1
|
Ricobaraza A, Gonzalez-Aparicio M, Mora-Jimenez L, Lumbreras S, Hernandez-Alcoceba R. High-Capacity Adenoviral Vectors: Expanding the Scope of Gene Therapy. Int J Mol Sci 2020; 21:E3643. [PMID: 32455640 PMCID: PMC7279171 DOI: 10.3390/ijms21103643] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/21/2022] Open
Abstract
The adaptation of adenoviruses as gene delivery tools has resulted in the development of high-capacity adenoviral vectors (HC-AdVs), also known, helper-dependent or "gutless". Compared with earlier generations (E1/E3-deleted vectors), HC-AdVs retain relevant features such as genetic stability, remarkable efficacy of in vivo transduction, and production at high titers. More importantly, the lack of viral coding sequences in the genomes of HC-AdVs extends the cloning capacity up to 37 Kb, and allows long-term episomal persistence of transgenes in non-dividing cells. These properties open a wide repertoire of therapeutic opportunities in the fields of gene supplementation and gene correction, which have been explored at the preclinical level over the past two decades. During this time, production methods have been optimized to obtain the yield, purity, and reliability required for clinical implementation. Better understanding of inflammatory responses and the implementation of methods to control them have increased the safety of these vectors. We will review the most significant achievements that are turning an interesting research tool into a sound vector platform, which could contribute to overcome current limitations in the gene therapy field.
Collapse
Affiliation(s)
| | | | | | | | - Ruben Hernandez-Alcoceba
- Gene Therapy Program. University of Navarra-CIMA. Navarra Institute of Health Research, 31008 Pamplona, Spain; (A.R.); (M.G.-A.); (L.M.-J.); (S.L.)
| |
Collapse
|
2
|
Guilbaud M, Devaux M, Couzinié C, Le Duff J, Toromanoff A, Vandamme C, Jaulin N, Gernoux G, Larcher T, Moullier P, Le Guiner C, Adjali O. Five Years of Successful Inducible Transgene Expression Following Locoregional Adeno-Associated Virus Delivery in Nonhuman Primates with No Detectable Immunity. Hum Gene Ther 2019; 30:802-813. [PMID: 30808235 PMCID: PMC6648187 DOI: 10.1089/hum.2018.234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/21/2019] [Indexed: 01/28/2023] Open
Abstract
Anti-transgene immune responses elicited after intramuscular (i.m.) delivery of recombinant adeno-associated virus (rAAV) have been shown to hamper long-term transgene expression in large-animal models of rAAV-mediated gene transfer. To overcome this hurdle, an alternative mode of delivery of rAAV vectors in nonhuman primate muscles has been described: the locoregional (LR) intravenous route of administration. Using this injection mode, persistent inducible transgene expression for at least 1 year under the control of the tetracycline-inducible Tet-On system was previously reported in cynomolgus monkeys, with no immunity against the rtTA transgene product. The present study shows the long-term follow-up of these animals. It is reported that LR delivery of a rAAV2/1 vector allows long-term inducible expression up to at least 5 years post gene transfer, with no any detectable host immune response against the transactivator rtTA, despite its immunogenicity following i.m. gene transfer. This study shows for the first time a long-term regulation of muscle gene expression using a Tet-On-inducible system in a large-animal model. Moreover, these findings further confirm that the rAAV LR delivery route is efficient and immunologically safe, allowing long-term skeletal muscle gene transfer.
Collapse
Affiliation(s)
- Mickaël Guilbaud
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Marie Devaux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Celia Couzinié
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Johanne Le Duff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Alice Toromanoff
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Céline Vandamme
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Nicolas Jaulin
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Gwladys Gernoux
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | | | - Philippe Moullier
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Caroline Le Guiner
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| | - Oumeya Adjali
- INSERM UMR 1089, Translational Gene Therapy for Genetic Diseases, Université de Nantes, Nantes, France
| |
Collapse
|
3
|
Inhibition of hepatitis B virus replication by helper dependent adenoviral vectors expressing artificial anti-HBV pri-miRs from a liver-specific promoter. BIOMED RESEARCH INTERNATIONAL 2014; 2014:718743. [PMID: 25003129 PMCID: PMC4066856 DOI: 10.1155/2014/718743] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/25/2014] [Accepted: 05/08/2014] [Indexed: 12/17/2022]
Abstract
Research on applying RNA interference (RNAi) to counter HBV replication has led to identification of potential therapeutic sequences. However, before clinical application liver-specific expression and efficient delivery of these sequences remain an important objective. We recently reported short-term inhibition of HBV replication in vivo by using helper dependent adenoviral vectors (HD Ads) expressing anti-HBV sequences from a constitutively active cytomegalovirus (CMV) promoter. To develop the use of liver-specific transcription regulatory elements we investigated the utility of the murine transthyretin (MTTR) promoter for expression of anti-HBV primary microRNAs (pri-miRs). HD Ads containing MTTR promoter effected superior expression of anti-HBV pri-miRs in mice compared to HD Ads containing the CMV promoter. MTTR-containing HD Ads resulted in HBV replication knockdown of up to 94% in mice. HD Ads expressing trimeric anti-HBV pri-miRs silenced HBV replication for 5 weeks. We previously showed that the product of the codelivered lacZ gene induces an immune response, and the duration of HBV silencing in vivo is likely to be attenuated by this effect. Nevertheless, expression of anti-HBV pri-miRs from MTTR promoter is well suited to countering HBV replication and development of HD Ads through attenuation of their immunostimulatory effects should advance their clinical utility.
Collapse
|
4
|
Yao Y, He Y, Guan Q, Wu Q. A tetracycline expression system in combination with Sox9 for cartilage tissue engineering. Biomaterials 2013; 35:1898-906. [PMID: 24321708 DOI: 10.1016/j.biomaterials.2013.11.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 11/18/2013] [Indexed: 01/28/2023]
Abstract
Cartilage tissue engineering using controllable transcriptional therapy together with synthetic biopolymer scaffolds shows higher potential for overcoming chondrocyte degradation and constructing artificial cartilages both in vivo and in vitro. Here, the potential regulating tetracycline expression (Tet-on) system was used to express Sox9 both in vivo and in vitro. Chondrocyte degradation was measured in vitro and overcome by Soxf9 expression. Experiments confirmed the feasibility of the combined use of Sox9 and Tet-on system in cartilage tissue engineering. Engineered poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were seeded with recombinant chondrocytes which were transfected with Tet-induced Sox9 expression; the scaffolds were implanted under the skin of 8-week-old rats. The experimental group was injected with Dox in the abdomen, while the control group was injected with normal saline. After 4 or 8 days of implantation in vivo, the newly formed pieces of articular chondrocytes were taken out and measured. Dox injection in vivo showed positive effect on recombinant chondrocytes, in which Sox9 expression was up-regulated by an inducible system with specific matrix proteins. The results demonstrate this controllable transcriptional therapy is a potential approach for tissue engineering.
Collapse
Affiliation(s)
- Yi Yao
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu He
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qian Guan
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab. Bioinformatics, Center for Epigentics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
Specific expression of human interferon-gamma controls hepatitis B virus replication in vitro in secreting hepatitis B surface antigen hepatocytes. J Virol Methods 2012; 180:84-90. [DOI: 10.1016/j.jviromet.2011.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 11/04/2011] [Accepted: 12/30/2011] [Indexed: 12/31/2022]
|
6
|
Berraondo P, Crettaz J, Ochoa L, Vales A, Ruiz J, Prieto J, Martinez-Ansó E, González-Aseguinolaza G. Production of recombinant woodchuck IFNalpha and development of monoclonal antibodies. J Interferon Cytokine Res 2009; 29:75-82. [PMID: 19014334 DOI: 10.1089/jir.2008.0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Interferon alpha (IFNalpha) is the first line treatment for chronic hepatitis B and C. In order to test new IFNalpha delivery systems and investigate the function of this cytokine in the woodchuck model, the best animal model of chronic hepatitis B, we produced and purified recombinant woodchuck IFNalpha and used it to produce monoclonal antibodies. wIFNalpha5 was cloned in a prokaryotic expression system, expressed as His-tagged protein and then purified. The rwIFNalpha5 protein was found to induce STAT-3 phosphorylation, to enhance 2',5'-oligoadenylate synthetase mRNA levels and to possess a potent antiviral activity. Two monoclonal antibodies were obtained through immunization of rats with rwIFNalpha5. Both recognized rwIFNalpha5 in western blot analysis and one was able to neutralize the antiviral activity of the rwIFNalpha5 and lymphoblastoid IFNalpha preparations. Finally, a capture rwIFNalpha5 ELISA was developed using both antibodies. In summary, the tools generated in this study will allow different forms of IFNalpha delivery as well as different combination therapies in woodchuck hepatitis virus infection to be tested, thus providing useful information for the design of new strategies to treat chronic hepatitis B in humans.
Collapse
Affiliation(s)
- Pedro Berraondo
- Laboratory of Gene Therapy of Viral Hepatitis, Division of Hepatology and Gene Therapy, Center for Applied Medical Research (CIMA), Clínica Universitaria/School of Medicine, University of Navarra, 31080 Pamplona, Navarra, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Construction and application of an inducible system for homogenous expression levels in bulk cell lines. PLoS One 2009; 4:e6445. [PMID: 19649290 PMCID: PMC2714175 DOI: 10.1371/journal.pone.0006445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Accepted: 06/26/2009] [Indexed: 01/09/2023] Open
Abstract
Stringently controlled conditional expressing systems are crucial for the functional characterization of genes. Currently, screening of multiple clones to identify the tightly controlled ones is necessary but time-consuming. Here, we describe a system fusing Tet (tetracycline)-inducible elements, BAC (bacterial artificial chromosome) and Gateway technology together to allow tight control of gene expression in BAC-transfected eukaryotic bulk cell cultures. Recombinase cloning into the shuttle vector and the BAC facilitates vector construction. An EGFP (enhanced green fluorescent protein) allows FACS (fluorescence activated cell sorting) and the BAC technology ensures tight control of gene expression that is independent of the integrating site. In the current first application, our gene of interest encodes a beta-catenin-ERalpha fusion protein. Tested by luciferase assay and western blotting, in HTB56 lung cancer cells the final BAC E11-IGR-beta-catenin-ERalpha vector demonstrated sensitive inducibility by Tet or Dox (doxycycline) in a dose-dependent manner with low background, and the EGFP was an effective selection marker by FACS in bulk culture HTB56 and myeloblastic 32D cells. This is a highly efficient tool for the rapid generation of stringently controlled Tet-inducible systems in cell lines.
Collapse
|
8
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
9
|
Abstract
Drug-inducible systems allow modulation of the duration and intensity of cytokine expression in liver immuno-based gene therapy protocols. However, the biological activity of the transgene may influence their function. We have analyzed the kinetics of interleukin-12 (IL-12) expression controlled by the doxycycline (Dox)- and the mifepristone (Mif)-dependent systems using two long-term expressing vectors directed to liver: a plasmid administered by hydrodynamic injection and a high-capacity adenoviral vector. Daily administration of Dox or Mif was associated with a progressive loss of inducibility and a decrease of murine IL-12 production. This inhibition occurred at the transcriptional level and was probably caused by an interferon (IFN)-gamma-mediated downmodulation of liver-specific promoters that control the expression of transactivators in these systems. Genome-wide expression microarrays studies revealed a parallel downregulation of liver-specific genes in mice overexpressing murine IL-12. However, a promoter naturally induced by IL-12 was also inhibited by this cytokine when placed in a plasmid vector. Interestingly, treatment with sodium butyrate, a class I/II histone deacetylase inhibitor, was able to rescue liver-specific promoter activity solely in the vector. We conclude that biologically active IL-12 can transiently inhibit the function of drug-inducible systems in non-integrative DNA vectors by reducing promoter activity, probably through IFN-gamma and protein deacetylation-dependent mechanisms.
Collapse
|
10
|
Xiong W, Goverdhana S, Sciascia SA, Candolfi M, Zirger JM, Barcia C, Curtin JF, King GD, Jaita G, Liu C, Kroeger K, Agadjanian H, Medina-Kauwe L, Palmer D, Ng P, Lowenstein PR, Castro MG. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 2007; 80:27-37. [PMID: 16352528 PMCID: PMC1317549 DOI: 10.1128/jvi.80.1.27-37.2006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding beta-galactosidase (beta-gal) driven by a TetOn system containing the rtTAS(s)M2 transactivator and the tTS(Kid) repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON-beta-Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON-beta-Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON-beta-Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON-beta-Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.
Collapse
Affiliation(s)
- Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Research Pavilion, Room 5090, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gonzalez-Aseguinolaza G, Crettaz J, Ochoa L, Otano I, Aldabe R, Paneda A. Gene therapy for viral hepatitis. Expert Opin Biol Ther 2006; 6:1263-78. [PMID: 17223736 DOI: 10.1517/14712598.6.12.1263] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatitis B and C infections are two of the most prevalent viral diseases in the world. Existing therapies against chronic viral hepatitis are far from satisfactory due to low response rates, undesirable side effects and selection of resistant viral strains. Therefore, new therapeutic approaches are urgently needed. This review, after briefly summarising the in vitro and in vivo systems for the study of both diseases and the genetic vehicles commonly used for liver gene transfer, examines the existing status of gene therapy-based antiviral strategies that have been employed to prevent, eliminate or reduce viral infection. In particular, the authors focus on the results obtained in clinical trials and experimental clinically relevant animal models.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Genetic Therapy/methods
- Genetic Therapy/trends
- Hepatitis B, Chronic/genetics
- Hepatitis B, Chronic/prevention & control
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/prevention & control
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Human/genetics
- Hepatitis, Viral, Human/prevention & control
- Humans
Collapse
Affiliation(s)
- Gloria Gonzalez-Aseguinolaza
- University of Navarra, Division of Gene Therapy and Hepatology, Center for Applied Medical Research (CIMA), 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Pharmacologic transgene-expression dosing is considered essential for future gene therapy scenarios. Genetic interventions require precise transcription or translation fine-tuning of therapeutic transgenes to enable their titration into the therapeutic window, to adapt them to daily changing dosing regimes of the patient, to integrate them seamlessly into the patient's transcriptome orchestra, and to terminate their expression after successful therapy. In recent years, decisive progress has been achieved in designing high-precision trigger-inducible mammalian transgene control modalities responsive to clinically licensed and inert heterologous molecules or to endogenous physiologic signals. Availability of a portfolio of compatible transcription control systems has enabled assembly of higher-order control circuitries providing simultaneous or independent control of several transgenes and the design of (semi-)synthetic gene networks, which emulate digital expression switches, regulatory transcription cascades, epigenetic expression imprinting, and cellular transcription memories. This review provides an overview of cutting-edge developments in transgene control systems, of the design of synthetic gene networks, and of the delivery of such systems for the prototype treatment of prominent human disease phenotypes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology Zurich-ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|