1
|
Longley R, Robinson AJ, Asher OA, Middlebrook E, Bonito G, Chain PSG. Signatures of Mollicutes-related endobacteria in publicly available Mucoromycota genomes. mSphere 2024; 9:e0030924. [PMID: 39189783 PMCID: PMC11423566 DOI: 10.1128/msphere.00309-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024] Open
Abstract
Mucoromycota fungi and their Mollicutes-related endobacteria (MRE) are an ideal system for studying bacterial-fungal interactions and evolution due to the long-term and intimate nature of their interactions. However, methods for detecting MRE face specific challenges due to the poor representation of MRE in sequencing databases coupled with the high sequence divergence of their genomes, making traditional similarity searches unreliable. This has precluded estimations on the diversity of MRE associated with Mucoromycota. To determine the prevalence of previously undetected MRE in fungal genome sequences, we scanned 389 Mucoromycota genome assemblies available from the National Center for Biotechnology Information for the presence of MRE sequences using publicly available tools to map contigs from fungal assemblies to publicly available MRE genomes. We demonstrate a higher diversity of MRE genomes than previously described in Mucoromycota and a lack of cophylogeny between MRE and the majority of their fungal hosts. This supports the late invasion hypothesis regarding MRE acquisition across most of the examined fungal families. In contrast with other Mucoromycota lineages, MRE from the Gigasporaceae displayed some degree of cophylogeny with their hosts, which may indicate that horizontal transmission is restricted between members of this family or that transmission is strictly vertical. These results underscore the need for a refined process to capture sequencing data from potential fungal endosymbionts to discern their evolution and transmission. Screens of fungal genomes for MRE can help improve the quality of fungal genome assemblies while identifying new MRE lineages to further test hypotheses on their origin and evolution.IMPORTANCEMollicutes-related endobacteria (MRE) are obligate intracellular bacteria found within Mucoromycota fungi. Despite their frequent detection, MRE roles in host functioning are still unknown. Comparative genomic investigations can improve our understanding of the impact of MRE on their fungal hosts by identifying similarities and differences in MRE genome evolution. However, MRE genomes have only been assembled from a small fraction of Mucoromycota hosts. Here, we demonstrate that MRE can be present yet undetected in publicly available Mucoromycota genome assemblies. We use these newfound sequences to assess the broader diversity of MRE and their phylogenetic relationships with respect to their hosts. We demonstrate that publicly available tools can be used to extract novel MRE sequences from assembled fungal genomes leading to insights on MRE evolution. This work contributes to a greater understanding of the fungal microbiome, which is crucial to improving knowledge on the dynamics and impacts of fungi in microbial ecosystems.
Collapse
Affiliation(s)
- Reid Longley
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Aaron J. Robinson
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Olivia A. Asher
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Earl Middlebrook
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Gregory Bonito
- Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Patrick S. G. Chain
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Pawlowska TE. Symbioses between fungi and bacteria: from mechanisms to impacts on biodiversity. Curr Opin Microbiol 2024; 80:102496. [PMID: 38875733 PMCID: PMC11323152 DOI: 10.1016/j.mib.2024.102496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/16/2024]
Abstract
Symbiotic interactions between fungi and bacteria range from positive to negative. They are ubiquitous in free-living as well as host-associated microbial communities worldwide. Yet, the impact of fungal-bacterial symbioses on the organization and dynamics of microbial communities is uncertain. There are two reasons for this uncertainty: (1) knowledge gaps in the understanding of the genetic mechanisms underpinning fungal-bacterial symbioses and (2) prevailing interpretations of ecological theory that favor antagonistic interactions as drivers stabilizing biological communities despite the existence of models emphasizing contributions of positive interactions. This review synthesizes information on fungal-bacterial symbioses common in the free-living microbial communities of the soil as well as in host-associated polymicrobial biofilms. The interdomain partnerships are considered in the context of the relevant community ecology models, which are discussed critically.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
He CQ, Kong C, He M, Chen GX, Liu SM, Ding NZ. Intrasegmental recombination as an evolutionary force of Lassa fever virus. Front Microbiol 2024; 15:1411537. [PMID: 38832113 PMCID: PMC11144899 DOI: 10.3389/fmicb.2024.1411537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 06/05/2024] Open
Abstract
Lassa fever (LF), caused by Lassa virus (LASV), is one of the most dangerous diseases to public health. Homologous recombination (HR) is a basic genetic power driving biological evolution. However, as a negative-stranded RNA virus, it is unknown whether HR occurs between LASVs and its influence on the outbreak of LF. In this study, after analyzing 575 S and 433 L segments of LASV collected in Africa, we found that LASV can achieve HR in both of its segments. Interestingly, although the length of S segment is less than half of the L segment, the proportion of LASVs with S recombinants is significantly higher than that with L recombinants. These results suggest that HR may be a feature of LASV, which can be set by natural selection to produce beneficial or eliminate harmful mutations for the virus, so it plays a role in LASV evolution during the outbreak of LF.
Collapse
Affiliation(s)
- Cheng-Qiang He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| | | | | | | | | | - Nai-Zheng Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
4
|
Lastovetsky OA, Caruso T, Brennan FP, Wall D, Pylni S, Doyle E. Spores of arbuscular mycorrhizal fungi host surprisingly diverse communities of endobacteria. THE NEW PHYTOLOGIST 2024; 242:1785-1797. [PMID: 38403930 DOI: 10.1111/nph.19605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) are ubiquitous plant root symbionts, which can house two endobacteria: Ca. Moeniiplasma glomeromycotorum (CaMg) and Ca. Glomeribacter gigasporarum (CaGg). However, little is known about their distribution and population structure in natural AMF populations and whether AMF can harbour other endobacteria. We isolated AMF from two environments and conducted detailed analyses of endobacterial communities associated with surface-sterilised AMF spores. Consistent with the previous reports, we found that CaMg were extremely abundant (80%) and CaGg were extremely rare (2%) in both environments. Unexpectedly, we discovered an additional and previously unknown level of bacterial diversity within AMF spores, which extended beyond the known endosymbionts, with bacteria belonging to 10 other phyla detected across our spore data set. Detailed analysis revealed that: CaGg were not limited in distribution to the Gigasporaceae family of AMF, as previously thought; CaMg population structure was driven by AMF host genotype; and a significant inverse correlation existed between the diversity of CaMg and diversity of all other endobacteria. Based on these data, we generate novel testable hypotheses regarding the function of CaMg in AMF biology by proposing that they might act as conditional mutualists of AMF.
Collapse
Affiliation(s)
- Olga A Lastovetsky
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tancredi Caruso
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fiona P Brennan
- Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co. Wexford, Ireland
| | - David Wall
- Teagasc, Crops, Environment and Land-Use Programme, Johnstown Castle, Co. Wexford, Ireland
| | - Susanna Pylni
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Belfield, Dublin 4, Ireland
| | - Evelyn Doyle
- School of Biology and Environmental Science, Science Centre East, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
5
|
Biró B, Gál Z, Fekete Z, Klecska E, Hoffmann OI. Mitochondrial genome plasticity of mammalian species. BMC Genomics 2024; 25:278. [PMID: 38486136 PMCID: PMC10941376 DOI: 10.1186/s12864-024-10201-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/08/2024] [Indexed: 03/17/2024] Open
Abstract
There is an ongoing process in which mitochondrial sequences are being integrated into the nuclear genome. The importance of these sequences has already been revealed in cancer biology, forensic, phylogenetic studies and in the evolution of the eukaryotic genetic information. Human and numerous model organisms' genomes were described from those sequences point of view. Furthermore, recent studies were published on the patterns of these nuclear localised mitochondrial sequences in different taxa.However, the results of the previously released studies are difficult to compare due to the lack of standardised methods and/or using few numbers of genomes. Therefore, in this paper our primary goal is to establish a uniform mining pipeline to explore these nuclear localised mitochondrial sequences.Our results show that the frequency of several repetitive elements is higher in the flanking regions of these sequences than expected. A machine learning model reveals that the flanking regions' repetitive elements and different structural characteristics are highly influential during the integration process.In this paper, we introduce a general mining pipeline for all mammalian genomes. The workflow is publicly available and is believed to serve as a validated baseline for future research in this field. We confirm the widespread opinion, on - as to our current knowledge - the largest dataset, that structural circumstances and events corresponding to repetitive elements are highly significant. An accurate model has also been trained to predict these sequences and their corresponding flanking regions.
Collapse
Affiliation(s)
- Bálint Biró
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary.
- Group BM, Data Insights Team, _VOIS, Kerepesi str. 35, 1087, Budapest, Hungary.
| | - Zoltán Gál
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary
| | - Zsófia Fekete
- Department of Genetics and Genomics, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary
| | - Eszter Klecska
- FamiCord Group, Krio Institute, Kelemen László str, 1026, Budapest, Hungary
| | - Orsolya Ivett Hoffmann
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert str. 4, 2100, Gödöllő, Hungary.
| |
Collapse
|
6
|
Longley R, Robinson A, Liber JA, Bryson AE, Morales DP, LaButti K, Riley R, Mondo SJ, Kuo A, Yoshinaga Y, Daum C, Barry K, Grigoriev IV, Desirò A, Chain PSG, Bonito G. Comparative genomics of Mollicutes-related endobacteria supports a late invasion into Mucoromycota fungi. Commun Biol 2023; 6:948. [PMID: 37723238 PMCID: PMC10507103 DOI: 10.1038/s42003-023-05299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Diverse members of early-diverging Mucoromycota, including mycorrhizal taxa and soil-associated Mortierellaceae, are known to harbor Mollicutes-related endobacteria (MRE). It has been hypothesized that MRE were acquired by a common ancestor and transmitted vertically. Alternatively, MRE endosymbionts could have invaded after the divergence of Mucoromycota lineages and subsequently spread to new hosts horizontally. To better understand the evolutionary history of MRE symbionts, we generated and analyzed four complete MRE genomes from two Mortierellaceae genera: Linnemannia (MRE-L) and Benniella (MRE-B). These genomes include the smallest known of fungal endosymbionts and showed signals of a tight relationship with hosts including a reduced functional capacity and genes transferred from fungal hosts to MRE. Phylogenetic reconstruction including nine MRE from mycorrhizal fungi revealed that MRE-B genomes are more closely related to MRE from Glomeromycotina than MRE-L from the same host family. We posit that reductions in genome size, GC content, pseudogene content, and repeat content in MRE-L may reflect a longer-term relationship with their fungal hosts. These data indicate Linnemannia and Benniella MRE were likely acquired independently after their fungal hosts diverged from a common ancestor. This work expands upon foundational knowledge on minimal genomes and provides insights into the evolution of bacterial endosymbionts.
Collapse
Affiliation(s)
- Reid Longley
- Los Alamos National Laboratory, Los Alamos, NM, USA
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Julian A Liber
- Department of Biology, Duke University, Durham, NC, 27704, USA
| | - Abigail E Bryson
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Kurt LaButti
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Robert Riley
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Stephen J Mondo
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO, 80521, USA
| | - Alan Kuo
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Chris Daum
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Gregory Bonito
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
7
|
Biró B, Gál Z, Schiavo G, Ribari A, Joe Utzeri V, Brookman M, Fontanesi L, Hoffmann OI. Nuclear mitochondrial DNA sequences in the rabbit genome. Mitochondrion 2022; 66:1-6. [PMID: 35842180 DOI: 10.1016/j.mito.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/23/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Numtogenesis is observable in the mammalian genomes resulting in the integration of mitochondrial segments into the nuclear genomes (numts). To identify numts in rabbit, we aligned mitochondrial and nuclear genomes. Alignment significance threshold was calculated and individual characteristics of numts were analysed. We found 153 numts in the nuclear genome. The GC content of numts were significantly lower than the GC content of their genomic flanking regions or the genome itself. The frequency of three mammalian-wide interspersed repeats were increased in the proximity of numts. The decreased GC content around numts strengthen the theory which supposes a link between DNA structural instability and numt integration.
Collapse
Affiliation(s)
- Bálint Biró
- Hungarian University of Agricultural and Life Sciences, Institute of Genetics and Biotechnology, Szent-Györgyi Albert Str. 4, H-2100, Gödöllö, Hungary
| | - Zoltán Gál
- Hungarian University of Agricultural and Life Sciences, Institute of Genetics and Biotechnology, Szent-Györgyi Albert Str. 4, H-2100, Gödöllö, Hungary
| | - Giuseppina Schiavo
- University of Bologna, Department of Agricultural and Food Sciences, Division of Animal Sciences, Viale Fanin 46, 40127 Bologna, Italy
| | - Anisa Ribari
- University of Bologna, Department of Agricultural and Food Sciences, Division of Animal Sciences, Viale Fanin 46, 40127 Bologna, Italy
| | - Valerio Joe Utzeri
- University of Bologna, Department of Agricultural and Food Sciences, Division of Animal Sciences, Viale Fanin 46, 40127 Bologna, Italy
| | - Michael Brookman
- Hanze University of Applied Sciences, Department for Biology and Medical Laboratory Research, Zernikeplein 7, 9747 AS Groningen, Netherlands
| | - Luca Fontanesi
- University of Bologna, Department of Agricultural and Food Sciences, Division of Animal Sciences, Viale Fanin 46, 40127 Bologna, Italy
| | - Orsolya Ivett Hoffmann
- Hungarian University of Agricultural and Life Sciences, Institute of Genetics and Biotechnology, Szent-Györgyi Albert Str. 4, H-2100, Gödöllö, Hungary.
| |
Collapse
|
8
|
George EE, Tashyreva D, Kwong WK, Okamoto N, Horák A, Husnik F, Lukeš J, Keeling PJ. Gene Transfer Agents in Bacterial Endosymbionts of Microbial Eukaryotes. Genome Biol Evol 2022; 14:6615375. [PMID: 35738252 PMCID: PMC9254644 DOI: 10.1093/gbe/evac099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
Gene transfer agents (GTAs) are virus-like structures that package and transfer prokaryotic DNA from donor to recipient prokaryotic cells. Here, we describe widespread GTA gene clusters in the highly reduced genomes of bacterial endosymbionts from microbial eukaryotes (protists). Homologs of the GTA capsid and portal complexes were initially found to be present in several highly reduced alphaproteobacterial endosymbionts of diplonemid protists (Rickettsiales and Rhodospirillales). Evidence of GTA expression was found in polyA-enriched metatranscriptomes of the diplonemid hosts and their endosymbionts, but due to biases in the polyA-enrichment methods, levels of GTA expression could not be determined. Examining the genomes of closely related bacteria revealed that the pattern of retained GTA head/capsid complexes with missing tail components was common across Rickettsiales and Holosporaceae (Rhodospirillales), all obligate symbionts with a wide variety of eukaryotic hosts. A dN/dS analysis of Rickettsiales and Holosporaceae symbionts revealed that purifying selection is likely the main driver of GTA evolution in symbionts, suggesting they remain functional, but the ecological function of GTAs in bacterial symbionts is unknown. In particular, it is unclear how increasing horizontal gene transfer in small, largely clonal endosymbiont populations can explain GTA retention, and, therefore, the structures may have been repurposed in endosymbionts for host interactions. Either way, their widespread retention and conservation in endosymbionts of diverse eukaryotes suggests an important role in symbiosis.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Instituto Gulbenkian de Ciência, 6, 2780-156 Oeiras, Portugal
| | - Noriko Okamoto
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Hakai Institute, Quadra Island, British Columbia, Canada
| | - Aleš Horák
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic.,University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada.,Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 370 05 České Budějovice (Budweis), Czech Republic.,University of South Bohemia, Faculty of Sciences, 370 05 České Budějovice (Budweis), Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
9
|
Wang W, Li CP, He M, Li SW, Cao L, Ding NZ, He CQ. The dominant strain of SARS-CoV-2 is a mosaicism. Virus Res 2021; 305:198553. [PMID: 34487767 PMCID: PMC8416297 DOI: 10.1016/j.virusres.2021.198553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 01/09/2023]
Abstract
COVID-19 is seriously threatening human health all over the world. A comprehensive understanding of the genetic mechanisms driving the rapid evolution of its pathogen (SARS-CoV-2) is the key to controlling this pandemic. In this study, by comparing the entire genome sequences of SARS-CoV-2 isolates from Asia, Europe and America, and analyzing their phylogenetic histories, we found a lineage derived from a recombination event that likely occurred before March 2020. More importantly, the recombinant offspring has become the dominant strain responsible for more than one-third of the global cases in the pandemic. These results indicated that the recombination might have played a key role in the pandemic of the virus.
Collapse
Affiliation(s)
- Wei Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cheng-Peng Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Mei He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Sheng-Wen Li
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Lin Cao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Nai-Zheng Ding
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China
| | - Cheng-Qiang He
- Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, China.
| |
Collapse
|
10
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
Deonath A. Evolution of eukaryotes as a story of survival and growth of mitochondrial DNA over two billion years. Biosystems 2021; 206:104426. [PMID: 33857537 DOI: 10.1016/j.biosystems.2021.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023]
Abstract
Mitochondria's significance in human diseases and in functioning, health and death of eukaryotic cell has been acknowledged widely. Yet our perspective in cell biology and evolution remains nucleocentric. Mitochondrial DNA, by virtue of its omnipresence and species-level conservation, is used as a barcode in animal taxonomy. This article analyses various levels of containment structures that enclose mitochondrial DNA and advocates a fresh perspective wherein evolution of organic structures of the eukarya domain seem to support and facilitate survival and proliferation of mitochondrial DNA by splitting containers as they age and by directing them along two distinct pathways: destruction of containers with more mutant mitochondrial DNA and rejuvenation of containers with less mutant mitochondrial DNA.
Collapse
Affiliation(s)
- Abhijit Deonath
- Department of Agriculture, Water and the Environment, Australian Government, Canberra, Australia.
| |
Collapse
|
12
|
Phylogenomics Reveals that Asaia Symbionts from Insects Underwent Convergent Genome Reduction, Preserving an Insecticide-Degrading Gene. mBio 2021; 12:mBio.00106-21. [PMID: 33785632 PMCID: PMC8092202 DOI: 10.1128/mbio.00106-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mosquito microbiota is composed of several lineages of microorganisms whose ecological roles and evolutionary histories have yet to be investigated in depth. Among these microorganisms, Asaia bacteria play a prominent role, given their abundance in the gut, reproductive organs, and salivary glands of different mosquito species, while their presence has also been reported in several other insects. Notably, Asaia has great potential as a tool for the control of mosquito-borne diseases. Here, we present a wide phylogenomic analysis of Asaia strains isolated from different species of mosquito vectors and from different populations of the Mediterranean fruit fly (medfly), Ceratitis capitata, an insect pest of worldwide economic importance. We show that phylogenetically distant lineages of Asaia experienced independent genome reductions, despite following a common pattern, characterized by the early loss of genes involved in genome stability. This result highlights the role of specific metabolic pathways in the symbiotic relationship between Asaia and the insect host. Finally, we discovered that all but one of the Asaia strains included in the study possess the pyrethroid hydrolase gene. Phylogenetic analysis revealed that this gene is ancestral in Asaia, strongly suggesting that it played a role in the establishment of the symbiotic association between these bacteria and the mosquito hosts. We propose that this gene from the symbiont contributed to initial pyrethroid resistance in insects harboring Asaia, also considering the widespread production of pyrethrins by several plants.IMPORTANCE We have studied genome reduction within several strains of the insect symbiont Asaia isolated from different species/strains of mosquito and medfly. Phylogenetically distant strains of Asaia, despite following a common pattern involving the loss of genes related to genome stability, have undergone independent genome reductions, highlighting the peculiar role of specific metabolic pathways in the symbiotic relationship between Asaia and its host. We also show that the pyrethroid hydrolase gene is present in all the Asaia strains isolated except for the South American malaria vector Anopheles darlingi, for which resistance to pyrethroids has never been reported, suggesting a possible involvement of Asaia in determining resistance to insecticides.
Collapse
|
13
|
Köstlbacher S, Collingro A, Halter T, Domman D, Horn M. Coevolving Plasmids Drive Gene Flow and Genome Plasticity in Host-Associated Intracellular Bacteria. Curr Biol 2021; 31:346-357.e3. [PMID: 33157023 PMCID: PMC7846284 DOI: 10.1016/j.cub.2020.10.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/30/2020] [Accepted: 10/09/2020] [Indexed: 12/30/2022]
Abstract
Plasmids are important in microbial evolution and adaptation to new environments. Yet, carrying a plasmid can be costly, and long-term association of plasmids with their hosts is poorly understood. Here, we provide evidence that the Chlamydiae, a phylum of strictly host-associated intracellular bacteria, have coevolved with their plasmids since their last common ancestor. Current chlamydial plasmids are amalgamations of at least one ancestral plasmid and a bacteriophage. We show that the majority of plasmid genes are also found on chromosomes of extant chlamydiae. The most conserved plasmid gene families are predominantly vertically inherited, while accessory plasmid gene families show significantly increased mobility. We reconstructed the evolutionary history of plasmid gene content of an entire bacterial phylum over a period of around one billion years. Frequent horizontal gene transfer and chromosomal integration events illustrate the pronounced impact of coevolution with these extrachromosomal elements on bacterial genome dynamics in host-dependent microbes.
Collapse
Affiliation(s)
- Stephan Köstlbacher
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Astrid Collingro
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Tamara Halter
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria
| | - Daryl Domman
- Wellcome Sanger Institute, Parasites and Microbes Programme, Hinxton, Cambridge CB10 1SA, UK; Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Matthias Horn
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Althanstrasse 14, Vienna 1090, Austria.
| |
Collapse
|
14
|
MacPherson B, Scott R, Gras R. Sex and recombination purge the genome of deleterious alleles: An Individual Based Modeling Approach. ECOLOGICAL COMPLEXITY 2021. [DOI: 10.1016/j.ecocom.2021.100910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Cancer cells employ an evolutionarily conserved polyploidization program to resist therapy. Semin Cancer Biol 2020; 81:145-159. [PMID: 33276091 DOI: 10.1016/j.semcancer.2020.11.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
Unusually large cancer cells with abnormal nuclei have been documented in the cancer literature since 1858. For more than 100 years, they have been generally disregarded as irreversibly senescent or dying cells, too morphologically misshapen and chromatin too disorganized to be functional. Cell enlargement, accompanied by whole genome doubling or more, is observed across organisms, often associated with mitigation strategies against environmental change, severe stress, or the lack of nutrients. Our comparison of the mechanisms for polyploidization in other organisms and non-transformed tissues suggest that cancer cells draw from a conserved program for their survival, utilizing whole genome doubling and pausing proliferation to survive stress. These polyaneuploid cancer cells (PACCs) are the source of therapeutic resistance, responsible for cancer recurrence and, ultimately, cancer lethality.
Collapse
|
16
|
Stoy KS, Gibson AK, Gerardo NM, Morran LT. A need to consider the evolutionary genetics of host-symbiont mutualisms. J Evol Biol 2020; 33:1656-1668. [PMID: 33047414 DOI: 10.1111/jeb.13715] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 12/28/2022]
Abstract
Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long-term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.
Collapse
Affiliation(s)
- Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA.,Population Biology, Ecology, and Evolution Program, Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - Amanda K Gibson
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | | | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Kočí J, Röslein J, Pačes J, Kotusz J, Halačka K, Koščo J, Fedorčák J, Iakovenko N, Janko K. No evidence for accumulation of deleterious mutations and fitness degradation in clonal fish hybrids: Abandoning sex without regrets. Mol Ecol 2020; 29:3038-3055. [PMID: 32627290 PMCID: PMC7540418 DOI: 10.1111/mec.15539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023]
Abstract
Despite its inherent costs, sexual reproduction is ubiquitous in nature, and the mechanisms to protect it from a competitive displacement by asexuality remain unclear. Popular mutation-based explanations, like the Muller's ratchet and the Kondrashov's hatchet, assume that purifying selection may not halt the accumulation of deleterious mutations in the nonrecombining genomes, ultimately leading to their degeneration. However, empirical evidence is scarce and it remains particularly unclear whether mutational degradation proceeds fast enough to ensure the decay of clonal organisms and to prevent them from outcompeting their sexual counterparts. To test this hypothesis, we jointly analysed the exome sequences and the fitness-related phenotypic traits of the sexually reproducing fish species and their clonal hybrids, whose evolutionary ages ranged from F1 generations to 300 ky. As expected, mutations tended to accumulate in the clonal genomes in a time-dependent manner. However, contrary to the predictions, we found no trend towards increased nonsynonymity of mutations acquired by clones, nor higher radicality of their amino acid substitutions. Moreover, there was no evidence for fitness degeneration in the old clones compared with that in the younger ones. In summary, although an efficacy of purifying selection may still be reduced in the asexual genomes, our data indicate that its efficiency is not drastically decreased. Even the oldest investigated clone was found to be too young to suffer fitness consequences from a mutation accumulation. This suggests that mechanisms other than mutation accumulation may be needed to explain the competitive advantage of sex in the short term.
Collapse
Affiliation(s)
- Jan Kočí
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Röslein
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Jan Pačes
- Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia.,Institute of Molecular Genetics, Czech Academy of Science, Prague, Czechia
| | - Jan Kotusz
- Museum of Natural History, University of Wrocław, Wrocław, Poland
| | - Karel Halačka
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czechia
| | - Ján Koščo
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Jakub Fedorčák
- Department of Ecology, University of Prešov, Prešov, Slovakia
| | - Nataliia Iakovenko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| | - Karel Janko
- Department of Biology and Ecology, University of Ostrava, Ostrava, Czechia.,Institute of Animal Physiology and Genetics, Czech Academy of Science, Liběchov, Czechia
| |
Collapse
|
18
|
Abstract
The genomes of bacteria contain fewer genes and substantially less noncoding DNA than those of eukaryotes, and as a result, they have much less raw material to invent new traits. Yet, bacteria are vastly more taxonomically diverse, numerically abundant, and globally successful in colonizing new habitats compared to eukaryotes. Although bacterial genomes are generally considered to be optimized for efficient growth and rapid adaptation, nonadaptive processes have played a major role in shaping the size, contents, and compact organization of bacterial genomes and have allowed the establishment of deleterious traits that serve as the raw materials for genetic innovation.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Marian L Schmidt
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| | - Howard Ochman
- Department of Integrative Biology, University of Texas at Austin, Texas 78712, USA; ; ;
| |
Collapse
|
19
|
George EE, Husnik F, Tashyreva D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. Highly Reduced Genomes of Protist Endosymbionts Show Evolutionary Convergence. Curr Biol 2020; 30:925-933.e3. [PMID: 31978335 DOI: 10.1016/j.cub.2019.12.070] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/24/2019] [Accepted: 12/23/2019] [Indexed: 10/25/2022]
Abstract
Genome evolution in bacterial endosymbionts is notoriously extreme: the combined effects of strong genetic drift and unique selective pressures result in highly reduced genomes with distinctive adaptations to hosts [1-4]. These processes are mostly known from animal endosymbionts, where nutritional endosymbioses represent the best-studied systems. However, eukaryotic microbes, or protists, also harbor diverse bacterial endosymbionts, but their genome reduction and functional relationships with their hosts are largely unexplored [5-7]. We sequenced the genomes of four bacterial endosymbionts from three species of diplonemids, poorly studied but abundant and diverse heterotrophic protists [8-12]. The endosymbionts come from two bacterial families, Rickettsiaceae and Holosporaceae, that have invaded two families of diplonemids, and their genomes have converged on an extremely small size (605-632 kilobase pairs [kbp]), similar gene content (e.g., metabolite transporters and secretion systems), and reduced metabolic potential (e.g., loss of energy metabolism). These characteristics are generally found in both families, but the diplonemid endosymbionts have evolved greater extremes in parallel. They possess modified type VI secretion systems that could function in manipulating host metabolism or other intracellular interactions. Finally, modified cellular machinery like the ATP synthase without oxidative phosphorylation, and the reduced flagellar apparatus present in some diplonemid endosymbionts and nutritional animal endosymbionts, indicates that intracellular mechanisms have converged in bacterial endosymbionts with various functions and from different eukaryotic hosts across the tree of life.
Collapse
Affiliation(s)
- Emma E George
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada.
| | - Filip Husnik
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Galina Prokopchuk
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Aleš Horák
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Waldan K Kwong
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- University of British Columbia, Department of Botany, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
20
|
Abstract
Prokaryotes commonly undergo genome reduction, particularly in the case of symbiotic bacteria. Genome reductions tend toward the energetically favorable removal of unnecessary, redundant, or nonfunctional genes. However, without mechanisms to compensate for these losses, deleterious mutation and genetic drift might otherwise overwhelm a population. Among the mechanisms employed to counter gene loss and share evolutionary success within a population, gene transfer agents (GTAs) are increasingly becoming recognized as important contributors. Although viral in origin, GTA particles package fragments of their "host" genome for distribution within a population of cells, often in a synchronized manner, rather than selfishly packaging genes necessary for their spread. Microbes as diverse as archaea and alpha-proteobacteria have been known to produce GTA particles, which are capable of transferring selective advantages such as virulence factors and antibiotic resistance. In this review, we discuss the various types of GTAs identified thus far, focusing on a defined set of symbiotic alpha-proteobacteria known to carry them. Drawing attention to the predicted presence of these genes, we discuss their potential within the selective marine and terrestrial environments occupied by mutualistic, parasitic, and endosymbiotic microbes.
Collapse
Affiliation(s)
- Steen Christensen
- Department of Biological Sciences, Florida International University, Miami, FL, USA.,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA
| | - Laura R Serbus
- Department of Biological Sciences, Florida International University, Miami, FL, USA. .,Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
21
|
Haselkorn TS, DiSalvo S, Miller JW, Bashir U, Brock DA, Queller DC, Strassmann JE. The specificity of Burkholderia symbionts in the social amoeba farming symbiosis: Prevalence, species, genetic and phenotypic diversity. Mol Ecol 2019; 28:847-862. [PMID: 30575161 DOI: 10.1111/mec.14982] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/13/2018] [Accepted: 10/25/2018] [Indexed: 01/10/2023]
Abstract
The establishment of symbioses between eukaryotic hosts and bacterial symbionts in nature is a dynamic process. The formation of such relationships depends on the life history of both partners. Bacterial symbionts of amoebae may have unique evolutionary trajectories to the symbiont lifestyle, because bacteria are typically ingested as prey. To persist after ingestion, bacteria must first survive phagocytosis. In the social amoeba Dictyostelium discoideum, certain strains of Burkholderia bacteria are able to resist amoebal digestion and maintain a persistent relationship that includes carriage throughout the amoeba's social cycle that culminates in spore formation. Some Burkholderia strains allow their host to carry other bacteria, as food. This carried food is released in new environments in a trait called farming. To better understand the diversity and prevalence of Burkholderia symbionts and the traits they impart to their amoebae hosts, we first screened 700 natural isolates of D. discoideum and found 25% infected with Burkholderia. We next used a multilocus phylogenetic analysis and identified two independent transitions by Burkholderia to the symbiotic lifestyle. Finally, we tested the ability of 38 strains of Burkholderia from D. discoideum, as well as strains isolated from other sources, for traits relevant to symbiosis in D. discoideum. Only D. discoideum native isolates belonging to the Burkholderia agricolaris, B. hayleyella, and B. bonniea species were able to form persistent symbiotic associations with D. discoideum. The Burkholderia-Dictyostelium relationship provides a promising arena for further studies of the pathway to symbiosis in a unique system.
Collapse
Affiliation(s)
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Jacob W Miller
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Usman Bashir
- Department of Biology, Washington University in St. Louis, Missouri
| | - Debra A Brock
- Department of Biology, Washington University in St. Louis, Missouri
| | - David C Queller
- Department of Biology, Washington University in St. Louis, Missouri
| | | |
Collapse
|
22
|
Sun X, Chen W, Ivanov S, MacLean AM, Wight H, Ramaraj T, Mudge J, Harrison MJ, Fei Z. Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. THE NEW PHYTOLOGIST 2019; 221:1556-1573. [PMID: 30368822 DOI: 10.1111/nph.15472] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 09/04/2018] [Indexed: 05/20/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form endosymbioses with most plants, and they themselves are hosts for Mollicutes/Mycoplasma-related endobacteria (MRE). Despite their significance, genomic information for AM fungi and their MRE are relatively sparse, which hinders our understanding of their biology and evolution. We assembled the genomes of the AM fungus Diversispora epigaea (formerly Glomus versiforme) and its MRE and performed comparative genomics and evolutionary analyses. The D. epigaea genome showed a pattern of substantial gene duplication and differential evolution of gene families, including glycosyltransferase family 25, whose activities are exclusively lipopolysaccharide biosynthesis. Genes acquired by horizontal transfer from bacteria possibly function in defense against foreign DNA or viruses. The MRE population was diverse, with multiple genomes displaying characteristics of differential evolution and encoding many MRE-specific genes as well as genes of AM fungal origin. Gene family expansion in D. epigaea may enhance adaptation to both external and internal environments, such as expansion of kinases for signal transduction upon external stimuli and expansion of nucleoside salvage pathway genes potentially for competition with MRE, whose genomes lack purine and pyrimidine biosynthetic pathways. Collectively, this metagenome provides high-quality references and begins to reveal the diversity within AM fungi and their MRE.
Collapse
Affiliation(s)
- Xuepeng Sun
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Wenbo Chen
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | - Haley Wight
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
- Robert W. Holley Center for Agriculture & Health, USDA-ARS, Ithaca, NY, 14853, USA
| |
Collapse
|
23
|
Faucher M, Nouvel LX, Dordet-Frisoni E, Sagné E, Baranowski E, Hygonenq MC, Marenda MS, Tardy F, Citti C. Mycoplasmas under experimental antimicrobial selection: The unpredicted contribution of horizontal chromosomal transfer. PLoS Genet 2019; 15:e1007910. [PMID: 30668569 PMCID: PMC6358093 DOI: 10.1371/journal.pgen.1007910] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/01/2019] [Accepted: 12/19/2018] [Indexed: 11/18/2022] Open
Abstract
Horizontal Gene Transfer was long thought to be marginal in Mycoplasma a large group of wall-less bacteria often portrayed as minimal cells because of their reduced genomes (ca. 0.5 to 2.0 Mb) and their limited metabolic pathways. This view was recently challenged by the discovery of conjugative exchanges of large chromosomal fragments that equally affected all parts of the chromosome via an unconventional mechanism, so that the whole mycoplasma genome is potentially mobile. By combining next generation sequencing to classical mating and evolutionary experiments, the current study further explored the contribution and impact of this phenomenon on mycoplasma evolution and adaptation using the fluoroquinolone enrofloxacin (Enro), for selective pressure and the ruminant pathogen Mycoplasma agalactiae, as a model organism. For this purpose, we generated isogenic lineages that displayed different combination of spontaneous mutations in Enro target genes (gyrA, gyrB, parC and parE) in association to gradual level of resistance to Enro. We then tested whether these mutations can be acquired by a susceptible population via conjugative chromosomal transfer knowing that, in our model organism, the 4 target genes are scattered in three distinct and distant loci. Our data show that under antibiotic selective pressure, the time scale of the mutational pathway leading to high-level of Enro resistance can be readily compressed into a single conjugative step, in which several EnroR alleles were transferred from resistant to susceptible mycoplasma cells. In addition to acting as an accelerator for antimicrobial dissemination, mycoplasma chromosomal transfer reshuffled genomes beyond expectations and created a mosaic of resistant sub-populations with unpredicted and unrelated features. Our findings provide insights into the process that may drive evolution and adaptability of several pathogenic Mycoplasma spp. via an unconventional conjugative mechanism.
Collapse
Affiliation(s)
- Marion Faucher
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | | | | | - Eveline Sagné
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | | | - Marc-Serge Marenda
- Asia-Pacific Centre for Animal Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Florence Tardy
- UMR Mycoplasmoses of ruminants, ANSES, VetAgro Sup, University of Lyon, Lyon, France
| | - Christine Citti
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
- * E-mail: (LXN); (CC)
| |
Collapse
|
24
|
Sapountzis P, Zhukova M, Shik JZ, Schiott M, Boomsma JJ. Reconstructing the functions of endosymbiotic Mollicutes in fungus-growing ants. eLife 2018; 7:e39209. [PMID: 30454555 PMCID: PMC6245734 DOI: 10.7554/elife.39209] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/16/2018] [Indexed: 12/25/2022] Open
Abstract
Mollicutes, a widespread class of bacteria associated with animals and plants, were recently identified as abundant abdominal endosymbionts in healthy workers of attine fungus-farming leaf-cutting ants. We obtained draft genomes of the two most common strains harbored by Panamanian fungus-growing ants. Reconstructions of their functional significance showed that they are independently acquired symbionts, most likely to decompose excess arginine consistent with the farmed fungal cultivars providing this nitrogen-rich amino-acid in variable quantities. Across the attine lineages, the relative abundances of the two Mollicutes strains are associated with the substrate types that foraging workers offer to fungus gardens. One of the symbionts is specific to the leaf-cutting ants and has special genomic machinery to catabolize citrate/glucose into acetate, which appears to deliver direct metabolic energy to the ant workers. Unlike other Mollicutes associated with insect hosts, both attine ant strains have complete phage-defense systems, underlining that they are actively maintained as mutualistic symbionts.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Mariya Zhukova
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jonathan Z Shik
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Morten Schiott
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of BiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
25
|
Pawlowska TE, Gaspar ML, Lastovetsky OA, Mondo SJ, Real-Ramirez I, Shakya E, Bonfante P. Biology of Fungi and Their Bacterial Endosymbionts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:289-309. [PMID: 30149793 DOI: 10.1146/annurev-phyto-080417-045914] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heritable symbioses, in which endosymbiotic bacteria (EB) are transmitted vertically between host generations, are an important source of evolutionary novelties. A primary example of such symbioses is the eukaryotic cell with its EB-derived organelles. Recent discoveries suggest that endosymbiosis-related innovations can be also found in associations formed by early divergent fungi in the phylum Mucoromycota with heritable EB from two classes, Betaproteobacteria and Mollicutes. These symbioses exemplify novel types of host-symbiont interactions. Studies of these partnerships fuel theoretical models describing mechanisms that stabilize heritable symbioses, control the rate of molecular evolution, and enable the establishment of mutualisms. Lastly, by altering host phenotypes and metabolism, these associations represent an important instrument for probing the basic biology of the Mucoromycota hosts, which remain one of the least explored filamentous fungi.
Collapse
Affiliation(s)
- Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Maria L Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Olga A Lastovetsky
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Dublin, Ireland
| | - Stephen J Mondo
- US Department of Energy Joint Genome Institute, Walnut Creek, California 94598, USA
| | | | - Evaniya Shakya
- School of Integrative Plant Science, Plant Pathology and Plant Microbe-Biology, Cornell University, Ithaca, New York 14853, USA;
| | - Paola Bonfante
- Department of Life Sciences & Systems Biology, University of Torino, 10125 Torino, Italy
| |
Collapse
|
26
|
Distribution and population structure of endobacteria in arbuscular mycorrhizal fungi at North Atlantic dunes. ISME JOURNAL 2018; 12:3001-3013. [PMID: 30097664 DOI: 10.1038/s41396-018-0246-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 06/29/2018] [Accepted: 07/06/2018] [Indexed: 02/08/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF, Glomeromycotina), in addition to forming symbioses with the majority of land plants, harbor vertically transmitted endosymbiotic bacteria 'Candidatus Glomeribacter gigasporarum' (CaGg) and 'Candidatus Moeniiplasma glomeromycotorum' (CaMg). CaGg is a nonessential mutualist of AMF, whereas the lifestyle of CaMg is unknown. To start unraveling the interactions between AMF and their endosymbionts in nature, we examined diversity and distribution of AMF-associated endobacteria in North Atlantic dunes at Cape Cod. Of nearly 500 foredune AMF isolates successfully genotyped during a systematic study, 94% were classified as Gigasporaceae. Two percent of all AMF spores harbored CaGg, and 88% contained CaMg. CaGg was found only in the Gigasporaceae, whereas CaMg was present in Gigasporaceae, Acaulosporaceae, and Diversisporaceae. Incidence of CaGg across AMF was not affected by any of the environmental parameters measured, whereas distribution of CaMg in one of the fungal hosts was impacted by plant density. CaMg populations associated with AMF individuals displayed high levels of genetic diversity but no evidence of gene flow, suggesting that host physical proximity is not sufficient to facilitate horizontal transmission of CaMg. Finally, in addition to a novel lineage of CaGg, we discovered that AMF likely harbor Burkholderia-related bacteria with close phylogenetic affinity to free-living Burkholderia and endobacteria of other Mucoromycota fungi.
Collapse
|
27
|
Batty EM, Chaemchuen S, Blacksell S, Richards AL, Paris D, Bowden R, Chan C, Lachumanan R, Day N, Donnelly P, Chen S, Salje J. Long-read whole genome sequencing and comparative analysis of six strains of the human pathogen Orientia tsutsugamushi. PLoS Negl Trop Dis 2018; 12:e0006566. [PMID: 29874223 PMCID: PMC6005640 DOI: 10.1371/journal.pntd.0006566] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/18/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Orientia tsutsugamushi is a clinically important but neglected obligate intracellular bacterial pathogen of the Rickettsiaceae family that causes the potentially life-threatening human disease scrub typhus. In contrast to the genome reduction seen in many obligate intracellular bacteria, early genetic studies of Orientia have revealed one of the most repetitive bacterial genomes sequenced to date. The dramatic expansion of mobile elements has hampered efforts to generate complete genome sequences using short read sequencing methodologies, and consequently there have been few studies of the comparative genomics of this neglected species. RESULTS We report new high-quality genomes of O. tsutsugamushi, generated using PacBio single molecule long read sequencing, for six strains: Karp, Kato, Gilliam, TA686, UT76 and UT176. In comparative genomics analyses of these strains together with existing reference genomes from Ikeda and Boryong strains, we identify a relatively small core genome of 657 genes, grouped into core gene islands and separated by repeat regions, and use the core genes to infer the first whole-genome phylogeny of Orientia. CONCLUSIONS Complete assemblies of multiple Orientia genomes verify initial suggestions that these are remarkable organisms. They have larger genomes compared with most other Rickettsiaceae, with widespread amplification of repeat elements and massive chromosomal rearrangements between strains. At the gene level, Orientia has a relatively small set of universally conserved genes, similar to other obligate intracellular bacteria, and the relative expansion in genome size can be accounted for by gene duplication and repeat amplification. Our study demonstrates the utility of long read sequencing to investigate complex bacterial genomes and characterise genomic variation.
Collapse
Affiliation(s)
- Elizabeth M Batty
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Suwittra Chaemchuen
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Stuart Blacksell
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Allen L Richards
- US Naval Medicine Research Center, Silver Spring, Maryland, United States of America
| | - Daniel Paris
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- Faculty of Medicine, University Basel, Basel, Switzerland
| | - Rory Bowden
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Caroline Chan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, California, United States of America
| | - Ramkumar Lachumanan
- Pacific Biosciences, 1305 O'Brien Drive, Menlo Park, California, United States of America
| | - Nicholas Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter Donnelly
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Swaine Chen
- Department of Medicine, Division of Infectious Diseases, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Genome Institute of Singapore, A*STAR, Singapore
| | - Jeanne Salje
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Public Health Research Institute, Rutgers Biomedical and Health Science, Newark, New Jersey, United States of America
| |
Collapse
|
28
|
Sharmin D, Guo Y, Nishizawa T, Ohshima S, Sato Y, Takashima Y, Narisawa K, Ohta H. Comparative Genomic Insights into Endofungal Lifestyles of Two Bacterial Endosymbionts, Mycoavidus cysteinexigens and Burkholderia rhizoxinica. Microbes Environ 2018. [PMID: 29540638 PMCID: PMC5877345 DOI: 10.1264/jsme2.me17138] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Endohyphal bacteria (EHB), dwelling within fungal hyphae, markedly affect the growth and metabolic potential of their hosts. To date, two EHB belonging to the family Burkholderiaceae have been isolated and characterized as new taxa, Burkholderia rhizoxinica (HKI 454T) and Mycoavidus cysteinexigens (B1-EBT), in Japan. Metagenome sequencing was recently reported for Mortierella elongata AG77 together with its endosymbiont M. cysteinexigens (Mc-AG77) from a soil/litter sample in the USA. In the present study, we elucidated the complete genome sequence of B1-EBT and compared it with those of Mc-AG77 and HKI 454T. The genomes of B1-EBT and Mc-AG77 contained a higher level of prophage sequences and were markedly smaller than that of HKI 454T. Although the B1-EBT and Mc-AG77 genomes lacked the chitinolytic enzyme genes responsible for invasion into fungal cells, they contained several predicted toxin-antitoxin systems including an insecticidal toxin complex and PIN domain imposing an addiction-like mechanism essential for endohyphal growth control during host colonization. Despite the different host fungi, the alignment of amino acid sequences showed that the HKI 454T genome consisted of 1,265 (32.6%) and 1,221 (31.5%) orthologous coding sequences (CDSs) with those of B1-EBT and Mc-AG77, respectively. This comparative study of three phylogenetically associated endosymbionts has provided insights into their origin and evolution, and suggests the later bacterial invasion and adaptation of B1-EBT to its host metabolism.
Collapse
Affiliation(s)
- Dilruba Sharmin
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yong Guo
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Tomoyasu Nishizawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Shoko Ohshima
- Ibaraki University College of Agriculture, Department of Bioresource Science
| | - Yoshinori Sato
- Center for Conservation and Restoration Techniques, Tokyo National Research Institute for Cultural Properties
| | - Yusuke Takashima
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Kazuhiko Narisawa
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| | - Hiroyuki Ohta
- Ibaraki University College of Agriculture, Department of Bioresource Science.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology
| |
Collapse
|
29
|
Desirò A, Hao Z, Liber JA, Benucci GMN, Lowry D, Roberson R, Bonito G. Mycoplasma-related endobacteria within Mortierellomycotina fungi: diversity, distribution and functional insights into their lifestyle. ISME JOURNAL 2018; 12:1743-1757. [PMID: 29476142 DOI: 10.1038/s41396-018-0053-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 12/22/2017] [Accepted: 01/10/2018] [Indexed: 11/09/2022]
Abstract
Bacterial interactions with animals and plants have been examined for over a century; by contrast, the study of bacterial-fungal interactions has received less attention. Bacteria interact with fungi in diverse ways, and endobacteria that reside inside fungal cells represent the most intimate interaction. The most significant bacterial endosymbionts that have been studied are associated with Mucoromycota and include two main groups: Burkholderia-related and Mycoplasma-related endobacteria (MRE). Examples of Burkholderia-related endobacteria have been reported in the three Mucoromycota subphyla. By contrast, MRE have only been identified in Glomeromycotina and Mucoromycotina. This study aims to understand whether MRE dwell in Mortierellomycotina and, if so, to determine their impact on the fungal host. We carried out a large-scale screening of 394 Mortierellomycotina strains and employed a combination of microscopy, molecular phylogeny, next-generation sequencing and qPCR. We detected MRE in 12 strains. These endosymbionts represent novel bacterial phylotypes and show evidence of recombination. Their presence in Mortierellomycotina demonstrates that MRE occur within fungi across Mucoromycota and they may have lived in their common ancestor. We cured the fungus of its endosymbionts with antibiotics and observed improved biomass production in isogenic lines lacking MRE, demonstrating that these endobacteria impose some fitness costs to their fungal host. Here we provided the first functional insights into the lifestyle of MRE. Our findings indicate that MRE may be antagonistic to their fungal hosts, and adapted to a non-lethal parasitic lifestyle in the mycelium of Mucoromycota. However, context-dependent adaptive benefits to their host at minimal cost cannot not be excluded. Finally, we conclude that Mortierellomycotina represent attractive model organisms for exploring interactions between MRE and fungi.
Collapse
Affiliation(s)
- Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA.
| | - Zhen Hao
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Julian A Liber
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | | | - David Lowry
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Robert Roberson
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
30
|
Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO, Pereira-Leal JB. Genetic Competence Drives Genome Diversity in Bacillus subtilis. Genome Biol Evol 2018; 10:108-124. [PMID: 29272410 PMCID: PMC5765554 DOI: 10.1093/gbe/evx270] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them.
Collapse
Affiliation(s)
- Patrícia H Brito
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Nova Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Portugal
| | - Bastien Chevreux
- DSM Nutritional Products, Ltd., 60 Westview street, Lexington MA, USA
| | - Cláudia R Serra
- Instituto de Tecnologia Química e Biológica, Oeiras, Portugal
| | - Ghislain Schyns
- DSM Nutritional Products, Ltd., 60 Westview street, Lexington MA, USA
| | | | - José B Pereira-Leal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Ophiomics—Precision Medicine, Lisbon, Portugal
| |
Collapse
|
31
|
Taylor JW, Branco S, Gao C, Hann-Soden C, Montoya L, Sylvain I, Gladieux P. Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0057-2016. [PMID: 28936945 PMCID: PMC11687547 DOI: 10.1128/microbiolspec.funk-0057-2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 01/17/2023] Open
Abstract
The first eukaryotic genome to be sequenced was fungal, and there continue to be more sequenced genomes in the kingdom Fungi than in any other eukaryotic kingdom. Comparison of these genomes reveals many sources of genetic variation, from single nucleotide polymorphisms to horizontal gene transfer and on to changes in the arrangement and number of chromosomes, not to mention endofungal bacteria and viruses. Population genomics shows that all sources generate variation all the time and implicate natural selection as the force maintaining genome stability. Variation in wild populations is a rich resource for associating genetic variation with phenotypic variation, whether through quantitative trait locus mapping, genome-wide association studies, or reverse ecology. Subjects of studies associating genetic and phenotypic variation include model fungi, e.g., Saccharomyces and Neurospora, but pioneering studies have also been made with fungi pathogenic to plants, e.g., Pyricularia (= Magnaporthe), Zymoseptoria, and Fusarium, and to humans, e.g., Coccidioides, Cryptococcus, and Candida.
Collapse
Affiliation(s)
- John W Taylor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720-3102
| | - Sara Branco
- Département Génétique et Ecologie Evolutives Laboratoire Ecologie, Systématique et Evolution, CNRS-UPS-AgroParisTech, Université de Paris-Sud, 91405 Orsay, France, and Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717
| | - Cheng Gao
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Chris Hann-Soden
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Liliam Montoya
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Iman Sylvain
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102
| | - Pierre Gladieux
- INRA, UMR BGPI, Campus International de Baillarguet, 34398 Montpellier, France
| |
Collapse
|
32
|
Naito M, Desirò A, González JB, Tao G, Morton JB, Bonfante P, Pawlowska TE. 'Candidatus Moeniiplasma glomeromycotorum', an endobacterium of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 2017; 67:1177-1184. [PMID: 28073398 DOI: 10.1099/ijsem.0.001785] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF, subphylum Glomeromycotina) are symbionts of most terrestrial plants. They commonly harbour endobacteria of a largely unknown biology, referred to as MRE (Mollicutes/mycoplasma-related endobacteria). Here, we propose to accommodate MRE in the novel genus 'Candidatus Moeniiplasma.' Phylogeny reconstructions based on the 16S rRNA gene sequences cluster 'Ca.Moeniiplasma' with representatives of the class Mollicutes, whereas phylogenies derived from amino acid sequences of 19 genes indicate that it is a discrete lineage sharing ancestry with the members of the family Mycoplasmataceae. Cells of 'Ca.Moeniiplasma' reside directly in the host cytoplasm and have not yet been cultivated. They are coccoid, ~500 nm in diameter, with an electron-dense layer outside the plasma membrane. However, the draft genomes of 'Ca.Moeniiplasma' suggest that this structure is not a Gram-positive cell wall. The evolution of 'Ca.Moeniiplasma' appears to be driven by an ultrarapid rate of mutation accumulation related to the loss of DNA repair mechanisms. Moreover, molecular evolution patterns suggest that, in addition to vertical transmission, 'Ca.Moeniiplasma' is able to transmit horizontally among distinct Glomeromycotina host lineages and exchange genes. On the basis of these unique lifestyle features, the new species 'Candidatus Moeniiplasma glomeromycotorum' is proposed.
Collapse
Affiliation(s)
- Mizue Naito
- Graduate Field of Microbiology, Cornell University, Ithaca, NY, USA
| | - Alessandro Desirò
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,Present address: Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Jonathan B González
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Gang Tao
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, USA.,Present address: Guizhou Academy of Agricultural Sciences, Guizhou Institute of Plant Protection, Guiyang 550006, PR China
| | - Joseph B Morton
- Division of Plant & Soil Sciences, West Virginia University, Morgantown, WV, USA
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Teresa E Pawlowska
- School of Integrative Plant Science, Plant Pathology & Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
33
|
Who lives in a fungus? The diversity, origins and functions of fungal endobacteria living in Mucoromycota. ISME JOURNAL 2017; 11:1727-1735. [PMID: 28387771 DOI: 10.1038/ismej.2017.21] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/13/2017] [Accepted: 01/19/2017] [Indexed: 01/07/2023]
Abstract
Bacterial interactions with plants and animals have been examined for many years; differently, only with the new millennium the study of bacterial-fungal interactions blossomed, becoming a new field of microbiology with relevance to microbial ecology, human health and biotechnology. Bacteria and fungi interact at different levels and bacterial endosymbionts, which dwell inside fungal cells, provide the most intimate example. Bacterial endosymbionts mostly occur in fungi of the phylum Mucoromycota and include Betaproteobacteria (Burkhoderia-related) and Mollicutes (Mycoplasma-related). Based on phylogenomics and estimations of divergence time, we hypothesized two different scenarios for the origin of these interactions (early vs late bacterial invasion). Sequencing of the genomes of fungal endobacteria revealed a significant reduction in genome size, particularly in endosymbionts of Glomeromycotina, as expected by their uncultivability and host dependency. Similar to endobacteria of insects, the endobacteria of fungi show a range of behaviours from mutualism to antagonism. Emerging results suggest that some benefits given by the endobacteria to their plant-associated fungal host may propagate to the interacting plant, giving rise to a three-level inter-domain interaction.
Collapse
|