1
|
Shimaya T, Yokoyama F, Takeuchi KA. Smectic-like bundle formation of planktonic bacteria upon nutrient starvation. SOFT MATTER 2025; 21:2868-2881. [PMID: 40126189 DOI: 10.1039/d4sm01117a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Bacteria aggregate through various intercellular interactions to build biofilms, but the effect of environmental changes on them remains largely unexplored. Here, by using an experimental device that overcomes past difficulties, we observed the collective response of Escherichia coli aggregates to dynamic changes in the growth conditions. We discovered that nutrient starvation caused bacterial cells to arrange themselves into bundle-shaped clusters, developing a structure akin to that of smectic liquid crystals. The degree of the smectic-like bundle order was evaluated by a deep learning approach. Our experiments suggest that both the depletion attraction by extracellular polymeric substances and the growth arrest are essential for the bundle formation. Since these effects of nutrient starvation at the single-cell level are common to many bacterial species, bundle formation might also be a common collective behavior that bacterial cells may exhibit under harsh environments.
Collapse
Affiliation(s)
- Takuro Shimaya
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Fumiaki Yokoyama
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Kazumasa A Takeuchi
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- Institute for Physics of Intelligence, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Welmillage SU, James EK, Tak N, Shedge S, Huang L, Muszyński A, Azadi P, Gyaneshwar P. A rhamnose-rich O-antigen of Paraburkholderia phymatum MP20 is required for symbiosis with Mimosa pudica. J Bacteriol 2025; 207:e0042224. [PMID: 39846764 PMCID: PMC11841133 DOI: 10.1128/jb.00422-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/24/2024] [Indexed: 01/24/2025] Open
Abstract
Paraburkholderia phymatum, a β-proteobacterium, forms a nitrogen-fixing symbiosis with many species of the large legume genus Mimosa as well as with common bean (Phaseolus vulgaris L.). Paraburkholderia are considered to have evolved nodulation independently from the well-studied α-proteobacteria symbionts of legumes. However, the detailed mechanisms important for β-rhizobia-legume symbiosis have not yet been determined. In this manuscript, we have sequenced the genome of P. phymatum MP20, a strain isolated from Mimosa pudica nodules, and utilized transposon mutagenesis to identify a mutant that showed delayed and ineffective nodulation of M. pudica. Further analysis revealed that the mutant strain produced an altered lipopolysaccharide lacking rhamnose containing O-antigen. Complementation with the wild-type gene restored the symbiosis. Microscopic analysis of the ineffective nodules showed that the mutant strain did not infect the cortical cells but was restricted to the endodermis. The results suggest that the O-antigen of P. phymatum is important for the bacterial infection of cortical cells and for nodule maturation. Further research will unveil the specific involvement of the glycosyltransferase gene in LPS biosynthesis and its impact on successful nodule formation by P. phymatum.IMPORTANCEThe nitrogen-fixing symbiosis between legumes and rhizobia is important for agricultural and environmental sustainability. The mechanisms of the symbiotic interactions are extensively studied using α-rhizobia. In contrast, mechanisms of symbiotic interactions important for β-rhizobia and their Caesalpinioid (mimosoid) legume hosts are not well known. Here, we describe the genome sequence of P. phymatum MP20, a β-rhizobia isolated from the nodules of M. pudica, and isolation and characterization of a transposon mutant defective in symbiosis. We demonstrate that the O-antigen of the LPS is required for nodulation and symbiotic nitrogen fixation. This study broadens our knowledge of symbiotic interactions in β-rhizobia and will lead to a better understanding of the wider rhizobial-legume symbiosis apart from the α-rhizobia.
Collapse
Affiliation(s)
- Shashini U. Welmillage
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Euan K. James
- The James Hutton Institute, Dundee, Scotland, United Kingdom
| | - Nisha Tak
- Department of Botany, Jai Narain Vyas University, Jodhpur, Rajasthan, India
| | - Sonali Shedge
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Lei Huang
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
3
|
Charlton S, Melaugh G, Marenduzzo D, MacPhee C, Secchi E. Role of cellular filamentation in bacterial aggregation and cluster-cluster assembly. Phys Rev E 2025; 111:024410. [PMID: 40103107 DOI: 10.1103/physreve.111.024410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 03/20/2025]
Abstract
Bacterial aggregate formation and surface accumulation are increasingly viewed as alternative pathways for biofilm colonization. However, little is known about the dynamics of bacterial aggregate cluster-cluster assembly and their subsequent microstructural and mechanical properties. To this end, we studied experimentally and computationally an aggregating bacterial system that forms a space-spanning interconnected network via cluster-cluster assembly. By controllably inducing bacterial filamentation, we aimed to understand how cell length distribution and cell surface hydrophobicity control the dynamics of aggregation and sedimentation, as well as the microstructure and mechanics of the settled bacterial networks. We found that filamentation lowers the percolation threshold, leading to gelation at a lower number density with distinct assembly dynamics and lower network connectivity. Furthermore, we analyzed the mechanical properties of the bacterial networks. Static stress tests reveal three yielding modes: discrete cluster-cluster disassembly, collective delamination, and subregional network fracture. The yielding modes are consistent with the gel-like viscoelastic properties of the cluster-cluster assembled networks observed during macroscale rheometry. In particular, we observe a scaling relationship between the storage modulus and the volume fraction, characteristic of an attractive rod gel. Our experimental observations are supported by Langevin dynamic simulations, providing mechanistic insights into the factors determining network self-assembly and connectivity. Our findings elucidate the gel-like structure-function dynamics in cluster-cluster aggregated bacterial systems, and they underscore the fundamental importance of filamentation in their properties and mechanical behavior.
Collapse
Affiliation(s)
- Samuel Charlton
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| | - Gavin Melaugh
- University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh EH9 3FD, United Kingdom
- University of Edinburgh, School of Engineering, Edinburgh EH9 3JL, United Kingdom
| | - Davide Marenduzzo
- University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh EH9 3FD, United Kingdom
| | - Cait MacPhee
- University of Edinburgh, SUPA, School of Physics and Astronomy, Edinburgh EH9 3FD, United Kingdom
| | - Eleonora Secchi
- ETH Zürich, Institute of Environmental Engineering, Zürich 8093, Switzerland
| |
Collapse
|
4
|
Gannon AD, Matlack J, Darch SE. Exploring aggregation genes in a P. aeruginosa chronic infection model. J Bacteriol 2025; 207:e0042924. [PMID: 39660900 PMCID: PMC11784459 DOI: 10.1128/jb.00429-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024] Open
Abstract
Bacterial aggregates are observed in both natural and artificial environments. In the context of disease, aggregates have been isolated from chronic and acute infections. Pseudomonas aeruginosa (Pa) aggregates contribute significantly to chronic infections, particularly in the lungs of people with cystic fibrosis (CF). Unlike the large biofilm structures observed in vitro, Pa in CF sputum forms smaller aggregates (~10-1,000 cells), and the mechanisms behind their formation remain underexplored. This study aims to identify genes essential and unique to Pa aggregate formation in a synthetic CF sputum media (SCFM2). We cultured Pa strain PAO1 in SCFM2 and LB, both with and without mucin, and used RNA sequencing (RNA-seq) to identify differentially expressed genes. The presence of mucin revealed 13 significantly differentially expressed (DE) genes, predominantly downregulated, with 40% encoding hypothetical proteins unique to aggregates. Using high-resolution microscopy, we assessed the ability of mutants to form aggregates. Notably, no mutant exhibited a completely planktonic phenotype. Instead, we identified multiple spatial phenotypes described as "normal," "entropic," or "impaired." Entropic mutants displayed tightly packed, raft-like structures, while impaired mutants had loosely packed cells. Predictive modeling linked the prioritized genes to metabolic shifts, iron acquisition, surface modification, and quorum sensing. Co-culture experiments with wild-type PAO1 revealed further spatial heterogeneity and the ability to "rescue" some mutant phenotypes, suggesting cooperative interactions during growth. This study enhances our understanding of Pa aggregate biology, specifically the genes and pathways unique to aggregation in CF-like environments. Importantly, it provides insights for developing therapeutic strategies targeting aggregate-specific pathways. IMPORTANCE This study identifies genes essential for the formation of Pseudomonas aeruginosa (Pa) aggregates in cystic fibrosis (CF) sputum, filling a critical gap in understanding their specific biology. Using a synthetic CF sputum model (SCFM2) and RNA sequencing, 13 key genes were identified, whose disruption led to distinct spatial phenotypes observed through high-resolution microscopy. The addition of wild-type cells either rescued the mutant phenotype or increased spatial heterogeneity, suggesting cooperative interactions are involved in aggregate formation. This research advances our knowledge of Pa aggregate biology, particularly the unique genes and pathways involved in CF-like environments, offering valuable insights for developing targeted therapeutic strategies against aggregate-specific pathways.
Collapse
Affiliation(s)
- Alexa D. Gannon
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Jenet Matlack
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Sophie E. Darch
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
5
|
Gonzalez La Corte S, Stevens CA, Cárcamo-Oyarce G, Ribbeck K, Wingreen NS, Datta SS. Morphogenesis of bacterial cables in polymeric environments. SCIENCE ADVANCES 2025; 11:eadq7797. [PMID: 39823332 PMCID: PMC11740958 DOI: 10.1126/sciadv.adq7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025]
Abstract
Many bacteria live in polymeric fluids, such as mucus, environmental polysaccharides, and extracellular polymers in biofilms. However, laboratory studies typically focus on cells in polymer-free fluids. Here, we show that interactions with polymers shape a fundamental feature of bacterial life-how they proliferate in space in multicellular colonies. Using experiments, we find that when polymer is sufficiently concentrated, cells generically and reversibly form large serpentine "cables" as they proliferate. By combining experiments with biophysical theory and simulations, we demonstrate that this distinctive form of colony morphogenesis arises from an interplay between polymer-induced entropic attraction between neighboring cells and their hindered ability to diffusely separate from each other in a viscous polymer solution. Our work thus reveals a pivotal role of polymers in sculpting proliferating bacterial colonies, with implications for how they interact with hosts and with the natural environment, and uncovers quantitative principles governing colony morphogenesis in such complex environments.
Collapse
Affiliation(s)
| | - Corey A. Stevens
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gerardo Cárcamo-Oyarce
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Facultad de Ciencias Biológicas, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katharina Ribbeck
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ned S. Wingreen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Sujit S. Datta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| |
Collapse
|
6
|
Anbo M, Lubna MA, Moustafa DA, Paiva TO, Serioli L, Zor K, Sternberg C, Jeannot K, Ciofu O, Dufrêne YF, Goldberg JB, Jelsbak L. Serotype switching in Pseudomonas aeruginosa ST111 enhances adhesion and virulence. PLoS Pathog 2024; 20:e1012221. [PMID: 39621751 PMCID: PMC11637443 DOI: 10.1371/journal.ppat.1012221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/12/2024] [Accepted: 11/05/2024] [Indexed: 12/14/2024] Open
Abstract
Evolution of the highly successful and multidrug resistant clone ST111 in Pseudomonas aeruginosa involves serotype switching from O-antigen O4 to O12. How expression of a different O-antigen serotype alters pathogen physiology to enable global dissemination of this high-risk clone-type is not understood. Here, we engineered isogenic laboratory and clinical P. aeruginosa strains that express the different O-antigen gene clusters to assess the correlation of structural differences of O4 and O12 O-antigens to pathogen-relevant phenotypic traits. We show that serotype O12 is associated with enhanced adhesion, type IV pili dependent twitching motility, and tolerance to host defense molecules and serum. Moreover, we find that serotype O4 is less virulent compared to O12 in an acute murine pneumonia infection in terms of both colonization and survival rate. Finally, we find that these O-antigen effects may be explained by specific biophysical properties of the serotype repeat unit found in O4 and O12, and by differences in membrane stability between O4 and O12 expressing cells. The results demonstrate that differences in O-antigen sugar composition can affect P. aeruginosa pathogenicity traits, and provide a better understanding of the potential selective advantages that underlie serotype switching and emergence of serotype O12 ST111.
Collapse
Affiliation(s)
- Mikkel Anbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Mahbuba Akter Lubna
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Dina A. Moustafa
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Telmo O. Paiva
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Laura Serioli
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Bioinnovation Institute Foundation, Copenhagen, Denmark
| | - Kinga Zor
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Bioinnovation Institute Foundation, Copenhagen, Denmark
| | - Claus Sternberg
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katy Jeannot
- Laboratory of Bacteriology, Associated Laboratory to French National Reference Center for Antibiotic Resistance, Teaching hospital of Besançon, France
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Joanna B. Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Lars Jelsbak
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
7
|
Libisch B. N-Alkane Assimilation by Pseudomonas aeruginosa and Its Interactions with Virulence and Antibiotic Resistance. Antibiotics (Basel) 2024; 13:1028. [PMID: 39596723 PMCID: PMC11591199 DOI: 10.3390/antibiotics13111028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa strains with potential for degrading n-alkanes are frequently cultured from hydrocarbon-contaminated sites. The initial hydroxylation step of long-chain n-alkanes is mediated by the chromosomally encoded AlkB1 and AlkB2 alkane hydroxylases. The acquisition of an additional P. putida GPo1-like alkane hydroxylase gene cluster can extend the substrate range assimilated by P. aeruginosa to
Collapse
Affiliation(s)
- Balázs Libisch
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, H-2100 Gödöllő, Hungary
| |
Collapse
|
8
|
Higgs MG, Greenwald MA, Roca C, Macdonald JK, Sidders AE, Conlon BP, Wolfgang MC. Flagellar motility and the mucus environment influence aggregation mediated antibiotic tolerance of Pseudomonas aeruginosa in chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.620240. [PMID: 39484600 PMCID: PMC11527127 DOI: 10.1101/2024.10.25.620240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Pseudomonas aeruginosa frequently causes chronic lung infection in individuals with muco-obstructive airway diseases (MADs). Chronic P. aeruginosa infections are difficult to treat, primarily owing to antibiotic treatment failure, which is often observed in the absence of antimicrobial resistance. In MADs, P. aeruginosa forms biofilm-like aggregates within the luminal mucus. While the contribution of mucin hyperconcentration towards antibiotic tolerance has been described, the mechanism for mucin driven antibiotic tolerance and the influence of aggregates have not been fully elucidated. In this study, we investigated the contribution of flagellar motility towards aggregate formation as it relates to the diseased mucus environment. We found that loss of flagellar motility resulted in increased P. aeruginosa aggregation and tolerance to multiple classes of antibiotics. Further, we observed differential roles in antimicrobial tolerance of the motAB and motCD stators, which power the flagellum. Additionally, we found that control of fliC expression was important for aggregate formation and antibiotic tolerance as a strain constitutively expressing fliC was unable to form aggregates and was highly susceptible to treatment. Lastly, we demonstrate that neutrophil elastase, an abundant immune mediator and biomarker of chronic lung infection, promotes aggregation and antibiotic tolerance by impairing flagellar motility. Collectively, these results highlight the key role of flagellar motility in aggregate formation and antibiotic tolerance and deepens our understanding of how the MADs lung environment promotes antibiotic tolerance of P. aeruginosa.
Collapse
Affiliation(s)
- Matthew G. Higgs
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Matthew A. Greenwald
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jade K. Macdonald
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Ashelyn E. Sidders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Brian P. Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Matthew C. Wolfgang
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
9
|
Allison KR. Multicellular dynamics and wealth distribution in bacteria. Mol Syst Biol 2024; 20:845-847. [PMID: 39009826 PMCID: PMC11297033 DOI: 10.1038/s44320-024-00056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/21/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
KR Allison discusses a dynamic model of multicellular “patches” of bacteria upon antibiotic treatment to show beneficial community interactions support their collective survival as reported by Şimşek et al in this issue of Molecular Systems Biology .
Collapse
Affiliation(s)
- Kyle R Allison
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
10
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. mBio 2024; 15:e0345123. [PMID: 38651896 PMCID: PMC11237767 DOI: 10.1128/mbio.03451-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/26/2024] [Indexed: 04/25/2024] Open
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa, which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic tolerance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro. We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa. Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. IMPORTANCE Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro, is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
Affiliation(s)
- Matthew A Greenwald
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Suzanne L Meinig
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Lucas M Plott
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Cristian Roca
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew G Higgs
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Nicholas P Vitko
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew R Markovetz
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Kaitlyn R Rouillard
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jerome Carpenter
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - David B Hill
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jonathan C Schisler
- Department of Pharmacology, The University of North Carolina, Chapel Hill, North Carolina, USA
- McAllister Heart Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Matthew C Wolfgang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, USA
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
11
|
Bényei ÉB, Nazeer RR, Askenasy I, Mancini L, Ho PM, Sivarajan GAC, Swain JEV, Welch M. The past, present and future of polymicrobial infection research: Modelling, eavesdropping, terraforming and other stories. Adv Microb Physiol 2024; 85:259-323. [PMID: 39059822 DOI: 10.1016/bs.ampbs.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Over the last two centuries, great advances have been made in microbiology as a discipline. Much of this progress has come about as a consequence of studying the growth and physiology of individual microbial species in well-defined laboratory media; so-called "axenic growth". However, in the real world, microbes rarely live in such "splendid isolation" (to paraphrase Foster) and more often-than-not, share the niche with a plethora of co-habitants. The resulting interactions between species (and even between kingdoms) are only very poorly understood, both on a theoretical and experimental level. Nevertheless, the last few years have seen significant progress, and in this review, we assess the importance of polymicrobial infections, and show how improved experimental traction is advancing our understanding of these. A particular focus is on developments that are allowing us to capture the key features of polymicrobial infection scenarios, especially as those associated with the human airways (both healthy and diseased).
Collapse
Affiliation(s)
| | | | - Isabel Askenasy
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Leonardo Mancini
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | | | - Jemima E V Swain
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, United Kingdom.
| |
Collapse
|
12
|
Malone M, Nygren E, Hamberg T, Radzieta M, Jensen SO. In vitro and in vivo evaluation of the antimicrobial effectiveness of non-medicated hydrophobic wound dressings. Int Wound J 2024; 21:e14416. [PMID: 37770025 PMCID: PMC10824701 DOI: 10.1111/iwj.14416] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023] Open
Abstract
There is an increasing use of non-medicated wound dressing with claims of irreversible bacterial binding. Most of the data are from in vitro models which lack clinical relevance. This study employed a range of in vitro experiments to address this gap and we complemented our experimental designs with in vivo observations using dressings obtained from patients with diabetes-related foot ulcers. A hydrophobic wound dressing was compared with a control silicone dressing in vitro. Test dressings were placed on top of a Pseudomonas aeruginosa challenge suspension with increasing concentrations of suspension inoculum in addition to supplementation with phosphate buffered saline (PBS) or increased protein content (IPC). Next, we used the challenge suspensions obtained at the end of the first experiment, where bacterial loads from the suspensions were enumerated following test dressing exposure. Further, the time-dependent bacterial attachment was investigated over 1 and 24 h. Lastly, test dressings were exposed to a challenge suspension with IPC, with or without the addition of the bacteriostatic agent Deferiprone to assess the impacts of limiting bacterial growth in the experimental design. Lastly, two different wound dressings with claims of bacterial binding were obtained from patients with chronic diabetes-related foot ulcers after 72 h of application and observed using scanning electron microscope (SEM). Bacteria were enumerated from each dressing after a 1-h exposure time. There was no statistical difference in bacterial attachment between both test dressings when using different suspension inoculum concentrations or test mediums. Bacterial attachment to the two test dressings was significantly lower (p < 0.0001) when IPC was used instead of PBS. In the challenge suspension with PBS, only the hydrophobic dressing achieved a statistically significant reduction in bacterial loads (0.5 ± 0.05 log colony forming units; p = 0.001). In the presence of IPC, there was no significant reduction in bacterial loads for either test dressing. When bacterial growth was arrested, attachment to the test dressings did not increase over time, suggesting that the number of bacteria on the test dressings increases over time due to bacterial growth. SEM identified widespread adsorption of host fouling across the test dressings which occurred prior to microbial binding. Therein, microbial attachment occurred predominantly to host fouling and not directly to the dressings. Bacterial binding is not unique to dialkylcarbamoyl chloride (DACC) dressings and under clinically relevant in vitro conditions and in vivo observations, we demonstrate (in addition to previously published work) that the bacterial binding capabilities are not effective at reducing the number of bacteria in laboratory models or human wounds.
Collapse
Affiliation(s)
- Matthew Malone
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Erik Nygren
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Tina Hamberg
- Research and DevelopmentMolnlycke Healthcare ABGothenburgSweden
| | - Michael Radzieta
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| | - Slade O. Jensen
- South West Sydney Limb Preservation and Wound ResearchSouth West Sydney Local Health DistrictSydneyNew South WalesAustralia
- Infectious Diseases and Microbiology, School of MedicineWestern Sydney UniversitySydneyNew South WalesAustralia
| |
Collapse
|
13
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LEP. Cellular arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. PLoS Biol 2024; 22:e3002205. [PMID: 38300958 PMCID: PMC10833521 DOI: 10.1371/journal.pbio.3002205] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - William Cole Cornell
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, New York, United States of America
| | - Wei Min
- Department of Chemistry, Columbia University, New York, New York, United States of America
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Jasmine A. Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Lars E. P. Dietrich
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| |
Collapse
|
14
|
Wang L, Liu X, Chen W, Sun Z. Studies on the Inhibition Mechanism of Linalyl Alcohol against the Spoilage Microorganism Brochothrix thermosphacta. Foods 2024; 13:244. [PMID: 38254545 PMCID: PMC10814832 DOI: 10.3390/foods13020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/10/2023] [Accepted: 11/17/2023] [Indexed: 01/24/2024] Open
Abstract
The aim of this study was to investigate the bacterial inhibitory ability and mechanism of action of linalyl alcohol against B. thermosphacta. Linalyl alcohol causes the leakage of intracellular material by disrupting the cell wall and exposing the hydrophobic phospholipid bilayer, which binds to bacterial membrane proteins and alters their structure. In addition, linalyl alcohol causes cell membrane damage by affecting fatty acids and proteins in the cell membrane. By inhibiting the synthesis of macromolecular proteins, the normal physiological functions of the bacteria are altered. Linalyl alcohol binds to DNA in both grooved and embedded modes, affecting the normal functioning of B. thermosphacta, as demonstrated through a DNA interaction analysis.
Collapse
Affiliation(s)
| | | | | | - Zhichang Sun
- College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (L.W.); (X.L.); (W.C.)
| |
Collapse
|
15
|
Greenwald MA, Meinig SL, Plott LM, Roca C, Higgs MG, Vitko NP, Markovetz MR, Rouillard KR, Carpenter J, Kesimer M, Hill DB, Schisler JC, Wolfgang MC. Mucus polymer concentration and in vivo adaptation converge to define the antibiotic response of Pseudomonas aeruginosa during chronic lung infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572620. [PMID: 38187602 PMCID: PMC10769284 DOI: 10.1101/2023.12.20.572620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The airway milieu of individuals with muco-obstructive airway diseases (MADs) is defined by the accumulation of dehydrated mucus due to hyperabsorption of airway surface liquid and defective mucociliary clearance. Pathological mucus becomes progressively more viscous with age and disease severity due to the concentration and overproduction of mucin and accumulation of host-derived extracellular DNA (eDNA). Respiratory mucus of MADs provides a niche for recurrent and persistent colonization by respiratory pathogens, including Pseudomonas aeruginosa , which is responsible for the majority of morbidity and mortality in MADs. Despite high concentration inhaled antibiotic therapies and the absence of antibiotic resistance, antipseudomonal treatment failure in MADs remains a significant clinical challenge. Understanding the drivers of antibiotic recalcitrance is essential for developing more effective treatments that eradicate persistent infections. The complex and dynamic environment of diseased airways makes it difficult to model antibiotic efficacy in vitro . We aimed to understand how mucin and eDNA concentrations, the two dominant polymers in respiratory mucus, alter the antibiotic tolerance of P. aeruginosa . Our results demonstrate that polymer concentration and molecular weight affect P. aeruginosa survival post antibiotic challenge. Polymer-driven antibiotic tolerance was not explicitly associated with reduced antibiotic diffusion. Lastly, we established a robust and standardized in vitro model for recapitulating the ex vivo antibiotic tolerance of P. aeruginosa observed in expectorated sputum across age, underlying MAD etiology, and disease severity, which revealed the inherent variability in intrinsic antibiotic tolerance of host-evolved P. aeruginosa populations. Importance Antibiotic treatment failure in Pseudomonas aeruginosa chronic lung infections is associated with increased morbidity and mortality, illustrating the clinical challenge of bacterial infection control. Understanding the underlying infection environment, as well as the host and bacterial factors driving antibiotic tolerance and the ability to accurately recapitulate these factors in vitro , is crucial for improving antibiotic treatment outcomes. Here, we demonstrate that increasing concentration and molecular weight of mucin and host eDNA drive increased antibiotic tolerance to tobramycin. Through systematic testing and modeling, we identified a biologically relevant in vitro condition that recapitulates antibiotic tolerance observed in ex vivo treated sputum. Ultimately, this study revealed a dominant effect of in vivo evolved bacterial populations in defining inter-subject ex vivo antibiotic tolerance and establishes a robust and translatable in vitro model for therapeutic development.
Collapse
|
16
|
Disney-McKeethen S, Seo S, Mehta H, Ghosh K, Shamoo Y. Experimental evolution of Pseudomonas aeruginosa to colistin in spatially confined microdroplets identifies evolutionary trajectories consistent with adaptation in microaerobic lung environments. mBio 2023; 14:e0150623. [PMID: 37847036 PMCID: PMC10746239 DOI: 10.1128/mbio.01506-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 10/18/2023] Open
Abstract
IMPORTANCE Antibiotic resistance remains one of the great challenges confronting public health in the world today. Individuals with compromised immune systems or underlying health conditions are often at an increased for bacterial infections. Patients with cystic fibrosis (CF) produce thick mucus that clogs airways and provides a very favorable environment for infection by bacteria that further decrease lung function and, ultimately, mortality. CF patients are often infected by bacteria such as Pseudomonas aeruginosa early in life and experience a series of chronic infections that, over time, become increasingly difficult to treat due to increased antibiotic resistance. Colistin is a major antibiotic used to treat CF patients. Clinical and laboratory studies have identified PmrA/PmrB and PhoP/PhoQ as responsible for increased resistance to colistin. Both have been identified in CF patient lungs, but why, in some cases, is it one and not the other? In this study, we show that distinct evolutionary trajectories to colistin resistance may be favored by the microaerobic partitioning found within the damaged CF lung.
Collapse
Affiliation(s)
| | - Seokju Seo
- Department of Biosciences, Rice University, Houston , Texas , USA
| | - Heer Mehta
- Department of Biosciences, Rice University, Houston , Texas , USA
| | - Karukriti Ghosh
- Department of Biosciences, Rice University, Houston , Texas , USA
| | - Yousif Shamoo
- Department of Biosciences, Rice University, Houston , Texas , USA
| |
Collapse
|
17
|
Greenwich JL, Fleming D, Banin E, Häussler S, Kjellerup BV, Sauer K, Visick KL, Fuqua C. The biofilm community resurfaces: new findings and post-pandemic progress. J Bacteriol 2023; 205:e0016623. [PMID: 37756166 PMCID: PMC10601713 DOI: 10.1128/jb.00166-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
The ninth American Society for Microbiology Conference on Biofilms was convened in-person on 13-17 November 2022 in Charlotte, NC. As the first of these conferences since prior to the start of the COVID-19 pandemic, the energy among the participants of the conference was clear, and the meeting was a tremendous success. The mixture of >330 oral and poster presentations resoundingly embodied the vitality of biofilm research across a wide range of topics and multiple scientific disciplines. Special activities, including a pre-conference symposium for early career researchers, further enhanced the attendee experience. As a general theme, the conference was deliberately structured to provide high levels of participation and engagement among early career scientists.
Collapse
Affiliation(s)
| | - Derek Fleming
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Birthe V. Kjellerup
- Department of Civil and Environmental Engineering, University of Maryland, College Park, Maryland, USA
| | - Karin Sauer
- Department of Biological Sciences, University of Binghamton, Binghamton, New York, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Clay Fuqua
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
18
|
Boboltz A, Yang S, Duncan GA. Engineering in vitro models of cystic fibrosis lung disease using neutrophil extracellular trap inspired biomaterials. J Mater Chem B 2023; 11:9419-9430. [PMID: 37701932 PMCID: PMC10591795 DOI: 10.1039/d3tb01489d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cystic fibrosis (CF) is a muco-obstructive lung disease where inflammatory responses due to chronic infection result in the accumulation of neutrophil extracellular traps (NETs) in the airways. NETs are web-like complexes comprised mainly of decondensed chromatin that function to capture and kill bacteria. Prior studies have established excess release of NETs in CF airways increases viscoelasticity of mucus secretions and reduces mucociliary clearance. Despite the pivotal role of NETs in CF disease pathogenesis, current in vitro models of this disease do not account for their contribution. Motivated by this, we developed a new approach to study the pathobiological effects of NETs in CF by combining synthetic NET-like biomaterials, composed of DNA and histones, with an in vitro human airway epithelial cell culture model. To determine the impact of synthetic NETs on airway clearance function, we incorporated synthetic NETs into mucin hydrogels and cell culture derived airway mucus to assess their rheological and transport properties. We found that the addition of synthetic NETs significantly increases mucin hydrogel viscoelasticity. As a result, mucociliary transport in vitro was significantly reduced with the addition of mucus containing synthetic NETs. Given the prevalence of bacterial infection in the CF lung, we also evaluated the growth of Pseudomonas aeruginosa in mucus with or without synthetic NETs. We found mucus containing synthetic NETs promoted microcolony growth and prolonged bacterial survival. Together, this work establishes a new biomaterial enabled approach to study innate immunity mediated airway dysfunction in CF.
Collapse
Affiliation(s)
- Allison Boboltz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Sydney Yang
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| | - Gregg A Duncan
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
19
|
Dayton H, Kiss J, Wei M, Chauhan S, LaMarre E, Cornell WC, Morgan CJ, Janakiraman A, Min W, Tomer R, Price-Whelan A, Nirody JA, Dietrich LE. Cell arrangement impacts metabolic activity and antibiotic tolerance in Pseudomonas aeruginosa biofilms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.20.545666. [PMID: 37645902 PMCID: PMC10462148 DOI: 10.1101/2023.06.20.545666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cells must access resources to survive, and the anatomy of multicellular structures influences this access. In diverse multicellular eukaryotes, resources are provided by internal conduits that allow substances to travel more readily through tissue than they would via diffusion. Microbes growing in multicellular structures, called biofilms, are also affected by differential access to resources and we hypothesized that this is influenced by the physical arrangement of the cells. In this study, we examined the microanatomy of biofilms formed by the pathogenic bacterium Pseudomonas aeruginosa and discovered that clonal cells form striations that are packed lengthwise across most of a mature biofilm's depth. We identified mutants, including those defective in pilus function and in O-antigen attachment, that show alterations to this lengthwise packing phenotype. Consistent with the notion that cellular arrangement affects access to resources within the biofilm, we found that while the wild type shows even distribution of tested substrates across depth, the mutants show accumulation of substrates at the biofilm boundaries. Furthermore, we found that altered cellular arrangement within biofilms affects the localization of metabolic activity, the survival of resident cells, and the susceptibility of subpopulations to antibiotic treatment. Our observations provide insight into cellular features that determine biofilm microanatomy, with consequences for physiological differentiation and drug sensitivity.
Collapse
Affiliation(s)
- Hannah Dayton
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Julie Kiss
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Mian Wei
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Shradha Chauhan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Emily LaMarre
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | | | - Chase J. Morgan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Anuradha Janakiraman
- Program in Biology, The Graduate Center, City University of New York, New York, NY 10016
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY 10025
| | - Raju Tomer
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Alexa Price-Whelan
- Department of Biological Sciences, Columbia University, New York, NY 10025
| | - Jasmine A Nirody
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois 60637
| | - Lars E.P. Dietrich
- Department of Biological Sciences, Columbia University, New York, NY 10025
| |
Collapse
|
20
|
Zhang H, Zhang W, Zong Y, Kong D, Zhao K. Factors Influencing Pseudomonas aeruginosa Initial Adhesion and Evolution at the Dodecane-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11274-11282. [PMID: 37524061 DOI: 10.1021/acs.langmuir.3c00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Bacterial adhesion and evolution at the oil-water interface are important for a broad range of applications such as food manufacturing and microbial-enhanced oil recovery, etc. However, our understanding on bacterial interfacial adhesion and evolution, particularly at the single-cell level, is still far from complete. In this work, by employing Pseudomonas aeruginosa PAO1 at the dodecane-water interface as a model system, we have studied the effects of different factors on bacterial interfacial adhesion and the dynamic evolution of bacterial interfacial behavior at the single-cell level. The results show that PAO1 cells displayed a chemotactic behavior toward dodecane. Among the tested factors, bacterial initial interfacial attachment showed a negative correlation with the secreted cell-surface associated lipopolysaccharide and Psl while a positive correlation with type IV pili. Adding nonbiological surfactant Pluronic F-127, as expected, greatly reduced the cell interfacial adhesion. More importantly, the dynamics analysis of cell attachment/detachment at the dodecane-water interface over a long-time scale revealed a reversible to irreversible attachment transition of cells. This transition is accompanied with the interface aging resulting from bacterial activities, which led to an increase of the interfacial viscoelasticity with time and finally the formation of the gel-like interface. Further analysis demonstrated the important role of exopolysaccharides in the latter process. Our findings provide more details of bacterial oil-water interfacial behavior at the single-cell level and may shed light on developing new strategies for controlling bacterial colonization at the oil-water interface.
Collapse
Affiliation(s)
- Hong Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenchao Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dongyang Kong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and The Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
21
|
Smith TJ, Sundarraman D, Melancon E, Desban L, Parthasarathy R, Guillemin K. A mucin-regulated adhesin determines the spatial organization and inflammatory character of a bacterial symbiont in the vertebrate gut. Cell Host Microbe 2023; 31:1371-1385.e6. [PMID: 37516109 PMCID: PMC10492631 DOI: 10.1016/j.chom.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/11/2023] [Accepted: 07/06/2023] [Indexed: 07/31/2023]
Abstract
In a healthy gut, microbes are often aggregated with host mucus, yet the molecular basis for this organization and its impact on intestinal health are unclear. Mucus is a viscous physical barrier separating resident microbes from epithelia, but it also provides glycan cues that regulate microbial behaviors. Here, we describe a mucin-sensing pathway in an Aeromonas symbiont of zebrafish, Aer01. In response to the mucin-associated glycan N-acetylglucosamine, a sensor kinase regulates the expression of an aggregation-promoting adhesin we named MbpA. Upon MbpA disruption, Aer01 colonizes to normal levels but is largely planktonic and more pro-inflammatory. Increasing cell surface MbpA rescues these traits. MbpA-like adhesins are common in human-associated bacteria, and the expression of an Akkermansia muciniphila MbpA-like adhesin in MbpA-deficient Aer01 restores lumenal aggregation and reverses its pro-inflammatory character. Our work demonstrates how resident bacteria use mucin glycans to modulate behaviors congruent with host health.
Collapse
Affiliation(s)
- T Jarrod Smith
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA
| | - Deepika Sundarraman
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Ellie Melancon
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Laura Desban
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Raghuveer Parthasarathy
- Department of Physics and Materials Science Institute, University of Oregon, Eugene, OR, USA
| | - Karen Guillemin
- Institute of Molecular Biology, University of Oregon, Eugene, OR, USA; Institute of Neuroscience, University of Oregon, Eugene, OR, USA; Humans and the Microbiome Program, Canadian Institute for Advanced Research, Toronto, ON, Canada.
| |
Collapse
|
22
|
Melaugh G, Martinez VA, Baker P, Hill PJ, Howell PL, Wozniak DJ, Allen RJ. Distinct types of multicellular aggregates in Pseudomonas aeruginosa liquid cultures. NPJ Biofilms Microbiomes 2023; 9:52. [PMID: 37507436 PMCID: PMC10382557 DOI: 10.1038/s41522-023-00412-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas aeruginosa forms suspended multicellular aggregates when cultured in liquid media. These aggregates may be important in disease, and/or as a pathway to biofilm formation. The polysaccharide Psl and extracellular DNA (eDNA) have both been implicated in aggregation, but previous results depend strongly on the experimental conditions. Here we develop a quantitative microscopy-based method for assessing changes in the size distribution of suspended aggregates over time in growing cultures. For exponentially growing cultures of P. aeruginosa PAO1, we find that aggregation is mediated by cell-associated Psl, rather than by either eDNA or secreted Psl. These aggregates arise de novo within the culture via a growth process that involves both collisions and clonal growth, and Psl non-producing cells do not aggregate with producers. In contrast, we find that stationary phase (overnight) cultures contain a different type of multicellular aggregate, in which both eDNA and Psl mediate cohesion. Our findings suggest that the physical and biological properties of multicellular aggregates may be very different in early-stage vs late-stage bacterial cultures.
Collapse
Affiliation(s)
- Gavin Melaugh
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
- School of Engineering, University of Edinburgh, Edinburgh, EH9 3JL, UK.
| | - Vincent A Martinez
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Perrin Baker
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Preston J Hill
- Departments of Microbial Infection and Immunity, Microbiology, Infectious Diseases Institute, Ohio State University, Columbus, OH, 43210, USA
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Daniel J Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, Infectious Diseases Institute, Ohio State University, Columbus, OH, 43210, USA
| | - Rosalind J Allen
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
- Theoretical Microbial Ecology, Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, Jena, 07745, Germany
| |
Collapse
|
23
|
Crisan CV, Goldberg JB. Antibacterial contact-dependent proteins secreted by Gram-negative cystic fibrosis respiratory pathogens. Trends Microbiol 2022; 30:986-996. [PMID: 35487848 PMCID: PMC9474641 DOI: 10.1016/j.tim.2022.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/25/2022] [Accepted: 03/29/2022] [Indexed: 01/11/2023]
Abstract
Cystic fibrosis (CF) is a genetic disease that affects almost 100 000 people worldwide. CF patients suffer from chronic bacterial airway infections that are often polymicrobial and are the leading cause of mortality. Interactions between pathogens modulate expression of genes responsible for virulence and antibiotic resistance. One of the ways bacteria can interact is through contact-dependent systems, which secrete antibacterial proteins (effectors) that confer advantages to cells that harbor them. Here, we highlight recent work that describes effectors used by Gram-negative CF pathogens to eliminate competitor bacteria. Understanding the mechanisms of secreted effectors may lead to novel insights into the ecology of bacteria that colonize respiratory tracts and could also pave the way for the design of new therapeutics.
Collapse
Affiliation(s)
- Cristian V Crisan
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, GA, USA; Emory+Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
24
|
Dong Y, Yang C, Zhong W, Shu Y, Zhang Y, Yang D. Antibacterial effect and mechanism of anthocyanin from Lycium ruthenicum Murr. Front Microbiol 2022; 13:974602. [PMID: 36060738 PMCID: PMC9437951 DOI: 10.3389/fmicb.2022.974602] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/31/2022] [Indexed: 11/23/2022] Open
Abstract
The inhibitory effects of the anthocyanin obtained from Lycium ruthenicum Murr were tested against several food-borne pathogens were evaluated, such as Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), Aspergillus niger and Penicillium sp. In general, anthocyanin had different antibacterial effect on different bacteria, and the best antibacterial effect on S. aureus, with minimal inhibitory concentration (MIC) of 3.125 mg/mL. Anthocyanin increased the surface hydrophobicity of S. aureus, discharged the intracellular K+, and reduced the total soluble protein, affecting protein synthesis. Fluorescent inverted microscope and flow cytometry (FCM) found a significant increase in fluorescence intensity and lethality relative to the control group, and the dead P3 region to 77.21%. The above suggested a correlation between the antibacterial mechanism of anthocyanin and cell membrane permeability integrity. Biofilm formation was evaluated by the crystal violet assay (CV), silver staining method and methyl thiazolyl tetrazolium (MTT). Scanning electron microscopy (SEM) showed that anthocyanins could change the structure of biofilm.
Collapse
Affiliation(s)
- Yuhe Dong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Chunmiao Yang
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| | - Wenting Zhong
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yan Shu
- Guangdong-Macao TCM Science and Technology Industrial Park Development Co. Ltd., Zhuhai, China
| | - Yongze Zhang
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Dongsheng Yang
- College of Pharmacy and Food Science, Zhuhai College of Science and Technology, Zhuhai, China
| |
Collapse
|
25
|
Greenwald MA, Wolfgang MC. The changing landscape of the cystic fibrosis lung environment: From the perspective of Pseudomonas aeruginosa. Curr Opin Pharmacol 2022; 65:102262. [DOI: 10.1016/j.coph.2022.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/03/2023]
|
26
|
Ma LZ, Wang D, Liu Y, Zhang Z, Wozniak DJ. Regulation of Biofilm Exopolysaccharide Biosynthesis and Degradation in Pseudomonas aeruginosa. Annu Rev Microbiol 2022; 76:413-433. [DOI: 10.1146/annurev-micro-041320-111355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbial communities enmeshed in a matrix of macromolecules, termed as biofilms, are the natural setting of bacteria. Exopolysaccharide is a critical matrix component of biofilms. Here, we focus on biofilm matrix exopolysaccharides in Pseudomonas aeruginosa. This opportunistic pathogen can adapt to a wide range of environments and can form biofilms or aggregates in a variety of surfaces or environments, such as the lungs of people with cystic fibrosis, catheters, wounds, and contact lenses. The ability to synthesize multiple exopolysaccharides is one of the advantages that facilitate bacterial survival in different environments. P. aeruginosa can produce several exopolysaccharides, including alginate, Psl, Pel, and lipopolysaccharide. In this review, we highlight the roles of each exopolysaccharide in P. aeruginosa biofilm development and how bacteria coordinate the biosynthesis of multiple exopolysaccharides and bacterial motility. In addition, we present advances in antibiofilm strategies targeting matrix exopolysaccharides, with a focus on glycoside hydrolases. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Luyan Z. Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Di Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yiwei Liu
- Department of Microbial Infection and Immunity and Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| | - Zhenyu Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Daniel J. Wozniak
- Department of Microbial Infection and Immunity and Department of Microbiology, Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
27
|
Azimi S, Lewin GR, Whiteley M. The biogeography of infection revisited. Nat Rev Microbiol 2022; 20:579-592. [PMID: 35136217 PMCID: PMC9357866 DOI: 10.1038/s41579-022-00683-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Many microbial communities, including those involved in chronic human infections, are patterned at the micron scale. In this Review, we summarize recent work that has defined the spatial arrangement of microorganisms in infection and begun to demonstrate how changes in spatial patterning correlate with disease. Advances in microscopy have refined our understanding of microbial micron-scale biogeography in samples from humans. These findings then serve as a benchmark for studying the role of spatial patterning in preclinical models, which provide experimental versatility to investigate the interplay between biogeography and pathogenesis. Experimentation using preclinical models has begun to show how spatial patterning influences the interactions between cells, their ability to coexist, their virulence and their recalcitrance to treatment. Future work to study the role of biogeography in infection and the functional biogeography of microorganisms will further refine our understanding of the interplay of spatial patterning, pathogen virulence and disease outcomes.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences and Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gina R Lewin
- Emory-Children's Cystic Fibrosis Center, Atlanta, GA, USA
| | | |
Collapse
|
28
|
Molecular Mechanisms Involved in Pseudomonas aeruginosa Bacteremia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:325-345. [DOI: 10.1007/978-3-031-08491-1_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
29
|
Secor PR, Michaels LA, Bublitz DC, Jennings LK, Singh PK. The Depletion Mechanism Actuates Bacterial Aggregation by Exopolysaccharides and Determines Species Distribution & Composition in Bacterial Aggregates. Front Cell Infect Microbiol 2022; 12:869736. [PMID: 35782109 PMCID: PMC9243289 DOI: 10.3389/fcimb.2022.869736] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria in natural environments and infections are often found in cell aggregates suspended in polymer-rich solutions, and aggregation can promote bacterial survival and stress resistance. One aggregation mechanism, called depletion aggregation, is driven by physical forces between bacteria and high concentrations of polymers in the environment rather than bacterial activity per se. As such, bacteria aggregated by the depletion mechanism will disperse when polymer concentrations fall unless other adhesion mechanisms supervene. Here we investigated whether the depletion mechanism can actuate the aggregating effects of Pseudomonas aeruginosa exopolysaccharides for suspended (i.e. not surface attached) bacteria, and how depletion affects bacterial inter-species interactions. We found that cells overexpressing the exopolysaccharides Pel and Psl remained aggregated after short periods of depletion aggregation whereas wild-type and mucoid P. aeruginosa did not. In co-culture, depletion aggregation had contrasting effects on P. aeruginosa's interactions with coccus- and rod-shaped bacteria. Depletion caused S. aureus (cocci) and P. aeruginosa (rods) to segregate from each other and S. aureus to resist secreted P. aeruginosa antimicrobial factors resulting in species co-existence. In contrast, depletion aggregation caused P. aeruginosa and Burkholderia sp. (both rods) to intermix, enhancing type VI secretion inhibition of Burkholderia by P. aeruginosa, leading to P. aeruginosa dominance. These results show that in addition to being a primary cause of aggregation in polymer-rich suspensions, physical forces inherent to the depletion mechanism can promote aggregation by some self-produced exopolysaccharides and determine species distribution and composition of bacterial communities.
Collapse
Affiliation(s)
- Patrick R Secor
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Lia A Michaels
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Laura K Jennings
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
| | - Pradeep K Singh
- Department of Microbiology, University of Washington, Seattle, WA, United States
| |
Collapse
|