1
|
Marogi JG, Murphy CT, Myhrvold C, Gitai Z. Pseudomonas aeruginosa modulates both Caenorhabditis elegans attraction and pathogenesis by regulating nitrogen assimilation. Nat Commun 2024; 15:7927. [PMID: 39256376 PMCID: PMC11387622 DOI: 10.1038/s41467-024-52227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024] Open
Abstract
Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like many animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We describe the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, we demonstrate that nitrogen assimilation mutants perturb bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa. These studies define ammonia as a major mediator of trans-kingdom signaling, implicate nitrogen assimilation as important for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.
Collapse
Affiliation(s)
- Jacob G Marogi
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Coleen T Murphy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Cameron Myhrvold
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ, USA
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Saghaï A, Hallin S. Diversity and ecology of NrfA-dependent ammonifying microorganisms. Trends Microbiol 2024; 32:602-613. [PMID: 38462391 DOI: 10.1016/j.tim.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 03/12/2024]
Abstract
Nitrate ammonifiers are a taxonomically diverse group of microorganisms that reduce nitrate to ammonium, which is released, and thereby contribute to the retention of nitrogen in ecosystems. Despite their importance for understanding the fate of nitrate, they remain a largely overlooked group in the nitrogen cycle. Here, we present the latest advances on free-living microorganisms using NrfA to reduce nitrite during ammonification. We describe their diversity and ecology in terrestrial and aquatic environments, as well as the environmental factors influencing the competition for nitrate with denitrifiers that reduce nitrate to gaseous nitrogen species, including the greenhouse gas nitrous oxide (N2O). We further review the capacity of ammonifiers for other redox reactions, showing that they likely play multiple roles in the cycling of elements.
Collapse
Affiliation(s)
- Aurélien Saghaï
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Sara Hallin
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
3
|
Egas RA, Kurth JM, Boeren S, Sousa DZ, Welte CU, Sánchez-Andrea I. A novel mechanism for dissimilatory nitrate reduction to ammonium in Acididesulfobacillus acetoxydans. mSystems 2024; 9:e0096723. [PMID: 38323850 PMCID: PMC10949509 DOI: 10.1128/msystems.00967-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/25/2023] [Indexed: 02/08/2024] Open
Abstract
The biological route of nitrate reduction has important implications for the bioavailability of nitrogen within ecosystems. Nitrate reduction via nitrite, either to ammonium (ammonification) or to nitrous oxide or dinitrogen (denitrification), determines whether nitrogen is retained within the system or lost as a gas. The acidophilic sulfate-reducing bacterium (aSRB) Acididesulfobacillus acetoxydans can perform dissimilatory nitrate reduction to ammonium (DNRA). While encoding a Nar-type nitrate reductase, A. acetoxydans lacks recognized nitrite reductase genes. In this study, A. acetoxydans was cultivated under conditions conducive to DNRA. During cultivations, we monitored the production of potential nitrogen intermediates (nitrate, nitrite, nitric oxide, hydroxylamine, and ammonium). Resting cell experiments were performed with nitrate, nitrite, and hydroxylamine to confirm their reduction to ammonium, and formed intermediates were tracked. To identify the enzymes involved in DNRA, comparative transcriptomics and proteomics were performed with A. acetoxydans growing under nitrate- and sulfate-reducing conditions. Nitrite is likely reduced to ammonia by the previously undescribed nitrite reductase activity of the NADH-linked sulfite reductase AsrABC, or by a putatively ferredoxin-dependent homolog of the nitrite reductase NirA (DEACI_1836), or both. We identified enzymes and intermediates not previously associated with DNRA and nitrosative stress in aSRB. This increases our knowledge about the metabolism of this type of bacteria and helps the interpretation of (meta)genome data from various ecosystems on their DNRA potential and the nitrogen cycle.IMPORTANCENitrogen is crucial to any ecosystem, and its bioavailability depends on microbial nitrogen-transforming reactions. Over the recent years, various new nitrogen-transforming reactions and pathways have been identified, expanding our view on the nitrogen cycle and metabolic versatility. In this study, we elucidate a novel mechanism employed by Acididesulfobacillus acetoxydans, an acidophilic sulfate-reducing bacterium, to reduce nitrate to ammonium. This finding underscores the diverse physiological nature of dissimilatory reduction to ammonium (DNRA). A. acetoxydans was isolated from acid mine drainage, an extremely acidic environment where nitrogen metabolism is poorly studied. Our findings will contribute to understanding DNRA potential and variations in extremely acidic environments.
Collapse
Affiliation(s)
- Reinier A. Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Julia M. Kurth
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Microcosm Earth Centre, Philipps-Universität Marburg & Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z. Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Cornelia U. Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Environmental Sciences for Sustainability, IE University, Segovia, Spain
| |
Collapse
|
4
|
Smiley MK, Sekaran DC, Forouhar F, Wolin E, Jovanovic M, Price-Whelan A, Dietrich LEP. MpaR-driven expression of an orphan terminal oxidase subunit supports Pseudomonas aeruginosa biofilm respiration and development during cyanogenesis. mBio 2024; 15:e0292623. [PMID: 38112469 PMCID: PMC10790758 DOI: 10.1128/mbio.02926-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Cyanide is an inhibitor of heme-copper oxidases, which are required for aerobic respiration in all eukaryotes and many prokaryotes. This fast-acting poison can arise from diverse sources, but mechanisms by which bacteria sense it are poorly understood. We investigated the regulatory response to cyanide in the pathogenic bacterium Pseudomonas aeruginosa, which produces cyanide as a virulence factor. Although P. aeruginosa has the capacity to produce a cyanide-resistant oxidase, it relies primarily on heme-copper oxidases and even makes additional heme-copper oxidase proteins specifically under cyanide-producing conditions. We found that the protein MpaR controls expression of cyanide-inducible genes in P. aeruginosa and elucidated the molecular details of this regulation. MpaR contains a DNA-binding domain and a domain predicted to bind pyridoxal phosphate (vitamin B6), a compound that is known to react spontaneously with cyanide. These observations provide insight into the understudied phenomenon of cyanide-dependent regulation of gene expression in bacteria.
Collapse
Affiliation(s)
- Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Doran C. Sekaran
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Farhad Forouhar
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York, USA
| | - Erica Wolin
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, USA
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, USA
| |
Collapse
|
5
|
Deng W, Zhao Z, Li Y, Cao R, Chen M, Tang K, Wang D, Fan W, Hu A, Chen G, Chen CTA, Zhang Y. Strategies of chemolithoautotrophs adapting to high temperature and extremely acidic conditions in a shallow hydrothermal ecosystem. MICROBIOME 2023; 11:270. [PMID: 38049915 PMCID: PMC10696704 DOI: 10.1186/s40168-023-01712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/27/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND Active hydrothermal vents create extreme conditions characterized by high temperatures, low pH levels, and elevated concentrations of heavy metals and other trace elements. These conditions support unique ecosystems where chemolithoautotrophs serve as primary producers. The steep temperature and pH gradients from the vent mouth to its periphery provide a wide range of microhabitats for these specialized microorganisms. However, their metabolic functions, adaptations in response to these gradients, and coping mechanisms under extreme conditions remain areas of limited knowledge. In this study, we conducted temperature gradient incubations of hydrothermal fluids from moderate (pH = 5.6) and extremely (pH = 2.2) acidic vents. Combining the DNA-stable isotope probing technique and subsequent metagenomics, we identified active chemolithoautotrophs under different temperature and pH conditions and analyzed their specific metabolic mechanisms. RESULTS We found that the carbon fixation activities of Nautiliales in vent fluids were significantly increased from 45 to 65 °C under moderately acidic condition, while their heat tolerance was reduced under extremely acidic conditions. In contrast, Campylobacterales actively fixed carbon under both moderately and extremely acidic conditions under 30 - 45 °C. Compared to Campylobacterales, Nautiliales were found to lack the Sox sulfur oxidation system and instead use NAD(H)-linked glutamate dehydrogenase to boost the reverse tricarboxylic acid (rTCA) cycle. Additionally, they exhibit a high genetic potential for high activity of cytochrome bd ubiquinol oxidase in oxygen respiration and hydrogen oxidation at high temperatures. In terms of high-temperature adaption, the rgy gene plays a critical role in Nautiliales by maintaining DNA stability at high temperature. Genes encoding proteins involved in proton export, including the membrane arm subunits of proton-pumping NADH: ubiquinone oxidoreductase, K+ accumulation, selective transport of charged molecules, permease regulation, and formation of the permeability barrier of bacterial outer membranes, play essential roles in enabling Campylobacterales to adapt to extremely acidic conditions. CONCLUSIONS Our study provides in-depth insights into how high temperature and low pH impact the metabolic processes of energy and main elements in chemolithoautotrophs living in hydrothermal ecosystems, as well as the mechanisms they use to adapt to the extreme hydrothermal conditions. Video Abstract.
Collapse
Affiliation(s)
- Wenchao Deng
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China.
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yufang Li
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Rongguang Cao
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Mingming Chen
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Kai Tang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Deli Wang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, 316000, China
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Guangcheng Chen
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Chen-Tung Arthur Chen
- Department of Oceanography, National Sun Yat-Sen University, Kaohsiung Taiwan, China
| | - Yao Zhang
- State Key Laboratory of Marine Environmental Sciences, Xiamen University, Xiamen, 361101, China.
| |
Collapse
|
6
|
Lileikis T, Nainienė R, Bliznikas S, Uchockis V. Dietary Ruminant Enteric Methane Mitigation Strategies: Current Findings, Potential Risks and Applicability. Animals (Basel) 2023; 13:2586. [PMID: 37627377 PMCID: PMC10451764 DOI: 10.3390/ani13162586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
This review examines the current state of knowledge regarding the effectiveness of different dietary ruminant enteric methane mitigation strategies and their modes of action together with the issues discussed regarding the potential harms/risks and applicability of such strategies. By investigating these strategies, we can enhance our understanding of the mechanisms by which they influence methane production and identify promising approaches for sustainable mitigation of methane emissions. Out of all nutritional strategies, the use of 3-nitrooxypropanol, red seaweed, tannins, saponins, essential oils, nitrates, and sulfates demonstrates the potential to reduce emissions and receives a lot of attention from the scientific community. The use of certain additives as pure compounds is challenging under certain conditions, such as pasture-based systems, so the potential use of forages with sufficient amounts of plant secondary metabolites is also explored. Additionally, improved forage quality (maturity and nutrient composition) might help to further reduce emissions. Red seaweed, although proven to be very effective in reducing emissions, raises some questions regarding the volatility of the main active compound, bromoform, and challenges regarding the cultivation of the seaweed. Other relatively new methods of mitigation, such as the use of cyanogenic glycosides, are also discussed in this article. Together with nitrates, cyanogenic glycosides pose serious risks to animal health, but research has proven their efficacy and safety when control measures are taken. Furthermore, the risks of nitrate use can be minimized by using probiotics. Some of the discussed strategies, namely monensin or halogenated hydrocarbons (as pure compounds), demonstrate efficacy but are unlikely to be implemented widely because of legal restrictions.
Collapse
Affiliation(s)
- Tomas Lileikis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Rasa Nainienė
- Department of Animal Breeding and Reproduction, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Saulius Bliznikas
- Analytical Laboratory, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| | - Virginijus Uchockis
- Department of Animal Nutrition and Feedstuffs, Animal Science Institute, Lithuanian University of Health Sciences, R. Žebenkos 12, 82317 Baisogala, Lithuania;
| |
Collapse
|
7
|
Smiley MK, Sekaran DC, Price-Whelan A, Dietrich LE. Cyanide-dependent control of terminal oxidase hybridization by Pseudomonas aeruginosa MpaR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543164. [PMID: 37398129 PMCID: PMC10312525 DOI: 10.1101/2023.05.31.543164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Pseudomonas aeruginosa is a common, biofilm-forming pathogen that exhibits complex pathways of redox metabolism. It produces four different types of terminal oxidases for aerobic respiration, and for one of these-the cbb3-type terminal oxidases-it has the capacity to produce at least 16 isoforms encoded by partially redundant operons. It also produces small-molecule virulence factors that interact with the respiratory chain, including the poison cyanide. Previous studies had indicated a role for cyanide in activating expression of an "orphan" terminal oxidase subunit gene called ccoN4 and that the product contributes to P. aeruginosa cyanide resistance, fitness in biofilms, and virulence-but the mechanisms underlying this process had not been elucidated. Here, we show that the regulatory protein MpaR, which is predicted to be a pyridoxal phosphate-binding transcription factor and is encoded just upstream of ccoN4, controls ccoN4 expression in response to endogenous cyanide. Paradoxically, we find that cyanide production is required to support CcoN4's contribution to respiration in biofilms. We identify a palindromic motif required for cyanide- and MpaR-dependent expression of ccoN4 and co-expressed, adjacent loci. We also characterize the regulatory logic of this region of the chromosome. Finally, we identify residues in the putative cofactor-binding pocket of MpaR that are required for ccoN4 expression. Together, our findings illustrate a novel scenario in which the respiratory toxin cyanide acts as a signal to control gene expression in a bacterium that produces the compound endogenously.
Collapse
Affiliation(s)
- Marina K. Smiley
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Doran C. Sekaran
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
8
|
Lycus P, Einsle O, Zhang L. Structural biology of proteins involved in nitrogen cycling. Curr Opin Chem Biol 2023; 74:102278. [PMID: 36889028 DOI: 10.1016/j.cbpa.2023.102278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 03/08/2023]
Abstract
Microbial metabolic processes drive the global nitrogen cycle through sophisticated and often unique metalloenzymes that facilitate difficult redox reactions at ambient temperature and pressure. Understanding the intricacies of these biological nitrogen transformations requires a detailed knowledge that arises from the combination of a multitude of powerful analytical techniques and functional assays. Recent developments in spectroscopy and structural biology have provided new, powerful tools for addressing existing and emerging questions, which have gained urgency due to the global environmental implications of these fundamental reactions. The present review focuses on the recent contributions of the wider area of structural biology to understanding nitrogen metabolism, opening new avenues for biotechnological applications to better manage and balance the challenges of the global nitrogen cycle.
Collapse
Affiliation(s)
- Pawel Lycus
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany; Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Albertstrasse 21, 79104, Freiburg im Breisgau, Germany.
| |
Collapse
|