1
|
Margarita V, Lodde V, Rappelli P, Doro L, Montella A, Fiori PL, Campesi I. The different innate immune response to infections in males and females emerges before birth. Life Sci 2025; 369:123521. [PMID: 40044031 DOI: 10.1016/j.lfs.2025.123521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/24/2025] [Accepted: 03/01/2025] [Indexed: 03/14/2025]
Abstract
AIM Sex-specific immune responses to intra-amniotic infections remain poorly understood despite their key role in preterm birth. METHODS We infected male and female amniotic fluid cells (AFCs) with M. hominis to explore the potential impact of sex-specific innate immune responses, evaluating the gene and protein expression levels of IL-1β, IL-6, IL-8, TNF-α, TLR2 and TLR4, the production of nitrites, and the levels of selected miRNAs. KEY FINDINGS The gene expression of IL-1β, IL-6, IL-8, TNF-α, and TLR2 were elevated in infected females AFCs, while only IL-6, IL-8 and TLR4 expression were up-regulated in infected males. Protein levels of IL-6, TNF-α and TLR2 were up-regulated exclusively in infected females. Furthermore, infected female AFCs produced higher levels of nitrites. MiRNA expression revealed an up-regulation of miR-29a-3p in infected females, and miR-223-3p in infected males, with miR-29b-3p showing up-regulation in both sexes upon infection. SIGNIFICANCE The response to intrauterine infections differs between males and females. Female foetuses may possess a greater capacity to manage the infection and inflammation, underscoring the importance of personalized prenatal care.
Collapse
Affiliation(s)
| | - Valeria Lodde
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Laura Doro
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Andrea Montella
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Science, University of Sassari, Sassari, Italy
| | - Ilaria Campesi
- Department of Biomedical Science, University of Sassari, Sassari, Italy; Laboratory of Sex-Gender Medicine, National Institute of Biostructures and Biosystems, Sassari, Italy.
| |
Collapse
|
2
|
Mpeyako LA, Hart AJ, Bailey NP, Carlton JM, Henrissat B, Sullivan SA, Hirt RP. Comparative genomics between Trichomonas tenax and Trichomonas vaginalis: CAZymes and candidate virulence factors. Front Microbiol 2024; 15:1437572. [PMID: 39086644 PMCID: PMC11288935 DOI: 10.3389/fmicb.2024.1437572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction The oral trichomonad Trichomonas tenax is increasingly appreciated as a likely contributor to periodontitis, a chronic inflammatory disease induced by dysbiotic microbiota, in humans and domestic animals and is strongly associated with its worst prognosis. Our current understanding of the molecular basis of T. tenax interactions with host cells and the microbiota of the oral cavity are still rather limited. One laboratory strain of T. tenax (Hs-4:NIH/ATCC 30207) can be grown axenically and two draft genome assemblies have been published for that strain, although the structural and functional annotation of these genomes is not available. Methods GenSAS and Galaxy were used to annotate two publicly available draft genomes for T. tenax, with a focus on protein-coding genes. A custom pipeline was used to annotate the CAZymes for T. tenax and the human sexually transmitted parasite Trichomonas vaginalis, the most well-characterized trichomonad. A combination of bioinformatics analyses was used to screen for homologs of T. vaginalis virulence and colonization factors within the T. tenax annotated proteins. Results Our annotation of the two T. tenax draft genome sequences and their comparison with T. vaginalis proteins provide evidence for several candidate virulence factors. These include candidate surface proteins, secreted proteins and enzymes mediating potential interactions with host cells and/or members of the oral microbiota. The CAZymes annotation identified a broad range of glycoside hydrolase (GH) families, with the majority of these being shared between the two Trichomonas species. Discussion The presence of candidate T. tenax virulence genes supports the hypothesis that this species is associated with periodontitis through direct and indirect mechanisms. Notably, several GH proteins could represent potential new virulence factors for both Trichomonas species. These data support a model where T. tenax interactions with host cells and members of the oral microbiota could synergistically contribute to the damaging inflammation characteristic of periodontitis, supporting a causal link between T. tenax and periodontitis.
Collapse
Affiliation(s)
- Lenshina A. Mpeyako
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Adam J. Hart
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicholas P. Bailey
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jane M. Carlton
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, Lyngby, Denmark
| | - Steven A. Sullivan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, United States
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
Shinde AP, Kučerová J, Dacks JB, Tachezy J. The retromer and retriever systems are conserved and differentially expanded in parabasalids. J Cell Sci 2024; 137:jcs261949. [PMID: 38884339 PMCID: PMC11267458 DOI: 10.1242/jcs.261949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/06/2024] [Indexed: 06/18/2024] Open
Abstract
Early endosomes sort transmembrane cargo either for lysosomal degradation or retrieval to the plasma membrane or the Golgi complex. Endosomal retrieval in eukaryotes is governed by the anciently homologous retromer or retriever complexes. Each comprises a core tri-protein subcomplex, membrane-deformation proteins and interacting partner complexes, together retrieving a variety of known cargo proteins. Trichomonas vaginalis, a sexually transmitted human parasite, uses the endomembrane system for pathogenesis. It has massively and selectively expanded its endomembrane protein complement, the evolutionary path of which has been largely unexplored. Our molecular evolutionary study of retromer, retriever and associated machinery in parabasalids and its free-living sister lineage of Anaeramoeba demonstrates specific expansion of the retromer machinery, contrasting with the retriever components. We also observed partial loss of the Commander complex and sorting nexins in Parabasalia but complete retention in Anaeramoeba. Notably, we identified putative parabasalid sorting nexin analogs. Finally, we report the first retriever protein localization in a non-metazoan group along with retromer protein localization in T. vaginalis.
Collapse
Affiliation(s)
- Abhishek Prakash Shinde
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Jitka Kučerová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| | - Joel Bryan Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences,University of Alberta, Edmonton, Alberta T6G 2G3, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, Alberta, Canada
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution & Environment, University College London, Darwin Building, 99-105 Gower Street, WC1E 6BT, London, UK
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005České Budějovice (Budweis), Czech Republic
| | - Jan Tachezy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 25242 Vestec, Czech Republic
| |
Collapse
|
4
|
Kochanowsky JA, Mira PM, Elikaee S, Muratore K, Rai AK, Riestra AM, Johnson PJ. Trichomonas vaginalis extracellular vesicles up-regulate and directly transfer adherence factors promoting host cell colonization. Proc Natl Acad Sci U S A 2024; 121:e2401159121. [PMID: 38865261 PMCID: PMC11194581 DOI: 10.1073/pnas.2401159121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/16/2024] [Indexed: 06/14/2024] Open
Abstract
Trichomonas vaginalis, a common sexually transmitted parasite that colonizes the human urogenital tract, secretes extracellular vesicles (TvEVs) that are taken up by human cells and are speculated to be taken up by parasites as well. While the crosstalk between TvEVs and human cells has led to insight into host:parasite interactions, roles for TvEVs in infection have largely been one-sided, with little known about the effect of TvEV uptake by T. vaginalis. Approximately 11% of infections are found to be coinfections of multiple T. vaginalis strains. Clinical isolates often differ in their adherence to and cytolysis of host cells, underscoring the importance of understanding the effects of TvEV uptake within the parasite population. To address this question, our lab tested the ability of a less adherent strain of T. vaginalis, G3, to take up fluorescently labeled TvEVs derived from both itself (G3-EVs) and TvEVs from a more adherent strain of the parasite (B7RC2-EVs). Here, we showed that TvEVs generated from the more adherent strain are internalized more efficiently compared to the less adherent strain. Additionally, preincubation of G3 parasites with B7RC2-EVs increases parasite aggregation and adherence to host cells. Transcriptomics revealed that TvEVs up-regulate expression of predicted parasite membrane proteins and identified an adherence factor, heteropolysaccharide binding protein (HPB2). Finally, using comparative proteomics and superresolution microscopy, we demonstrated direct transfer of an adherence factor, cadherin-like protein, from TvEVs to the recipient parasite's surface. This work identifies TvEVs as a mediator of parasite:parasite communication that may impact pathogenesis during mixed infections.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Portia M. Mira
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Samira Elikaee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Katherine Muratore
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Anand Kumar Rai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Angelica M. Riestra
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
- Department of Biology, San Diego State University, San Diego, CA92182
| | - Patricia J. Johnson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095
| |
Collapse
|
5
|
Yamazaki T, Sawai K, Takahashi Y, Matsuo J. Characterization of Actin-based Genotypes and Mycoplasma Endosymbionts of Trichomonas vaginalis Isolated in Sapporo, Japan. Acta Parasitol 2024; 69:1324-1328. [PMID: 38775916 DOI: 10.1007/s11686-024-00853-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/24/2024] [Indexed: 06/18/2024]
Abstract
PURPOSE Trichomonas vaginalis is a causative agent of common non-viral sexually transmitted infections worldwide. However, the biological features, such as genotypes and endosymbionts, of T. vaginalis isolated in Japan remain unclear. The aim of this study was to characterize the actin-based genotypes and the endosymbionts of T. vaginalis isolated in Sapporo, Japan. METHODS Three T. vaginalis clinical strains were isolated in Sapporo, Japan between 2019 and 2022. Actin-based genotyping was conducted by sequencing and phylogenetic analyses. The endosymbionts, such as Mycoplasma sp. and Trichomonasvirus, were detected using PCR and RT-PCR, respectively. Furthermore, the detected Mycoplasma spp. were identified using 16S rRNA gene sequencing. RESULTS Of the three T. vaginalis strains, two belonged to genotype E, whereas one was genotype G as determined by actin-based genotyping. Two of the T. vaginalis strains harbored Mycoplasma spp. Using nearly full-length 16S rRNA gene sequencing, both were identified as Candidatus Mycoplasma girerdii. In contrast, the Trichomonasvirus was not found in the T. vaginalis strains. CONCLUSION To our knowledge, this is the first report on the characterization of actin-based genotypes and the presence of endosymbiotic Ca. M. girerdii in T. vaginalis strains in Japan. Thus, this study will provide an important impetus for future research.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, 002-8072, Sapporo, Japan
| | - Kyohei Sawai
- Department of Clinical Laboratories, Sapporo City General Hospital, 1-1, North-11, West-13, Chuo-ku, 060-8604, Sapporo, Japan
| | - Yuji Takahashi
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, 002-8072, Sapporo, Japan
| | - Junji Matsuo
- School of Medical Technology, Health Sciences University of Hokkaido, Ainosato 2-5, Kita-ku, 002-8072, Sapporo, Japan.
| |
Collapse
|
6
|
Qing W, Shi Y, Chen R, Zou Y, Qi C, Zhang Y, Zhou Z, Li S, Hou Y, Zhou H, Chen M. Species-level resolution for the vaginal microbiota with short amplicons. mSystems 2024; 9:e0103923. [PMID: 38275296 PMCID: PMC10878104 DOI: 10.1128/msystems.01039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Specific bacterial species have been found to play important roles in human vagina. Achieving high species-level resolution is vital for analyzing vaginal microbiota data. However, contradictory conclusions were yielded from different methodological studies. More comprehensive evaluation is needed for determining an optimal pipeline for vaginal microbiota. Based on the sequences of vaginal bacterial species downloaded from NCBI, we conducted simulated amplification with various primer sets targeting different 16S regions as well as taxonomic classification on the amplicons applying different combinations of algorithms (BLAST+, VSEARCH, and Sklearn) and reference databases (Greengenes2, SILVA, and RDP). Vaginal swabs were collected from participants with different vaginal microecology to construct 16S full-length sequenced mock communities. Both computational and experimental amplifications were performed on the mock samples. Classification accuracy of each pipeline was determined. Microbial profiles were compared between the full-length and partial 16S sequencing samples. The optimal pipeline was further validated in a multicenter cohort against the PCR results of common STI pathogens. Pipeline V1-V3_Sklearn_Combined had the highest accuracy for classifying the amplicons generated from both the NCBI downloaded data (84.20% ± 2.39%) and the full-length sequencing data (95.65% ± 3.04%). Vaginal samples amplified and sequenced targeting the V1-V3 region but merely employing the forward reads (223 bp) and classified using the optimal pipeline, resembled the mock communities the most. The pipeline demonstrated high F1-scores for detecting STI pathogens within the validation cohort. We have determined an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.IMPORTANCEFor vaginal microbiota studies, diverse 16S rRNA gene regions were applied for amplification and sequencing, which affect the comparability between different studies as well as the species-level resolution of taxonomic classification. We conducted comprehensive evaluation on the methods which influence the accuracy for the taxonomic classification and established an optimal pipeline to achieve high species-level resolution for vaginal microbiota with short amplicons, which will facilitate future studies.
Collapse
Affiliation(s)
- Wei Qing
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiya Shi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongdan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yin'ai Zou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cancan Qi
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingxuan Zhang
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zuyi Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shanshan Li
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Hou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of Medical Laboratory, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of South University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongwei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Muxuan Chen
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Margarita V, Carboni G, Diaz N, Rappelli P, Fiori PL. Patterns of antibiotic resistance of Mycoplasma hominis endosymbiont of Trichomonas vaginalis and the influence of bacterial intracellular location on drug susceptibility. J Glob Antimicrob Resist 2023; 35:210-215. [PMID: 37816433 DOI: 10.1016/j.jgar.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVES Mycoplasma hominis, an opportunistic pathogen of the human lower urogenital tract, can survive and replicate within the protozoan Trichomonas vaginalis, establishing an endosymbiotic relationship. The intracellular location may provide a means for the bacteria to evade the immune system and protection from antimicrobial activities. Our aim was to investigate the influence of the endosymbiotic association of M. hominis with trichomonad cells on bacterial antibiotic susceptibility. METHODS We evaluated antibiotic resistance patterns in a group of M. hominis isolated from T. vaginalis clinical specimens as well as in M. hominis isolated from patients without trichomoniasis. Using an experimental model system, we compared the minimum inhibitory concentration (MIC) and lethal concentration (MLC) of tetracycline on M. hominis endosymbionts of T. vaginalis and extracellular bacteria. RESULTS The incidence rate of M. hominis strains resistant to C14 and C15 macrolide antibiotics was higher in intracellular strains associated with T. vaginalis compared with extracellular bacteria isolated from women not affected by trichomoniasis. However, sensitivity to tetracycline and quinolones was similar in both groups. In vitro experiments demonstrated that M. hominis strains, when isolated as endosymbionts from T. vaginalis, exhibited reduced sensitivity to tetracycline when cultured extracellularly for at least eight weeks. CONCLUSION The intracellular localization of bacteria within trichomonad cells may affect antibiotic susceptibility.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, Italy
| | - Gavino Carboni
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, Italy
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, Italy; Azienda Universitaria Ospedaliera (AOU) Sassari, Sassari, Italy
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, Sassari, Italy; Azienda Universitaria Ospedaliera (AOU) Sassari, Sassari, Italy.
| |
Collapse
|
8
|
Bailey NP, Shao Y, Du S, Foster PG, Fettweis J, Hall N, Wang Z, Hirt RP. Evolutionary conservation of Trichomonas-mycoplasma symbiosis across the host species barrier. Front Microbiol 2023; 14:1242275. [PMID: 37808290 PMCID: PMC10557491 DOI: 10.3389/fmicb.2023.1242275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The protozoan parasite Trichomonas vaginalis is the most common cellular sexually transmitted disease in humans, and the closely related species Trichomonas gallinae is an avian parasite of ecological and economic importance. Phylogenetic evidence suggests T. vaginalis arose during bird to human transmission of a T. gallinae-like ancestor. Trichomonas vaginalis shares a strong clinical association with the independent sexually transmitted pathogen Metamycoplasma (formerly Mycoplasma) hominis, and the uncultured bacterium "Candidatus Malacoplasma (formerly Mycoplasma) girerdii," with the latter association being an order of magnitude stronger. Both bacterial species have been shown to profoundly influence T. vaginalis growth, energy production and virulence-associated mechanisms. Methods Evidence for a novel Malacoplasma sp. was discovered by in vivo Illumina metatranscriptomics sequencing of the T. gallinae-infected pigeon mouth. We leveraged published 16S rDNA profiling data from digestive tract of 12 healthy and 24 T. gallinae-infected pigeons to investigate association between the novel Malacoplasma sp. and T. gallinae. We utilised Illumina metagenomics sequencing targeted to pigeon oral and crop samples infected with the novel Malacoplasma sp. to generate its full-length genome sequence. Sequence similarity network analysis was used to compare annotated proteins from the novel Malacoplasma sp. with a range of other related species. Results Here we present evidence for a novel Malacoplasma species, related to "Ca. M. girerdii," that is strongly associated with T. gallinae in the upper digestive tract of domestic pigeons. Analysis of the genome sequence revealed gene features apparently specific to a Trichomonas-symbiotic Malacoplasma lineage. Discussion These data support a model of long-term association between Trichomonas and Malacoplasma spp. that has been conserved across diversification of the Trichomonas lineage and the host species barrier from birds to human.
Collapse
Affiliation(s)
- Nicholas P. Bailey
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Yuxin Shao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Shaodua Du
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | | | | | - Neil Hall
- Earlham Institute, Norwich, United Kingdom
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, United Kingdom
| | - Zheng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Robert P. Hirt
- Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
9
|
Margarita V, Congiargiu A, Diaz N, Fiori PL, Rappelli P. Mycoplasma hominis and Candidatus Mycoplasma girerdii in Trichomonas vaginalis: Peaceful Cohabitants or Contentious Roommates? Pathogens 2023; 12:1083. [PMID: 37764891 PMCID: PMC10535475 DOI: 10.3390/pathogens12091083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/20/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Trichomonas vaginalis is a pathogenic protozoan diffused worldwide capable of infecting the urogenital tract in humans, causing trichomoniasis. One of its most intriguing aspects is the ability to establish a close relationship with endosymbiotic microorganisms: the unique association of T. vaginalis with the bacterium Mycoplasma hominis represents, to date, the only example of an endosymbiosis involving two true human pathogens. Since its discovery, several aspects of the symbiosis between T. vaginalis and M. hominis have been characterized, demonstrating that the presence of the intracellular guest strongly influences the pathogenic characteristics of the protozoon, making it more aggressive towards host cells and capable of stimulating a stronger proinflammatory response. The recent description of a further symbiont of the protozoon, the newly discovered non-cultivable mycoplasma Candidatus Mycoplasma girerdii, makes the picture even more complex. This review provides an overview of the main aspects of this complex microbial consortium, with particular emphasis on its effect on protozoan pathobiology and on the interplays among the symbionts.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
| | - Antonella Congiargiu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Microbiology Unit, University Hospital of Sassari (AOU), 07110 Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (A.C.); (N.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Microbiology Unit, University Hospital of Sassari (AOU), 07110 Sassari, Italy
| |
Collapse
|
10
|
Bongiorni Galego G, Tasca T. Infinity war: Trichomonas vaginalis and interactions with host immune response. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:103-116. [PMID: 37125086 PMCID: PMC10140678 DOI: 10.15698/mic2023.05.796] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 05/02/2023]
Abstract
Trichomonas vaginalis is the pathological agent of human trichomoniasis. The incidence is 156 million cases worldwide. Due to the increasing resistance of isolates to approved drugs and clinical complications that include increased risk in the acquisition and transmission of HIV, cervical and prostate cancer, and adverse outcomes during pregnancy, increasing our understanding of the pathogen's interaction with the host immune response is essential. Production of cytokines and cells of innate immunity: Neutrophils and macrophages are the main cells involved in the fight against the parasite, while IL-8, IL-6 and TNF-α are the most produced cytokines in response to this infection. Clinical complications: T. vaginalis increases the acquisition of HIV, stimulates the invasiveness and growth of prostate cells, and generates an inflammatory environment that may lead to preterm birth. Endosymbiosis: Mycoplasma hominis increased cytotoxicity, growth, and survival rate of the parasite. Purinergic signaling: NTPD-ases and ecto-5'-nucleotidase helps in parasite survival by modulating the nucleotides levels in the microenvironment. Antibodies: IgG was detected in serum samples of rodents infected with isolates from symptomatic patients as well as patients with symptoms. However, antibody production does not protect against a reinfection. Vaccine candidate targets: The transient receptor potential- like channel of T. vaginalis (TvTRPV), cysteine peptidase, and α-actinin are currently cited as candidate targets for vaccine development. In this context, the understanding of mechanisms involved in the host-T. vaginalis interaction that elicit the immune response may contribute to the development of new targets to combat trichomoniasis.
Collapse
Affiliation(s)
- Giulia Bongiorni Galego
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
| | - Tiana Tasca
- Grupo de Pesquisa em Tricomonas, Faculdade de Farmácia e Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Ipiranga, 2752, Porto Alegre, 90610-000, Rio Grande do Sul, Brazil
- * Corresponding Author: Tiana Tasca, Avenida Ipiranga, 2752. 90610-000. Porto Alegre, Rio Grande do Sul, Brazil; Tel: +555133085325;
| |
Collapse
|
11
|
Hoxha I, Lesiak-Markowicz I, Walochnik J, Stary A, Fürnkranz U. The Prevalence of Genital Mycoplasmas and Coinfection with Trichomonas vaginalis in Female Patients in Vienna, Austria. Microorganisms 2023; 11:933. [PMID: 37110356 PMCID: PMC10146908 DOI: 10.3390/microorganisms11040933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
Trichomonas vaginalis causes trichomoniasis, the most recurrent sexually transmitted infection (STI) worldwide. Genital mycoplasmas, not considered STI agents, are frequently isolated from the female genital tract. A symbiosis between Mycoplasma species and T. vaginalis has been described. The aim of this study was to conduct molecular-based analyses of vaginal specimens, thus assessing the prevalence of non-STI Mycoplasma infections. In total, 582 samples from female patients and an additional 20 T. vaginalis isolates were analyzed by PCR using Mycoplasma specific 16S rRNA primers, and the obtained PCR products were sequenced. Mycoplasma species were detected in 28.2% of the collected vaginal samples. Mycoplasma hominis was found in 21.5% of the specimens, Ureaplasma species were found in 7.5% of the samples. The molecular data of the newly described species, CandidatusMycoplasma girerdii, were obtained for the first time in Austria, in a sample also positive for T. vaginalis. Analyses of the cultivated T. vaginalis strains confirmed the presence of M. hominis in two out of 20 samples. A comparably high prevalence of genital mycoplasmas was revealed through advanced diagnostic assays, with M. hominis and U. parvum being the most prevalent species. The previously described symbiotic relationship between M. hominis and T. vaginalis was confirmed.
Collapse
Affiliation(s)
- Ina Hoxha
- Institute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology Medical University of Vienna, 1090 Vienna, Austria
| | - Iwona Lesiak-Markowicz
- Institute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Walochnik
- Institute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Stary
- Pilzambulatorium Schlösselgasse, Outpatients Centre for the Diagnosis of Venero-Dermatological Diseases, 1210 Vienna, Austria
| | - Ursula Fürnkranz
- Institute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology Medical University of Vienna, 1090 Vienna, Austria
- Pilzambulatorium Schlösselgasse, Outpatients Centre for the Diagnosis of Venero-Dermatological Diseases, 1210 Vienna, Austria
| |
Collapse
|
12
|
Revisiting fecal metatranscriptomics analyses of macaques with idiopathic chronic diarrhoea with a focus on trichomonad parasites. Parasitology 2023; 150:248-261. [PMID: 36503585 PMCID: PMC10090643 DOI: 10.1017/s0031182022001688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Trichomonads, anaerobic microbial eukaryotes members of the phylum Parabasalia, are common obligate extracellular symbionts that can lead to pathological or asymptomatic colonization of various mucosal surfaces in a wide range of animal hosts. Results from previous in vitro studies have suggested a number of intriguing mucosal colonization strategies by Trichomonads, notably highlighting the importance of interactions with bacteria. However, in vivo validation is currently lacking. A previous metatranscriptomics study into the cause of idiopathic chronic diarrhoea in macaques reported the presence of an unidentified protozoan parasite related to Trichomonas vaginalis. In this work, we performed a reanalysis of the published data in order to identify the parasite species present in the macaque gut. We also leveraged the information-rich metatranscriptomics data to investigate the parasite behaviour in vivo. Our results indicated the presence of at least 3 genera of Trichomonad parasite; Tetratrichomonas, Pentatrichomonas and Trichomitus, 2 of which had not been previously reported in the macaque gut. In addition, we identified common in vivo expression profiles shared amongst the Trichomonads. In agreement with previous findings for other Trichomonads, our results highlighted a relationship between Trichomonads and mucosal bacterial diversity which could be influential in health and disease.
Collapse
|
13
|
Hsu HM, Yang YY, Huang YH, Chu CH, Tu TJ, Wu YT, Chiang CJ, Yang SB, Hsu DK, Liu FT, Tai JH. Distinct features of the host-parasite interactions between nonadherent and adherent Trichomonas vaginalis isolates. PLoS Negl Trop Dis 2023; 17:e0011016. [PMID: 36595499 PMCID: PMC9810166 DOI: 10.1371/journal.pntd.0011016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection.
Collapse
Affiliation(s)
- Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
- * E-mail:
| | - Yen-Yu Yang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yu-Hsin Huang
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chien-Hsin Chu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ting-Jui Tu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yen-Ting Wu
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Chu-Jen Chiang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- High School Talent Student in Life Science Project at Academia Sinica and Taipei Municipal Chenggong High School, Taipei, Taiwan
| | - Shi-Bing Yang
- Division of Neuroscience, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K. Hsu
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Fu-Tong Liu
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Dermatology, University of California Davis, Sacramento, California, United States of America
| | - Jung-Hsiang Tai
- Division of Infectious Diseases and Immunology, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
14
|
Lesiak-Markowicz I, Walochnik J, Stary A, Fürnkranz U. Characterisation of Trichomonas vaginalis Isolates Collected from Patients in Vienna between 2019 and 2021. Int J Mol Sci 2022; 23:12422. [PMID: 36293276 PMCID: PMC9604477 DOI: 10.3390/ijms232012422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/23/2022] Open
Abstract
Trichomonas vaginalis (TV) is the causative agent of trichomoniasis, the most common nonviral sexually transmitted disease. TV can carry symbionts such as Trichomonas vaginalis virus (TVV) or Mycoplasma hominis. Four distinct strains of TV are known: TVV1, TVV2, TVV3, and TVV4. The aim of the current study was to characterise TV isolates from Austrian patients for the presence of symbionts, and to determine their effect on metronidazole susceptibility and cytotoxicity against HeLa cells. We collected 82 TV isolates and detected presence of TVV (TVV1, TVV2, or TVV3) in 29 of them (35%); no TVV4 was detected. M. hominis was detected in vaginal/urethral swabs by culture in 37% of the TV-positive patients; M. hominis DNA was found in 28% of the TV isolates by PCR. In 15% of the patients, M. hominis was detected in the clinical samples as well as within the respective TV isolates. In 22% of the patients, M. hominis was detected by culture only. In 11 patients, M. hominis was detected only within the respective cultured TV isolates (13%), while the swab samples were negative for M. hominis. Our results provide a first insight into the distribution of symbionts in TV isolates from Austrian patients. We did not observe significant effects of the symbionts on metronidazole susceptibility, cytotoxicity, or severity of symptoms.
Collapse
Affiliation(s)
- Iwona Lesiak-Markowicz
- Intitute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Julia Walochnik
- Intitute for Specific Prophylaxis and Tropical Medicine (ISPTM), Centre for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Angelika Stary
- Pilzambulatorium Schloesselgasse, Oupatients Centre for Diagnosis of Venero-Dermatological Diseases, 1080 Vienna, Austria
| | - Ursula Fürnkranz
- Pilzambulatorium Schloesselgasse, Oupatients Centre for Diagnosis of Venero-Dermatological Diseases, 1080 Vienna, Austria
| |
Collapse
|
15
|
Margarita V, Cao LC, Bailey NP, Ngoc THT, Ngo TMC, Nu PAT, Diaz N, Dessì D, Hirt RP, Fiori PL, Rappelli P. Effect of the Symbiosis with Mycoplasma hominis and Candidatus Mycoplasma Girerdii on Trichomonas vaginalis Metronidazole Susceptibility. Antibiotics (Basel) 2022; 11:antibiotics11060812. [PMID: 35740218 PMCID: PMC9220282 DOI: 10.3390/antibiotics11060812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Trichomoniasis, the most common non-viral sexually transmitted infection worldwide, is caused by the protozoon Trichomonas vaginalis. The 5- nitroimidazole drugs, of which metronidazole is the most prescribed, are the only effective drugs to treat trichomoniasis. Resistance against metronidazole is increasingly reported among T. vaginalis isolates. T. vaginalis can establish an endosymbiosis with two Mycoplasma species, Mycoplasma hominis and Candidatus Mycoplasma girerdii, whose presence has been demonstrated to influence several aspects of the protozoan pathobiology. The role of M. hominis in T. vaginalis resistance to metronidazole is controversial, while the influence of Ca. M. girerdii has never been investigated. In this work, we investigate the possible correlation between the presence of Ca. M. girerdii and/or M. hominis and the in vitro drug susceptibility in a large group of T. vaginalis isolated in Italy and in Vietnam. We also evaluated, via RNA-seq analysis, the expression of protozoan genes involved in metronidazole resistance in a set of syngenic T. vaginalis strains, differing only for the presence/absence of the two Mycoplasmas. Our results show that the presence of M. hominis significantly increases the sensitivity to metronidazole in T. vaginalis and affects gene expression. On the contrary, the symbiosis with Candidatus Mycoplasma girerdii seems to have no effect on metronidazole resistance in T. vaginalis.
Collapse
Affiliation(s)
- Valentina Margarita
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (N.D.); (D.D.); (P.L.F.)
| | - Le Chi Cao
- Department of Parasitology, Hue University of Medicine and Pharmacy, 06 Ngo Quyen Street, Hue 49000, Vietnam; (L.C.C.); (T.H.T.N.); (T.M.C.N.); (P.A.T.N.)
| | - Nicholas P. Bailey
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.B.); (R.P.H.)
| | - Thuy Ha Thi Ngoc
- Department of Parasitology, Hue University of Medicine and Pharmacy, 06 Ngo Quyen Street, Hue 49000, Vietnam; (L.C.C.); (T.H.T.N.); (T.M.C.N.); (P.A.T.N.)
| | - Thi Minh Chau Ngo
- Department of Parasitology, Hue University of Medicine and Pharmacy, 06 Ngo Quyen Street, Hue 49000, Vietnam; (L.C.C.); (T.H.T.N.); (T.M.C.N.); (P.A.T.N.)
| | - Phuong Anh Ton Nu
- Department of Parasitology, Hue University of Medicine and Pharmacy, 06 Ngo Quyen Street, Hue 49000, Vietnam; (L.C.C.); (T.H.T.N.); (T.M.C.N.); (P.A.T.N.)
| | - Nicia Diaz
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (N.D.); (D.D.); (P.L.F.)
| | - Daniele Dessì
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (N.D.); (D.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
| | - Robert P. Hirt
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; (N.P.B.); (R.P.H.)
| | - Pier Luigi Fiori
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (N.D.); (D.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
| | - Paola Rappelli
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (V.M.); (N.D.); (D.D.); (P.L.F.)
- Mediterranean Centre for Disease Control (MCDC), 07110 Sassari, Italy
- Correspondence:
| |
Collapse
|