1
|
Thangadural T, Dobretsov S, Aeby G. Exploring Bacterial Diversity in Acropora pharaonis: Implications for Coral Health and Growth Anomalies. Microb Pathog 2025:107616. [PMID: 40294758 DOI: 10.1016/j.micpath.2025.107616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/07/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
Coral growth anomalies (GA) affect many coral genera across the world, yet the etiology of GAs remains unknown, with limited knowledge of associated bacteria. In this study, we investigated bacterial associations between the growth anomalies (GAs) and healthy (H) portions of coral colonies in Acropora faraonis for two seasons to understand microbial dynamics. Additionally, we examined bacteria in water (W), which could be affecting coral bacterial communities. We found that alpha diversity remained consistent between healthy and GA coral tissues, but their relative abundances differed significantly. Notably, differential analysis revealed the abundance of Endozoicomonas spp., differed significantly between GA and H tissue, although it remains the dominant genus in both GA and H tissue. The high relative abundance of Endozoicomonas spp. in both GA and healthy tissue underscores its potential role in maintaining coral health. Structural modifications in GAs, such as changes in polyp sizes or densities, could be responsible for these differences in bacterial abundance. Similarly, microbial community composition remained consistent between seasons but differed in abundance again. We found differences between microbial communities of GAs and water, but no significant differences were observed between GAs and H, and no previously established bacterial pathogens were detected in GA tissue. These findings describe bacterial community patterns in GAs, but their potential role in its pathogenesis remains unknown. Further metagenomic and meta-transcriptomic analyses are needed to understand potential bacterial involvement in GAs. Additionally, investigating viruses and fungi in GA tissue is recommended to gain deeper insights into GA pathogenesis.
Collapse
Affiliation(s)
- Thinesh Thangadural
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman
| | - Sergey Dobretsov
- Department of Marine Science and Fisheries, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al Khoud 123 PO Box 34, Muscat, Oman; UNESCO Chair in Marine Biotechnology, Sultan Qaboos University, Al Khoud 123 PO Box 50, Muscat, Oman.
| | - Greta Aeby
- Department of Biological and Environmental Sciences, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Rabbani G, Afiq-Rosli L, Lee JN, Waheed Z, Wainwright BJ. Effects of life history strategy on the diversity and composition of the coral holobiont communities of Sabah, Malaysia. Sci Rep 2025; 15:4459. [PMID: 39915510 PMCID: PMC11802840 DOI: 10.1038/s41598-025-88231-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/28/2025] [Indexed: 02/09/2025] Open
Abstract
Coral-associated microbes have essential roles in promoting and regulating host function and health. As climate change advances and other environmental perturbations increasingly impact corals, it is becoming ever more important that we understand the composition of the microbial communities hosted. Without this baseline it is impossible to assess the magnitude and direction of any future changes in microbial community structure. Here, we characterised both the bacterial and Symbiodiniaceae communities in four coral species (Diploastrea heliopora, Porites lutea, Pachyseris speciosa, and Pocillopora acuta) collected from Sabah, Malaysia. Our findings reveal distinct microbial communities associated with different coral species tending to reflect the varied life history strategies of their hosts. Microbial communities could be differentiated by collection site, with shifts in Symbiodiniaceae communities towards more stress tolerant types seen in samples collected on the shallow Sunda Shelf. Additionally, we identified a core microbiome within species and a more discrete core between all species. We show bacterial and Symbiodiniaceae communities are structured by host species and appear to be influenced by host life history characteristics. Furthermore, we identified a core microbiome for each species finding that several amplicon sequence variants were shared between hosts, this suggests a key role in coral health regardless of species identity. Given the paucity of work performed in megadiverse regions such as the Coral Triangle, this research takes on increased importance in our efforts to understand how the coral holobiont functions and how it could be altered as climate change advances.
Collapse
Affiliation(s)
- Golam Rabbani
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Tropical Marine Science Institute, National University of Singapore, Singapore, Singapore
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Zarinah Waheed
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| |
Collapse
|
3
|
Abdelghany S, Simancas-Giraldo SM, Zayed A, Farag MA. How does the coral microbiome mediate its natural host fitness under climate stress conditions? Physiological, molecular, and biochemical mechanisms. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106920. [PMID: 39729906 DOI: 10.1016/j.marenvres.2024.106920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/29/2024]
Abstract
Although the symbiotic partnership between corals and algal endosymbionts has been extensively explored, interactions between corals, their algal endosymbionts and microbial associates are still less understood. Screening the response of natural microbial consortiums inside corals can aid in exploiting them as markers for dysbiosis interactions inside the coral holobiont. The coral microbiome includes archaea, bacteria, fungi, and viruses hypothesized to play a pivotal vital role in coral health and tolerance to heat stress condition via different physiological, biochemical, and molecular mechanisms. The dynamic behaviour of microbial associates could denote their potential role in coral adaptation to future climate change, with microbiome shifts occurring independently as a response to thermal stress or as a response to host stress response. Associated adaptations include regulation of coral-algal-microbial interactions, expression of heat shock proteins, microbial composition changes, and accumulation of secondary metabolites to aid in sustaining the coral's overall homeostasis under ocean warming scenarios.
Collapse
Affiliation(s)
- Sabrin Abdelghany
- Leibniz Centre for Tropical Marine Research (ZMT), Bremen, Germany; Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany; National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Susana M Simancas-Giraldo
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Am Alten Hafen, 27568, Bremerhaven, Germany
| | - Ahmed Zayed
- Pharmacognosy Department, College of Pharmacy, Tanta University, Elguish Street (Medical Campus), 31527, Tanta, Egypt.
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, P.B, 11562, Egypt.
| |
Collapse
|
4
|
Prioux C, Ferrier-Pages C, Deter J, Tignat-Perrier R, Guilbert A, Ballesta L, Allemand D, van de Water JAJM. Insights into the occurrence of phylosymbiosis and co-phylogeny in the holobionts of octocorals from the Mediterranean Sea and Red Sea. Anim Microbiome 2024; 6:62. [PMID: 39497183 PMCID: PMC11533408 DOI: 10.1186/s42523-024-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/24/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Corals are the foundational species of coral reefs and coralligenous ecosystems. Their success has been linked to symbioses with microorganisms, and a coral host and its symbionts are therefore considered a single entity, called the holobiont. This suggests that there may be evolutionary links between corals and their microbiomes. While there is evidence of phylosymbiosis in scleractinian hexacorals, little is known about the holobionts of Alcyonacean octocorals. RESULTS 16S rRNA gene amplicon sequencing revealed differences in the diversity and composition of bacterial communities associated with octocorals collected from the mesophotic zones of the Mediterranean and Red Seas. The low diversity and consistent dominance of Endozoicomonadaceae and/or Spirochaetaceae in the bacterial communities of Mediterranean octocorals suggest that these corals may have a shared evolutionary history with their microbiota. Phylosymbiotic signals were indeed detected and cophylogeny in associations between several bacterial strains, particularly those belonging to Endozoicomonadaceae or Spirochaetaceae, and coral species were identified. Conversely, phylosymbiotic patterns were not evident in Red Sea octocorals, likely due to the high bacterial taxonomic diversity in their microbiota, but cophylogeny in associations between certain coral and bacterial species was observed. Noteworthy were the associations with Endozoicomonadaceae, suggesting a plausible evolutionary link that warrants further investigations to uncover potential underlying patterns. CONCLUSIONS Overall, our findings emphasize the importance of Endozoicomonadaceae and Spirochaetaceae in coral symbiosis and the significance of exploring host-microbiome interactions in mesophotic ecosystems for a comprehensive understanding of coral-microbiome evolutionary history.
Collapse
Affiliation(s)
- C Prioux
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - C Ferrier-Pages
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
| | - J Deter
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095, Montpellier, France
| | - R Tignat-Perrier
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - A Guilbert
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - L Ballesta
- Andromède Océanologie, 7 place Cassan-Carnon plage, 34130, Mauguio, France
| | - D Allemand
- Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco
| | - J A J M van de Water
- Unité de Recherche Sur La Biologie des Coraux Précieux CSM - CHANEL, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Coral Ecophysiology Team, Centre Scientifique de Monaco, 8 Quai Antoine 1er, 98000, Monaco, MC, Principality of Monaco.
- Department of Estuarine Delta Systems, Royal Netherlands Institute for Sea Research, Korringaweg 7, 4401 NT, Yerseke, The Netherlands.
| |
Collapse
|
5
|
Cho A, Finke JF, Zhong KX, Chan AM, Saunders R, Schulze A, Warne S, Miller KM, Suttle CA. The core microbiome of cultured Pacific oyster spat is affected by age but not mortality. Microbiol Spectr 2024; 12:e0003124. [PMID: 39162495 PMCID: PMC11448229 DOI: 10.1128/spectrum.00031-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/16/2024] [Indexed: 08/21/2024] Open
Abstract
The Pacific oyster is the most widely cultured shellfish worldwide, but production has been affected by mortality events, including in hatcheries that supply the seed for growers. Several pathogens cause disease in oysters, but in many cases, mortality events cannot be attributed to a single agent and appear to be multifactorial, involving environmental variables and microbial interactions. As an organism's microbiome can provide resilience against pathogens and environmental stressors, we investigated the microbiomes in cohorts of freshly settled oyster spat, some of which experienced notable mortality. Deep sequencing of 16S rRNA gene fragments did not show a significant difference among the microbiomes of cohorts experiencing different mortality levels, but revealed a characteristic core microbiome comprising 74 taxa. Irrespective of mortality, the relative abundance of taxa in the core microbiomes changed significantly as the spat aged, yet remained distinct from the microbial community in the surrounding water. The core microbiome was dominated by bacteria in the families Rhodobacteraceae, Nitrosomonadaceae, Flavobacteriaceae, Pirellulaeceae, and Saprospiraceae. Within these families, 14 taxa designated as the "Hard-Core Microbiome" were indicative of changes in the core microbiome as the spat aged. The variability in diversity and richness of the core taxa decreased with age, implying niche occupation. As well, there was exchange of microbes with surrounding water during development of the core microbiome. The shift in the core microbiome demonstrates the dynamic nature of the microbiome as oyster spat age.IMPORTANCEThe Pacific oyster (Magallana gigas, also known as Crassostrea gigas) is the most widely cultivated shellfish and is important to the economy of many coastal communities. However, high mortality of spat during the first few days following metamorphosis can affect the seed supply to oyster growers. Here, we show that the microbiome composition of recently settled oyster spat experiencing low or high mortality was not significantly different. Instead, development of the core microbiome was associated with spat aging and was partially driven by dispersal through the water. These findings imply the importance of early-stage rearing conditions for spat microbiome development in aquaculture facilities. Furthermore, shellfish growers could gain information about the developmental state of the oyster spat microbiome by assessing key taxa. Additionally, the study provides a baseline microbiome for future hypothesis testing and potential probiotic applications on developing spat.
Collapse
Affiliation(s)
- Anna Cho
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jan F Finke
- Hakai Institute, Heriot Bay, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kevin X Zhong
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Angela Schulze
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | | | - Kristina M Miller
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, British Columbia, Canada
- Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Sun F, Yang H, Zhang X, Tan F, Wang G, Shi Q. Significant response of coral-associated bacteria and their carbohydrate-active enzymes diversity to coral bleaching. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106694. [PMID: 39163656 DOI: 10.1016/j.marenvres.2024.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/12/2024] [Accepted: 08/13/2024] [Indexed: 08/22/2024]
Abstract
Analysis of bacterial carbohydrate-active enzymes (CAZymes) contributes significantly to comprehending the response exhibited by coral symbionts to the external environment. This study explored the impact of bleaching on the bacteria and their CAZymes in coral Favites sp. through metagenomic sequencing. Notably, principal coordinates analysis (PCoA) unveiles substantial difference in bacterial communities between bleached and unbleached corals. Proteobacteria, Actinobacteria, Acidobacteria, Bacteroidota, and Chloroflexi, exhibit noteworthy alterations during coral bleaching. CAZymes profiles in bleached coral disclosed a significant increase in Glycosyltransferases (GTs) abundance, suggesting an intensified biosynthesis of polysaccharides. Conversely, there is a marked reduction in other CAZymes abundance in bleached coral. Proteobacteria, Bacteroidota, Chlorobi, and Planctomycetota exhibit greater contributions to CAZymes in bleached corals, with Rhodobacterales, Cytophagales, Burkholderiales, Caulobacterales, and Hyphomicrobiales being the main contributors. While Acidobacteria, Actinobacteria, and Chloroflexi demonstrate higher contributions to CAZymes in unbleached corals. The changes in bacteria and their CAZymes reflect the ecological adaptability of coral holobionts when facing environmental stress. The alterations in CAZymes composition caused by bleaching events may have profound impacts on coral nutrient absorption and ecosystem stability. Therefore, understanding the dynamic changes in CAZymes is crucial for assessing the health and recovery potential of coral ecosystems.
Collapse
Affiliation(s)
- Fulin Sun
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Hongqiang Yang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China.
| | - Xiyang Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Fei Tan
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guan Wang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Shi
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
7
|
Sun C, Huang Y, Bakhtiari AR, Yuan D, Zhou Y, Zhao H. Long-term exposure to climbazole may affect the health of stress-tolerant coral Galaxea fascicularis. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106679. [PMID: 39153271 DOI: 10.1016/j.marenvres.2024.106679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
The persistence of coral reefs globally is threatened by various forms of chemical pollution. Climbazole, an azole antibacterial agent extensively utilized in pharmaceuticals and personal care products (PPCPs) in everyday life, has been detected in various environment media and proved to have significant adverse effects on aquatic organism. However, the effects of climbazole on coral remain largely unknown. Therefore, in this study, we conducted a 42-day investigation to examine the effects of varying concentrations of climbazole on Galaxea fascicularis (G. fascicularis), a stress-tolerant coral species. Our investigations included coral color observations, physiological experiments, and assessments of microbial diversity. The results showed that, after 42 days of exposure, the coral color in the treatment group exposed to 100 μg/L climbazole significantly decreased by one color category on the reference chart (D6 shifted to D5), while there was no change in the control group. This was accompanied by an increase in oxidative stress and a decrease in photosynthetic capacity in coral specimens. Additionally, there was a notable alteration in microbial diversity, resulting in reduced community stability. Elevated levels of climbazole (100 μg/L) stress led to an increased abundance of potentially pathogenic bacteria such as unclassified Erysipelotrichaceae. However, at an environmentally relevant concentration of 1 μg/L, climbazole decreased the photosynthetic efficiency and induced oxidative stress in the stress-tolerant coral G. fascicularis, while not significantly impacting the microbial community diversity of the coral. The findings of our study have important implications for the protection and management of nearshore coral reefs and offer essential data for ecological risk assessment of climbazole.
Collapse
Affiliation(s)
- Chuhan Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yuehua Huang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China.
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Dongdan Yuan
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Yanyu Zhou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Hongwei Zhao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province & Center for Eco-Environment Restoration of Hainan Province, Hainan University, Haikou 570228, China; State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China.
| |
Collapse
|
8
|
Arriaga-Piñón ZP, Aguayo-Leyva JE, Álvarez-Filip L, Banaszak AT, Aguirre-Macedo ML, Paz-García DA, García-Maldonado JQ. Microbiomes of three coral species in the Mexican Caribbean and their shifts associated with the Stony Coral Tissue Loss Disease. PLoS One 2024; 19:e0304925. [PMID: 39186575 PMCID: PMC11346732 DOI: 10.1371/journal.pone.0304925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Stony Coral Tissue Loss Disease (SCTLD) has caused widespread coral mortality in the Caribbean Region. However, how the disease presence alters the microbiome community, their structure, composition, and metabolic functionality is still poorly understood. In this study, we characterized the microbial communities of the tissues of apparently healthy and diseased SCTLD colonies of the species Siderastrea siderea, Orbicella faveolata, and Montastraea cavernosa to explore putative changes related to the presence of SCTLD. Gammaproteobacteria, Alphaproteobacteria, and Bacteroidia were the best represented classes in the healthy tissues of all coral species, and alpha diversity did not show significant differences among the species. The microbial community structure between coral species was significantly different (PERMANOVA: F = 3.46, p = 0.001), and enriched genera were detected for each species: Vibrio and Photobacterium in S. siderea, Spirochaeta2 and Marivivens in O. faveolata and SAR202_clade and Nitrospira in M. cavernosa. Evidence of SCTLD in the microbial communities was more substantial in S. siderea, where differences in alpha diversity, beta diversity, and functional profiles were observed. In O. faveolata, differences were detected only in the community structure, while M. cavernosa samples showed no significant difference. Several microbial groups were found to have enriched abundances in tissue from SCTLD lesions from S. siderea and O. faveolata, but no dominant bacterial group was detected. Our results contribute to understanding microbial diversity associated with three scleractinian coral species and the shifts in their microbiomes associated with SCTLD in the Mexican Caribbean.
Collapse
Affiliation(s)
- Zita P. Arriaga-Piñón
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - J. Eduardo Aguayo-Leyva
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - Lorenzo Álvarez-Filip
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Anastazia T. Banaszak
- Unidad Académica de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo, México
| | - Ma. Leopoldina Aguirre-Macedo
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| | - David A. Paz-García
- Laboratorio de Genética para la Conservación. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, B.C.S., México
| | - José Q. García-Maldonado
- Departamento de Recursos del Mar, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional, Unidad Mérida, Mérida, Yucatán, México
| |
Collapse
|
9
|
Bai C, Wang Q, Xu J, Zhang H, Huang Y, Cai L, Zheng X, Yang M. Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea. Microorganisms 2024; 12:1540. [PMID: 39203380 PMCID: PMC11356306 DOI: 10.3390/microorganisms12081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024] Open
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22-56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms' relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments.
Collapse
Affiliation(s)
- Chuanzhu Bai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Qifang Wang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Jinyan Xu
- Fujian Key Laboratory of Island Monitoring and Ecological Development (Island Research Center, MNR), Pingtan 350400, China;
| | - Han Zhang
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Yuxin Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
| | - Ling Cai
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
| | - Xinqing Zheng
- Key Laboratory of Marine Ecology Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (Q.W.); (H.Z.); (X.Z.)
- Observation and Research Station of Island and Coastal Ecosystems in the Western Taiwan Strait, Ministry of Natural Resources, Xiamen 361005, China
- Fujian Provincial Station for Field Observation and Research of Island and Coastal Zone, Zhangzhou 363216, China
| | - Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; (C.B.); (Y.H.)
| |
Collapse
|
10
|
Raimundo I, Rosado PM, Barno AR, Antony CP, Peixoto RS. Unlocking the genomic potential of Red Sea coral probiotics. Sci Rep 2024; 14:14514. [PMID: 38914624 PMCID: PMC11196684 DOI: 10.1038/s41598-024-65152-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
The application of beneficial microorganisms for corals (BMC) decreases the bleaching susceptibility and mortality rate of corals. BMC selection is typically performed via molecular and biochemical assays, followed by genomic screening for BMC traits. Herein, we present a comprehensive in silico framework to explore a set of six putative BMC strains. We extracted high-quality DNA from coral samples collected from the Red Sea and performed PacBio sequencing. We identified BMC traits and mechanisms associated with each strain as well as proposed new traits and mechanisms, such as chemotaxis and the presence of phages and bioactive secondary metabolites. The presence of prophages in two of the six studied BMC strains suggests their possible distribution within beneficial bacteria. We also detected various secondary metabolites, such as terpenes, ectoines, lanthipeptides, and lasso peptides. These metabolites possess antimicrobial, antifungal, antiviral, anti-inflammatory, and antioxidant activities and play key roles in coral health by reducing the effects of heat stress, high salinity, reactive oxygen species, and radiation. Corals are currently facing unprecedented challenges, and our revised framework can help select more efficient BMC for use in studies on coral microbiome rehabilitation, coral resilience, and coral restoration.
Collapse
Affiliation(s)
- Inês Raimundo
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Phillipe M Rosado
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Adam R Barno
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Chakkiath P Antony
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia
| | - Raquel S Peixoto
- Biological and Environmental Science and Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology, Biological and Environmental Science and Engineering Division, Thuwal, Saudi Arabia.
| |
Collapse
|
11
|
Chen B, Wei Y, Yu K, Liang Y, Yu X, Liao Z, Qin Z, Xu L, Bao Z. The microbiome dynamics and interaction of endosymbiotic Symbiodiniaceae and fungi are associated with thermal bleaching susceptibility of coral holobionts. Appl Environ Microbiol 2024; 90:e0193923. [PMID: 38445866 PMCID: PMC11022545 DOI: 10.1128/aem.01939-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024] Open
Abstract
The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and Durusdinium dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, Schizophyllum, and Colletotrichum, were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and Durusdinium. The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Yanting Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Sun F, Yang H, Zhang X, Tan F, Wang G, Shi Q. Metagenomic and metabolomic analysis of the effect of bleaching on unsaturated fatty acid synthesis pathways in coral symbionts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169487. [PMID: 38142991 DOI: 10.1016/j.scitotenv.2023.169487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/10/2023] [Accepted: 12/16/2023] [Indexed: 12/26/2023]
Abstract
Unsaturated fatty acids (UFAs) are known to play a vital role in regulating stress resistance and metabolism in corals. Nevertheless, a comprehensive understanding of the microbial and functional composition of the UFA synthesis pathway (UFASP) remains lacking. This study employed metagenome and metabolome to investigate the microbial community, function, and metabolic response of UFASP in reef-building corals inhabiting the Nansha Islands. Our findings revealed significantly higher diversity for the UFASP microbe in bleached corals compared to unbleached corals. Furthermore, principal coordinates analysis (PCoA) and taxonomy assessments exhibited notable distinctions in the microbe between the two coral states. Notably, the dominant microorganisms involved in UFASP were Dinophyceae, Sordariomycetes, Ulvophyceae, and Chlorophyceae. Bleaching resulted in a considerable increase in fungal abundance within coral symbionts. A total of 12 KEGG Orthology (KO) were identified in UFASP, with PCoA analysis indicating significant differences in their abundance between bleached and unbleached corals. UFASP's beta-Oxidation module exhibited reduced abundance in bleached corals. Contribution analysis highlighted the participation of Symbiodiniaceae, Ascomycota, Chlorophyta, Proteobacteria, and Actinobacteria in UFASP. Notably, Symbiodiniaceae and Ascomycota were the major contributors to two UFASP modules, with the latter displaying greater involvement in bleached corals. Furthermore, significant differences in n3 and n6-family metabolites were observed between bleached and unbleached corals. Notably, bleaching induced a reduction in metabolites of Symbiodiniaceae, while an increase in the multiple UFAs abundance was detected in bleached corals. These findings suggest that bleaching-induced alterations coral symbionts composition directly impact the functionality of UFASP, ultimately affecting the corals' capacity to adapt to stress.
Collapse
Affiliation(s)
- Fulin Sun
- State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, Shenzhen, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Hongqiang Yang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China.
| | - Xiyang Zhang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Fei Tan
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Guan Wang
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| | - Qi Shi
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China; Nansha Marine Ecological and Environmental Research Station, Chinese Academy of Sciences, Sansha, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya, China
| |
Collapse
|
13
|
Pattarach K, Surachat K, Liu SL, Mayakun J. Water depth outweighs reef condition in shaping non-geniculate coralline algae-associated microbial communities in coral reefs: A case study from Thailand. Heliyon 2024; 10:e25486. [PMID: 38356583 PMCID: PMC10864967 DOI: 10.1016/j.heliyon.2024.e25486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 01/05/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
Red calcified non-geniculate coralline algae (NGCA) provide habitat structures, stabilize reef structures, and foster coral larval settlement and metamorphosis. Moreover, the microbes associated with NGCA are dependent on the NGCA host species and are affected by environmental factors; however, little is known about the influence of reef conditions and depth gradients on the associated microbial communities and NGCA. In this study, we collected NGCA under different reef conditions and depth gradients and characterized the microbial communities using the V3-V4 hypervariable regions of the 16S rRNA gene. Metagenomic analysis revealed 2 domains, 51 phyla, 123 classes, and 210 genera. The NGCA-associated bacterial communities were dominated by Proteobacteria, Bacteroidetes, Chloroflexi, Actinobacteria, and Acidobacteriota. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial classes. Differences in microbial diversity and richness were not apparent between reef conditions and depth gradients. However, there was a significant difference in bacterial evenness among the depth gradients. The bacterial abundance associated with NGCA was greater in deep zones than in shallow zones. The shallow zone exhibited a greater relative abundance of all gene functions than the deep zone, indicating differences in the distribution of gene functions. This study showed that the microbial communities associated with red calcified NGCA are diverse, and that the depth gradient affects their abundance and evenness, highlighting the need for further research to understand the functional roles of these microbial communities in coral reef conservation.
Collapse
Affiliation(s)
- Kattika Pattarach
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Science & Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Shao-Lun Liu
- Department of Life Science & Center for Ecology and Environment, Tunghai University, Taichung, 40704, Taiwan
| | - Jaruwan Mayakun
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
- Molecular Evolution and Computational Biology Research Unit, Faculty of Science, Prince of Songkla University, Songkhla, 90110, Thailand
| |
Collapse
|
14
|
Wei Y, Chen B, Yu K, Liao Z, Yu X, Qin Z, Bao Z, Xu L, Wang Y. Evolutionary radiation and microbial community dynamics shape the thermal tolerance of Fungiidae in the southern South China Sea. Microbiol Spectr 2024; 12:e0243623. [PMID: 38174936 PMCID: PMC10845974 DOI: 10.1128/spectrum.02436-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Fungiidae have shown increased thermal adaptability in coral reef ecosystems under global warming. This study analyzes the evolutionary divergence and microbial communities of Fungiidae in the Sanjiao Reef of the southern South China Sea and explores the impact of coral evolution radiation and microbial dynamics on the heat tolerance of Fungiidae. The results found that Cycloseris was an ancient branch of Fungiidae, dating back approximately 147.8953 Mya, and Fungiidae differentiated into two ancestral clades (clades I and II) before 107.0312 Ma. Fungiidae exhibited specific symbioses with the Cladocopium C27 sub-clade. Notably, the Cladocopium C1 sub-clade has a high relative abundance in clade I, whereas the heat-tolerant Cladocopium C40 and C3u sub-clades subdominante in clade II. Regarding bacterial communities, Cycloseris costulata, the earliest divergent species, had higher bacterial β-diversity, while the latest divergent species, Lithophyllon scabra, displayed lower bacterial α-diversity and higher community stability. Beneficial bacteria dominante Fungiidae's bacterial community (54%). The co-occurrence network revealed that microbial networks in clade II exhibited lower complexity and greater resilience than those in clade I. Our study highlights that host evolutionary radiation and microbial communities shaped Fungiidae's thermal tolerance. The variability in subdominant Symbiodiniaceae populations may contribute to interspecific differences in thermal tolerance along the evolutionary branches of Fungiidae. The presence of abundant beneficial bacteria may further enhance the thermal ability of the Fungiidae. Furthermore, the later divergent species of Fungiidae have stronger heat tolerance, possibly driven by the increased regulation ability of the host on the bacterial community, greater microbial community stability, and interaction network resistance.IMPORTANCECoral reefs are facing significant threats due to global warming. The heat tolerance of coral holobionts depends on both the coral host and its microbiome. However, the association between coral evolutionary radiation and interspecific differences in microbial communities remains unclear. In this study, we investigated the role of evolutionary radiation and microbial community dynamics in shaping the thermal acclimation potential of Fungiidae in the Sanjiao Reef of the southern South China Sea. The study's results suggest that evolutionary radiation enhances the thermal tolerance of Fungiidae. Fungiidae species that have diverged more recently have exhibited a higher presence of heat-tolerant Symbiodiniaceae taxa, more stable bacterial communities, and a robust and resilient microbial interaction network, improving the thermal adaptability of Fungiidae. In summary, this study provides new insights into the thermal adaptation patterns of corals under global warming conditions.
Collapse
Affiliation(s)
- Yuxin Wei
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Zhiheng Liao
- Key Laboratory of Environmental Change and Resource Use in Beibu Gulf, Ministry of Education, Nanning Normal University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zeming Bao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Lijia Xu
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| | - Yongzhi Wang
- South China Institute of Environmental Sciences, MEE, Guangzhou, China
| |
Collapse
|
15
|
Fong J, Tang PPY, Deignan LK, Seah JCL, McDougald D, Rice SA, Todd PA. Chemically Mediated Interactions with Macroalgae Negatively Affect Coral Health but Induce Limited Changes in Coral Microbiomes. Microorganisms 2023; 11:2261. [PMID: 37764105 PMCID: PMC10535309 DOI: 10.3390/microorganisms11092261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Allelopathic chemicals facilitated by the direct contact of macroalgae with corals are potentially an important mechanism mediating coral-macroalgal interactions, but only a few studies have explored their impacts on coral health and microbiomes and the coral's ability to recover. We conducted a field experiment on an equatorial urbanized reef to assess the allelopathic effects of four macroalgal species (Bryopsis sp., Endosiphonia horrida, Hypnea pannosa and Lobophora challengeriae) on the health and microbiomes of three coral species (Merulina ampliata, Montipora stellata and Pocillopora acuta). Following 24 h of exposure, crude extracts of all four macroalgal species caused significant coral tissue bleaching and reduction in effective quantum yield. The corals were able to recover within 72 h of the removal of extracts, except those that were exposed to L. challengeriae. While some macroalgal extracts caused an increase in the alpha diversity of coral microbiomes, there were no significant differences in the composition and variability of coral microbiomes between controls and macroalgal extracts at each sampling time point. Nevertheless, DESeq2 differential abundance analyses showed species-specific responses of coral microbiomes. Overall, our findings provide insights on the limited effect of chemically mediated interactions with macroalgae on coral microbiomes and the capacity of corals to recover quickly from the macroalgal chemicals.
Collapse
Affiliation(s)
- Jenny Fong
- Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore; (J.C.L.S.); (P.A.T.)
| | - Peggy P. Y. Tang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
| | - Lindsey K. Deignan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
| | - Jovena C. L. Seah
- Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore; (J.C.L.S.); (P.A.T.)
| | - Diane McDougald
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; (P.P.Y.T.); (L.K.D.); (D.M.); (S.A.R.)
| | - Peter A. Todd
- Experimental Marine Ecology Laboratory, National University of Singapore, Singapore 117558, Singapore; (J.C.L.S.); (P.A.T.)
| |
Collapse
|
16
|
Pei PT, Liu L, Jing XL, Liu XL, Sun LY, Gao C, Cui XH, Wang J, Ma ZL, Song SY, Sun ZH, Wang CY. Meta-analysis reveals variations in microbial communities from diverse stony coral taxa at different geographical distances. Front Microbiol 2023; 14:1087750. [PMID: 37520377 PMCID: PMC10374221 DOI: 10.3389/fmicb.2023.1087750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/28/2023] [Indexed: 08/01/2023] Open
Abstract
Coral-associated microbial communities play a vital role in underpinning the health and resilience of reef ecosystems. Previous studies have demonstrated that the microbial communities of corals are affected by multiple factors, mainly focusing on host species and geolocation. However, up-to-date, insight into how the coral microbiota is structured by vast geographic distance with rich taxa is deficient. In the present study, the coral microbiota in six stony coral species collected from the coastal area of three countries, including United States of America (USA), Australia and Fiji, was used for analysis. It was found that the geographic influence on the coral microbiota was stronger than the coral host influence, even though both were significant. Interestingly, the contribution of the deterministic process to bacterial community composition increased as geographical distance grew. A total of 65 differentially abundant features of functions in coral microbial communities were identified to be associated with three geolocations. While in the same coastal area of USA, the similar relationship of coral microbiota was consistent with the phylogenetic relationship of coral hosts. In contrast to the phylum Proteobacteria, which was most abundant in other coral species in USA, Cyanobacteria was the most abundant phylum in Orbicella faveolata. The above findings may help to better understand the multiple natural driving forces shaping the coral microbial community to contribute to defining the healthy baseline of the coral microbiome.
Collapse
Affiliation(s)
- Peng-Tao Pei
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Lu Liu
- School of Pharmacy, Fujian Health College, Fuzhou, China
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Li Jing
- High Performance Computing and System Simulation Platform, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xiao-Lu Liu
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lu-Yang Sun
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chen Gao
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Xiao-Han Cui
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- Single-Cell Center, Chinese Academy of Science Key Laboratory of Biofuels, Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Zhong-Lian Ma
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Shu-Yue Song
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Zhi-Hua Sun
- Department of Mathematics, Ocean University of China, Qingdao, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution and Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|
17
|
Galand PE, Ruscheweyh HJ, Salazar G, Hochart C, Henry N, Hume BCC, Oliveira PH, Perdereau A, Labadie K, Belser C, Boissin E, Romac S, Poulain J, Bourdin G, Iwankow G, Moulin C, Armstrong EJ, Paz-García DA, Ziegler M, Agostini S, Banaigs B, Boss E, Bowler C, de Vargas C, Douville E, Flores M, Forcioli D, Furla P, Gilson E, Lombard F, Pesant S, Reynaud S, Thomas OP, Troublé R, Zoccola D, Voolstra CR, Thurber RV, Sunagawa S, Wincker P, Allemand D, Planes S. Diversity of the Pacific Ocean coral reef microbiome. Nat Commun 2023; 14:3039. [PMID: 37264002 DOI: 10.1038/s41467-023-38500-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/26/2023] [Indexed: 06/03/2023] Open
Abstract
Coral reefs are among the most diverse ecosystems on Earth. They support high biodiversity of multicellular organisms that strongly rely on associated microorganisms for health and nutrition. However, the extent of the coral reef microbiome diversity and its distribution at the oceanic basin-scale remains to be explored. Here, we systematically sampled 3 coral morphotypes, 2 fish species, and planktonic communities in 99 reefs from 32 islands across the Pacific Ocean, to assess reef microbiome composition and biogeography. We show a very large richness of reef microorganisms compared to other environments, which extrapolated to all fishes and corals of the Pacific, approximates the current estimated total prokaryotic diversity for the entire Earth. Microbial communities vary among and within the 3 animal biomes (coral, fish, plankton), and geographically. For corals, the cross-ocean patterns of diversity are different from those known for other multicellular organisms. Within each coral morphotype, community composition is always determined by geographic distance first, both at the island and across ocean scale, and then by environment. Our unprecedented sampling effort of coral reef microbiomes, as part of the Tara Pacific expedition, provides new insight into the global microbial diversity, the factors driving their distribution, and the biocomplexity of reef ecosystems.
Collapse
Affiliation(s)
- Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France.
| | - Hans-Joachim Ruscheweyh
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Guillem Salazar
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Corentin Hochart
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques (LECOB), Observatoire Océanologique de Banyuls, Banyuls sur Mer, France
| | - Nicolas Henry
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | | | - Pedro H Oliveira
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Aude Perdereau
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Karine Labadie
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Emilie Boissin
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - Sarah Romac
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Julie Poulain
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | | | - Guillaume Iwankow
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | | | - Eric J Armstrong
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - David A Paz-García
- Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz, BCS, México
| | - Maren Ziegler
- Department of Animal Ecology & Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Sylvain Agostini
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Japan
| | - Bernard Banaigs
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| | - Emmanuel Boss
- School of Marine Sciences, University of Maine, Orono, USA
| | - Chris Bowler
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Colomban de Vargas
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, CNRS, Station Biologique de Roscoff, AD2M, UMR 7144, ECOMAP, Roscoff, France
| | - Eric Douville
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Michel Flores
- Weizmann Institute of Science, Department of Earth and Planetary Sciences, Rehovot, Israel
| | - Didier Forcioli
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Paola Furla
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Eric Gilson
- Université Côte d'Azur, CNRS, INSERM, IRCAN, Medical School, Nice, France
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Department of Medical Genetics, CHU of Nice, Nice, France
| | - Fabien Lombard
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Sorbonne Université, Institut de la Mer de Villefranche sur mer, Laboratoire d'Océanographie de Villefranche, Villefranche-sur-Mer, France
- Institut Universitaire de France, Paris, France
| | - Stéphane Pesant
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Stéphanie Reynaud
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Olivier P Thomas
- School of Biological and Chemical Sciences, Ryan Institute, University of Galway, Galway, Ireland
| | - Romain Troublé
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Fondation Tara Océan, Paris, France
| | - Didier Zoccola
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | | | | | - Shinichi Sunagawa
- Department of Biology, Institute of Microbiology and Swiss Institute of Bioinformatics, ETH Zürich, Zürich, Switzerland
| | - Patrick Wincker
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Denis Allemand
- LIA ROPSE, Laboratoire International Associé Université Côte d'Azur-Centre Scientifique de Monaco, Monaco, Principality of Monaco
- Centre Scientifique de Monaco, Monaco, Principality of Monaco
| | - Serge Planes
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022 GOSEE, Paris, France
- PSL Research University: EPHE-UPVD-CNRS, UAR 3278 CRIOBE, Laboratoire d'Excellence CORAIL, Université de Perpignan, Perpignan, Cedex, France
| |
Collapse
|
18
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
19
|
Doering T, Maire J, van Oppen MJH, Blackall LL. Advancing coral microbiome manipulation to build long-term climate resilience. MICROBIOLOGY AUSTRALIA 2023. [DOI: 10.1071/ma23009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Coral reefs house one-third of all marine species and are of high cultural and socioeconomic importance. However, coral reefs are under dire threat from climate change and other anthropogenic stressors. Climate change is causing coral bleaching, the breakdown of the symbiosis between the coral host and its algal symbionts, often resulting in coral mortality and the deterioration of these valuable ecosystems. While it is essential to counteract the root causes of climate change, it remains urgent to develop coral restoration and conservation methods that will buy time for coral reefs. The manipulation of the bacterial microbiome that is associated with corals has been suggested as one intervention to improve coral climate resilience. Early coral microbiome-manipulation studies, which are aimed at enhancing bleaching tolerance, have shown promising results, but the inoculated bacteria did generally not persist within the coral microbiome. Here, we highlight the importance of long-term incorporation of bacterial inocula into the microbiome of target corals, as repeated inoculations will be too costly and not feasible on large reef systems like the Great Barrier Reef. Therefore, coral microbiome-manipulation studies need to prioritise approaches that can provide sustained coral climate resilience.
Collapse
|
20
|
Exploring the Potential Molecular Mechanisms of Interactions between a Probiotic Consortium and Its Coral Host. mSystems 2023; 8:e0092122. [PMID: 36688656 PMCID: PMC9948713 DOI: 10.1128/msystems.00921-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Beneficial microorganisms for corals (BMCs) have been demonstrated to be effective probiotics to alleviate bleaching and mitigate coral mortality in vivo. The selection of putative BMCs is traditionally performed manually, using an array of biochemical and molecular tests for putative BMC traits. We present a comprehensive genetic survey of BMC traits using a genome-based framework for the identification of alternative mechanisms that can be used for future in silico selection of BMC strains. We identify exclusive BMC traits associated with specific strains and propose new BMC mechanisms, such as the synthesis of glycine betaine and ectoines. Our roadmap facilitates the selection of BMC strains while increasing the array of genetic targets that can be included in the selection of putative BMC strains to be tested as coral probiotics. IMPORTANCE Probiotics are currently the main hope as a potential medicine for corals, organisms that are considered the marine "canaries of the coal mine" and that are threatened with extinction. Our experiments have proved the concept that probiotics mitigate coral bleaching and can also prevent coral mortality. Here, we present a comprehensive genetic survey of probiotic traits using a genome-based framework. The main outcomes are a roadmap that facilitates the selection of coral probiotic strains while increasing the array of mechanisms that can be included in the selection of coral probiotics.
Collapse
|
21
|
Baldassarre L, Reitzel AM, Fraune S. Genotype-environment interactions determine microbiota plasticity in the sea anemone Nematostella vectensis. PLoS Biol 2023; 21:e3001726. [PMID: 36689558 PMCID: PMC9894556 DOI: 10.1371/journal.pbio.3001726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/02/2023] [Accepted: 01/05/2023] [Indexed: 01/24/2023] Open
Abstract
Most multicellular organisms harbor microbial colonizers that provide various benefits to their hosts. Although these microbial communities may be host species- or even genotype-specific, the associated bacterial communities can respond plastically to environmental changes. In this study, we estimated the relative contribution of environment and host genotype to bacterial community composition in Nematostella vectensis, an estuarine cnidarian. We sampled N. vectensis polyps from 5 different populations along a north-south gradient on the Atlantic coast of the United States and Canada. In addition, we sampled 3 populations at 3 different times of the year. While half of the polyps were immediately analyzed for their bacterial composition by 16S rRNA gene sequencing, the remaining polyps were cultured under laboratory conditions for 1 month. Bacterial community comparison analyses revealed that laboratory maintenance reduced bacterial diversity by 4-fold, but maintained a population-specific bacterial colonization. Interestingly, the differences between bacterial communities correlated strongly with seasonal variations, especially with ambient water temperature. To decipher the contribution of both ambient temperature and host genotype to bacterial colonization, we generated 12 clonal lines from 6 different populations in order to maintain each genotype at 3 different temperatures for 3 months. The bacterial community composition of the same N. vectensis clone differed greatly between the 3 different temperatures, highlighting the contribution of ambient temperature to bacterial community composition. To a lesser extent, bacterial community composition varied between different genotypes under identical conditions, indicating the influence of host genotype. In addition, we identified a significant genotype x environment interaction determining microbiota plasticity in N. vectensis. From our results we can conclude that N. vectensis-associated bacterial communities respond plastically to changes in ambient temperature, with the association of different bacterial taxa depending in part on the host genotype. Future research will reveal how this genotype-specific microbiota plasticity affects the ability to cope with changing environmental conditions.
Collapse
Affiliation(s)
- Laura Baldassarre
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
- Istituto Nazionale di Oceanografia e di Geofisica Sperimentale—OGS, Sezione di Oceanografia, Trieste, Italy
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
| | - Sebastian Fraune
- Institut für Zoologie und Organismische Interaktionen, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
22
|
Kanisan DP, Quek ZBR, Oh RM, Afiq-Rosli L, Lee JN, Huang D, Wainwright BJ. Diversity and Distribution of Microbial Communities Associated with Reef Corals of the Malay Peninsula. MICROBIAL ECOLOGY 2023; 85:37-48. [PMID: 35043221 DOI: 10.1007/s00248-022-01958-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Coral-associated bacteria play critical roles in the regulation of coral health and function. Environmental perturbations that alter the bacterial community structure can render the coral holobiont more susceptible and less resilient to disease. Understanding the natural variation of the coral microbiome across space and host species provides a baseline that can be used to distinguish shifts in community structure. Using a 16S rRNA gene metabarcoding approach, this study examines bacterial community structure across three scleractinian coral hosts. Our results show that corals of three regions-eastern and western Peninsular Malaysia and Singapore-host distinct bacterial communities; despite these differences, we were able to identify a core microbiome shared across all three species. This core microbiome was also present in samples previously collected in Thailand, suggesting that these core microbes play an important role in promoting and maintaining host health. For example, several have been identified as dimethylsulfoniopropionate (DMSP) metabolizers that have roles in sulfur cycling and the suppression of bacterial pathogens. Pachyseris speciosa has the most variable microbiome, followed by Porites lutea, with the composition of the Diploastrea heliopora microbiome the least variable throughout all locations. Microbial taxa associated with each region or site are likely shaped by local environmental conditions. Taken together, host identity is a major driver of differences in microbial community structure, while environmental heterogeneity shapes communities at finer scales.
Collapse
Affiliation(s)
- Dhivya P Kanisan
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Z B Randolph Quek
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore
| | - Ren Min Oh
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Lutfi Afiq-Rosli
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Malaysia
| | - Danwei Huang
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
- Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, 119227, Singapore
- Centre for Nature-Based Climate Solutions, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, 138527, Singapore.
| |
Collapse
|
23
|
Zhang X, Chen Z, Yu Y, Liu Z, Mo L, Sun Z, Lin Z, Wang J. Response of bacterial diversity and community structure to metals in mangrove sediments from South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157969. [PMID: 35985575 DOI: 10.1016/j.scitotenv.2022.157969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Human activities have given rise to metal contamination in the constituents of mangrove ecosystems, posing a critical threat to sediment microorganisms; hence, it is of great importance to comprehend the effects of metals on the microbial communities in mangrove sediments. This study was the first to explore the response of the bacterial diversity and community structure to nine metals (As, Co, Cr, Cu, Mn, Ni, Pb, V and Zn) and organic matter fractions (including total organic carbon (TOC), total nitrogen (TN), and total sulfur (TS)) in mangrove wetlands from Zhanjiang, China, using 16S rRNA high-throughput sequencing technology and Spearman correlation analysis. The results showed that these nine metals were scattered differently in different mangrove sediments, and the metals and organic matter fractions jointly affected the bacterial communities in the sediments. Several metals displayed significant positive correlations with the abundances of the phylum Bacteroidetes and the genera Actibacter and Sphingobacterium but significant negative correlations with the abundances of two genera Holophaga and Caldithrix. Furthermore, the abundances of the phylum Actinobacteria and many bacterial genera showed significant positive or negative responses to the levels of the three organic matter fractions. Interestingly, the levels of a number of bacterial genera that exhibited increased abundance with high levels of metals and TS might be reduced with high TOC and TN, and vice versa: the levels of genera that exhibited decreased abundance with high levels of metals and TS might be increased with high TOC and TN. Overall, many bacterial groups showed different response patterns to each metal or organic matter fraction, and these metals together with organic matter fractions influenced the bacterial diversity and community structure in mangrove sediments.
Collapse
Affiliation(s)
- Xiaoyong Zhang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zihui Chen
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Youkai Yu
- Institute for Innovation and Entrepreneurship, Loughborough University, London E20 3BS, UK
| | - Zhiying Liu
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Li Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zuwang Sun
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Zhongmei Lin
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jun Wang
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
24
|
Schultz J, Modolon F, Rosado AS, Voolstra CR, Sweet M, Peixoto RS. Methods and Strategies to Uncover Coral-Associated Microbial Dark Matter. mSystems 2022; 7:e0036722. [PMID: 35862824 PMCID: PMC9426423 DOI: 10.1128/msystems.00367-22] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The vast majority of environmental microbes have not yet been cultured, and most of the knowledge on coral-associated microbes (CAMs) has been generated from amplicon sequencing and metagenomes. However, exploring cultured CAMs is key for a detailed and comprehensive characterization of the roles of these microbes in shaping coral health and, ultimately, for their biotechnological use as, for example, coral probiotics and other natural products. Here, the strategies and technologies that have been used to access cultured CAMs are presented, while advantages and disadvantages associated with each of these strategies are discussed. We highlight the existing gaps and potential improvements in culture-dependent methodologies, indicating several possible alternatives (including culturomics and in situ diffusion devices) that could be applied to retrieve the CAM "dark matter" (i.e., the currently undescribed CAMs). This study provides the most comprehensive synthesis of the methodologies used to recover the cultured coral microbiome to date and draws suggestions for the development of the next generation of CAM culturomics.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandre S. Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, UK
| | - Raquel S. Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
25
|
The gut microbiome variability of a butterflyfish increases on severely degraded Caribbean reefs. Commun Biol 2022; 5:770. [PMID: 35908086 PMCID: PMC9338936 DOI: 10.1038/s42003-022-03679-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/07/2022] [Indexed: 12/25/2022] Open
Abstract
Environmental degradation has the potential to alter key mutualisms that underlie the structure and function of ecological communities. How microbial communities associated with fishes vary across populations and in relation to habitat characteristics remains largely unknown despite their fundamental roles in host nutrition and immunity. We find significant differences in the gut microbiome composition of a facultative coral-feeding butterflyfish (Chaetodon capistratus) across Caribbean reefs that differ markedly in live coral cover (∼0–30%). Fish gut microbiomes were significantly more variable at degraded reefs, a pattern driven by changes in the relative abundance of the most common taxa potentially associated with stress. We also demonstrate that fish gut microbiomes on severely degraded reefs have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria, which may suggest a less coral dominated diet. The observed shifts in fish gut bacterial communities across the habitat gradient extend to a small set of potentially beneficial host associated bacteria (i.e., the core microbiome) suggesting essential fish-microbiome interactions may be vulnerable to severe coral degradation. The gut microbiome composition of the coral-feeding butterflyfish across Caribbean reefs is more variable at degraded reefs. These microbiomes have a lower abundance of Endozoicomonas and a higher diversity of anaerobic fermentative bacteria.
Collapse
|
26
|
Microbiome Restructuring: Dominant Coral Bacterium Endozoicomonas Species Respond Differentially to Environmental Changes. mSystems 2022; 7:e0035922. [PMID: 35703535 PMCID: PMC9426584 DOI: 10.1128/msystems.00359-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bacteria in the coral microbiome play a crucial role in determining coral health and fitness, and the coral host often restructures its microbiome composition in response to external factors. An important but often neglected factor determining this microbiome restructuring is the ability of microbiome members to respond to changes in the environment. To address this issue, we examined how the microbiome structure of Acropora muricata corals changed over 9 months following a reciprocal transplant experiment. Using a combination of metabarcoding, genomics, and comparative genomics approaches, we found that coral colonies separated by a small distance harbored different dominant Endozoicomonas-related phylotypes belonging to two different species, including a novel species, “Candidatus Endozoicomonas penghunesis” 4G, whose chromosome-level (complete) genome was also sequenced in this study. Furthermore, the two dominant Endozoicomonas species had different potentials to scavenge reactive oxygen species, suggesting potential differences in responding to the environment. Differential capabilities of dominant members of the microbiome to respond to environmental change can (i) provide distinct advantages or disadvantages to coral hosts when subjected to changing environmental conditions and (ii) have positive or negative implications for future reefs. IMPORTANCE The coral microbiome has been known to play a crucial role in host health. In recent years, we have known that the coral microbiome changes in response to external stressors and that coral hosts structure their microbiome in a host-specific manner. However, an important internal factor, the ability of microbiome members to respond to change, has been often neglected. In this study, we combine metabarcoding, culturing, and genomics to delineate the differential ability of two dominant Endozoicomonas species, including a novel “Ca. Endozoicomonas penghunesis” 4G, to respond to change in the environment following a reciprocal transplant experiment.
Collapse
|
27
|
Simonin M, Briand M, Chesneau G, Rochefort A, Marais C, Sarniguet A, Barret M. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. THE NEW PHYTOLOGIST 2022; 234:1448-1463. [PMID: 35175621 DOI: 10.1111/nph.18037] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 05/15/2023]
Abstract
Seed microbiota constitutes a primary inoculum for plants that is gaining attention owing to its role for plant health and productivity. Here, we performed a meta-analysis on 63 seed microbiota studies covering 50 plant species to synthesize knowledge on the diversity of this habitat. Seed microbiota are diverse and extremely variable, with taxa richness varying from one to thousands of taxa. Hence, seed microbiota presents a variable (i.e. flexible) microbial fraction but we also identified a stable (i.e. core) fraction across samples. Around 30 bacterial and fungal taxa are present in most plant species and in samples from all over the world. Core taxa, such as Pantoea agglomerans, Pseudomonas viridiflava, P. fluorescens, Cladosporium perangustum and Alternaria sp., are dominant seed taxa. The characterization of the core and flexible seed microbiota provided here will help uncover seed microbiota roles for plant health and design effective microbiome engineering.
Collapse
Affiliation(s)
- Marie Simonin
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Martial Briand
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Guillaume Chesneau
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Aude Rochefort
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Coralie Marais
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Alain Sarniguet
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| | - Matthieu Barret
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d'Angers, F-49000, Angers, France
| |
Collapse
|
28
|
Ricci F, Tandon K, Black JR, Lê Cao KA, Blackall LL, Verbruggen H. Host Traits and Phylogeny Contribute to Shaping Coral-Bacterial Symbioses. mSystems 2022; 7:e0004422. [PMID: 35253476 PMCID: PMC9045482 DOI: 10.1128/msystems.00044-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 12/23/2022] Open
Abstract
The success of tropical scleractinian corals depends on their ability to establish symbioses with microbial partners. Host phylogeny and traits are known to shape the coral microbiome, but to what extent they affect its composition remains unclear. Here, by using 12 coral species representing the complex and robust clades, we explored the influence of host phylogeny, skeletal architecture, and reproductive mode on the microbiome composition, and further investigated the structure of the tissue and skeleton bacterial communities. Our results show that host phylogeny and traits explained 14% of the tissue and 13% of the skeletal microbiome composition, providing evidence that these predictors contributed to shaping the holobiont in terms of presence and relative abundance of bacterial symbionts. Based on our data, we conclude that host phylogeny affects the presence of specific microbial lineages, reproductive mode predictably influences the microbiome composition, and skeletal architecture works like a filter that affects bacterial relative abundance. We show that the β-diversity of coral tissue and skeleton microbiomes differed, but we found that a large overlapping fraction of bacterial sequences were recovered from both anatomical compartments, supporting the hypothesis that the skeleton can function as a microbial reservoir. Additionally, our analysis of the microbiome structure shows that 99.6% of tissue and 99.7% of skeletal amplicon sequence variants (ASVs) were not consistently present in at least 30% of the samples, suggesting that the coral tissue and skeleton are dominated by rare bacteria. Together, these results provide novel insights into the processes driving coral-bacterial symbioses, along with an improved understanding of the scleractinian microbiome.
Collapse
Affiliation(s)
- Francesco Ricci
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Kshitij Tandon
- School of BioSciences, University of Melbourne, Victoria, Australia
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jay R. Black
- School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Victoria, Australia
| | - Kim-Anh Lê Cao
- Melbourne Integrative Genomics, School of Mathematics and Statistics, University of Melbourne, Victoria, Australia
| | | | | |
Collapse
|
29
|
Abstract
The term "core microbiome" has become widely used in microbial ecology over the last decade. Broadly, the core microbiome refers to any set of microbial taxa, or the genomic and functional attributes associated with those taxa, that are characteristic of a host or environment of interest. Most commonly, core microbiomes are measured as the microbial taxa shared among two or more samples from a particular host or environment. Despite the popularity of this term and its growing use, there is little consensus about how a core microbiome should be quantified in practice. Here, we present a brief history of the core microbiome concept and use a representative sample of the literature to review the different metrics commonly used for quantifying the core. Empirical analyses have used a wide range of metrics for quantifying the core microbiome, including arbitrary occurrence and abundance cutoff values, with the focal taxonomic level of the core ranging from phyla to amplicon sequence variants. However, many of these metrics are susceptible to sampling and other biases. Developing a standardized set of metrics for quantifying the core that accounts for such biases is necessary for testing specific hypotheses about the functional and ecological roles of core microbiomes.
Collapse
|
30
|
Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions. DIVERSITY 2021. [DOI: 10.3390/d13120632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.
Collapse
|
31
|
Abstract
Microbial communities associated with deep-sea animals are critical to the establishment of novel biological communities in unusual environments. Over the past few decades, rapid exploration of the deep sea has enabled the discovery of novel microbial communities, some of which form symbiotic relationships with animal hosts. Symbiosis in the deep sea changes host physiology, behavior, ecology, and evolution over time and space. Symbiont diversity within a host is often aligned with diverse metabolic pathways that broaden the environmental niche for the animal host. In this review, we focus on microbiomes and obligate symbionts found in different deep-sea habitats and how they facilitate survival of the organisms that live in these environments. In addition, we discuss factors that govern microbiome diversity, host specificity, and biogeography in the deep sea. Finally, we highlight the current limitations of microbiome research and draw a road map for future directions to advance our knowledge of microbiomes in the deep sea. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Eslam O Osman
- Biology Department, Eberly College, Pennsylvania State University, State College, Pennsylvania, USA; .,Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Marine Biology Lab, Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Alexis M Weinnig
- Biology Department, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
32
|
Yu X, Yu K, Liao Z, Chen B, Deng C, Yu J, Yao Q, Qin Z, Liang J. Seasonal fluctuations in symbiotic bacteria and their role in environmental adaptation of the scleractinian coral Acropora pruinosa in high-latitude coral reef area of the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148438. [PMID: 34153755 DOI: 10.1016/j.scitotenv.2021.148438] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Coral-associated bacterial communities are paramount for coral ecosystems and holobiont health. However, the role of symbiotic bacteria in the adaptation of high-latitude corals to seasonal fluctuations remains underexplored. Therefore, we used 16S rRNA-based high-throughput sequencing to analyze the symbiotic bacterial diversity, composition, and core bacterial community in high-latitude coral and explored the seasonal fluctuation characteristics of symbiotic bacterial communities. We found that bacterial richness and α-diversity changed significantly across different seasons. Additionally, the community structure recombined seasonally, with different dominant bacterial phyla and genera in different seasons. However, the symbiotic bacterial community structures of Acropora pruinosa in winter and spring were similar. Proteobacteria were the dominant bacteria in spring, autumn, and winter. In summer, the dominant bacterial taxa were Bacteroidota and Proteobacteria. Ralstonia was the dominant bacterial genus in spring and winter, whereas in autumn, BD1-7_clade was dominant. Linear discriminant analysis effect size identified 20 abundant genera between the different groups. Core microbiome analysis revealed that 12 core bacterial operational taxonomic units were associated with A. pruinosa in all seasons, seven of which varied with the seasons, changing between dominant and rare. Distance-based redundancy and variation partitioning analyses revealed that sea surface temperature was the major contributor of variation in the microbial community structure. We hypothesized that the high diversity and abundance of symbiotic bacteria and the increase in Prosthecochloris abundance in coral in summer can help A. pruinosa maintain its physiological functions, ameliorating the negative physiological effects of the decrease in Symbiodiniaceae density under high-temperature stress. Thus, the rapid reorganization of the symbiotic bacterial community structure and core microflora in different seasons may allow the corals to adapt to large seasonal environmental fluctuations. In conclusion, seasonal variation of bacteria plays an important role in coral adaptation to large environmental fluctuations.
Collapse
Affiliation(s)
- Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Chuanqi Deng
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiaoyang Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Qiucui Yao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
33
|
Bhagat N, Sharma S, Ambardar S, Raj S, Trakroo D, Horacek M, Zouagui R, Sbabou L, Vakhlu J. Microbiome Fingerprint as Biomarker for Geographical Origin and Heredity in Crocus sativus: A Feasibility Study. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.688393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Host–microbiome interactions are specific and not random, making them defining entities for the host. The hypothesis proposed by various researchers earlier, that both plants and animals harbor specific inheritable core microbiome, is being augmented in the present study. Additionally, a case for using microbial fingerprint as a biomarker, not only for plant identification but also as a geographical indicator, has been investigated, taking Crocus sativus, saffron, as a study material. Crocus sativus, a monogenetic herb, on account of its male sterility and vegetative propagation, is reported to lack genome based molecular markers. Cormosphere microbiome (microbiome associated with corm) has been compared across three geographical locations, in two continents, to identify the core and unique microbiome, during the vegetative phase of its growth. Microbiome analysis done at phylum and genus level, using next generation sequencing technology, revealed that cormosphere at three locations harbored common phyla. At genus level, 24 genera were found common to all three geographical locations, indicating them to be part of the core microbiome of saffron. However, there were some bacterial genera unique to Kashmir, Kishtwar, and Morocco that can be used to develop microbial markers/geographical indicators for saffron grown in these regions. This is a preliminary study, indicating that the location specific bacterial community can be used to develop microbial barcodes but needs further augmentation with high coverage data from other saffron growing geographical regions.
Collapse
|
34
|
Pootakham W, Mhuantong W, Yoocha T, Sangsrakru D, Kongkachana W, Sonthirod C, Naktang C, Jomchai N, U-Thoomporn S, Yeemin T, Pengsakun S, Sutthacheep M, Tangphatsornruang S. Taxonomic profiling of Symbiodiniaceae and bacterial communities associated with Indo-Pacific corals in the Gulf of Thailand using PacBio sequencing of full-length ITS and 16S rRNA genes. Genomics 2021; 113:2717-2729. [PMID: 34089786 DOI: 10.1016/j.ygeno.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 11/15/2022]
Abstract
Corals live with complex assemblages of microbes including bacteria, the dinoflagellate Symbiodiniaceae, fungi and viruses in a coral holobiont. These coral-associated microorganisms play an important role in their host fitness and survival. Here, we investigated the structure and diversity of algal and bacterial communities associated with five Indo-Pacific coral species, using full-length 16S rRNA and internal transcribed spacer sequences. While the dinoflagellate communities associated with Poriteslutea were dominated with Symbiodiniaceae genus Cladocopium, the other four coral hosts were associated mainly with members of the Durusdinium genus, suggesting that host species was one of the underlying factors influencing the structure and composition of dinoflagellate communities associated with corals in the Gulf of Thailand. Alphaproteobacteria dominated the microbiomes of Pocillopora spp. while Pavonafrondifera and P. lutea were associated primarily with Gammaproteobacteria. Finally, we demonstrated a superior performance of full-length 16S rRNA sequences in achieving species-resolution taxonomic classification of coral-associated microbiota.
Collapse
Affiliation(s)
- Wirulda Pootakham
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand.
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thippawan Yoocha
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Wasitthee Kongkachana
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chutima Sonthirod
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Chaiwat Naktang
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nukoon Jomchai
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sonicha U-Thoomporn
- National Omics Center (NOC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Thammasak Yeemin
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Sittiporn Pengsakun
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Makamas Sutthacheep
- Marine Biodiversity Research Group, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | |
Collapse
|
35
|
Chen B, Yu K, Liao Z, Yu X, Qin Z, Liang J, Wang G, Wu Q, Jiang L. Microbiome community and complexity indicate environmental gradient acclimatisation and potential microbial interaction of endemic coral holobionts in the South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142690. [PMID: 33071127 DOI: 10.1016/j.scitotenv.2020.142690] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/31/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Regional acclimatisation and microbial interactions significantly influence the resilience of reef-building corals facing anthropogenic climate change, allowing them to adapt to environmental stresses. However, the connections between community structure and microbial interactions of the endemic coral microbiome and holobiont acclimatisation remain unclear. Herein, we used generation sequencing of internal transcribed spacer (ITS2) and 16S rRNA genes to investigate the microbiome composition (Symbiodiniaceae and bacteria) and associated potential interactions of endemic dominant coral holobionts (Pocillopora verrucosa and Turbinaria peltata) in the South China Sea (SCS). We found that shifts in Symbiodiniaceae and bacterial communities of P. verrucosa were associated with latitudinal gradient and climate zone changes, respectively. The C1 sub-clade consistently dominated the Symbiodiniaceae community in T. peltata; yet, the bacterial community structure was spatially heterogeneous. The relative abundance of the core microbiome among P. verrucosa holobionts was reduced in the biogeographical transition zone, while bacterial taxa associated with anthropogenic activity (Escherichia coli and Sphingomonas) were identified in the core microbiomes. Symbiodiniaceae and bacteria potentially interact in microbial co-occurrence networks. Further, increased bacterial, and Symbiodiniaceae α-diversity was associated with increased and decreased network complexity, respectively. Hence, Symbiodiniaceae and bacteria demonstrated different flexibility in latitudinal or climatic environmental regimes, which correlated with holobiont acclimatisation. Core microbiome analysis has indicated that the function of core bacterial microbiota might have changed in distinct environmental regimes, implying potential human activity in the coral habitats. Increased bacterial α diversity may lead to a decline in the stability of coral-microorganism symbioses, whereas rare Symbiodiniaceae may help to retain symbioses. Cladocopium, γ-proteobacteria, while α-proteobacteria may have been the primary drivers in the Symbiodiniaceae-bacterial interactions (SBIs). Our study highlights the association between microbiome shift in distinct environmental regimes and holobiont acclimatisation, while providing insights into the impact of SBIs on holobiont health and acclimatisation during climate change.
Collapse
Affiliation(s)
- Biao Chen
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China.
| | - Zhiheng Liao
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaopeng Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Zhenjun Qin
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Jiayuan Liang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Guanghua Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Qian Wu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| | - Leilei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Guangxi University, Nanning, China; Coral Reef Research Center of China, Guangxi University, Nanning, China; School of Marine Sciences, Guangxi University, Nanning, China
| |
Collapse
|
36
|
Morphological stasis masks ecologically divergent coral species on tropical reefs. Curr Biol 2021; 31:2286-2298.e8. [PMID: 33811819 DOI: 10.1016/j.cub.2021.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/13/2021] [Accepted: 03/09/2021] [Indexed: 01/07/2023]
Abstract
Coral reefs are the epitome of species diversity, yet the number of described scleractinian coral species, the framework-builders of coral reefs, remains moderate by comparison. DNA sequencing studies are rapidly challenging this notion by exposing a wealth of undescribed diversity, but the evolutionary and ecological significance of this diversity remains largely unclear. Here, we present an annotated genome for one of the most ubiquitous corals in the Indo-Pacific (Pachyseris speciosa) and uncover, through a comprehensive genomic and phenotypic assessment, that it comprises morphologically indistinguishable but ecologically divergent lineages. Demographic modeling based on whole-genome resequencing indicated that morphological crypsis (across micro- and macromorphological traits) was due to ancient morphological stasis rather than recent divergence. Although the lineages occur sympatrically across shallow and mesophotic habitats, extensive genotyping using a rapid molecular assay revealed differentiation of their ecological distributions. Leveraging "common garden" conditions facilitated by the overlapping distributions, we assessed physiological and quantitative skeletal traits and demonstrated concurrent phenotypic differentiation. Lastly, spawning observations of genotyped colonies highlighted the potential role of temporal reproductive isolation in the limited admixture, with consistent genomic signatures in genes related to morphogenesis and reproduction. Overall, our findings demonstrate the presence of ecologically and phenotypically divergent coral species without substantial morphological differentiation and provide new leads into the potential mechanisms facilitating such divergence. More broadly, they indicate that our current taxonomic framework for reef-building corals may be scratching the surface of the ecologically relevant diversity on coral reefs, consequently limiting our ability to protect or restore this diversity effectively.
Collapse
|
37
|
Sehnal L, Brammer-Robbins E, Wormington AM, Blaha L, Bisesi J, Larkin I, Martyniuk CJ, Simonin M, Adamovsky O. Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health. Front Microbiol 2021; 12:567408. [PMID: 33776947 PMCID: PMC7995652 DOI: 10.3389/fmicb.2021.567408] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/05/2021] [Indexed: 01/03/2023] Open
Abstract
Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health.
Collapse
Affiliation(s)
- Ludek Sehnal
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Elizabeth Brammer-Robbins
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Alexis M. Wormington
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Brno, Czechia
| | - Joe Bisesi
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, United States
| | - Iske Larkin
- Department of Large Animal Clinical Sciences, University of Florida, Gainesville, FL, United States
| | - Christopher J. Martyniuk
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
- Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, United States
| | - Marie Simonin
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | | |
Collapse
|
38
|
Energy depletion and opportunistic microbial colonisation in white syndrome lesions from corals across the Indo-Pacific. Sci Rep 2020; 10:19990. [PMID: 33203914 PMCID: PMC7672225 DOI: 10.1038/s41598-020-76792-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/30/2020] [Indexed: 12/28/2022] Open
Abstract
Corals are dependent upon lipids as energy reserves to mount a metabolic response to biotic and abiotic challenges. This study profiled lipids, fatty acids, and microbial communities of healthy and white syndrome (WS) diseased colonies of Acropora hyacinthus sampled from reefs in Western Australia, the Great Barrier Reef, and Palmyra Atoll. Total lipid levels varied significantly among locations, though a consistent stepwise decrease from healthy tissues from healthy colonies (HH) to healthy tissue on WS-diseased colonies (HD; i.e. preceding the lesion boundary) to diseased tissue on diseased colonies (DD; i.e. lesion front) was observed, demonstrating a reduction in energy reserves. Lipids in HH tissues were comprised of high energy lipid classes, while HD and DD tissues contained greater proportions of structural lipids. Bacterial profiling through 16S rRNA gene sequencing and histology showed no bacterial taxa linked to WS causation. However, the relative abundance of Rhodobacteraceae-affiliated sequences increased in DD tissues, suggesting opportunistic proliferation of these taxa. While the cause of WS remains inconclusive, this study demonstrates that the lipid profiles of HD tissues was more similar to DD tissues than to HH tissues, reflecting a colony-wide systemic effect and provides insight into the metabolic immune response of WS-infected Indo-Pacific corals.
Collapse
|
39
|
van de Water JAJM, Coppari M, Enrichetti F, Ferrier-Pagès C, Bo M. Local Conditions Influence the Prokaryotic Communities Associated With the Mesophotic Black Coral Antipathella subpinnata. Front Microbiol 2020; 11:537813. [PMID: 33123099 PMCID: PMC7573217 DOI: 10.3389/fmicb.2020.537813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 09/09/2020] [Indexed: 12/31/2022] Open
Abstract
Black corals are important habitat-forming species in the mesophotic and deep-sea zones of the world’s oceans because of their arborescent colony structure and tendency to form animal forests. Although we have started unraveling the ecology of mesophotic black corals, the importance of the associated microbes to their health has remained unexplored. Here, we provide in-depth assessments of black coral-microbe symbioses by investigating the spatial and temporal stability of these associations, and make comparisons with a sympatric octocoral with similar colony structure. To this end, we collected samples of Antipathella subpinnata colonies from three mesophotic shoals situated along the Ligurian Coast of the Mediterranean Sea (Bordighera, Portofino, Savona) in the spring of 2017. At the Portofino shoal, samples of A. subpinnata and the gorgonian Eunicella cavolini were collected in November 2016 and May 2017. Bacterial communities were profiled using 16S rRNA gene amplicon sequencing. The bacterial community of E. cavolini was consistently dominated by Endozoicomonas. Contrastingly, the black coral microbiome was more diverse, and was primarily composed of numerous Bacteroidetes, Alpha- and Gammaproteobacterial taxa, putatively involved in all steps of the nitrogen and sulfur cycles. Compositional differences in the A. subpinnata microbiome existed between all locations and both time points, and no phylotypes were consistently associated with A. subpinnata. This highlights that local conditions may influence the bacterial community structure and potentially nutrient cycling within the A. subpinnata holobiont. But it also suggests that this coral holobiont possesses a high degree of microbiome flexibility, which may be a mechanism to acclimate to environmental change.
Collapse
Affiliation(s)
| | - Martina Coppari
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Francesco Enrichetti
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy
| | | | - Marzia Bo
- Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università degli Studi di Genova, Genova, Italy.,Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| |
Collapse
|
40
|
Trevizan Segovia B, Sanders-Smith R, Adamczyk EM, Forbes C, Hessing-Lewis M, O'Connor MI, Parfrey LW. Microeukaryotic Communities Associated With the Seagrass Zostera marina Are Spatially Structured. J Eukaryot Microbiol 2020; 68:e12827. [PMID: 33065761 DOI: 10.1111/jeu.12827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/24/2020] [Accepted: 10/06/2020] [Indexed: 11/29/2022]
Abstract
Epibiotic microorganisms link seagrass productivity to higher trophic levels, but little is known about the processes structuring these communities, and which taxa consistently associate with seagrass. We investigated epibiotic microeukaryotes on seagrass (Zostera marina) leaves, substrates, and planktonic microeukaryotes in ten meadows in the Northeast Pacific. Seagrass epibiotic communities are distinct from planktonic and substrate communities. We found sixteen core microeukaryotes, including dinoflagellates, diatoms, and saprotrophic stramenopiles. Some likely use seagrass leaves as a substrate, others for grazing, or they may be saprotrophic organisms involved in seagrass decomposition or parasites; their relatives have been previously reported from marine sediments and in association with other hosts such as seaweeds. Core microeukaryotes were spatially structured, and none were ubiquitous across meadows. Seagrass epibiota were more spatially structured than planktonic communities, mostly due to spatial distance and changes in abiotic conditions across space. Seawater communities were relatively more similar in composition across sites and more influenced by the environmental component, but more variable over time. Core and transient taxa were both mostly structured by spatial distance and the abiotic environment, with little effect of host attributes, further indicating that those core taxa would not show a strong specific association with Z. marina.
Collapse
Affiliation(s)
- Bianca Trevizan Segovia
- Botany and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada
| | - Rhea Sanders-Smith
- Botany and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada
| | - Emily M Adamczyk
- Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Coreen Forbes
- Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | | | - Mary I O'Connor
- Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada.,Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| | - Laura Wegener Parfrey
- Botany and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada.,Hakai Institute, PO BOX 309, Heriot Bay, BC, V0P 1H0, Canada.,Zoology and Biodiversity Research Centre, University of British Columbia, Unceded xʷməθkʷəýəm (Musqueam) Territory, 3529-6270 University Blvd., Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
41
|
A framework for in situ molecular characterization of coral holobionts using nanopore sequencing. Sci Rep 2020; 10:15893. [PMID: 32985530 PMCID: PMC7522235 DOI: 10.1038/s41598-020-72589-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/03/2020] [Indexed: 01/21/2023] Open
Abstract
Molecular characterization of the coral host and the microbial assemblages associated with it (referred to as the coral holobiont) is currently undertaken via marker gene sequencing. This requires bulky instruments and controlled laboratory conditions which are impractical for environmental experiments in remote areas. Recent advances in sequencing technologies now permit rapid sequencing in the field; however, development of specific protocols and pipelines for the effective processing of complex microbial systems are currently lacking. Here, we used a combination of 3 marker genes targeting the coral animal host, its symbiotic alga, and the associated bacterial microbiome to characterize 60 coral colonies collected and processed in situ, during the Tara Pacific expedition. We used Oxford Nanopore Technologies to sequence marker gene amplicons and developed bioinformatics pipelines to analyze nanopore reads on a laptop, obtaining results in less than 24 h. Reef scale network analysis of coral-associated bacteria reveals broadly distributed taxa, as well as host-specific associations. Protocols and tools used in this work may be applicable for rapid coral holobiont surveys, immediate adaptation of sampling strategy in the field, and to make informed and timely decisions in the context of the current challenges affecting coral reefs worldwide.
Collapse
|
42
|
Wang G, Xu S, Dang G, Liu J, Su H, Chen B, Liao Z, Huang W, Liang J, Wang Y, Yu K. Poritiphilus flavus gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from coral Porites lutea. Int J Syst Evol Microbiol 2020; 70:5620-5626. [PMID: 32924922 DOI: 10.1099/ijsem.0.004452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative, non-endospore-forming, non-motile, aerobic bacterium (strain R33T) was isolated from coral Porites lutea and subjected to a polyphasic taxonomic study. The G+C content was 44.5 mol%. The only detected respiratory quinone was menaquinone 6 (MK-6). The major cellular fatty acids were iso-C15 : 0 and iso-C15 : 1 ω6c. The major polar lipids were phosphatidylethanolamine and two unidentified lipids. Global alignment based on 16S rRNA gene sequences indicated that strain R33T shares the highest sequence identity of 93.2 % with Muriicola marianensis A6B8T in the family Flavobacteriaceae. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain R33T forms a distinct branch in a stable clade comprising strain R33T and members of the genera Muriicola, Robiginitalea, Eudoraea and Zeaxanthinibacter. The phylogenomic analysis also supported this 16S rRNA gene-based phylogenetic result. Comparative genomic analysis indicated that strain R33T is rich in AraC-type DNA-binding domain-containing protein-coding genes, which means the regulation of carbon utilization is very complex. Low 16S rRNA gene identity, different polar lipids and/or cellular fatty acid profiles could readily distinguish strain R33T from any validly published type strains. Therefore, strain R33T is suggested to represent a new species in a new genus, for which the name Poritiphilus flavus gen. nov., sp. nov. is proposed. The type strain is R33T (=MCCC 1K03853T=KCTC 72443T).
Collapse
Affiliation(s)
- Guanghua Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Shuailiang Xu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Ge Dang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Jianfeng Liu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Hongfei Su
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Biao Chen
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Zhiheng Liao
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Wen Huang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Jiayuan Liang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Yinghui Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
| | - Kefu Yu
- School of Marine Sciences, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory on the Study of Coral Reefs in the South China Sea, Nanning 530004, PR China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
- Coral Reef Research Center of China, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
43
|
Greene A, Leggat W, Donahue MJ, Raymundo LJ, Caldwell JM, Moriarty T, Heron SF, Ainsworth TD. Complementary sampling methods for coral histology, metabolomics and microbiome. Methods Ecol Evol 2020. [DOI: 10.1111/2041-210x.13431] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Austin Greene
- Hawai‘i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne‘ohe HI USA
| | - William Leggat
- School of Environmental and Life Sciences The University of Newcastle Ourimbah NSW Australia
| | - Megan J. Donahue
- Hawai‘i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne‘ohe HI USA
| | | | - Jamie M. Caldwell
- Hawai‘i Institute of Marine Biology University of Hawai‘i at Mānoa Kāne‘ohe HI USA
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
| | - Tess Moriarty
- School of Environmental and Life Sciences The University of Newcastle Ourimbah NSW Australia
- School of Biological, Earth and Environmental Science The University of New South Wales Randwick NSW Australia
| | - Scott F. Heron
- ARC Centre of Excellence for Coral Reef Studies James Cook University Townsville Qld Australia
- Physics and Marine Geophysical Laboratory College of Science and Engineering James Cook University Townsville Qld Australia
| | - Tracy D. Ainsworth
- School of Biological, Earth and Environmental Science The University of New South Wales Randwick NSW Australia
| |
Collapse
|
44
|
Coral Disease Causes, Consequences, and Risk within Coral Restoration. Trends Microbiol 2020; 28:793-807. [PMID: 32739101 DOI: 10.1016/j.tim.2020.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022]
Abstract
As a result of increased reef degradation, restoration efforts are now being widely applied on coral reefs. However, outplanted coral survival in restoration zones varies substantially, and coral mortality can be a significant limitation to the success of restoration efforts. With reef restoration now occurring within, and adjacent to, nationally preserved and managed marine parks, the potential risks of mortality events and disease spread to adjacent marine populations need to be considered, particularly as these ecosystems continue to decline. We review the causes and consequences of coral mortality and disease outbreaks within the context of coral restoration, highlighting knowledge gaps in our understanding of the restored coral microbiome and discussing management practices for assessing coral disease. We identify the need for research efforts into monitoring and diagnostics of disease within coral restoration, as well as practices to mitigate and manage coral disease risks in restoration.
Collapse
|
45
|
Speare L, Davies SW, Balmonte JP, Baumann J, Castillo KD. Patterns of environmental variability influence coral-associated bacterial and algal communities on the Mesoamerican Barrier Reef. Mol Ecol 2020; 29:2334-2348. [PMID: 32497352 DOI: 10.1111/mec.15497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/11/2020] [Accepted: 05/26/2020] [Indexed: 02/06/2023]
Abstract
A coral's capacity to alter its microbial symbionts may enhance its fitness in the face of climate change. Recent work predicts exposure to high environmental variability may increase coral resilience and adaptability to future climate conditions. However, how this heightened environmental variability impacts coral-associated microbial communities remains largely unexplored. Here, we examined the bacterial and algal symbionts associated with two coral species of the genus Siderastrea with distinct life history strategies from three reef sites on the Belize Mesoamerican Barrier Reef System with low or high environmental variability. Our results reveal bacterial community structure, as well as alpha- and beta-diversity patterns, vary by host species. Differences in bacterial communities between host species were partially explained by high abundance of Deltaproteobacteria and Rhodospirillales and high bacterial diversity in Siderastrea radians. Our findings also suggest Siderastrea spp. have dynamic core bacterial communities that likely drive differences observed in the entire bacterial community, which may play a critical role in rapid acclimatization to environmental change. Unlike the bacterial community, Symbiodiniaceae composition was only distinct between host species at high thermal variability sites, suggesting that different factors shape bacterial versus algal communities within the coral holobiont. Our findings shed light on how domain-specific shifts in dynamic microbiomes may allow for unique methods of enhanced host fitness.
Collapse
Affiliation(s)
- Lauren Speare
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah W Davies
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, Boston University, Boston, MA, USA
| | - John P Balmonte
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Ecology and Genetics - Limnology, Uppsala University, Uppsala, Sweden
| | - Justin Baumann
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karl D Castillo
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Environment, Ecology, and Energy Program, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Uncovering the Core Microbiome and Distribution of Palmerolide in Synoicum adareanum Across the Anvers Island Archipelago , Antarctica. Mar Drugs 2020; 18:md18060298. [PMID: 32498449 PMCID: PMC7345734 DOI: 10.3390/md18060298] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/04/2023] Open
Abstract
Polar marine ecosystems hold the potential for bioactive compound biodiscovery, based on their untapped macro- and microorganism diversity. Characterization of polar benthic marine invertebrate-associated microbiomes is limited to few studies. This study was motivated by our interest in better understanding the microbiome structure and composition of the ascidian, Synoicum adareanum, in which palmerolide A (PalA), a bioactive macrolide with specificity against melanoma, was isolated. PalA bears structural resemblance to a hybrid nonribosomal peptide-polyketide that has similarities to microbially-produced macrolides. We conducted a spatial survey to assess both PalA levels and microbiome composition in S. adareanum in a region of the Antarctic Peninsula near Anvers Island (64°46′ S, 64°03′ W). PalA was ubiquitous and abundant across a collection of 21 ascidians (3 subsamples each) sampled from seven sites across the Anvers Island Archipelago. The microbiome composition (V3–V4 16S rRNA gene sequence variants) of these 63 samples revealed a core suite of 21 bacterial amplicon sequence variants (ASVs)—20 of which were distinct from regional bacterioplankton. ASV co-occurrence analysis across all 63 samples yielded subgroups of taxa that may be interacting biologically (interacting subsystems) and, although the levels of PalA detected were not found to correlate with specific sequence variants, the core members appeared to occur in a preferred optimum and tolerance range of PalA levels. These results, together with an analysis of the biosynthetic potential of related microbiome taxa, describe a conserved, high-latitude core microbiome with unique composition and substantial promise for natural product biosynthesis that likely influences the ecology of the holobiont.
Collapse
|
47
|
Unraveling Heterogeneity of Coral Microbiome Assemblages in Tropical and Subtropical Corals in the South China Sea. Microorganisms 2020; 8:microorganisms8040604. [PMID: 32326359 PMCID: PMC7232356 DOI: 10.3390/microorganisms8040604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 02/03/2023] Open
Abstract
Understanding the coral microbiome is critical for predicting the fidelity of coral symbiosis with growing surface seawater temperature (SST). However, how the coral microbiome will respond to increasing SST is still understudied. Here, we compared the coral microbiome assemblages among 73 samples across six typical South China Sea coral species in two thermal regimes. The results revealed that the composition of microbiome varied across both coral species and thermal regimes, except for Porites lutea. The tropical coral microbiome displayed stronger heterogeneity and had a more un-compacted ecological network than subtropical coral microbiome. The coral microbiome was more strongly determined by environmental factors than host specificity. γ- (32%) and α-proteobacteria (19%), Bacteroidetes (14%), Firmicutes (14%), Actinobacteria (6%) and Cyanobacteria (2%) dominated the coral microbiome. Additionally, bacteria inferred to play potential roles in host nutrients metabolism, several keystone bacteria detected in human and plant rhizospheric microbiome were retrieved in explored corals. This study not only disentangles how different host taxa and microbiome interact and how such an interaction is affected by thermal regimes, but also identifies previously unrecognized keystone bacteria in corals, and also infers the community structure of coral microbiome will be changed from a compacted to an un-compacted network under elevated SST.
Collapse
|
48
|
Meron D, Maor-Landaw K, Eyal G, Elifantz H, Banin E, Loya Y, Levy O. The Complexity of the Holobiont in the Red Sea Coral Euphyllia paradivisa under Heat Stress. Microorganisms 2020; 8:E372. [PMID: 32155796 PMCID: PMC7143197 DOI: 10.3390/microorganisms8030372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022] Open
Abstract
The recognition of the microbiota complexity and their role in the evolution of their host is leading to the popularization of the holobiont concept. However, the coral holobiont (host and its microbiota) is still enigmatic and unclear. Here, we explore the complex relations between different holobiont members of a mesophotic coral Euphyllia paradivisa. We subjected two lines of the coral-with photosymbionts, and without photosymbionts (apo-symbiotic)-to increasing temperatures and to antibiotics. The different symbiotic states were characterized using transcriptomics, microbiology and physiology techniques. The bacterial community's composition is dominated by bacteroidetes, alphaproteobacteria, and gammaproteobacteria, but is dependent upon the symbiont state, colony, temperature treatment, and antibiotic exposure. Overall, the most important parameter determining the response was whether the coral was a symbiont/apo-symbiotic, while the colony and bacterial composition were secondary factors. Enrichment Gene Ontology analysis of coral host's differentially expressed genes demonstrated the cellular differences between symbiotic and apo-symbiotic samples. Our results demonstrate the significance of each component of the holobiont consortium and imply a coherent link between them, which dramatically impacts the molecular and cellular processes of the coral host, which possibly affect its fitness, particularly under environmental stress.
Collapse
Affiliation(s)
- Dalit Meron
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (D.M.); (K.M.-L.); (G.E.); (H.E.); (E.B.)
- Morris Kahn Marine Research Station, University of Haifa, Haifa 3498838, Israel
| | - Keren Maor-Landaw
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (D.M.); (K.M.-L.); (G.E.); (H.E.); (E.B.)
- School of BioSciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Gal Eyal
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (D.M.); (K.M.-L.); (G.E.); (H.E.); (E.B.)
- ARC Centre of Excellence for Coral Reef Studies, School of Biological Sciences, The University of Queensland St. Lucia, Qld 4072, Australia
| | - Hila Elifantz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (D.M.); (K.M.-L.); (G.E.); (H.E.); (E.B.)
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (D.M.); (K.M.-L.); (G.E.); (H.E.); (E.B.)
- The Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yossi Loya
- Department of Zoology, Tel-Aviv University, Tel Aviv 6997801, Israel;
| | - Oren Levy
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel; (D.M.); (K.M.-L.); (G.E.); (H.E.); (E.B.)
| |
Collapse
|
49
|
Galand PE, Remize M, Meistertzheim AL, Pruski AM, Peru E, Suhrhoff TJ, Le Bris N, Vétion G, Lartaud F. Diet shapes cold-water corals bacterial communities. Environ Microbiol 2019; 22:354-368. [PMID: 31696646 DOI: 10.1111/1462-2920.14852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/29/2019] [Accepted: 11/03/2019] [Indexed: 01/17/2023]
Abstract
Different cold-water coral (CWC) species harbour distinct microbial communities and the community composition is thought to be linked to the ecological strategies of the host. Here we test whether diet shapes the composition of bacterial communities associated with CWC. We compared the microbiomes of two common CWC species in aquaria, Lophelia pertusa and Madrepora oculata, when they were either starved, or fed respectively with a carnivorous diet, two different herbivorous diets, or a mix of the 3. We targeted both the standing stock (16S rDNA) and the active fraction (16S rRNA) of the bacterial communities and showed that in both species, the corals' microbiome was specific to the given diet. A part of the microbiome remained, however, species-specific, which indicates that the microbiome's plasticity is framed by the identity of the host. In addition, the storage lipid content of the coral tissue showed that different diets had different effects on the corals' metabolisms. The combined results suggest that L. pertusa may be preying preferentially on zooplankton while M. oculata may in addition use phytoplankton and detritus. The results cast a new light on coral microbiomes as they indicate that a portion of the CWC's bacterial community could represent a food influenced microbiome.
Collapse
Affiliation(s)
- Pierre E Galand
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Marine Remize
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Anne-Leila Meistertzheim
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Audrey M Pruski
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Erwan Peru
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Tim Jesper Suhrhoff
- Jacobs University, Campus Ring 1, 28759, Bremen, Germany.,Department of Earth Sciences, ETH Zürich, Institute of Geochemistry and Petrology, Clausiusstrasse 25, 8092, Zürich, Switzerland
| | - Nadine Le Bris
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Gilles Vétion
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| | - Franck Lartaud
- Sorbonne Université, CNRS, Laboratoire d'Ecogéochimie des Environnements Benthiques, LECOB, Banyuls-sur-Mer, 66500, France
| |
Collapse
|
50
|
Damjanovic K, Menéndez P, Blackall LL, Oppen MJH. Mixed‐mode bacterial transmission in the common brooding coral
Pocillopora acuta. Environ Microbiol 2019; 22:397-412. [DOI: 10.1111/1462-2920.14856] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Katarina Damjanovic
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| | - Patricia Menéndez
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
- Department of Econometrics and Business Statistics Monash University Vic 3800 Australia
| | - Linda L. Blackall
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
| | - Madeleine J. H. Oppen
- School of BioSciences, The University of Melbourne Parkville Vic 3010 Australia
- Australian Institute of Marine Science PMB No 3, Townsville, MC 4810 Qld Australia
| |
Collapse
|