cell killing; a principle that is showing promise in clinical trials for recurrent glioblastoma (GBM). The two decisive factors in PVSRIPO anti-tumor efficacy are selective cytotoxicity and its in situ immunogenic imprint. While our work is focused on what constitutes PVSRIPO cancer cytotoxicity, we are also studying how this engenders host immune responses that are vital to tumor regression. We hypothesize that PVSRIPO cytotoxicity and immunogenicity are inextricably linked in essential, complimentary roles that define the anti-neoplastic response. Herein we delineate mechanisms we unraveled to decipher the basis for PVSRIPO cytotoxicity and its immunotherapeutic potential.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Molecular Genetics & Microbiology, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA; Department of Neurosurgery, Duke University Medical Center, Box 3020, Research Drive, Durham, NC 27710, USA.
| |
Collapse
|
35
|
Brown MC, Gromeier M. Oncolytic immunotherapy through tumor-specific translation and cytotoxicity of poliovirus. DISCOVERY MEDICINE 2015; 19:359-365. [PMID: 26105699 PMCID: PMC4780852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Achieving tumor-specific, robust, and durable effector cytotoxic immune responses is key to successful immunotherapy. This has been accomplished with adoptive cell transfer of ex vivo-expanded autologous tumor-infiltrating or engineered T cells, or with immune checkpoint inhibitors, enhancing inherent T cell reactivity. A natural ability to recruit effector responses makes tumor-targeting ('oncolytic') viruses attractive as immunotherapy vehicles. However, most viruses actively block inflammatory and immunogenic events; or, host innate immune responses may prevent immune initiating events in the first place. Moreover, the mechanisms of how virus infection can produce effector responses against host (tumor) neo-antigens are unclear. We are pioneering oncolytic immunotherapy based on poliovirus, which has no specific mechanism to interfere with host immune activation, exhibits lytic cytotoxicity in the presence of an antiviral interferon response and pre-existing immunity, and engages a powerful innate immune sensor implicated in recruiting cytotoxic T cell responses. Central to this approach is a unique confluence of factors that drive tumor-specific viral translation and cytotoxicity.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthias Gromeier
- Department of Surgery Division of Neurosurgery and Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
36
|
Baj A, Colombo M, Headley JL, McFarlane JR, Liethof MA, Toniolo A. Post-poliomyelitis syndrome as a possible viral disease. Int J Infect Dis 2015; 35:107-16. [PMID: 25939306 DOI: 10.1016/j.ijid.2015.04.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/22/2015] [Accepted: 04/23/2015] [Indexed: 12/27/2022] Open
Abstract
This review summarizes current concepts on post-polio syndrome (PPS), a condition that may arise in polio survivors after partial or complete functional recovery followed by a prolonged interval of stable neurological function. PPS affects 15-20 million people worldwide. Epidemiological data are reported, together with the pathogenic pathways that possibly lead to the progressive degeneration and loss of neuromuscular motor units. As a consequence of PPS, polio survivors experience new weakness, generalized fatigue, atrophy of previously unaffected muscles, and a physical decline that may culminate in the loss of independent life. Emphasis is given to the possible pathogenic role of persistent poliovirus infection and chronic inflammation. These factors could contribute to the neurological and physical decline in polio survivors. A perspective is then given on novel anti-poliovirus compounds and monoclonal antibodies that have been developed to contribute to the final phases of polio eradication. These agents could also be useful for the treatment or prevention of PPS. Some of these compounds/antibodies are in early clinical development. Finally, current clinical trials for PPS are reported. In this area, the intravenous infusion of normal human immunoglobulins appears both feasible and promising.
Collapse
Affiliation(s)
- Andreina Baj
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Martina Colombo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy
| | - Joan L Headley
- Post-Polio Health International, Saint Louis, Missouri, USA
| | | | - Mary-Ann Liethof
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy; Polio Australia Incorporated, Kew, Victoria, Australia
| | - Antonio Toniolo
- Laboratory of Clinical Microbiology, University of Insubria Medical School, Viale Borri 57, 21100 Varese, Italy.
| |
Collapse
|
37
|
Volle R, Archimbaud C, Couraud PO, Romero IA, Weksler B, Mirand A, Pereira B, Henquell C, Peigue-Lafeuille H, Bailly JL. Differential permissivity of human cerebrovascular endothelial cells to enterovirus infection and specificities of serotype EV-A71 in crossing an in vitro model of the human blood-brain barrier. J Gen Virol 2015; 96:1682-95. [PMID: 25711966 DOI: 10.1099/vir.0.000103] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human cerebral microvascular endothelial cells (hCMEC/D3 cell line) form a steady polarized barrier when cultured in vitro on a permeable membrane. Their susceptibility to enterovirus (EV) strains was analysed to investigate how these viruses may cross the blood-brain barrier. A sample of 88 virus strains was selected on phylogenetic features amongst 43 epidemiologically relevant types of the four EV species A-D. The EV-A71 genome was replicated at substantial rates, whilst the infectious virus was released at extremely low but sustained rates at both barrier sides for at least 4 days. EV-A71 antigens were detected in a limited number of cells. The properties of the endothelial barrier (structure and permeability) remained intact throughout infection. The chronic EV-A71 infection was in sharp contrast to the productive infection of cytolytic EVs (e.g. echoviruses E-6 and E-30). The hCMEC/D3 barriers infected with the latter EVs exhibited elevated proportions of apoptotic and necrotic cells, which resulted in major injuries to the endothelial barriers with a dramatic increase of paracellular permeability and virus crossing to the abluminal side. The following intracellular rearrangements were also seen: early destruction of the actin cytoskeleton, remodelling of intracellular membranes and reorganization of the mitochondrion network in a small cluster near the perinuclear space.
Collapse
Affiliation(s)
- Romain Volle
- 1Clermont Université, Université d'Auvergne, EPIE, EA 4843, Clermont-Ferrand, France 2CHU Clermont-Ferrand, Service de Virologie, Clermont-Ferrand, France
| | - Christine Archimbaud
- 1Clermont Université, Université d'Auvergne, EPIE, EA 4843, Clermont-Ferrand, France 2CHU Clermont-Ferrand, Service de Virologie, Clermont-Ferrand, France
| | | | - Ignacio A Romero
- 5Department of Life, Health and Chemical Sciences, Open University, Milton Keynes, UK
| | | | - Audrey Mirand
- 1Clermont Université, Université d'Auvergne, EPIE, EA 4843, Clermont-Ferrand, France 2CHU Clermont-Ferrand, Service de Virologie, Clermont-Ferrand, France
| | - Bruno Pereira
- 3CHU Clermont-Ferrand, DRCI, Clermont-Ferrand, France
| | - Cécile Henquell
- 2CHU Clermont-Ferrand, Service de Virologie, Clermont-Ferrand, France
| | - Hélène Peigue-Lafeuille
- 1Clermont Université, Université d'Auvergne, EPIE, EA 4843, Clermont-Ferrand, France 2CHU Clermont-Ferrand, Service de Virologie, Clermont-Ferrand, France
| | - Jean-Luc Bailly
- 1Clermont Université, Université d'Auvergne, EPIE, EA 4843, Clermont-Ferrand, France 2CHU Clermont-Ferrand, Service de Virologie, Clermont-Ferrand, France
| |
Collapse
|
38
|
Jensen KJ, Karkov HS, Lund N, Andersen A, Eriksen HB, Barbosa AG, Kantsø B, Aaby P, Benn CS. The immunological effects of oral polio vaccine provided with BCG vaccine at birth: a randomised trial. Vaccine 2014; 32:5949-56. [PMID: 25223267 DOI: 10.1016/j.vaccine.2014.08.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/11/2014] [Accepted: 08/27/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Vaccines may have non-specific effects. An observational study from Guinea-Bissau suggested that oral polio vaccine at birth (OPV0) provided with Bacillus Calmette-Guérin (BCG) vaccine was associated with down-regulation of the immune response to BCG vaccine 6 weeks later. Based on the previous finding, we wanted to test our a priori hypothesis that OPV would dampen the immune response to BCG, and secondarily to test immune responses to other antigens. METHODS The study was conducted at the Bandim Health Project in Guinea-Bissau in 2009-2010. Infants were randomised to OPV0+BCG versus BCG alone at birth, and subsequently randomised to have a blood sample taken at 2, 4 or 6 weeks post-randomisation. Excreted levels of cytokines (IL-2, IL-5, IL-10, TNF-α and IFN-γ) were measured from whole blood in vitro stimulations with a panel of recall vaccine antigens (BCG, PPD, OPV), mitogen (PHA) or innate agonists (LPS, Pam3cys, PolyI:C). Additionally, we measured the local reaction to BCG, white blood cell distribution, C-reactive protein (CRP) and retinol-binding protein (RBP). Cytokine production was analysed as the prevalence ratios of responders above the median. RESULTS Blood samples from 430 infants (209 OPV0+BCG; 221 BCG alone) were analysed. There were no strong differences in effects 2, 4 and 6 weeks post-randomisation and subsequent analyses were performed on the pooled data. As hypothesised, receiving OPV0+BCG versus BCG alone was associated with significantly lower prevalence of IFN-γ responses to PPD (prevalence ratio (PR): 0.84 (0.72-0.98)) and reduced IL-5 to PPD (PR: 0.78 (0.64-0.96)). No effects were observed for CPR, RBP, white blood cell distribution, or BCG scar prevalence. CONCLUSION The results corroborate that OPV attenuates the immune response to co-administered BCG at birth.
Collapse
Affiliation(s)
- Kristoffer Jarlov Jensen
- Research Center for Vitamins & Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark; Department of Cardiovascular and Renal Research, Faculty of Health Sciences, University of Southern Denmark, J.B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark; Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau codex, Guinea-Bissau.
| | - Hanne Sophie Karkov
- Research Center for Vitamins & Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark; Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau codex, Guinea-Bissau; Biopharmaceutical Research Unit, Novo Nordisk A/S, Novo Nordisk Park 1, DK-2760 Måløv, Denmark
| | - Najaaraq Lund
- Research Center for Vitamins & Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Andreas Andersen
- Research Center for Vitamins & Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Helle Brander Eriksen
- Research Center for Vitamins & Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | | | - Bjørn Kantsø
- Microbiological Diagnostics & Virology, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark
| | - Peter Aaby
- Bandim Health Project, INDEPTH Network, Apartado 861, 1004 Bissau codex, Guinea-Bissau
| | - Christine Stabell Benn
- Research Center for Vitamins & Vaccines (CVIVA), Bandim Health Project, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark; Odense Patient data Explorative Network, Institute of Clinical Research, University of Southern Denmark/Odense University Hospital, J.B. Winsløws Vej 25, 3, DK-5000 Odense C, Denmark
| |
Collapse
|
39
|
Brown MC, Dobrikova EY, Dobrikov MI, Walton RW, Gemberling SL, Nair SK, Desjardins A, Sampson JH, Friedman HS, Friedman AH, Tyler DS, Bigner DD, Gromeier M. Oncolytic polio virotherapy of cancer. Cancer 2014; 120:3277-86. [PMID: 24939611 DOI: 10.1002/cncr.28862] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 01/23/2023]
Abstract
Recently, the century-old idea of targeting cancer with viruses (oncolytic viruses) has come of age, and promise has been documented in early stage and several late-stage clinical trials in a variety of cancers. Although originally prized for their direct tumor cytotoxicity (oncolytic virotherapy), recently, the proinflammatory and immunogenic effects of viral tumor infection (oncolytic immunotherapy) have come into focus. Indeed, a capacity for eliciting broad, sustained antineoplastic effects stemming from combined direct viral cytotoxicity, innate antiviral activation, stromal proinflammatory stimulation, and recruitment of adaptive immune effector responses is the greatest asset of oncolytic viruses. However, it also is the source for enormous mechanistic complexity that must be considered for successful clinical translation. Because of fundamentally different relationships with their hosts (malignant or not), diverse replication strategies, and distinct modes of tumor cytotoxicity/killing, oncolytic viruses should not be referred to collectively. These agents must be evaluated based on their individual merits. In this review, the authors highlight key mechanistic principles of cancer treatment with the polio:rhinovirus chimera PVSRIPO and their implications for oncolytic immunotherapy in the clinic.
Collapse
Affiliation(s)
- Michael C Brown
- Department of Surgery, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Division of Neurosurgery Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina; Department of Molecular Genetics and Microbiology, Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Khan S, Toyoda H, Linehan M, Iwasaki A, Nomoto A, Bernhardt G, Cello J, Wimmer E. Poliomyelitis in transgenic mice expressing CD155 under the control of the Tage4 promoter after oral and parenteral poliovirus inoculation. J Gen Virol 2014; 95:1668-1676. [PMID: 24784416 DOI: 10.1099/vir.0.064535-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An important step in poliovirus (PV) infection by the oral route in humans is replication of the virus in lymphatic tissues of the gastrointestinal (GI) tract, thought to be mainly in the Peyer's patches of the small intestine. No immunocompetent transgenic (tg) mice that express human PV receptor (CD155) under the control of different promoters can be infected orally. The mouse orthologue of human CD155 is Tage4, a protein expressed at the surface of enterocytes and in the Peyer's patches. We describe here the generation of a tg mouse model in which the Tage4 promoter was used to drive expression of the human PV receptor-coding region (Tage4-CD155tg mice). In this model, CD155 expression was observed by immunostaining in different regions in the Peyer's patches but not in their germinal centres. Although a similar pattern of staining was observed between 3- and 6-week-old Tage4-CD155tg mice, poliomyelitis was only seen in the younger mice after PV infection by the oral route. When compared with TgPVR21 mice that expressed CD155 driven by its human promoter, 3-week-old Tage4-CD155tg mice were more susceptible to gut infection and paralysis following feeding with PV. Also, Tage4-CD155tg mice exhibited higher susceptibility to poliomyelitis after parenteral inoculation of PV. Remarkably, the LD50 after intracerebral inoculation of PV was similar in both CD155 tg mouse strains. The CD155 tg mouse model reported here, although moderately susceptible to oral infection, may be suitable to study mechanisms of PV replication in the gastrointestinal tract and to dissect important aspects of PV neuroinvasiveness.
Collapse
Affiliation(s)
- Shaukat Khan
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hidemi Toyoda
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Melissa Linehan
- Department of Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Akio Nomoto
- Microbial Chemistry Research Foundation, Institute of Microbial Chemistry, Tokyo, Japan
| | - Günter Bernhardt
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Jeronimo Cello
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Eckard Wimmer
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
41
|
Schulte BM, Kers-Rebel ED, Prosser AC, Galama JMD, van Kuppeveld FJM, Adema GJ. Differential susceptibility and response of primary human myeloid BDCA1(+) dendritic cells to infection with different Enteroviruses. PLoS One 2013; 8:e62502. [PMID: 23638101 PMCID: PMC3634769 DOI: 10.1371/journal.pone.0062502] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 03/22/2013] [Indexed: 12/24/2022] Open
Abstract
Coxsackie B viruses (CVBs) and echoviruses (EVs) form the Human Enterovirus-B (HEV-B) species within the family Picornaviridae. HEV-B infections are widespread and generally cause mild disease; however, severe infections occur and HEV-B are associated with various chronic diseases such as cardiomyopathy and type 1 diabetes. Dendritic cells (DCs) are the professional antigen-presenting cells of our immune system and initiate and control immune responses to invading pathogens, yet also maintain tolerance to self-antigens. We previously reported that EVs, but not CVBs, can productively infect in vitro generated monocyte-derived DCs. The interactions between HEV-B and human myeloid DCs (mDCs) freshly isolated from blood, however, remain unknown. Here, we studied the susceptibility and responses of BDCA1(+) mDC to HEV-B species and found that these mDC are susceptible to EV, but not CVB infection. Productive EV7 infection resulted in massive, rapid cell death without DC activation. Contrary, EV1 infection, which resulted in lower virus input at the same MOI, resulted in DC activation as observed by production of type I interferon-stimulated genes (ISGs), upregulation of co-stimulatory and co-inhibitory molecules (CD80, CD86, PDL1) and production of IL-6 and TNF-α, with a relative moderate decrease in cell viability. EV1-induced ISG expression depended on virus replication. CVB infection did not affect DC viability and resulted in poor induction of ISGs and CD80 induction in part of the donors. These data show for the first time the interaction between HEV-B species and BDCA1(+) mDCs isolated freshly from blood. Our data indicate that different HEV-B species can influence DC homeostasis in various ways, possibly contributing to HEV-B associated pathology.
Collapse
Affiliation(s)
- Barbara M. Schulte
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences & Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Esther D. Kers-Rebel
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences & Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Amy C. Prosser
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences & Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jochem M. D. Galama
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences & Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Frank J. M. van Kuppeveld
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences & Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences & Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
42
|
Freistadt M, Eberle KE, Huang W, Schwarzenberger P. CD34+ hematopoietic stem cells support entry and replication of poliovirus: a potential new gene introduction route. Cancer Gene Ther 2013; 20:201-7. [PMID: 23392202 DOI: 10.1038/cgt.2013.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Pluripotent hematopoietic stem cells (HSC) are critical in sustaining and constantly renewing the blood and immune system. The ability to alter biological characteristics of HSC by introducing and expressing genes would have enormous therapeutic possibilities. Previous unpublished work suggested that human HSC co-express CD34 (cluster of differentiation 34; an HSC marker) and CD155 (poliovirus receptor; also called Necl-5/Tage4/PVR/CD155). In the present study, we demonstrate the co-expression of CD34 and CD155 in primary human HSC. In addition, we demonstrate that poliovirus infects and replicates in human hematopoietic progenitor cell lines. Finally, we show that poliovirus replicates in CD34+ enriched primary HSC. CD34+ enriched HSC co-express CD155 and support poliovirus replication. These data may help further understanding of poliovirus spread in vivo and also demonstrate that human HSC may be amenable for gene therapy via poliovirus-capsid-based vectors. They may also help elucidate the normal function of Necl-5/Tage4/PVR/CD155.
Collapse
Affiliation(s)
- M Freistadt
- Science and Math, Delgado Community College, New Orleans, LA 70119, USA.
| | | | | | | |
Collapse
|
43
|
Goffard A, Alidjinou E, Sané F, Choteau L, Bouquillon C, Caloone D, Lobert P, Hober D. Antibodies enhance the infection of phorbol-ester-differentiated human monocyte-like cells with coxsackievirus B4. Microbes Infect 2013; 15:18-27. [DOI: 10.1016/j.micinf.2012.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 12/31/2022]
|
44
|
Agol VI. Cytopathic effects: virus-modulated manifestations of innate immunity? Trends Microbiol 2012; 20:570-6. [PMID: 23072900 PMCID: PMC7126625 DOI: 10.1016/j.tim.2012.09.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/17/2012] [Accepted: 09/20/2012] [Indexed: 11/21/2022]
Abstract
The capacity to injure infected cells is a widespread property of viruses. Usually, this cytopathic effect (CPE) is ascribed to viral hijacking of cellular resources to fulfill viral needs. However, evidence is accumulating that CPE is not necessarily directly coupled to viral reproduction but may largely be due to host defensive and viral antidefensive activities. A major part in this virus–cell interaction appears to be played by a putative host-encoded program with multiple competing branches, leading to necrotic, apoptotic, and, possibly, other types of cell suicide. Manifestations of this program are controlled and modulated by host, viral, and environmental factors.
Collapse
Affiliation(s)
- Vadim I Agol
- MP Chumakov Institute of Poliomyelitis and Viral Encephalitides, Russian Academy of Medical Sciences, Moscow 142782, Russia.
| |
Collapse
|
45
|
Gong X, Zhou J, Zhu W, Liu N, Li J, Li L, Jin Y, Duan Z. Excessive proinflammatory cytokine and chemokine responses of human monocyte-derived macrophages to enterovirus 71 infection. BMC Infect Dis 2012; 12:224. [PMID: 22994237 PMCID: PMC3519709 DOI: 10.1186/1471-2334-12-224] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 08/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The levels of proinflammatory cytokine or chemokine in blood and cerebrospinal fluid are thought to be one of predictors for clinical severity of enterovirus 71 (EV71) infection, yet the cellular sources or signalling mechanism remain undefined. Here, we focused on the response of human primary monocyte-derived macrophages (MDMs) to EV71 virus and its possible mechanisms. METHODS Human primary MDMs were infected by EV71 virus in vitro. Infectivity and viral replication were assayed, and cytokine responses were determined by Cytometric Bead Array(CBA) analysis. The relative changes of Toll-like receptors, retinoic acid-inducible gene I (RIG-I) and melamoma differentiation associated gene 5 (MDA5) mRNA expression were detected by real-time RT-PCR. RESULTS Effective infection and viral replication were detected in EV71-infected MDMs. The titters of progeny virus released from EV71-infected MDMs gradually increased from 6-h to 48-h point of infection (POI.). Proinflammatory cytokines: IL-1, IL-6, TNF-α but not IFN-α and γ were induced in MDMs by EV71. EV71 infection significantly increased the release of IL-8, IP-10 and RANTES at 12-h or 24-h POI. Upregulation of TLR2, TLR7 and TLR8 mRNA expression rather than TLR3, TLR4, TLR6, TLR9, TLR10, RIG-I, MDA5 were found at different time points in EV71-infected MDMs. CONCLUSIONS Our findings suggested that macrophages are not only the important target cells but also the effectors during EV71 infection, and they may play an important role in the pathogenesis of EV71 infection. And the proinflammatory cytokine and chemokine responses in EV71-infected MDMs may be mediated by the activation of differential pattern of TLRs.
Collapse
Affiliation(s)
- Xun Gong
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Jianfang Zhou
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Na Liu
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Jinsong Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Lili Li
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| | - Yu Jin
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
- Nanjingn Children’s Hospital, Medical School of Nanjing University, Nanjing, 210093, PR China
| | - Zhaojun Duan
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing, 100052, PR China
| |
Collapse
|
46
|
Kemball CC, Flynn CT, Hosking MP, Botten J, Whitton JL. Wild-type coxsackievirus infection dramatically alters the abundance, heterogeneity, and immunostimulatory capacity of conventional dendritic cells in vivo. Virology 2012; 429:74-90. [PMID: 22551767 DOI: 10.1016/j.virol.2012.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 11/29/2011] [Accepted: 04/11/2012] [Indexed: 12/21/2022]
Abstract
In vitro studies have shown that enteroviruses employ strategies that may impair the ability of DCs to trigger T cell immunity, but it is unclear how these viruses affect DCs in vivo. Here, we evaluate the effects of wild-type (wt) coxsackievirus B3 on DCs in vitro and in a murine model in vivo. Although CVB3 does not productively infect the vast majority of DCs, virus infection profoundly reduces splenic conventional DC numbers and diminishes their capacity to prime naïve CD8(+) T cells in vitro. In contrast to recombinant CVB3, highly pathogenic wt virus infection significantly diminishes the host's capacity to mount T cell responses, which is temporally associated with the loss of CD8α(+) DCs. Our findings demonstrate that enterovirus infection substantially alters the number, heterogeneity, and stimulatory capacity of DCs in vivo, and these dramatic immunomodulatory effects may weaken the host's capacity to mount antiviral T cell responses.
Collapse
Affiliation(s)
- Christopher C Kemball
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
47
|
Huang HI, Weng KF, Shih SR. Viral and host factors that contribute to pathogenicity of enterovirus 71. Future Microbiol 2012; 7:467-79. [DOI: 10.2217/fmb.12.22] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The single-stranded RNA virus enterovirus 71 (EV71), which belongs to the Picornaviridae family, has caused epidemics worldwide, particularly in the Asia–Pacific region. Most EV71 infections result in mild clinical symptoms, including herpangina and hand, foot and mouth disease. However, serious pathological complications have also been reported, especially for young children. The mechanisms of EV71 disease progression remain unclear. The pathogenesis of adverse clinical outcomes may relate to many factors, including cell tropism, cell death and host immune responses. This article reviews the recent advances in the identification of factors determining EV71 cell tropism, the associated mechanisms of viral infection-induced cell death and the interplay between EV71 and immunity.
Collapse
Affiliation(s)
- Hsing-I Huang
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Kuo-Feng Weng
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- The Center for Molecular & Clinical Immunology, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
- Department of Medical Biotechnology & Laboratory Science, Chang Gung University, Kwei-Shan Tao-Yuan, Taiwan, Republic of China
| |
Collapse
|
48
|
Jiang H, Schwertz H, Schmid DI, Jones BB, Kriesel J, Martinez ML, Weyrich AS, Zimmerman GA, Kraiss LW. Different mechanisms preserve translation of programmed cell death 8 and JunB in virus-infected endothelial cells. Arterioscler Thromb Vasc Biol 2012; 32:997-1004. [PMID: 22328780 DOI: 10.1161/atvbaha.112.245324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Translation initiation of eukaryotic mRNAs typically occurs by cap-dependent ribosome scanning mechanism. However, certain mRNAs are translated by ribosome assembly at internal ribosome entry sites (IRESs). Whether IRES-mediated translation occurs in stressed primary human endothelial cells (ECs) is unknown. METHODS AND RESULTS We performed microarray analysis of polyribosomal mRNA from ECs to identify IRES-containing mRNAs. Cap-dependent translation was disabled by poliovirus (PV) infection and confirmed by loss of polysome peaks, detection of eukaryotic initiation factor (eIF) 4G cleavage, and decreased protein synthesis. We found that 87.4% of mRNAs were dissociated from polysomes in virus-infected ECs. Twelve percent of mRNAs remained associated with polysomes, and 0.6% were enriched ≥2-fold in polysome fractions from infected ECs. Quantitative reverse transcription-polymerase chain reaction confirmed the microarray findings for 31 selected mRNAs. We found that enriched polysome associations of programmed cell death 8 (PDCD8) and JunB mRNA resulted in increased protein expression in PV-infected ECs. The presence of IRESs in the 5' untranslated region of PDCD8 mRNA, but not of JunB mRNA, was confirmed by dicistronic analysis. CONCLUSIONS We show that microarray profiling of polyribosomal mRNA transcripts from PV-infected ECs successfully identifies mRNAs whose translation is preserved in the face of stress-induced, near complete cessation of cap-dependent initiation. Nevertheless, internal ribosome entry is not the only mechanism responsible for this privileged translation.
Collapse
Affiliation(s)
- Huimiao Jiang
- Division of Vascular Surgery, University of Utah, Salt Lake City, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Hwang JY, Jun EJ, Seo I, Won M, Ahn J, Kim YK, Lee H. Characterization of infections of human leukocytes by non-polio enteroviruses. Intervirology 2011; 55:333-41. [PMID: 22057046 DOI: 10.1159/000329987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/16/2011] [Indexed: 11/19/2022] Open
Abstract
To elucidate the detailed susceptibilities of leukocytes to clinically important non-polio enteroviruses (EVs), primary monocytes and various human leukocyte cell lines were infected with coxsackievirus A24 (CVA24), coxsackievirus B3 (CVB3), and enterovirus 70 (EV70). The permissiveness was then assessed by determining virus replication and resultant cytopathic effects. Different EVs varied markedly in their ability to infect leukocyte cell lines. CVB3 replicated effectively in leukocytes of B-cell, T-cell, and monocyte origin, CVA24 in leukocytes of B-cell and monocyte origin, and EV70 in leukocytes of monocyte origin. Primary monocytes, as well as monocyte-derived U-937 cells, were permissive to all three EVs. We observed a positive correlation between cytotoxicity and active virus replication, except in CVB3-infected monocytes. U-937 cells efficiently generated CVB3 progeny virus without severe cellular damage, including cell death. Moreover, infectivity on leukocytes was not absolutely associated with the availability of viral receptors. These findings suggest that the susceptibility of human leukocytes to non-polio EVs may be responsible for virus transport during the viremic phase, particularly to secondary target organs, and that active replication of CVB3 in all human leukocyte lineages leads to greater dissemination, in agreement with the ability of CVB to cause systemic diseases.
Collapse
|
50
|
Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology 2011; 411:288-305. [PMID: 21251690 PMCID: PMC3060663 DOI: 10.1016/j.virol.2010.12.014] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/15/2022]
Abstract
Enteroviruses (EV) frequently infect the central nervous system (CNS) and induce neurological diseases. Although the CNS is composed of many different cell types, the spectrum of tropism for each EV is considerable. These viruses have the ability to completely shut down host translational machinery and are considered highly cytolytic, thereby causing cytopathic effects. Hence, CNS dysfunction following EV infection of neuronal or glial cells might be expected. Perhaps unexpectedly given their cytolytic nature, EVs may establish a persistent infection within the CNS, and the lasting effects on the host might be significant with unanticipated consequences. This review will describe the clinical aspects of EV-mediated disease, mechanisms of disease, determinants of tropism, immune activation within the CNS, and potential treatment regimes.
Collapse
Affiliation(s)
- Ross E. Rhoades
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Jenna M. Tabor-Godwin
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Ginger Tsueng
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| | - Ralph Feuer
- Cell & Molecular Biology Joint Doctoral Program, Department of Biology, San Diego State University, San Diego, CA, 92182-4614, USA
| |
Collapse
|