1
|
Lund MC, Hopkins A, Dayaram A, Galatowitsch ML, Stainton D, Harding JS, Lefeuvre P, Zhu Q, Kraberger S, Varsani A. Diverse microviruses circulating in invertebrates within a lake ecosystem. J Gen Virol 2024; 105. [PMID: 39565345 DOI: 10.1099/jgv.0.002049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Microviruses are single-stranded DNA bacteriophages and members of the highly diverse viral family Microviridae. Microviruses have a seemingly ubiquitous presence across animal gut microbiomes and other global environmental ecosystems. Most of the studies on microvirus diversity so far have been associated with vertebrate gut viromes. In this study, we investigate the less explored invertebrate microviruses in a freshwater ecosystem. We analysed microviruses from invertebrates in the Chironomidae, Gastropoda, Odonata, Sphaeriidae, Unionidae clades, as well as from water and benthic sediment sampled from a lake ecosystem in New Zealand. Using gene-sharing networks and an expanded framework of informal and proposed microvirus subfamilies, the 463 distinct microvirus genomes identified in this study were grouped as follows: 382 genomes in the Gokushovirinae subfamily and 47 in the Pichovirinae subfamily clade, 18 belonging to Group D, 3 belonging to the proposed Alpavirinae subfamily clade, 1 belonging to the proposed Occultatumvirinae/Tainavirinae subfamilies clade and 12 belonging to an undefined viral cluster VC 1. Inverse associations of microviruses were noted between environmental benthic sediment samples and the Odonata group, while 'defended' invertebrates in the Gastropoda, Sphaeriidae and Unionidae groups showed correlative associations in the principal coordinate analysis of unique microvirus genomes (each genome sharing <98% genome-wide pairwise identity with each other) across sample types. This study expands the known diversity of microviruses and highlights the diversity of these relatively poorly classified bacteriophages.
Collapse
Affiliation(s)
- Michael C Lund
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Andrew Hopkins
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Anisha Dayaram
- Institute of Neurophysiology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | | | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Jon S Harding
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Pierre Lefeuvre
- CIRAD, UMR PVBMT, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Qiyun Zhu
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Simona Kraberger
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Arvind Varsani
- Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
- Structural Biology Research Unit, Department of Integrative, Biomedical Sciences, University of Cape Town, Observatory, Cape Town, 7925, South Africa
| |
Collapse
|
2
|
Pleyer D, Griebler C, Winter C. Virus production in shallow groundwater at the bank of the Danube River. PLoS One 2024; 19:e0306346. [PMID: 39208231 PMCID: PMC11361564 DOI: 10.1371/journal.pone.0306346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/14/2024] [Indexed: 09/04/2024] Open
Abstract
Viruses play a crucial role in regulating prokaryotic populations, yet their impact on subsurface environments, specifically groundwater habitats, remains poorly understood. In this study, we employed the virus-dilution approach to measure lytic virus production rates in shallow groundwater located near the city of Vienna (Austria) during the period from July-November 2020. Physico-chemical parameters (pH, electrical conductivity, water temperature, concentration of dissolved oxygen), prokaryotic, and viral abundance, and viral decay rates were monitored as well. Our findings revealed low virus-to-prokaryote ratios varying between 0.9-3.9 throughout the study period and a lack of correlation between prokaryotic and viral abundance in groundwater. Virus production rates varied between 9-12% of viral abundance h-1 in July-August and between 34-36% of viral abundance h-1 in October-November. Seasonal variations in virus production rates were found to be correlated with electrical conductivity, revealing ~3.5 times higher virus production rates during periods with high electrical conductivity and low groundwater recharge in October-November compared to July-August with higher groundwater recharge and lower electrical conductivity. Our data indicate that groundwater recharge disrupts the balance between virus and prokaryotic host communities, resulting in a deficiency of suitable prokaryotic host cells for viral proliferation.
Collapse
Affiliation(s)
- Daniel Pleyer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Winter
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Gios E, Mosley OE, Hoggard M, Handley KM. High niche specificity and host genetic diversity of groundwater viruses. THE ISME JOURNAL 2024; 18:wrae035. [PMID: 38452204 PMCID: PMC10980836 DOI: 10.1093/ismejo/wrae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/14/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Viruses are key members of microbial communities that exert control over host abundance and metabolism, thereby influencing ecosystem processes and biogeochemical cycles. Aquifers are known to host taxonomically diverse microbial life, yet little is known about viruses infecting groundwater microbial communities. Here, we analysed 16 metagenomes from a broad range of groundwater physicochemistries. We recovered 1571 viral genomes that clustered into 468 high-quality viral operational taxonomic units. At least 15% were observed to be transcriptionally active, although lysis was likely constrained by the resource-limited groundwater environment. Most were unclassified (95%), and the remaining 5% were Caudoviricetes. Comparisons with viruses inhabiting other aquifers revealed no shared species, indicating substantial unexplored viral diversity. In silico predictions linked 22.4% of the viruses to microbial host populations, including to ultra-small prokaryotes, such as Patescibacteria and Nanoarchaeota. Many predicted hosts were associated with the biogeochemical cycling of carbon, nitrogen, and sulfur. Metabolic predictions revealed the presence of 205 putative auxiliary metabolic genes, involved in diverse processes associated with the utilization of the host's intracellular resources for biosynthesis and transformation reactions, including those involved in nucleotide sugar, glycan, cofactor, and vitamin metabolism. Viruses, prokaryotes overall, and predicted prokaryotic hosts exhibited narrow spatial distributions, and relative abundance correlations with the same groundwater parameters (e.g. dissolved oxygen, nitrate, and iron), consistent with host control over viral distributions. Results provide insights into underexplored groundwater viruses, and indicate the large extent to which viruses may manipulate microbial communities and biogeochemistry in the terrestrial subsurface.
Collapse
Affiliation(s)
- Emilie Gios
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- NINA, Norwegian Institute for Nature Research, Trondheim 7034, Norway
| | - Olivia E Mosley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
- NatureMetrics Ltd, Surrey Research Park, Guildford GU2 7HJ, United Kingdom
| | - Michael Hoggard
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Kim M Handley
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
4
|
Rosani U, Corinaldesi C, Luongo G, Sollitto M, Dal Monego S, Licastro D, Bongiorni L, Venier P, Pallavicini A, Dell’Anno A. Viral Diversity in Benthic Abyssal Ecosystems: Ecological and Methodological Considerations. Viruses 2023; 15:2282. [PMID: 38140524 PMCID: PMC10747316 DOI: 10.3390/v15122282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
Viruses are the most abundant 'biological entities' in the world's oceans. However, technical and methodological constraints limit our understanding of their diversity, particularly in benthic abyssal ecosystems (>4000 m depth). To verify advantages and limitations of analyzing virome DNA subjected either to random amplification or unamplified, we applied shotgun sequencing-by-synthesis to two sample pairs obtained from benthic abyssal sites located in the North-eastern Atlantic Ocean at ca. 4700 m depth. One amplified DNA sample was also subjected to single-molecule long-read sequencing for comparative purposes. Overall, we identified 24,828 viral Operational Taxonomic Units (vOTUs), belonging to 22 viral families. Viral reads were more abundant in the amplified DNA samples (38.5-49.9%) compared to the unamplified ones (4.4-5.8%), with the latter showing a greater viral diversity and 11-16% of dsDNA viruses almost undetectable in the amplified samples. From a procedural point of view, the viromes obtained by direct sequencing (without amplification step) provided a broader overview of both ss and dsDNA viral diversity. Nevertheless, our results suggest that the contextual use of random amplification of the same sample and long-read technology can improve the assessment of viral assemblages by reducing off-target reads.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Cinzia Corinaldesi
- Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Gabriella Luongo
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| | - Marco Sollitto
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34127 Trieste, Italy; (M.S.); (A.P.)
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, 6000 Koper, Slovenia
| | - Simeone Dal Monego
- Laboratorio di Genomica ed Epigenomica, AREA Scienze Park, Padriciano 99, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Danilo Licastro
- Laboratorio di Genomica ed Epigenomica, AREA Scienze Park, Padriciano 99, 34149 Trieste, Italy; (S.D.M.); (D.L.)
| | - Lucia Bongiorni
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine, Tesa 104–Arsenale, Castello 2737/F, 30122 Venezia, Italy;
| | - Paola Venier
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padova, Italy;
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, Via Licio Giorgeri 5, 34127 Trieste, Italy; (M.S.); (A.P.)
| | - Antonio Dell’Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy;
| |
Collapse
|
5
|
Qi L, Li R, Wu Y, Ibeanusi V, Chen G. Spatial distribution and assembly processes of bacterial communities in northern Florida freshwater springs. ENVIRONMENTAL RESEARCH 2023; 235:116584. [PMID: 37454793 DOI: 10.1016/j.envres.2023.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023]
Abstract
Freshwater microorganisms are an essential component of the global biogeochemical cycle and a significant contributory factor in water quality. Unraveling the mechanisms controlling microbial community spatial distribution is crucial for the assessment of water quality and health of aquatic ecosystems. This research provided a comprehensive analysis of microbial communities in Florida freshwater springs. The 16S rRNA gene sequencing and bioinformatics analyses revealed the bacterial compositional heterogeneity as well as numerous unique ASVs and biomarkers in different springs. Statistical analysis showed both geographic distance and environmental variables contributed to regional bacterial community variation, while nitrate was the dominant environmental stressor that shaped the bacterial communities. The phylogenetic bin-based null model characterized both deterministic and stochastic factors contributing to community assembly in Florida springs, with the majority of bins dominated by ecological drift. Mapping of predicted pathways to the MetaCyc database revealed the inconsistency between microbial taxonomic and functional profiles, implying the functional redundancy pattern. Collectively, our work sheds insights into the microbial spatial distribution, community assembly, and function traits in one of the world's most productive aquifers. Therefore, this work provides a unique view of the health of Florida's artesian springs and offers new perspectives for freshwater quality assessment and sustainable management.
Collapse
Affiliation(s)
- Lin Qi
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| | - Runwei Li
- Department of Civil Engineering, College of Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Yudi Wu
- College of Engineering and Applied Sciences, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor Ibeanusi
- School of the Environment, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| |
Collapse
|
6
|
Ruff SE, Humez P, de Angelis IH, Diao M, Nightingale M, Cho S, Connors L, Kuloyo OO, Seltzer A, Bowman S, Wankel SD, McClain CN, Mayer B, Strous M. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nat Commun 2023; 14:3194. [PMID: 37311764 DOI: 10.1038/s41467-023-38523-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 05/05/2023] [Indexed: 06/15/2023] Open
Abstract
Around 50% of humankind relies on groundwater as a source of drinking water. Here we investigate the age, geochemistry, and microbiology of 138 groundwater samples from 95 monitoring wells (<250 m depth) located in 14 aquifers in Canada. The geochemistry and microbiology show consistent trends suggesting large-scale aerobic and anaerobic hydrogen, methane, nitrogen, and sulfur cycling carried out by diverse microbial communities. Older groundwaters, especially in aquifers with organic carbon-rich strata, contain on average more cells (up to 1.4 × 107 mL-1) than younger groundwaters, challenging current estimates of subsurface cell abundances. We observe substantial concentrations of dissolved oxygen (0.52 ± 0.12 mg L-1 [mean ± SE]; n = 57) in older groundwaters that seem to support aerobic metabolisms in subsurface ecosystems at an unprecedented scale. Metagenomics, oxygen isotope analyses and mixing models indicate that dark oxygen is produced in situ via microbial dismutation. We show that ancient groundwaters sustain productive communities and highlight an overlooked oxygen source in present and past subsurface ecosystems of Earth.
Collapse
Affiliation(s)
- S Emil Ruff
- Department of Geoscience, University of Calgary, Calgary, Canada.
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA.
| | - Pauline Humez
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Isabella Hrabe de Angelis
- Department of Geoscience, University of Calgary, Calgary, Canada
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Muhe Diao
- Department of Geoscience, University of Calgary, Calgary, Canada
| | | | - Sara Cho
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Liam Connors
- Department of Geoscience, University of Calgary, Calgary, Canada
| | | | - Alan Seltzer
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Samuel Bowman
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Scott D Wankel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Cynthia N McClain
- Department of Geoscience, University of Calgary, Calgary, Canada
- Alberta Environment and Protected Areas, Calgary, Canada
- Alberta Biodiversity Monitoring Institute, Edmonton, Canada
| | - Bernhard Mayer
- Department of Geoscience, University of Calgary, Calgary, Canada
| | - Marc Strous
- Department of Geoscience, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Samson R, Rajput V, Yadav R, Shah M, Dastager S, Khairnar K, Dharne M. Spatio-temporal variation of the microbiome and resistome repertoire along an anthropogenically dynamic segment of the Ganges River, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162125. [PMID: 36773904 DOI: 10.1016/j.scitotenv.2023.162125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Aquatic ecosystems are regarded as a hub of antibiotic and metal resistance genes. River Ganges is a unique riverine system in India with socio-cultural and economic significance. However, it remains underexplored for its microbiome and associated resistomes along its anthropogenically impacted course. The present study utilized a nanopore sequencing approach to depict the microbial community structure in the sediments of the river Ganges harboring antibiotic and metal resistance genes (A/MRGs) in lower stretches known for anthropogenic impact. Comprehensive microbiome analyses revealed resistance genes against 23 different types of metals and 28 classes of antibiotics. The most dominant ARG category was multidrug resistance, while the most prevalent MRGs conferred resistance against copper and zinc. Seasonal differences dismally affected the microbiota of the Ganges. However, resistance genes for fosmidomycin and tetracycline varied with season ANOVA, p < 0.05. Interestingly, 333 and 334 ARG subtypes were observed at all the locations in pre-monsoon and post-monsoon, respectively. The taxa associated with the dominant ARGs and MRGs were Pseudomonas and Burkholderia, which are important nosocomial pathogens. A substantial phage diversity for pathogenic and putrefying bacteria at all locations attracts attention for its use to tackle the dissemination of antibiotic and metal-resistant bacteria. This study suggests the accumulation of antibiotics and metals as the driving force for the emergence of resistance genes and the affiliated bacteria trafficking them. The present metagenomic assessment highlights the need for comprehensive, long-term biological and physicochemical monitoring and mitigation strategies toward the contaminants associated with ARGs and MRGs in this nationally important river.
Collapse
Affiliation(s)
- Rachel Samson
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Vinay Rajput
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rakeshkumar Yadav
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Manan Shah
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India
| | - Syed Dastager
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Krishna Khairnar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India; Environmental Virology Cell (EVC), CSIR, National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440020, India.
| | - Mahesh Dharne
- National Collection of Industrial Microorganisms (NCIM), Biochemical Sciences Division, CSIR-National Chemical Laboratory (NCL), Pune 411008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India.
| |
Collapse
|
8
|
Yang Y, Cheng K, Li K, Jin Y, He X. Deciphering the diversity patterns and community assembly of rare and abundant bacterial communities in a wetland system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156334. [PMID: 35660444 DOI: 10.1016/j.scitotenv.2022.156334] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Water microorganisms that have distinct contributions to community dynamics, including many rare taxa and few abundant taxa, are crucial to the wetland ecosystem functions. In this study, we comprehensively investigated the diversity patterns and assembly processes of rare and abundant taxa to strengthen our understanding of ecosystem function and diversity in a wetland system. The results showed that TN and NH3-N were the most significant factors affecting the community structure in this wetland. Functional Annotation of Prokaryotic Taxa (FAPROTAX) revealed that functions associated with nitrogen removal were the most prevalent metabolic pathways in samples of regenerated wetland (RW). Co-occurrence network analysis revealed that nonrare taxa exhibited more interactions with rare taxa than with conspecifics and some microbial hubs belonged to rare taxa, which might play an instrumental role in maintaining the stability of the community structure. We found that the assembly of rare taxa with a lower niche breadth was mainly governed by homogeneous selection, implying that their higher sensitivity of these to environmental disturbances and changes in TN played significant roles in community assembly of rare taxa. In contrast, the assembly of abundant taxa with higher niche breadth was dominated by stochastic processes (undominated process and dispersal limitation) indicating that abundant taxa had greater responsibility for maintaining community structure when exposed to environmental fluctuations. These results broaden our understanding of the microbial structure, interactions and ecological assembly mechanisms underlying microbial dynamics in aquatic ecosystems, which are crucial for the management of microorganisms in the wetlands.
Collapse
Affiliation(s)
- Yan Yang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kexin Cheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kaihang Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yi Jin
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaoqing He
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China; College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
9
|
Rosario K, Van Bogaert N, López-Figueroa NB, Paliogiannis H, Kerr M, Breitbart M. Freshwater macrophytes harbor viruses representing all five major phyla of the RNA viral kingdom Orthornavirae. PeerJ 2022; 10:e13875. [PMID: 35990902 PMCID: PMC9390326 DOI: 10.7717/peerj.13875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Research on aquatic plant viruses is lagging behind that of their terrestrial counterparts. To address this knowledge gap, here we identified viruses associated with freshwater macrophytes, a taxonomically diverse group of aquatic phototrophs that are visible with the naked eye. We surveyed pooled macrophyte samples collected at four spring sites in Florida, USA through next generation sequencing of RNA extracted from purified viral particles. Sequencing efforts resulted in the detection of 156 freshwater macrophyte associated (FMA) viral contigs, 37 of which approximate complete genomes or segments. FMA viral contigs represent putative members from all five major phyla of the RNA viral kingdom Orthornavirae. Similar to viral types found in land plants, viral sequences identified in macrophytes were dominated by positive-sense RNA viruses. Over half of the FMA viral contigs were most similar to viruses reported from diverse hosts in aquatic environments, including phototrophs, invertebrates, and fungi. The detection of FMA viruses from orders dominated by plant viruses, namely Patatavirales and Tymovirales, indicate that members of these orders may thrive in aquatic hosts. PCR assays confirmed the presence of putative FMA plant viruses in asymptomatic vascular plants, indicating that viruses with persistent lifestyles are widespread in macrophytes. The detection of potato virus Y and oat blue dwarf virus in submerged macrophytes suggests that terrestrial plant viruses infect underwater plants and highlights a potential terrestrial-freshwater plant virus continuum. Defining the virome of unexplored macrophytes will improve our understanding of virus evolution in terrestrial and aquatic primary producers and reveal the potential ecological impacts of viral infection in macrophytes.
Collapse
Affiliation(s)
- Karyna Rosario
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| | - Noémi Van Bogaert
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States,Present Address: FVPHouse, Berlare, Belgium
| | | | - Haris Paliogiannis
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States,Present Address: MIO-ECSDE, Athens, Greece
| | - Mason Kerr
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| | - Mya Breitbart
- College of Marine Science, University of South Florida, St Petersburg, Florida, United States
| |
Collapse
|
10
|
Airborne Prokaryotic, Fungal and Eukaryotic Communities of an Urban Environment in the UK. ATMOSPHERE 2022. [DOI: 10.3390/atmos13081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Bioaerosols often contain human pathogens and allergens affecting public health. However, relatively little attention has been given to bioaerosols compared with non-biological aerosols. In this study, we aimed to identify bioaerosol compositions in Manchester, UK by applying high throughput sequencing methods and to find potential sources. Samples were collected at Manchester Air Quality Super Site at the Firs Environmental Research Station in November 2019 and in February 2020. Total DNA has been extracted and sequenced targeting the 16S rRNA gene of prokaryotes, ITS region of fungal DNA and 18S rRNA gene of eukaryotes. We found marine environment-associated bacteria and archaea were relatively more abundant in the February 2020 samples compared with the November 2019 samples, consistent with the North West marine origin based on wind back-trajectory analysis. In contrast, an OTU belonging to Methylobacterium, which includes many species resistant to heavy metals, was relatively more abundant in November 2019 when there were higher metal concentrations. Fungal taxa that fruit all year were relatively more abundant in the February 2020 samples while autumn fruiting species generally had higher relative abundance in the November 2019 samples. There were higher relative abundances of land plants and algae in the February 2020 samples based on 18S rRNA gene sequencing. One of the OTUs belonging to the coniferous yew genus Taxus was more abundant in the February 2020 samples agreeing with the usual pollen season of yews in the UK which is from mid-January until late April. The result from this study suggests a potential application of bioaerosol profiling for tracing the source of atmospheric particles.
Collapse
|
11
|
Karwautz C, Zhou Y, Kerros ME, Weinbauer MG, Griebler C. Bottom-Up Control of the Groundwater Microbial Food-Web in an Alpine Aquifer. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.854228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Groundwater ecosystems are typically poor in organic carbon and productivity sustaining a low standing stock of microbial biomass. In consequence, microbial food webs in oligotrophic groundwater are hypothesized to be bottom-up controlled. To date, quantitative information on groundwater microbial communities, food web interactions, and carbon flow is relatively lacking in comparison to that of surface waters. Studying a shallow, porous alpine aquifer we collected data on the numbers of prokaryotes, virus-like particles and heterotrophic nanoflagellates (HNFs), the concentration of dissolved (DOC) and assimilable organic carbon (AOC), bacterial carbon production (BCP), and physical-chemical conditions for a 1 year hydrological cycle. The potential effects of protozoan grazing and viral lysis onto the prokaryotic biomass was tested. Flow of organic carbon through the microbial food web was estimated based on data from the literature. The abundance of prokaryotes in groundwater was low with 6.1 ± 6.9 × 104 cells mL–1, seasonally influenced by the hydrological dynamics, with higher densities coinciding with a lower groundwater table. Overall, the variability in cell numbers was moderate, and so it was for HNFs (179 ± 103 HNFs mL–1) and virus-like particles (9.6 ± 5.7 × 105 VLPs mL–1). The virus to prokaryotes and prokaryote to HNF ratios ranged between 2–230 and 33–2,084, respectively. We found no evidence for a viral control of prokaryotic biomass, and the biomass of HNFs being bottom-up controlled. First estimations point at carbon use efficiencies of 0.2–4.2% with prokaryotic production, and carbon consumed and recycled by HNFs and phages to be of minor importance. This first groundwater microbial food web analysis strongly hints at a bottom-up control on productivity and standing stock in oligotrophic groundwater ecosystems. However, direct measurement of protozoan grazing and phage mediated lysis rates of prokaryotic cells are urgently needed to deepen our mechanistic understanding. The effect of microbial diversity on the population dynamics still needs to be addressed.
Collapse
|
12
|
Tochetto C, Cibulski SP, Muterle Varela AP, Cerva C, Alves de Lima D, Fumaco Teixeira T, Quoos Mayer F, Roehe PM. A variety of highly divergent eukaryotic ssDNA viruses in sera of pigs. J Gen Virol 2021; 102. [PMID: 34928204 DOI: 10.1099/jgv.0.001706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Over the last decade, viral metagenomics has been established as a non-targeted approach for identifying viruses in stock animals, including pigs. This has led to the identification of a vast diversity of small circular ssDNA viruses. The present study focuses on the investigation of eukaryotic circular Rep-encoding single-stranded (CRESS) DNA viral genomes present in serum of commercially reared pigs from southern Brazil. Several CRESS DNA viral genomes were detected, including representatives of the families Smacoviridae (n=5), Genomoviridae (n=3), Redondoviridae (n=1), Nenyaviridae (n=1) and other yet unclassified genomes (n=9), plus a circular DNA molecule, which probably belongs to the phylum Cressdnaviricota. A novel genus within the family Smacoviridae, tentatively named 'Suismacovirus', comprising 21 potential new species, is proposed. Although the reported genomes were recovered from pigs with clinical signs of respiratory disease, further studies should examine their potential role as pathogens. Nonetheless, these findings highlight the diversity of circular ssDNA viruses in serum of domestic pigs, expand the knowledge on CRESS DNA viruses' genetic diversity and distribution and contribute to the global picture of the virome of commercially reared pigs.
Collapse
Affiliation(s)
- Caroline Tochetto
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Samuel Paulo Cibulski
- Centro de Biotecnologia - CBiotec, Laboratório de Biotecnologia Celular e Molecular, Universidade Federal da Paraíba - UFPB, João Pessoa, Paraíba, Brazil
| | - Ana Paula Muterle Varela
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristine Cerva
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Diane Alves de Lima
- Laboratório de Microbiologia do Centro Clínico Veterinário, Centro Universitário da Serra Gaúcha - FSG, Caxias do Sul, Rio Grande do Sul, Brazil
| | - Thais Fumaco Teixeira
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Fabiana Quoos Mayer
- Centro de Pesquisa em Saúde Animal, Instituto de Pesquisas Veterinárias Desidério Finamor(IPVDF), Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria de Agricultura, Pecuária e Desenvolvimento Rural, Eldorado do Sul, Rio Grande do Sul, Brazil
| | - Paulo Michel Roehe
- Laboratório de Virologia, Departamento de Microbiologia Imunologia e Parasitologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Sawaya NA, Baran N, Mahank S, Varsani A, Lindell D, Breitbart M. Adaptation of the polony technique to quantify Gokushovirinae, a diverse group of single-stranded DNA phage. Environ Microbiol 2021; 23:6622-6636. [PMID: 34623742 DOI: 10.1111/1462-2920.15805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/09/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022]
Abstract
Advances in metagenomics have revealed the ubiquity of single-stranded DNA (ssDNA) phage belonging to the subfamily Gokushovirinae in the oceans; however, the abundance and ecological roles of this group are unknown. Here, we quantify gokushoviruses through adaptation of the polony method, in which viral template DNA is immobilized in a gel, amplified by PCR, and subsequently detected by hybridization. Primers and probes for this assay were designed based on PCR amplicon diversity of gokushovirus major capsid protein gene sequences from a depth profile in the Gulf of Aqaba, Red Sea sampled in September 2015. At ≥95% identity, these 87 gokushovirus sequences formed 14 discrete clusters with the largest clades showing distinct depth distributions. The application of the polony method enabled the first quantification of gokushoviruses in any environment. The gokushoviruses were most abundant in the upper 40 m of the stratified water column, with a subsurface peak in abundance of 1.26 × 105 viruses ml-1 . These findings suggest that discrete gokushovirus genotypes infect bacterial hosts that differentially partition in the water column. Since the designed primers and probe are conserved across marine ecosystems, this polony method can be applied broadly for the quantification of gokushoviruses throughout the global oceans.
Collapse
Affiliation(s)
- Natalie A Sawaya
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| | - Nava Baran
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Shelby Mahank
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, School of Life Sciences, Center for Evolution and Medicine, Arizona State University, Tempe, AZ, 85287, USA.,Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, 7925, South Africa
| | - Debbie Lindell
- Faculty of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Mya Breitbart
- University of South Florida, College of Marine Science, Saint Petersburg, FL, USA
| |
Collapse
|
14
|
Chen Y, Qiu K, Zhong Z, Zhou T. Influence of Environmental Factors on the Variability of Archaeal Communities in a Karst Wetland. Front Microbiol 2021; 12:675665. [PMID: 34539596 PMCID: PMC8448418 DOI: 10.3389/fmicb.2021.675665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/27/2021] [Indexed: 12/02/2022] Open
Abstract
Archaea are ubiquitous and play an important role in elemental cycles in Earth’s biosphere; but little is known about their diversity, distribution, abundance, and impact in karst environments. The present study investigated the effect of environmental factors on the variability of archaeal communities in the sediment of the Huixian karst wetland, the largest karst wetland in South China. Sediment cores were obtained from four sampling sites with different water depths and macrophyte inhabitants in both the winter of 2016 and the summer of 2018. The community analysis was based on PacBio sequencing and quantitative PCR of the archaeal 16S rRNA gene. The results showed that Euryarchaeota (57.4%) and Bathyarchaeota (38.7%) were dominant in all the samples. Methanogenic Methanosarcinales (25.1%) and Methanomicrobiales (13.7%), and methanotrophic archaea ANME-2d (9.0%) were the dominant Euryarchaeota; MCG-11 (16.5%), MCG-6 (9.1%), and MCG-5b (5.5%) were the dominant Bathyarchaeota. The community composition remained stable between summer and winter, and the vertical distributions of the archaeal phyla conformed to two patterns among the four sampling sites. In the winter samples, the archaeal 16S rRNA gene abundance was approximately 1.0E+10 copies/g of wet sediment and the Shannon index was 7.3±5, which were significantly higher than in the summer samples and in other karst environments. A correlation analysis showed that the moisture content and pH were the factors that mostly affected the archaeal communities. The prevalence of nitrate in the summer may be a key factor causing a significant decrease in archaeal abundance and diversity. Two features specific to karst environments, calcium-richness and weak alkalescence of the water supplies, may benefit the prevalence of bathyarchaeotal subgroups MCG-11, MCG-5b, and MCG-6. These results suggest that in karst wetlands, most of the archaea belong to clades that have significant roles in carbon turnover; their composition remains stable, but their abundance and diversity vary significantly from season to season.
Collapse
Affiliation(s)
- Ying Chen
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Kairui Qiu
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Ziyuan Zhong
- School of Biotechnology, Guilin Medical University, Guilin, China
| | - Tao Zhou
- School of Biotechnology, Guilin Medical University, Guilin, China
| |
Collapse
|
15
|
Malki K, Sawaya NA, Tisza MJ, Coutinho FH, Rosario K, Székely AJ, Breitbart M. Spatial and Temporal Dynamics of Prokaryotic and Viral Community Assemblages in a Lotic System (Manatee Springs, Florida). Appl Environ Microbiol 2021; 87:e0064621. [PMID: 34232732 PMCID: PMC8388828 DOI: 10.1128/aem.00646-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/29/2021] [Indexed: 01/04/2023] Open
Abstract
Flow from high-magnitude springs fed by the Floridan aquifer system contributes hundreds of liters of water per second to rivers, creating unique lotic systems. Despite their importance as freshwater sources and their contributions to the state's major rivers, little is known about the composition and spatiotemporal variability of prokaryotic and viral communities of these spring systems or their influence on downstream river sites. At four time points throughout a year, we determined the abundance and diversity of prokaryotic and viral communities at three sites within the first-magnitude Manatee Springs system (the spring head where water emerges from the aquifer, a mixed region where the spring run ends, and a downstream site in the Suwannee River). The abundance of prokaryotes and virus-like particles increased 100-fold from the spring head to the river and few members from the head communities persisted in the river at low abundance, suggesting the springs play a minor role in seeding downstream communities. Prokaryotic and viral communities within Manatee Springs clustered by site, with seasonal variability likely driven by flow. As water flowed through the system, microbial community composition was affected by changes in physiochemical parameters and community coalescence. Evidence of species sorting and mass effects could be seen in the assemblages. Greater temporal fluctuations were observed in prokaryotic and viral community composition with increasing distance from the spring outflow, reflecting the relative stability of the groundwater environment, and comparisons to springs from prior work reaffirmed that distinct first-magnitude springs support unique communities. IMPORTANCE Prokaryotic and viral communities are central to food webs and biogeochemical processes in aquatic environments, where they help maintain ecosystem health. The Floridan aquifer system (FAS), which is the primary drinking water source for millions of people in the southeastern United States, contributes large amounts of freshwater to major river systems in Florida through its springs. However, there is a paucity of information regarding the spatiotemporal dynamics of microbial communities in these essential flowing freshwater systems. This work explored the prokaryotic and viral communities in a first-magnitude spring system fed by the FAS that discharges millions of liters of water per day into the Suwannee River. This study examined microbial community composition through space and time as well as the environmental parameters and metacommunity assembly mechanisms that shape these communities, providing a foundational understanding for monitoring future changes.
Collapse
Affiliation(s)
- Kema Malki
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Natalie A. Sawaya
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Michael J. Tisza
- Laboratory of Cellular Oncology, NCI, NIH, Bethesda, Maryland, USA
| | - Felipe H. Coutinho
- Departamento de Produccíon Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Karyna Rosario
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| | - Anna J. Székely
- Department of Ecology and Genetics/Limnology, Uppsala University, Uppsala, Sweden
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Saint Petersburg, Florida, USA
| |
Collapse
|
16
|
Moon K, Cho JC. Metaviromics coupled with phage-host identification to open the viral 'black box'. J Microbiol 2021; 59:311-323. [PMID: 33624268 DOI: 10.1007/s12275-021-1016-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
Viruses are found in almost all biomes on Earth, with bacteriophages (phages) accounting for the majority of viral particles in most ecosystems. Phages have been isolated from natural environments using the plaque assay and liquid medium-based dilution culturing. However, phage cultivation is restricted by the current limitations in the number of culturable bacterial strains. Unlike prokaryotes, which possess universally conserved 16S rRNA genes, phages lack universal marker genes for viral taxonomy, thus restricting cultureindependent analyses of viral diversity. To circumvent these limitations, shotgun viral metagenome sequencing (i.e., metaviromics) has been developed to enable the extensive sequencing of a variety of viral particles present in the environment and is now widely used. Using metaviromics, numerous studies on viral communities have been conducted in oceans, lakes, rivers, and soils, resulting in many novel phage sequences. Furthermore, auxiliary metabolic genes such as ammonic monooxygenase C and β-lactamase have been discovered in viral contigs assembled from viral metagenomes. Current attempts to identify putative bacterial hosts of viral metagenome sequences based on sequence homology have been limited due to viral sequence variations. Therefore, culture-independent approaches have been developed to predict bacterial hosts using single-cell genomics and fluorescentlabeling. This review focuses on recent viral metagenome studies conducted in natural environments, especially in aquatic ecosystems, and their contributions to phage ecology. Here, we concluded that although metaviromics is a key tool for the study of viral ecology, this approach must be supplemented with phage-host identification, which in turn requires the cultivation of phage-bacteria systems.
Collapse
Affiliation(s)
- Kira Moon
- Biological Resources Utilization Division, Honam National Institute of Biological Resources, Mokpo, 58762, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
17
|
Tisza MJ, Belford AK, Domínguez-Huerta G, Bolduc B, Buck CB. Cenote-Taker 2 democratizes virus discovery and sequence annotation. Virus Evol 2021; 7:veaa100. [PMID: 33505708 PMCID: PMC7816666 DOI: 10.1093/ve/veaa100] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Viruses, despite their great abundance and significance in biological systems, remain largely mysterious. Indeed, the vast majority of the perhaps hundreds of millions of viral species on the planet remain undiscovered. Additionally, many viruses deposited in central databases like GenBank and RefSeq are littered with genes annotated as 'hypothetical protein' or the equivalent. Cenote-Taker 2, a virus discovery and annotation tool available on command line and with a graphical user interface with free high-performance computation access, utilizes highly sensitive models of hallmark virus genes to discover familiar or divergent viral sequences from user-input contigs. Additionally, Cenote-Taker 2 uses a flexible set of modules to automatically annotate the sequence features of contigs, providing more gene information than comparable tools. The outputs include readable and interactive genome maps, virome summary tables, and files that can be directly submitted to GenBank. We expect Cenote-Taker 2 to facilitate virus discovery, annotation, and expansion of the known virome.
Collapse
Affiliation(s)
- Michael J Tisza
- Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263, USA
| | - Anna K Belford
- Lab of Cellular Oncology, NCI, NIH, Bethesda, MD 20892-4263, USA
| | | | - Benjamin Bolduc
- Department of Microbiology, Ohio State University, Columbus, OH, USA
| | | |
Collapse
|
18
|
Chopyk J, Nasko DJ, Allard S, Bui A, Pop M, Mongodin EF, Sapkota AR. Seasonal dynamics in taxonomy and function within bacterial and viral metagenomic assemblages recovered from a freshwater agricultural pond. ENVIRONMENTAL MICROBIOME 2020; 15:18. [PMID: 33902740 PMCID: PMC8067656 DOI: 10.1186/s40793-020-00365-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/29/2020] [Indexed: 06/01/2023]
Abstract
BACKGROUND Ponds are important freshwater habitats that support both human and environmental activities. However, relative to their larger counterparts (e.g. rivers, lakes), ponds are understudied, especially with regard to their microbial communities. Our study aimed to fill this knowledge gap by using culture-independent, high-throughput sequencing to assess the dynamics, taxonomy, and functionality of bacterial and viral communities in a freshwater agricultural pond. RESULTS Water samples (n = 14) were collected from a Mid-Atlantic agricultural pond between June 2017 and May 2018 and filtered sequentially through 1 and 0.2 μm filter membranes. Total DNA was then extracted from each filter, pooled, and subjected to 16S rRNA gene and shotgun sequencing on the Illumina HiSeq 2500 platform. Additionally, on eight occasions water filtrates were processed for viral metagenomes (viromes) using chemical concentration and then shotgun sequenced. A ubiquitous freshwater phylum, Proteobacteria was abundant at all sampling dates throughout the year. However, environmental characteristics appeared to drive the structure of the community. For instance, the abundance of Cyanobacteria (e.g. Nostoc) increased with rising water temperatures, while a storm event appeared to trigger an increase in overall bacterial diversity, as well as the relative abundance of Bacteroidetes. This event was also associated with an increase in the number of antibiotic resistance genes. The viral fractions were dominated by dsDNA of the order Caudovirales, namely Siphoviridae and Myovirdae. CONCLUSIONS Overall, this study provides one of the largest datasets on pond water microbial ecology to date, revealing seasonal trends in the microbial taxonomic composition and functional potential.
Collapse
Affiliation(s)
- Jessica Chopyk
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
- Department of Pathology University of California San Diego, La Jolla, California, USA.
| | - Daniel J Nasko
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Sarah Allard
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Anthony Bui
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Mihai Pop
- Center for Bioinformatics and Computational Biology, Institute for Advanced Computer Sciences, University of Maryland, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences and Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| |
Collapse
|