1
|
Ghasemian E, Faal N, Pickering H, Sillah A, Breuer J, Bailey RL, Mabey D, Holland MJ. Genomic insights into local-scale evolution of ocular Chlamydia trachomatis strains within and between individuals in Gambian trachoma-endemic villages. Microb Genom 2024; 10:001210. [PMID: 38445851 PMCID: PMC10999739 DOI: 10.1099/mgen.0.001210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024] Open
Abstract
Trachoma, a neglected tropical disease caused by Chlamydia trachomatis (Ct) serovars A-C, is the leading infectious cause of blindness worldwide. Africa bears the highest burden, accounting for over 86 % of global trachoma cases. We investigated Ct serovar A (SvA) and B (SvB) whole genome sequences prior to the induction of mass antibiotic drug administration in The Gambia. Here, we explore the factors contributing to Ct strain diversification and the implications for Ct evolution within the context of ocular infection. A cohort study in 2002-2003 collected ocular swabs across nine Gambian villages during a 6 month follow-up study. To explore the genetic diversity of Ct within and between individuals, we conducted whole-genome sequencing (WGS) on a limited number (n=43) of Ct-positive samples with an omcB load ≥10 from four villages. WGS was performed using target enrichment with SureSelect and Illumina paired-end sequencing. Out of 43 WGS samples, 41 provided sufficient quality for further analysis. ompA analysis revealed that 11 samples had highest identity to ompA from strain A/HAR13 (NC_007429) and 30 had highest identity to ompA from strain B/Jali20 (NC_012686). While SvB genome sequences formed two distinct village-driven subclades, the heterogeneity of SvA sequences led to the formation of many individual branches within the Gambian SvA subclade. Comparing the Gambian SvA and SvB sequences with their reference strains, Ct A/HAR13 and Ct B/Jali20, indicated an single nucleotide polymorphism accumulation rate of 2.4×10-5 per site per year for the Gambian SvA and 1.3×10-5 per site per year for SvB variants (P<0.0001). Variant calling resulted in a total of 1371 single nucleotide variants (SNVs) with a frequency >25 % in SvA sequences, and 438 SNVs in SvB sequences. Of note, in SvA variants, highest evolutionary pressure was recorded on genes responsible for host cell modulation and intracellular survival mechanisms, whereas in SvB variants this pressure was mainly on genes essential for DNA replication/repair mechanisms and protein synthesis. A comparison of the sequences between observed separate infection events (4-20 weeks between infections) suggested that the majority of the variations accumulated in genes responsible for host-pathogen interaction such as CTA_0166 (phospholipase D-like protein), CTA_0498 (TarP) and CTA_0948 (deubiquitinase). This comparison of Ct SvA and SvB variants within a trachoma endemic population focused on their local evolutionary adaptation. We found a different variation accumulation pattern in the Gambian SvA chromosomal genes compared with SvB, hinting at the potential of Ct serovar-specific variation in diversification and evolutionary fitness. These findings may have implications for optimizing trachoma control and prevention strategies.
Collapse
Affiliation(s)
- Ehsan Ghasemian
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Nkoyo Faal
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Harry Pickering
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Ansumana Sillah
- National Eye Health Programme, Ministry of Health, Kanifing, Gambia
| | - Judith Breuer
- Division of Infection and Immunity, University College London, London, UK
| | - Robin L. Bailey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - David Mabey
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Martin J. Holland
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
2
|
Abstract
Type III secretion systems (T3SSs) are utilized by Gram-negative pathogens to enhance their pathogenesis. This secretion system is associated with the delivery of effectors through a needle-like structure from the bacterial cytosol directly into a target eukaryotic cell. These effector proteins then manipulate specific eukaryotic cell functions to benefit pathogen survival within the host. The obligate intracellular pathogens of the family Chlamydiaceae have a highly evolutionarily conserved nonflagellar T3SS that is an absolute requirement for their survival and propagation within the host with about one-seventh of the genome dedicated to genes associated with the T3SS apparatus, chaperones, and effectors. Chlamydiae also have a unique biphasic developmental cycle where the organism alternates between an infectious elementary body (EB) and replicative reticulate body (RB). T3SS structures have been visualized on both EBs and RBs. And there are effector proteins that function at each stage of the chlamydial developmental cycle, including entry and egress. This review will discuss the history of the discovery of chlamydial T3SS and the biochemical characterization of components of the T3SS apparatus and associated chaperones in the absence of chlamydial genetic tools. These data will be contextualized into how the T3SS apparatus functions throughout the chlamydial developmental cycle and the utility of heterologous/surrogate models to study chlamydial T3SS. Finally, there will be a targeted discussion on the history of chlamydial effectors and recent advances in the field.
Collapse
Affiliation(s)
- Elizabeth A. Rucks
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Durham Research Center II, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Li X, Hu D, Cai L, Wang H, Liu X, Du H, Yang Z, Zhang H, Hu Z, Huang F, Kan G, Kong F, Liu B, Yu D, Wang H. CALCIUM-DEPENDENT PROTEIN KINASE38 regulates flowering time and common cutworm resistance in soybean. PLANT PHYSIOLOGY 2022; 190:480-499. [PMID: 35640995 PMCID: PMC9434205 DOI: 10.1093/plphys/kiac260] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/03/2022] [Indexed: 06/02/2023]
Abstract
Photoperiod-sensitive plants such as soybean (Glycine max) often face threats from herbivorous insects throughout their whole growth period and especially during flowering; however, little is known about the relationship between plant flowering and insect resistance. Here, we used gene editing, multiple omics, genetic diversity and evolutionary analyses to confirm that the calcium-dependent protein kinase GmCDPK38 plays a dual role in coordinating flowering time regulation and insect resistance of soybean. Haplotype 2 (Hap2)-containing soybeans flowered later and were more resistant to the common cutworm (Spodoptera litura Fabricius) than those of Hap3. gmcdpk38 mutants with Hap3 knocked out exhibited similar flowering and resistance phenotypes as Hap2. Knocking out GmCDPK38 altered numerous flowering- and resistance-related phosphorylated proteins, genes, and metabolites. For example, the S-adenosylmethionine synthase GmSAMS1 was post-translationally upregulated in the gmcdpk38 mutants. GmCDPK38 has abundant genetic diversity in wild soybeans and was likely selected during soybean domestication. We found that Hap2 was mostly distributed at low latitudes and had a higher frequency in cultivars than in wild soybeans, while Hap3 was widely selected at high latitudes. Overall, our results elucidated that the two distinct traits (flowering time and insect resistance) are mediated by GmCDPK38.
Collapse
Affiliation(s)
- Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Linyan Cai
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiqi Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyu Liu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiping Du
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Huairen Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenbin Hu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Fanjiang Kong
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Tang DJ, Du X, Shi Q, Zhang JL, He YP, Chen YM, Ming Z, Wang D, Zhong WY, Liang YW, Liu JY, Huang JM, Zhong YS, An SQ, Gu H, Tang JL. A SAM-I riboswitch with the ability to sense and respond to uncharged initiator tRNA. Nat Commun 2020; 11:2794. [PMID: 32493973 PMCID: PMC7270179 DOI: 10.1038/s41467-020-16417-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 04/29/2020] [Indexed: 11/29/2022] Open
Abstract
All known riboswitches use their aptamer to senese one metabolite signal and their expression platform to regulate gene expression. Here, we characterize a SAM-I riboswitch (SAM-IXcc) from the Xanthomonas campestris that regulates methionine synthesis via the met operon. In vitro and in vivo experiments show that SAM-IXcc controls the met operon primarily at the translational level in response to cellular S-adenosylmethionine (SAM) levels. Biochemical and genetic data demonstrate that SAM-IXcc expression platform not only can repress gene expression in response to SAM binding to SAM-IXcc aptamer but also can sense and bind uncharged initiator Met tRNA, resulting in the sequestering of the anti-Shine-Dalgarno (SD) sequence and freeing the SD for translation initiation. These findings identify a SAM-I riboswitch with a dual functioning expression platform that regulates methionine synthesis through a previously unrecognized mechanism and discover a natural tRNA-sensing RNA element. This SAM-I riboswitch appears to be highly conserved in Xanthomonas species.
Collapse
Affiliation(s)
- Dong-Jie Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Xinyu Du
- Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Qiang Shi
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Jian-Ling Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
- School of Public Health, Zunyi Medical University, 563000, Zunyi, Guizhou, China
| | - Yuan-Ping He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Yan-Miao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Zhenhua Ming
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Dan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Wan-Ying Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Yu-Wei Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Jin-Yang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China
| | - Jian-Ming Huang
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Yun-Shi Zhong
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Shi-Qi An
- National Biofilms Innovation Centre (NBIC), Biological Sciences, University of Southampton, University Road, Southampton, SO17 1BJ, UK
| | - Hongzhou Gu
- Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
- Endoscopy Center, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Ji-Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Guangxi, China.
| |
Collapse
|
5
|
Nieto-Domínguez M, Nikel PI. Intersecting Xenobiology and Neometabolism To Bring Novel Chemistries to Life. Chembiochem 2020; 21:2551-2571. [PMID: 32274875 DOI: 10.1002/cbic.202000091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/09/2020] [Indexed: 12/19/2022]
Abstract
The diversity of life relies on a handful of chemical elements (carbon, oxygen, hydrogen, nitrogen, sulfur and phosphorus) as part of essential building blocks; some other atoms are needed to a lesser extent, but most of the remaining elements are excluded from biology. This circumstance limits the scope of biochemical reactions in extant metabolism - yet it offers a phenomenal playground for synthetic biology. Xenobiology aims to bring novel bricks to life that could be exploited for (xeno)metabolite synthesis. In particular, the assembly of novel pathways engineered to handle nonbiological elements (neometabolism) will broaden chemical space beyond the reach of natural evolution. In this review, xeno-elements that could be blended into nature's biosynthetic portfolio are discussed together with their physicochemical properties and tools and strategies to incorporate them into biochemistry. We argue that current bioproduction methods can be revolutionized by bridging xenobiology and neometabolism for the synthesis of new-to-nature molecules, such as organohalides.
Collapse
Affiliation(s)
- Manuel Nieto-Domínguez
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Markakis K, Lowe PT, Davison‐Gates L, O'Hagan D, Rosser SJ, Elfick A. An Engineered
E. coli
Strain for Direct in Vivo Fluorination. Chembiochem 2020; 21:1856-1860. [DOI: 10.1002/cbic.202000051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Indexed: 02/04/2023]
Affiliation(s)
- Konstantinos Markakis
- Institute for BioengineeringSchool of EngineeringUniversity of Edinburgh Faraday Building King's Buildings Colin Maclaurin Road Edinburgh EH9 3DW UK
| | - Phillip T. Lowe
- School of ChemistryUniversity of St. Andrews Purdie Building North Haugh St. Andrews KY16 9ST UK
| | - Liam Davison‐Gates
- Institute for BioengineeringSchool of EngineeringUniversity of Edinburgh Faraday Building King's Buildings Colin Maclaurin Road Edinburgh EH9 3DW UK
| | - David O'Hagan
- School of ChemistryUniversity of St. Andrews Purdie Building North Haugh St. Andrews KY16 9ST UK
| | - Susan J. Rosser
- School of Biological SciencesThe University of Edinburgh Roger Land Building The King's Buildings Alexander Crum Brown Road Edinburgh EH9 3FF UK
| | - Alistair Elfick
- Institute for BioengineeringSchool of EngineeringUniversity of Edinburgh Faraday Building King's Buildings Colin Maclaurin Road Edinburgh EH9 3DW UK
| |
Collapse
|
7
|
Major P, Embley TM, Williams TA. Phylogenetic Diversity of NTT Nucleotide Transport Proteins in Free-Living and Parasitic Bacteria and Eukaryotes. Genome Biol Evol 2018; 9:480-487. [PMID: 28164241 PMCID: PMC5381601 DOI: 10.1093/gbe/evx015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2017] [Indexed: 01/24/2023] Open
Abstract
Plasma membrane-located nucleotide transport proteins (NTTs) underpin the lifestyle of important obligate intracellular bacterial and eukaryotic pathogens by importing energy and nucleotides from infected host cells that the pathogens can no longer make for themselves. As such their presence is often seen as a hallmark of an intracellular lifestyle associated with reductive genome evolution and loss of primary biosynthetic pathways. Here, we investigate the phylogenetic distribution of NTT sequences across the domains of cellular life. Our analysis reveals an unexpectedly broad distribution of NTT genes in both host-associated and free-living prokaryotes and eukaryotes. We also identify cases of within-bacteria and bacteria-to-eukaryote horizontal NTT transfer, including into the base of the oomycetes, a major clade of parasitic eukaryotes. In addition to identifying sequences that retain the canonical NTT structure, we detected NTT gene fusions with HEAT-repeat and cyclic nucleotide binding domains in Cyanobacteria, pathogenic Chlamydiae and Oomycetes. Our results suggest that NTTs are versatile functional modules with a much wider distribution and a broader range of potential roles than has previously been appreciated.
Collapse
Affiliation(s)
- Peter Major
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - T Martin Embley
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | - Tom A Williams
- School of Earth Sciences, University of Bristol, United Kingdom
| |
Collapse
|
8
|
Chen Y, Zou T, McCormick S. S-Adenosylmethionine Synthetase 3 Is Important for Pollen Tube Growth. PLANT PHYSIOLOGY 2016; 172:244-53. [PMID: 27482079 PMCID: PMC5074607 DOI: 10.1104/pp.16.00774] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 07/30/2016] [Indexed: 05/03/2023]
Abstract
S-Adenosylmethionine is widely used in a variety of biological reactions and participates in the methionine (Met) metabolic pathway. In Arabidopsis (Arabidopsis thaliana), one of the four S-adenosylmethionine synthetase genes, METHIONINE ADENOSYLTRANSFERASE3 (MAT3), is highly expressed in pollen. Here, we show that mat3 mutants have impaired pollen tube growth and reduced seed set. Metabolomics analyses confirmed that mat3 pollen and pollen tubes overaccumulate Met and that mat3 pollen has several metabolite profiles, such as those of polyamine biosynthesis, which are different from those of the wild type. Additionally, we show that disruption of Met metabolism in mat3 pollen affected transfer RNA and histone methylation levels. Thus, our results suggest a connection between metabolism and epigenetics.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, and Department of Plant and Microbial Biology, University of California Berkeley, Albany, California 94710
| | - Ting Zou
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, and Department of Plant and Microbial Biology, University of California Berkeley, Albany, California 94710
| | - Sheila McCormick
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, and Department of Plant and Microbial Biology, University of California Berkeley, Albany, California 94710
| |
Collapse
|
9
|
Discovery of the Elusive UDP-Diacylglucosamine Hydrolase in the Lipid A Biosynthetic Pathway in Chlamydia trachomatis. mBio 2016; 7:e00090. [PMID: 27006461 PMCID: PMC4807358 DOI: 10.1128/mbio.00090-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Constitutive biosynthesis of lipid A via the Raetz pathway is essential for the viability and fitness of Gram-negative bacteria, including Chlamydia trachomatis. Although nearly all of the enzymes in the lipid A biosynthetic pathway are highly conserved across Gram-negative bacteria, the cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN (UDP-DAGn) to form lipid X is carried out by two unrelated enzymes: LpxH in beta- and gammaproteobacteria and LpxI in alphaproteobacteria. The intracellular pathogen C. trachomatis lacks an ortholog for either of these two enzymes, and yet, it synthesizes lipid A and exhibits conservation of genes encoding other lipid A enzymes. Employing a complementation screen against a C. trachomatis genomic library using a conditional-lethal lpxH mutant Escherichia coli strain, we have identified an open reading frame (Ct461, renamed lpxG) encoding a previously uncharacterized enzyme that complements the UDP-DAGn hydrolase function in E. coli and catalyzes the conversion of UDP-DAGn to lipid X in vitro. LpxG shows little sequence similarity to either LpxH or LpxI, highlighting LpxG as the founding member of a third class of UDP-DAGn hydrolases. Overexpression of LpxG results in toxic accumulation of lipid X and profoundly reduces the infectivity of C. trachomatis, validating LpxG as the long-sought-after UDP-DAGn pyrophosphatase in this prominent human pathogen. The complementation approach presented here overcomes the lack of suitable genetic tools for C. trachomatis and should be broadly applicable for the functional characterization of other essential C. trachomatis genes. Chlamydia trachomatis is a leading cause of infectious blindness and sexually transmitted disease. Due to the lack of robust genetic tools, the functions of many Chlamydia genes remain uncharacterized, including the essential gene encoding the UDP-DAGn pyrophosphatase activity for the biosynthesis of lipid A, the membrane anchor of lipooligosaccharide and the predominant lipid species of the outer leaflet of the bacterial outer membrane. We designed a complementation screen against the C. trachomatis genomic library using a conditional-lethal mutant of E. coli and identified the missing essential gene in the lipid A biosynthetic pathway, which we designated lpxG. We show that LpxG is a member of the calcineurin-like phosphatases and displays robust UDP-DAGn pyrophosphatase activity in vitro. Overexpression of LpxG in C. trachomatis leads to the accumulation of the predicted lipid intermediate and reduces bacterial infectivity, validating the in vivo function of LpxG and highlighting the importance of regulated lipid A biosynthesis in C. trachomatis.
Collapse
|
10
|
Jia KZ, Zhang Q, Sun LY, Xu YH, Li HM, Tang YJ. Clonostachys rosea demethiolase STR3 controls the conversion of methionine into methanethiol. Sci Rep 2016; 6:21920. [PMID: 26902928 PMCID: PMC4763297 DOI: 10.1038/srep21920] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/02/2016] [Indexed: 12/01/2022] Open
Abstract
Eukaryote-derived methioninase, catalyzing the one-step degradation of methionine (Met) to methanethiol (MTL), has received much attention for its low immunogenic potential and use as a therapeutic agent against Met-dependent tumors. Although biological and chemical degradation pathways for Met-MTL conversion are proposed, the concrete molecular mechanism for Met-MTL conversion in eukaryotes is still unclear. Previous studies demonstrated that α-keto-methylthiobutyric acid (KMBA), the intermediate for Met-MTL conversion, was located extracellularly and the demethiolase STR3 possessed no activities towards Met, which rule out the possibility of intracellular Met-MTL conversion pathway inside eukaryotes. We report here that degradation of Met resulted in intracellular accumulation of KMBA in Clonostachys rosea. Addition of Met to culture media led to the production of MTL and downregulation of STR3, while incubation of Met with surrogate substrate α-ketoglutaric acid enhanced the synthesis of MTL and triggered the upregulation of STR3. Subsequent biochemical analysis with recombinant STR3 showed that STR3 directly converted both Met and its transamination product KMBA to MTL. These results indicated that STR3 as rate-limiting enzyme degrades Met and KMBA into MTL. Our findings suggest STR3 is a potential target for therapeutic agents against Met-dependent tumors and aging.
Collapse
Affiliation(s)
- Kai-Zhi Jia
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Quan Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Lin-Yang Sun
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Yang-Hua Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Hong-Mei Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068 China
| |
Collapse
|
11
|
Borges V, Gomes JP. Deep comparative genomics among Chlamydia trachomatis lymphogranuloma venereum isolates highlights genes potentially involved in pathoadaptation. INFECTION GENETICS AND EVOLUTION 2015; 32:74-88. [PMID: 25745888 DOI: 10.1016/j.meegid.2015.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/19/2022]
Abstract
Lymphogranuloma venereum (LGV) is a human sexually transmitted disease caused by the obligate intracellular bacterium Chlamydia trachomatis (serovars L1-L3). LGV clinical manifestations range from severe ulcerative proctitis (anorectal syndrome), primarily caused by the epidemic L2b strains, to painful inguinal lymphadenopathy (the typical LGV bubonic form). Besides potential host-related factors, the differential disease severity and tissue tropism among LGV strains is likely a function of the genetic backbone of the strains. We aimed to characterize the genetic variability among LGV strains as strain- or serovar-specific mutations may underlie phenotypic signatures, and to investigate the mutational events that occurred throughout the pathoadaptation of the epidemic L2b lineage. By analyzing 20 previously published genomes from L1, L2, L2b and L3 strains and two new genomes from L2b strains, we detected 1497 variant sites and about 100 indels, affecting 453 genes and 144 intergenic regions, with 34 genes displaying a clear overrepresentation of nonsynonymous mutations. Effectors and/or type III secretion substrates (almost all of those described in the literature) and inclusion membrane proteins showed amino acid changes that were about fivefold more frequent than silent changes. More than 120 variant sites occurred in plasmid-regulated virulence genes, and 66% yielded amino acid changes. The identified serovar-specific variant sites revealed that the L2b-specific mutations are likely associated with higher fitness and pointed out potential targets for future highly discriminatory diagnostic/typing tests. By evaluating the evolutionary pathway beyond the L2b clonal radiation, we observed that 90.2% of the intra-L2b variant sites occurring in coding regions involve nonsynonymous mutations, where CT456/tarp has been the main target. Considering the progress on C. trachomatis genetic manipulation, this study may constitute an important contribution for prioritizing study targets for functional genomics aiming to dissect the impact of the identified intra-LGV polymorphisms on virulence or tropism dissimilarities among LGV strains.
Collapse
Affiliation(s)
- Vítor Borges
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João Paulo Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal; Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
12
|
Hua Z, Frohlich KM, Zhang Y, Feng X, Zhang J, Shen L. Andrographolide inhibits intracellular Chlamydia trachomatis multiplication and reduces secretion of proinflammatory mediators produced by human epithelial cells. Pathog Dis 2014; 73:1-11. [PMID: 25854005 DOI: 10.1093/femspd/ftu022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2014] [Indexed: 11/12/2022] Open
Abstract
Chlamydia trachomatis is the most common sexually transmitted bacterial disease worldwide. Untreated C. trachomatis infections may cause inflammation and ultimately damage tissues. Here, we evaluated the ability of Andrographolide (Andro), a natural diterpenoid lactone component of Andrographis paniculata, to inhibit C. trachomatis infection in cultured human cervical epithelial cells. We found that Andro exposure inhibited C. trachomatis growth in a dose- and time-dependent manner. The greatest inhibitory effect was observed when exponentially growing C. trachomatis was exposed to Andro. Electron micrographs demonstrated the accumulation of unusual, structurally deficient chlamydial organisms, correlated with a decrease in levels of OmcB expressed at the late stage of infection. Additionally, Andro significantly reduced the secretion of interleukin6, CXCL8 and interferon-γ-induced protein10 produced by host cells infected with C. trachomatis. These results indicate the efficacy of Andro to perturb C. trachomatis transition from the metabolically active reticulate body to the infectious elementary body and concurrently reduce the production of a proinflammatory mediator by epithelial cells in vitro. Further dissection of Andro's anti-Chlamydia action may provide identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Ziyu Hua
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Kyla M Frohlich
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Yan Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | | | - Jiaxing Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China, 400014
| | - Li Shen
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| |
Collapse
|
13
|
Barta ML, Thomas K, Yuan H, Lovell S, Battaile KP, Schramm VL, Hefty PS. Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway. J Biol Chem 2014; 289:32214-32229. [PMID: 25253688 DOI: 10.1074/jbc.m114.594325] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The obligate intracellular human pathogen Chlamydia trachomatis is the etiological agent of blinding trachoma and sexually transmitted disease. Genomic sequencing of Chlamydia indicated this medically important bacterium was not exclusively dependent on the host cell for energy. In order for the electron transport chain to function, electron shuttling between membrane-embedded complexes requires lipid-soluble quinones (e.g. menaquionone or ubiquinone). The sources or biosynthetic pathways required to obtain these electron carriers within C. trachomatis are poorly understood. The 1.58Å crystal structure of C. trachomatis hypothetical protein CT263 presented here supports a role in quinone biosynthesis. Although CT263 lacks sequence-based functional annotation, the crystal structure of CT263 displays striking structural similarity to 5'-methylthioadenosine nucleosidase (MTAN) enzymes. Although CT263 lacks the active site-associated dimer interface found in prototypical MTANs, co-crystal structures with product (adenine) or substrate (5'-methylthioadenosine) indicate that the canonical active site residues are conserved. Enzymatic characterization of CT263 indicates that the futalosine pathway intermediate 6-amino-6-deoxyfutalosine (kcat/Km = 1.8 × 10(3) M(-1) s(-1)), but not the prototypical MTAN substrates (e.g. S-adenosylhomocysteine and 5'-methylthioadenosine), is hydrolyzed. Bioinformatic analyses of the chlamydial proteome also support the futalosine pathway toward the synthesis of menaquinone in Chlamydiaceae. This report provides the first experimental support for quinone synthesis in Chlamydia. Menaquinone synthesis provides another target for agents to combat C. trachomatis infection.
Collapse
Affiliation(s)
- Michael L Barta
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045
| | - Keisha Thomas
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Hongling Yuan
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Kevin P Battaile
- Industrial Macromolecular Crystallography Association-Collaborative Access Team, Hauptman-Woodward Medical Research Institute, Argonne, Illinois 60439
| | - Vern L Schramm
- Department of Biochemistry, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461
| | - P Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045,.
| |
Collapse
|
14
|
Bonner CA, Byrne GI, Jensen RA. Chlamydia exploit the mammalian tryptophan-depletion defense strategy as a counter-defensive cue to trigger a survival state of persistence. Front Cell Infect Microbiol 2014; 4:17. [PMID: 24616884 PMCID: PMC3937554 DOI: 10.3389/fcimb.2014.00017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/29/2014] [Indexed: 01/07/2023] Open
Abstract
We previously proposed that in Chlamydiaceae rapid vegetative growth and a quiescent state of survival (persistence) depend upon alternative protein translational profiles dictated by host tryptophan (Trp) availability. These alternative profiles correspond, respectively, with a set of chlamydial proteins having higher-than-predicted contents of Trp ("Up-Trp" selection), or with another set exhibiting lower-than-predicted contents of Trp ("Down-Trp" selection). A comparative evaluation of Chlamydiaceae proteomes for Trp content has now been extended to a number of other taxon families within the Chlamydiales Order. At the Order level, elevated Trp content occurs for transporters of nucleotides, S-adenosylmethionine (SAM), dicarboxylate substrates, and Trp itself. For Trp and nucleotide transporters, this is even more pronounced in other chlamydiae families (Parachlamydiaceae, Waddliaceae, and Simkaniaceae) due to extensive paralog expansion. This suggests that intracellular Trp availability served as an ancient survival cue for enhancement or restraint of chlamydial metabolism in the common Chlamydiales ancestor. The Chlamydiaceae Family further strengthened Up-Trp selection for proteins that function in cell division, lipopolysaccharide biosynthesis, and methyltransferase reactions. Some proteins that exhibit Up-Trp selection are uniquely present in the Chlamydiaceae, e.g., cytotoxin and the paralog families of polymorphic membrane proteins (Pmp's). A striking instance of Down-Trp selection in the Chlamydiaceae is the chorismate biosynthesis pathway and the connecting menaquinone pathway. The newly recognized 1,4-dihydroxy-6-napthoate pathway of menaquinone biosynthesis operates in Chlamydiaceae, whereas the classic 2-napthoate pathway is used in the other Chlamydiales families. Because of the extreme Down-Trp selection, it would appear that menaquinone biosynthesis is particularly important to the integrity of the persistent state maintained under conditions of severe Trp limitation, and may thus be critical for perpetuation of chronic disease states.
Collapse
Affiliation(s)
- Carol A Bonner
- Microbiology and Cell Science, Emerson Hall, University of Florida Gainesville, FL, USA
| | - Gerald I Byrne
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center Memphis, TN, USA
| | - Roy A Jensen
- Microbiology and Cell Science, Emerson Hall, University of Florida Gainesville, FL, USA
| |
Collapse
|
15
|
Omsland A, Sixt BS, Horn M, Hackstadt T. Chlamydial metabolism revisited: interspecies metabolic variability and developmental stage-specific physiologic activities. FEMS Microbiol Rev 2014; 38:779-801. [PMID: 24484402 DOI: 10.1111/1574-6976.12059] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/08/2014] [Accepted: 01/13/2014] [Indexed: 01/07/2023] Open
Abstract
Chlamydiae are a group of obligate intracellular bacteria comprising important human and animal pathogens as well as symbionts of ubiquitous protists. They are characterized by a developmental cycle including two main morphologically and physiologically distinct stages, the replicating reticulate body and the infectious nondividing elementary body. In this review, we reconstruct the history of studies that have led to our current perception of chlamydial physiology, focusing on their energy and central carbon metabolism. We then compare the metabolic capabilities of pathogenic and environmental chlamydiae highlighting interspecies variability among the metabolically more flexible environmental strains. We discuss recent findings suggesting that chlamydiae may not live as energy parasites throughout the developmental cycle and that elementary bodies are not metabolically inert but exhibit metabolic activity under appropriate axenic conditions. The observed host-free metabolic activity of elementary bodies may reflect adequate recapitulation of the intracellular environment, but there is evidence that this activity is biologically relevant and required for extracellular survival and maintenance of infectivity. The recent discoveries call for a reconsideration of chlamydial metabolism and future in-depth analyses to better understand how species- and stage-specific differences in chlamydial physiology may affect virulence, tissue tropism, and host adaptation.
Collapse
Affiliation(s)
- Anders Omsland
- Host-Parasite Interactions Section, Laboratory of Intracellular Parasites, NIAID, NIH, Hamilton, MT, USA
| | | | | | | |
Collapse
|
16
|
Abstract
Obligate intracellular bacteria comprising the order Chlamydiales lack the ability to synthesize nucleotides de novo and must acquire these essential compounds from the cytosol of the host cell. The environmental protozoan endosymbiont Protochlamydia amoebophila UWE25 encodes five nucleotide transporters with specificities for different nucleotide substrates, including ATP, GTP, CTP, UTP, and NAD. In contrast, the human pathogen Chlamydia trachomatis encodes only two nucleotide transporters, the ATP/ADP translocase C. trachomatis Npt1 (Npt1(Ct)) and the nucleotide uniporter Npt2(Ct), which transports GTP, UTP, CTP, and ATP. The notable absence of a NAD transporter, coupled with the lack of alternative nucleotide transporters on the basis of bioinformatic analysis of multiple C. trachomatis genomes, led us to re-evaluate the previously characterized transport properties of Npt1(Ct). Using [adenylate-(32)P]NAD, we demonstrate that Npt1(Ct) expressed in Escherichia coli enables the transport of NAD with an apparent K(m) and V(max) of 1.7 μM and 5.8 nM mg(-1) h(-1), respectively. The K(m) for NAD transport is comparable to the K(m) for ATP transport of 2.2 μM, as evaluated in this study. Efflux and substrate competition assays demonstrate that NAD is a preferred substrate of Npt1(Ct) compared to ATP. These results suggest that during reductive evolution, the pathogenic chlamydiae lost individual nucleotide transporters, in contrast to their environmental endosymbiont relatives, without compromising their ability to obtain nucleotides from the host cytosol through relaxation of transport specificity. The novel properties of Npt1Ct and its conservation in chlamydiae make it a potential target for the development of antimicrobial compounds and a model for studying the evolution of transport specificity.
Collapse
|
17
|
The endosymbiont Amoebophilus asiaticus encodes an S-adenosylmethionine carrier that compensates for its missing methylation cycle. J Bacteriol 2013; 195:3183-92. [PMID: 23667233 DOI: 10.1128/jb.00195-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
All organisms require S-adenosylmethionine (SAM) as a methyl group donor and cofactor for various biologically important processes. However, certain obligate intracellular parasitic bacteria and also the amoeba symbiont Amoebophilus asiaticus have lost the capacity to synthesize this cofactor and hence rely on its uptake from host cells. Genome analyses revealed that A. asiaticus encodes a putative SAM transporter. The corresponding protein was functionally characterized in Escherichia coli: import studies demonstrated that it is specific for SAM and S-adenosylhomocysteine (SAH), the end product of methylation. SAM transport activity was shown to be highly dependent on the presence of a membrane potential, and by targeted analyses, we obtained direct evidence for a proton-driven SAM/SAH antiport mechanism. Sequence analyses suggest that SAM carriers from Rickettsiales might operate in a similar way, in contrast to chlamydial SAM transporters. SAM/SAH antiport is of high physiological importance, as it allows for compensation for the missing methylation cycle. The identification of a SAM transporter in A. asiaticus belonging to the Bacteroidetes phylum demonstrates that SAM transport is more widely spread than previously assumed and occurs in bacteria belonging to three different phyla (Proteobacteria, Chlamydiae, and Bacteroidetes).
Collapse
|
18
|
The alternative translational profile that underlies the immune-evasive state of persistence in Chlamydiaceae exploits differential tryptophan contents of the protein repertoire. Microbiol Mol Biol Rev 2012; 76:405-43. [PMID: 22688818 DOI: 10.1128/mmbr.05013-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One form of immune evasion is a developmental state called "persistence" whereby chlamydial pathogens respond to the host-mediated withdrawal of L-tryptophan (Trp). A sophisticated survival mode of reversible quiescence is implemented. A mechanism has evolved which suppresses gene products necessary for rapid pathogen proliferation but allows expression of gene products that underlie the morphological and developmental characteristics of persistence. This switch from one translational profile to an alternative translational profile of newly synthesized proteins is proposed to be accomplished by maximizing the Trp content of some proteins needed for rapid proliferation (e.g., ADP/ATP translocase, hexose-phosphate transporter, phosphoenolpyruvate [PEP] carboxykinase, the Trp transporter, the Pmp protein superfamily for cell adhesion and antigenic variation, and components of the cell division pathway) while minimizing the Trp content of other proteins supporting the state of persistence. The Trp starvation mechanism is best understood in the human-Chlamydia trachomatis relationship, but the similarity of up-Trp and down-Trp proteomic profiles in all of the pathogenic Chlamydiaceae suggests that Trp availability is an underlying cue relied upon by this family of pathogens to trigger developmental transitions. The biochemically expensive pathogen strategy of selectively increased Trp usage to guide the translational profile can be leveraged significantly with minimal overall Trp usage by (i) regional concentration of Trp residue placements, (ii) amplified Trp content of a single protein that is required for expression or maturation of multiple proteins with low Trp content, and (iii) Achilles'-heel vulnerabilities of complex pathways to high Trp content of one or a few enzymes.
Collapse
|