1
|
Johnson MJ, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut microbiota and other factors associated with increased T cell regulation in HIV-exposed uninfected infants. Front Immunol 2025; 16:1533003. [PMID: 40098966 PMCID: PMC11911520 DOI: 10.3389/fimmu.2025.1533003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction Infants exposed to HIV and uninfected (HEUs) are at higher risk of infectious morbidity than HIV-unexposed uninfected infants (HUUs). Multiple immune defects of unknown origin were observed in HEUs. We hypothesized that HEUs have more regulatory and inhibitory checkpoint-expressing T cells (Treg, Tici) than HUUs, which may dampen their immune defenses against pathogens. Method We used flow cytometry to measure 25 Treg/Tici subsets in HEUs and HUUs at birth, 6, 28, and 62 weeks of life. We used maternal and infant gut microbiome data reported in a previous study to establish correlations with the Treg/Tici. Results At birth, 3 Treg subsets, including the prototypic CD4+FOXP3+ and CD4+FOXP3+CD25+, had higher frequencies in 123 HEUs than in 117 HUUs, and 3 subsets had higher frequencies in HUUs. At 28 and 62 weeks of age, 5 Treg/Tici subsets had higher proportions in HEUs than HUUs. The frequencies of the Treg/Tici subsets that diverged between HEUs and HUUs at birth correlated with differential relative abundances of bacterial taxa in the maternal gut microbiome. The Treg/Tici subsets with significantly different frequencies at subsequent visits correlated with the concurrent composition of the infant gut microbiome. In vitro, treatment of HUU peripheral blood mononuclear cells (PBMC) with bacterial taxa most abundant in HEUs expanded Treg/Tici subsets with higher frequencies in HEUs than HUUs, recapitulating the in vivo correlations. Conversely, in vitro treatment of HEU PBMC did not increase Treg/Tici frequencies. Other factors that correlated with increased Treg/Tici frequencies were low maternal CD4+ T cells in HEUs at birth and male sex in the HUUs at 28 weeks of life. Discussion This study shows that maternal and infant gut dysbiosis are central to the increase in Treg/Tici in HEUs and may be targeted by mitigating interventions.
Collapse
Affiliation(s)
- Michael J. Johnson
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sarah K. Lazarus
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ashlynn E. Bennett
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Tovar-Salazar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Charles E. Robertson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer M. Kofonow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Shaobing Li
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bruce McCollister
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Marta C. Nunes
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A. Madhi
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit and Department of Science and Technology/National Research Foundation South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel N. Frank
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Adriana Weinberg
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- African Leadership in Vaccinology Expertise, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
2
|
Moyo GT, Tepekule B, Katsidzira L, Blaser MJ, Metcalf CJE. Getting ahead of human-associated microbial decline in Africa: the urgency of sampling in light of epidemiological transition. Trends Microbiol 2025:S0966-842X(25)00005-8. [PMID: 40021386 DOI: 10.1016/j.tim.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/03/2025] [Accepted: 01/14/2025] [Indexed: 03/03/2025]
Abstract
Evidence is growing that human-associated early-life microbial diversity modulates health over the long term, via effects in the infant termed 'immune and metabolic education'. Documenting high microbial diversity contexts, such as in Africa, thus, has rich potential for understanding this aspect of the landscape of health. Yet, change on the continent is occurring rapidly, and microbial communities are shifting as behaviors and diets are altered, and antibiotic use expands; we may be losing the opportunity to obtain relevant data. After introducing what is known about the effects of early life microbial diversity on late life health, we provide an overview of what is known of the current, and expected future, trajectory of human-associated microbial diversity in Africa, introducing data on the core drivers. We argue that critical insights may be lost if better understanding of infant microbial communities in Africa is not obtained soon.
Collapse
Affiliation(s)
- Gugulethu T Moyo
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, UK.
| | - Burcu Tepekule
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Leolin Katsidzira
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
| | - Martin J Blaser
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Maghini DG, Oduaran OH, Olubayo LAI, Cook JA, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Wirbel J, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. Nature 2025; 638:718-728. [PMID: 39880958 PMCID: PMC11839480 DOI: 10.1038/s41586-024-08485-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
Population studies provide insights into the interplay between the gut microbiome and geographical, lifestyle, genetic and environmental factors. However, low- and middle-income countries, in which approximately 84% of the world's population lives1, are not equitably represented in large-scale gut microbiome research2-4. Here we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa. By engaging with communities that range from rural and horticultural to post-industrial and urban informal settlements, we capture a far greater breadth of the world's population diversity. Using shotgun metagenomic sequencing, we identify taxa with geographic and lifestyle associations, including Treponema and Cryptobacteroides species loss and Bifidobacterium species gain in urban populations. We uncover 1,005 bacterial metagenome-assembled genomes, and we identify antibiotic susceptibility as a factor that might drive Treponema succinifaciens absence in urban populations. Finally, we find an HIV infection signature defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals so far, and paired with extensive clinical biomarkers and demographic data, provides extensive opportunity for microbiome-related discovery.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jane A Cook
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
- Navrongo Health Research Centre, Ghana Health Science, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Solomon S R Choma
- DIMAMO Population Health Research Centre, University of Limpopo, Polokwane, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, Polokwane, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, UK
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ami S Bhatt
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA.
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa.
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
4
|
Vasileva S, Yap CX, Whitehouse AJ, Gratten J, Eyles D. Absence of association between maternal adverse events and long-term gut microbiome outcomes in the Australian autism biobank. Brain Behav Immun Health 2024; 39:100814. [PMID: 39027090 PMCID: PMC11254947 DOI: 10.1016/j.bbih.2024.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction Maternal immune activation (MIA) and prenatal maternal stress (MatS) are well-studied risk factors for psychiatric conditions such as autism and schizophrenia. Animal studies have proposed the gut microbiome as a mechanism underlying this association and have found that risk factor-related gut microbiome alterations persist in the adult offspring. In this cross-sectional study, we assessed whether maternal immune activation and prenatal maternal stress were associated with long-term gut microbiome alterations in children using shotgun metagenomics. Methods This cross-sectional study included children diagnosed with autism (N = 92), siblings without a diagnosis (N = 42), and unrelated children (N = 40) without a diagnosis who were recruited into the Australian Autism Biobank and provided a faecal sample. MIA exposure was inferred from self-reported data and included asthma/allergies, complications during pregnancy triggering an immune response, auto-immune conditions, and acute inflammation. Maternal stress included any of up to 9 stressful life events during pregnancy, such as divorce, job loss, and money problems. Data were analysed for a total of 174 children, of whom 63 (36%) were born to mothers with MIA and 84 (48%) were born to mothers who experienced maternal stress during pregnancy (where 33 [19%] experienced both). Gut microbiome data was assessed using shotgun metagenomic sequencing of the children's faecal samples. Results In our cohort, MIA, but not MatS, was associated with ASD. Variance component analysis revealed no associations between any of the gut microbiome datasets and neither MIA nor MatS. After adjusting for age, sex, diet and autism diagnosis, there was no significant difference between groups for bacterial richness, α-diversity or β-diversity. We found no significant differences in species abundance in the main analyses. However, when stratifying the cohort by age, we found that Faecalibacterium prausnitzii E was significantly decreased in MIA children aged 11-17. Discussion Consistent with previous findings, we found that children who were born to mothers with MIA were more likely to be diagnosed with autism. Unlike within animal studies, we found negligible microbiome differences associated with MIA and maternal stress. Given the current interest in the microbiome-gut-brain axis, researchers should exercise caution in translating microbiome findings from animal models to human contexts and the clinical setting.
Collapse
Affiliation(s)
- Svetlina Vasileva
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Chloe X. Yap
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, Australia
| | | | - Jacob Gratten
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Cooperative Research Centre for Living with Autism (Autism CRC), Long Pocket, Brisbane, Australia
| | - Darryl Eyles
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
- Queensland Centre for Mental Health Research, Wacol, Australia
| |
Collapse
|
5
|
Brenchley JM, Serrano-Villar S. From dysbiosis to defense: harnessing the gut microbiome in HIV/SIV therapy. MICROBIOME 2024; 12:113. [PMID: 38907315 PMCID: PMC11193286 DOI: 10.1186/s40168-024-01825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/26/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Although the microbiota has been extensively associated with HIV pathogenesis, the majority of studies, particularly those using omics techniques, are largely correlative and serve primarily as a basis for hypothesis generation. Furthermore, most have focused on characterizing the taxonomic composition of the bacterial component, often overlooking other levels of the microbiome. The intricate mechanisms by which the microbiota influences immune responses to HIV are still poorly understood. Interventional studies on gut microbiota provide a powerful tool to test the hypothesis of whether we can harness the microbiota to improve health outcomes in people with HIV. RESULTS Here, we review the multifaceted role of the gut microbiome in HIV/SIV disease progression and its potential as a therapeutic target. We explore the complex interplay between gut microbial dysbiosis and systemic inflammation, highlighting the potential for microbiome-based therapeutics to open new avenues in HIV management. These include exploring the efficacy of probiotics, prebiotics, fecal microbiota transplantation, and targeted dietary modifications. We also address the challenges inherent in this research area, such as the difficulty in inducing long-lasting microbiome alterations and the complexities of study designs, including variations in probiotic strains, donor selection for FMT, antibiotic conditioning regimens, and the hurdles in translating findings into clinical practice. Finally, we speculate on future directions for this rapidly evolving field, emphasizing the need for a more granular understanding of microbiome-immune interactions, the development of personalized microbiome-based therapies, and the application of novel technologies to identify potential therapeutic agents. CONCLUSIONS Our review underscores the importance of the gut microbiome in HIV/SIV disease and its potential as a target for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Jason M Brenchley
- Barrier Immunity Section, Lab of Viral Diseases, NIAID, NIH, Bethesda, MA, USA.
| | - Sergio Serrano-Villar
- Department of Infectious Diseases, Hospital Universitario Ramon y Cajal, IRYCIS and CIBERInfec, Madrid, Spain.
| |
Collapse
|
6
|
Maqsood R, Holland LA, Wu LI, Begnel ER, Adhiambo J, Owiti P, Chohan BH, Gantt S, Kinuthia J, Wamalwa D, Ojee E, Richardson BA, Slyker J, Lehman DA, Lim ES. Gut virome and microbiome dynamics before and after SARS-CoV-2 infection in women living with HIV and their infants. RESEARCH SQUARE 2024:rs.3.rs-4257515. [PMID: 38699305 PMCID: PMC11065063 DOI: 10.21203/rs.3.rs-4257515/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that while the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). However, gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.
Collapse
|
7
|
Maghini DG, Oduaran OH, Wirbel J, Olubayo LAI, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584859. [PMID: 38559015 PMCID: PMC10980044 DOI: 10.1101/2024.03.13.584859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Population studies are crucial in understanding the complex interplay between the gut microbiome and geographical, lifestyle, genetic, and environmental factors. However, populations from low- and middle-income countries, which represent ~84% of the world population, have been excluded from large-scale gut microbiome research. Here, we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803 women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with communities that range from rural and horticultural to urban informal settlements and post-industrial, we capture population diversity that represents a far greater breadth of the world's population. Using shotgun metagenomic sequencing, we find that study site explains substantially more microbial variation than disease status. We identify taxa with strong geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides species and gain of Bifidobacterium species in urban populations. We uncover a wealth of prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes, and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a microbiome signature of HIV infection that is defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals to date, and paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides extensive opportunity for microbiome-related discovery and research.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Solomon SR Choma
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
Iwase SC, Osawe S, Happel AU, Gray CM, Holmes SP, Blackburn JM, Abimiku A, Jaspan HB. Longitudinal gut microbiota composition of South African and Nigerian infants in relation to tetanus vaccine responses. Microbiol Spectr 2024; 12:e0319023. [PMID: 38230936 PMCID: PMC10846250 DOI: 10.1128/spectrum.03190-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024] Open
Abstract
Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid vaccine responses. We evaluated the gut microbiota of 82 South African (61 iHEU and 21 iHUU) and 196 Nigerian (141 iHEU and 55 iHUU) infants at <1 and 15 weeks of life by 16S rRNA gene sequencing. Anti-tetanus antibodies were measured by enzyme-linked immunosorbent assay at matched time points. Gut microbiota in the 278 included infants and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants, who were exclusively breastfed, drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among South African infants, even when limiting the analysis to exclusively breastfed infants. The Least Absolute Shrinkage and Selection Operator regression suggested that HIV exposure and gut microbiota were independently associated with tetanus titers at week 15, and that high passively transferred antibody levels, as seen in the Nigerian cohort, may mitigate these effects. In conclusion, in two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and setting, but both specific gut microbes and HIV exposure independently predicted humoral tetanus vaccine responses.IMPORTANCEGut microbiota plays an essential role in immune system development. Since infants HIV-exposed and uninfected (iHEU) are more vulnerable to infectious diseases than unexposed infants, we explored the impact of HIV exposure on gut microbiota and its association with vaccine responses. This study was conducted in two African countries with rapidly increasing numbers of iHEU. Infant HIV exposure did not substantially affect gut microbial succession, but geographic location had a strong effect. However, both the relative abundance of specific gut microbes and HIV exposure were independently associated with tetanus titers, which were also influenced by baseline tetanus titers (maternal transfer). Our findings provide insight into the effect of HIV exposure, passive maternal antibody, and gut microbiota on infant humoral vaccine responses.
Collapse
Affiliation(s)
- Saori C. Iwase
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Sophia Osawe
- Institute of Human Virology-Nigeria, Abuja, Nigeria
| | - Anna-Ursula Happel
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Clive M. Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town, South Africa
| | - Susan P. Holmes
- Department of Statistics, Stanford University, Stanford, California, USA
| | - Jonathan M. Blackburn
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Division of Chemical and Systems Biology, University of Cape Town, Cape Town, South Africa
| | - Alash'le Abimiku
- Institute of Human Virology-Nigeria, Abuja, Nigeria
- Institute of Human Virology, University of Maryland, School of Medicine, Baltimore, Maryland, USA
| | - Heather B. Jaspan
- Division of Immunology, Department of Pathology, University of Cape Town, Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle, Washington, USA
| |
Collapse
|
9
|
Johnson M, Lazarus SK, Bennett AE, Tovar-Salazar A, Robertson CE, Kofonow JM, Li S, McCollister B, Nunes MC, Madhi SA, Frank DN, Weinberg A. Gut Microbiota and Other Factors Associated With Increased Regulatory T Cells in Hiv-exposed Uninfected Infants. RESEARCH SQUARE 2024:rs.3.rs-3909424. [PMID: 38352510 PMCID: PMC10862973 DOI: 10.21203/rs.3.rs-3909424/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
HIV-exposed uninfected infants (HEU) have higher infectious morbidity than HIV-unexposed infants (HUU). HEU have multiple immune defects of unknown origin. We hypothesized that HEU have higher regulatory T cells (Treg) than HUU, which may dampen their immune defenses against pathogens. We compared 25 Treg subsets between HEU and HUU and sought the factors that may affect Treg frequencies. At birth, 3 Treg subsets, including CD4 + FOXP3 + and CD4 + FOXP3 + CD25+, had higher frequencies in 123 HEU than 117 HUU and 3 subsets were higher in HUU. At 28 and 62 weeks of life, 5 Treg subsets were higher in HEU, and none were higher in HUU. The frequencies of the discrepant Treg subsets correlated at birth with differential abundances of bacterial taxas in maternal gut microbiome and at subsequent visits in infant gut microbiomes. In vitro, bacterial taxa most abundant in HEU expanded Treg subsets with higher frequencies in HEU, recapitulating the in vivo observations. Other factors that correlated with increased Treg were low maternal CD4 + T cells in HEU at birth and male sex in HUU at 28 weeks. We conclude that maternal and infant gut dysbiosis are central to the Treg increase in HEU and may be targeted by mitigating interventions.
Collapse
|
10
|
Maqsood R, Holland LA, Wu LI, Begnel ER, Adhiambo J, Owiti P, Chohan BH, Gantt S, Kinuthia J, Wamalwa D, Ojee E, Richardson BA, Slyker J, Lehman DA, Lim ES. Gut virome and microbiome dynamics before and after SARS-CoV-2 infection in women living with HIV and their infants. Gut Microbes 2024; 16:2394248. [PMID: 39185682 PMCID: PMC11352790 DOI: 10.1080/19490976.2024.2394248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/26/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024] Open
Abstract
Microbiome perturbations can have long-term effects on health. The dynamics of the gut microbiome and virome in women living with HIV (WLHIV) and their newborn infants is poorly understood. Here, we performed metagenomic sequencing analyses on longitudinal stool samples including 23 mothers (13 WLHIV, 10 HIV-negative) and 12 infants that experienced SARS-CoV-2 infection with mild disease, as well as 40 mothers (18 WLHIV, 22 HIV-negative) and 60 infants that remained SARS-CoV-2 seronegative throughout the study follow-up. Regardless of HIV or SARS-CoV-2 status, maternal bacterial and viral profiles were distinct from infants. Using linear mixed effects models, we showed that the microbiome alpha diversity trajectory was not significantly different between SARS-CoV-2 seropositive and seronegative women. However, seropositive women's positive trajectory while uninfected was abruptly reversed after SARS-CoV-2 infection (p = 0.015). Gut virome signatures of women were not associated with SARS-CoV-2. Alterations in infant microbiome and virome diversities were generally not impacted by SARS-CoV-2 but were rather driven by development. We did not find statistically significant interactions between HIV and SARS-CoV-2 on the gut microbiome and virome. Overall, our study provides insights into the complex interplay between maternal and infant bacterial microbiome, virome, and the influence of SARS-CoV-2 and HIV status.
Collapse
Affiliation(s)
- Rabia Maqsood
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - LaRinda A. Holland
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Lily I. Wu
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emily R. Begnel
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Judith Adhiambo
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Prestone Owiti
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Bhavna H. Chohan
- Department of Global Health, University of Washington, Seattle, WA, USA
- Center of Virus Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Soren Gantt
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Centre de Recherche du CHU St-Justine, Montreal, Québec, Canada
| | - John Kinuthia
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Research and Programs, Kenyatta National Hospital, Nairobi, Kenya
| | - Dalton Wamalwa
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Ednah Ojee
- Department of Paediatrics and Child Health, University of Nairobi, Nairobi, Kenya
| | - Barbra A. Richardson
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Jennifer Slyker
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Dara A. Lehman
- Department of Global Health, University of Washington, Seattle, WA, USA
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Efrem S. Lim
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
11
|
O'Connell LM, Mann AE, Osagie E, Akhigbe P, Blouin T, Soule A, Obuekwe O, Omoigberale A, Burne RA, Coker MO, Richards VP. Supragingival mycobiome of HIV-exposed-but-uninfected children reflects a stronger correlation with caries-free-associated taxa compared to HIV-infected or uninfected children. Microbiol Spectr 2023; 11:e0149123. [PMID: 37874172 PMCID: PMC10715047 DOI: 10.1128/spectrum.01491-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/15/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Globally, caries is among the most frequent chronic childhood disease, and the fungal component of the microbial community responsible is poorly studied despite evidence that fungi contribute to increased acid production exacerbating enamel demineralization. HIV infection is another global health crisis. Perinatal HIV exposure with infection are caries risk factors; however, the caries experience in the context of perinatal HIV exposure without infection is less clear. Using high-throughput amplicon sequencing, we find taxonomic differences that become pronounced during late-stage caries. Notably, we show a stronger correlation with health-associated taxa for HIV-exposed-but-uninfected children when compared to unexposed and uninfected children. This aligns with a lower incidence of caries in primary teeth at age 6 or less for exposed yet uninfected children. Ultimately, these findings could contribute to improved risk assessment, intervention, and prevention strategies such as biofilm disruption and the informed design of pro-, pre-, and synbiotic oral therapies.
Collapse
Affiliation(s)
- Lauren M. O'Connell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Allison E. Mann
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Esosa Osagie
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Paul Akhigbe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Thomas Blouin
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ashlyn Soule
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Ozoemene Obuekwe
- Department of Oral and Maxillofacial Surgery, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Augustine Omoigberale
- Department of Child Health, University of Benin Teaching Hospital, Benin, Edo State, Nigeria
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Modupe O. Coker
- Institute of Human Virology Nigeria, Abuja, Nigeria
- Department of Oral Biology, School of Dental Medicine, Rutgers University, Newark, New Jersey, USA
| | - Vincent P. Richards
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
12
|
Happel AU, Rametse L, Perumaul B, Diener C, Gibbons SM, Nyangahu DD, Donald KA, Gray C, Jaspan HB. Bifidobacterium infantis supplementation versus placebo in early life to improve immunity in infants exposed to HIV: a protocol for a randomized trial. BMC Complement Med Ther 2023; 23:367. [PMID: 37853370 PMCID: PMC10583347 DOI: 10.1186/s12906-023-04208-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023] Open
Abstract
INTRODUCTION Infants who are born from mothers with HIV (infants who are HIV exposed but uninfected; iHEU) are at higher risk of morbidity and display multiple immune alterations compared to infants who are HIV-unexposed (iHU). Easily implementable strategies to improve immunity of iHEU, and possibly subsequent clinical health outcomes, are needed. iHEU have altered gut microbiome composition and bifidobacterial depletion, and relative abundance of Bifidobacterium infantis has been associated with immune ontogeny, including humoral and cellular vaccine responses. Therefore, we will assess microbiological and immunological phenotypes and clinical outcomes in a randomized, double-blinded trial of B. infantis Rosell®-33 versus placebo given during the first month of life in South African iHEU. METHODS This is a parallel, randomised, controlled trial. Two-hundred breastfed iHEU will be enrolled from the Khayelitsha Site B Midwife Obstetric Unit in Cape Town, South Africa and 1:1 randomised to receive 8 × 109 CFU B. infantis Rosell®-33 daily or placebo for the first 4 weeks of life, starting on day 1-3 of life. Infants will be followed over 36 weeks with extensive collection of meta-data and samples. Primary outcomes include gut microbiome composition and diversity, intestinal inflammation and microbial translocation and cellular vaccine responses. Additional outcomes include biological (e.g. gut metabolome and T cell phenotypes) and clinical (e.g. growth and morbidity) outcome measures. DISCUSSION The results of this trial will provide evidence whether B. infantis supplementation during early life could improve health outcomes for iHEU. ETHICS AND DISSEMINATION Approval for this study has been obtained from the ethics committees at the University of Cape Town (HREC Ref 697/2022) and Seattle Children's Research Institute (STUDY00003679). TRIAL REGISTRATION Pan African Clinical Trials Registry Identifier: PACTR202301748714019. CLINICAL TRIALS gov: NCT05923333. PROTOCOL VERSION Version 1.8, dated 18 July 2023.
Collapse
Affiliation(s)
- Anna-Ursula Happel
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa.
| | - Lerato Rametse
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Brandon Perumaul
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | | | - Sean M Gibbons
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Donald D Nyangahu
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Klipfontein Road Rondebosch, Cape Town, 7700, South Africa
- The Neuroscience Institute, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
| | - Clive Gray
- Division of Molecular Biology and Human Genetics, Stellenbosch University, Francie Van Zijl Drive, Tygerberg, 7505, South Africa
| | - Heather B Jaspan
- Department of Pathology, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Anzio Road, Observatory, Cape Town, 7925, South Africa
- Seattle Children's Research Institute, 307 Westlake Ave. N, Seattle, WA, 98109, USA
- Department of Pediatrics, University of Washington, 1959 NE Pacific St, Seattle, WA, 98195, USA
- Department of Global Health, University of Washington, 1510 San Juan Road NE, Seattle, WA, 98195, USA
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW In this review, we discuss recent research that has furthered our understanding of microbiome development during childhood, the role of the microbiome in infections during this life stage, and emerging opportunities for microbiome-based therapies for infection prevention or treatment in children. RECENT FINDINGS The microbiome is highly dynamic during childhood and shaped by a variety of host and environmental factors. In turn, the microbiome influences risk and severity of a broad range of infections during childhood, with recent studies highlighting potential roles in respiratory, gastrointestinal, and systemic infections. The microbiome exerts this influence through both direct interactions with potential pathogens and indirectly through modulation of host immune responses. The elucidation of some of these mechanisms by recent studies and the development of effective microbiome-based therapies for adults with recurrent Clostridioides difficile infection highlight the enormous promise that targeting the microbiome has for reducing the burden of infectious diseases during childhood. SUMMARY The microbiome has emerged as a key modifier of infection susceptibility and severity among children. Further research is needed to define the roles of microbes other than bacteria and to elucidate the mechanisms underlying microbiome-host and microbiome-pathogen interactions of importance to infectious diseases in children.
Collapse
Affiliation(s)
- Jillian H. Hurst
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| | - Sarah M. Heston
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| | - Matthew S. Kelly
- Department of Pediatrics, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC
| |
Collapse
|
14
|
Pheeha SM, Tamuzi JL, Chale-Matsau B, Manda S, Nyasulu PS. A Scoping Review Evaluating the Current State of Gut Microbiota Research in Africa. Microorganisms 2023; 11:2118. [PMID: 37630678 PMCID: PMC10458939 DOI: 10.3390/microorganisms11082118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The gut microbiota has emerged as a key human health and disease determinant. However, there is a significant knowledge gap regarding the composition, diversity, and function of the gut microbiota, specifically in the African population. This scoping review aims to examine the existing literature on gut microbiota research conducted in Africa, providing an overview of the current knowledge and identifying research gaps. A comprehensive search strategy was employed to identify relevant studies. Databases including MEDLINE (PubMed), African Index Medicus (AIM), CINAHL (EBSCOhost), Science Citation index (Web of Science), Embase (Ovid), Scopus (Elsevier), WHO International Clinical Trials Registry Platform (ICTRP), and Google Scholar were searched for relevant articles. Studies investigating the gut microbiota in African populations of all age groups were included. The initial screening included a total of 2136 articles, of which 154 were included in this scoping review. The current scoping review revealed a limited number of studies investigating diseases of public health significance in relation to the gut microbiota. Among these studies, HIV (14.3%), colorectal cancer (5.2%), and diabetes mellitus (3.9%) received the most attention. The top five countries that contributed to gut microbiota research were South Africa (16.2%), Malawi (10.4%), Egypt (9.7%), Kenya (7.1%), and Nigeria (6.5%). The high number (n = 66) of studies that did not study any specific disease in relation to the gut microbiota remains a gap that needs to be filled. This scoping review brings attention to the prevalent utilization of observational study types (38.3%) in the studies analysed and emphasizes the importance of conducting more experimental studies. Furthermore, the findings reflect the need for more disease-focused, comprehensive, and population-specific gut microbiota studies across diverse African regions and ethnic groups to better understand the factors shaping gut microbiota composition and its implications for health and disease. Such knowledge has the potential to inform targeted interventions and personalized approaches for improving health outcomes in African populations.
Collapse
Affiliation(s)
- Sara M. Pheeha
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Department of Chemical Pathology, Faculty of Medicine and Health Sciences, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- National Health Laboratory Service, Dr George Mukhari Academic Hospital, Pretoria 0208, South Africa
| | - Jacques L. Tamuzi
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
| | - Bettina Chale-Matsau
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria, Pretoria 0028, South Africa
- National Health Laboratory Service, Steve Biko Academic Hospital, Pretoria 0002, South Africa
| | - Samuel Manda
- Department of Statistics, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa
| | - Peter S. Nyasulu
- Division of Epidemiology and Biostatistics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 7500, South Africa; (S.M.P.)
- Division of Epidemiology and Biostatistics, School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| |
Collapse
|
15
|
Iwase SC, Jaspan HB, Happel AU, Holmes SP, Abimiku A, Osawe S, Gray CM, Blackburn JM. Longitudinal gut microbiota composition of South African and Nigerian infants in relation to tetanus vaccine responses. RESEARCH SQUARE 2023:rs.3.rs-3112263. [PMID: 37461449 PMCID: PMC10350179 DOI: 10.21203/rs.3.rs-3112263/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Introduction Infants who are exposed to HIV but uninfected (iHEU) have higher risk of infectious morbidity than infants who are HIV-unexposed and uninfected (iHUU), possibly due to altered immunity. As infant gut microbiota may influence immune development, we evaluated the effects of HIV exposure on infant gut microbiota and its association with tetanus toxoid (TT) vaccine responses. Methods We evaluated gut microbiota by 16S rRNA gene sequencing in 278 South African and Nigerian infants during the first and at 15 weeks of life and measured antibodies against TT vaccine by enzyme-linked immunosorbent assay (ELISA) at matched time points. Results Infant gut microbiota and its succession were more strongly influenced by geographical location and age than by HIV exposure. Microbiota of Nigerian infants drastically changed over 15 weeks, becoming dominated by Bifidobacterium longum subspecies infantis. This change was not observed among EBF South African infants. Lasso regression suggested that HIV exposure and gut microbiota were independently associated with TT vaccine responses at week 15, and that high passive antibody levels may mitigate these effects. Conclusion In two African cohorts, HIV exposure minimally altered the infant gut microbiota compared to age and country, but both specific gut microbes and HIV exposure independently predicted humoral vaccine responses.
Collapse
|
16
|
du Toit LDV, Prinsloo A, Steel HC, Feucht U, Louw R, Rossouw TM. Immune and Metabolic Alterations in Children with Perinatal HIV Exposure. Viruses 2023; 15:v15020279. [PMID: 36851493 PMCID: PMC9966389 DOI: 10.3390/v15020279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
With the global rollout of mother-to-child prevention programs for women living with HIV, vertical transmission has been all but eliminated in many countries. However, the number of children who are exposed in utero to HIV and antiretroviral therapy (ART) is ever-increasing. These children who are HIV-exposed-but-uninfected (CHEU) are now well recognized as having persistent health disparities compared to children who are HIV-unexposed-and-uninfected (CHUU). Differences reported between these two groups include immune dysfunction and higher levels of inflammation, cognitive and metabolic abnormalities, as well as increased morbidity and mortality in CHEU. The reasons for these disparities remain largely unknown. The present review focuses on a proposed link between immunometabolic aberrations and clinical pathologies observed in the rapidly expanding CHEU population. By drawing attention, firstly, to the significance of the immune and metabolic alterations observed in these children, and secondly, the impact of their healthcare requirements, particularly in low- and middle-income countries, this review aims to sensitize healthcare workers and policymakers about the long-term risks of in utero exposure to HIV and ART.
Collapse
Affiliation(s)
- Louise D V du Toit
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| | - Andrea Prinsloo
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Hematology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Helen C Steel
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Ute Feucht
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
- Department of Pediatrics, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom 2520, South Africa
| | - Theresa M Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria 0001, South Africa
- UP Research Centre for Maternal, Fetal, Newborn and Child Health Care Strategies, University of Pretoria, Pretoria 0001, South Africa
- Maternal and Infant Health Care Strategies Research Unit, South African Medical Research Council, Pretoria 0001, South Africa
| |
Collapse
|