1
|
Michalik A, C. Franco D, Szklarzewicz T, Stroiński A, Łukasik P. Facultatively intrabacterial localization of a planthopper endosymbiont as an adaptation to its vertical transmission. mSystems 2024; 9:e0063424. [PMID: 38934538 PMCID: PMC11264691 DOI: 10.1128/msystems.00634-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Transovarial transmission is the most reliable way of passing on essential nutrient-providing endosymbionts from mothers to offspring. However, not all endosymbiotic microbes follow the complex path through the female host tissues to oocytes on their own. Here, we demonstrate an unusual transmission strategy adopted by one of the endosymbionts of the planthopper Trypetimorpha occidentalis (Hemiptera: Tropiduchidae) from Bulgaria. In this species, an Acetobacteraceae endosymbiont is transmitted transovarially within deep invaginations of cellular membranes of an ancient endosymbiont Sulcia-strikingly resembling recently described plant virus transmission. However, in males, Acetobacteraceae colonizes the same bacteriocytes as Sulcia but remains unenveloped. Then, the unusual endobacterial localization of Acetobacteraceae observed in females appears to be a unique adaptation to maternal transmission. Further, the symbiont's genomic features, including encoding essential amino acid biosynthetic pathways and its similarity to a recently described psyllid symbiont, suggest a unique combination of the ability to horizontally transmit among species and confer nutritional benefits. The close association with Acetobacteraceae symbiont correlates with the so-far-unreported level of genomic erosion of ancient nutritional symbionts of this planthopper. In Sulcia, this is reflected in substantial changes in genomic organization, reported for the first time in the symbiont renowned for its genomic stability. In Vidania, substantial gene loss resulted in one of the smallest genomes known, at 108.6 kb. Thus, the symbionts of T. occidentalis display a combination of unusual adaptations and genomic features that expand our understanding of how insect-microbe symbioses may transmit and evolve.IMPORTANCEReliable transmission across host generations is a major challenge for bacteria that associate with insects, and independently established symbionts have addressed this challenge in different ways. The facultatively endobacterial localization of Acetobacteraceae symbiont, enveloped by cells of ancient nutritional endosymbiont Sulcia in females but not males of the planthopper Trypetimorpha occidentalis, appears to be a unique adaptation to maternal transmission. Acetobacteraceae's genomic features indicate its unusual evolutionary history, and the genomic erosion experienced by ancient nutritional symbionts demonstrates the apparent consequences of such close association. Combined, this multi-partite symbiosis expands our understanding of the diversity of strategies that insect symbioses form and some of their evolutionary consequences.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego C. Franco
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
2
|
Huang Z, Wang D, Zhou J, He H, Wei C. Segregation of endosymbionts in complex symbiotic system of cicadas providing novel insights into microbial symbioses and evolutionary dynamics of symbiotic organs in sap-feeding insects. Front Zool 2024; 21:15. [PMID: 38863001 PMCID: PMC11165832 DOI: 10.1186/s12983-024-00536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/03/2024] [Indexed: 06/13/2024] Open
Abstract
The most extraordinary systems of symbiosis in insects are found in the suborder Auchenorrhyncha of Hemiptera, which provide unique perspectives for uncovering complicated insect-microbe symbiosis. We investigated symbionts associated with bacteriomes and fat bodies in six cicada species, and compared transmitted cell number ratio of related symbionts in ovaries among species. We reveal that Sulcia and Hodgkinia or a yeast-like fungal symbiont (YLS) are segregated from other host tissues by the bacteriomes in the nymphal stage, then some of them may migrate to other organs (i.e., fat bodies and ovaries) during host development. Particularly, YLS resides together with Sulcia in the "symbiont ball" of each egg and the bacteriomes of young-instar nymphs, but finally migrates to the fat bodies of adults in the majority of Hodgkinia-free cicadas, whereas it resides in both bacteriome sheath and fat bodies of adults in a few other species. The transmitted Sulcia/YLS or Sulcia/Hodgkinia cell number ratio in ovaries varies significantly among species, which could be related to the distribution and/or lineage splitting of symbiont(s). Rickettsia localizes to the nuclei of bacteriomes and fat bodies in some species, but it was not observed to be transmitted to the ovaries, indicating that this symbiont may be acquired from environments or from father to offspring. The considerable difference in the transovarial transmission process of symbionts suggests that cellular mechanisms underlying the symbiont transmission are complex. Our results may provide novel insights into insect-microbe symbiosis.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jinrui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Key Laboratory of Integrated Pest Management On Crops in Northwest Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
3
|
Huang Z, Wang D, Zhou J, He H, Wei C. The Improvement of Fluorescence In Situ Hybridization Technique Based on Explorations of Symbionts in Cicadas. Int J Mol Sci 2023; 24:15838. [PMID: 37958818 PMCID: PMC10650757 DOI: 10.3390/ijms242115838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes is widely used for the identification of microbes in complex samples, but it suffers from some limitations resulting in the weak or even absence of fluorescence signals of microbe(s), which may lead to the underestimation or misunderstanding of a microbial community. Herein, we explored symbionts in the bacteriomes and fat bodies of cicadas using modified FISH, aiming to improve this technique. We initially revealed that the probes of Candidatus Sulcia muelleri (Sulcia) and the yeast-like fungal symbiont (YLS) are suitable for detection of these symbionts in all cicadas and some other species of Auchenorrhyncha, whereas the probe of Candidatus Hodgkinia cicadicola (Hodgkinia) is only suitable for detection of Hodgkinia in a few cicada species. The fluorescence signal of Sulcia, Hodgkinia and YLS exhibited weak intensity without the addition of unlabeled oligonucleotides (helpers) and heat shock in some cicadas; however, it can be significantly improved by the addition of both helpers and heat shock. Results of this study suggest that heat shock denaturing rRNA and proteins of related microbe(s) together with helpers binding to the adjacent region of the probe's target sites prevent the re-establishment of the native secondary structure of rRNA; therefore, suitable probe(s) can more easily access to the probe's target sites of rRNA. Our results provide new information for the significant improvement of hybridization signal intensities of microbes in the FISH experiment, making it possible to achieve a more precise understanding of the microbial distribution, community and density in complex samples.
Collapse
Affiliation(s)
- Zhi Huang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| | - Jinrui Zhou
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| | - Hong He
- College of Forestry, Northwest A&F University, Yangling 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (Z.H.); (D.W.); (J.Z.)
| |
Collapse
|
4
|
Štarhová Serbina L, Corretto E, Enciso Garcia JS, Berta M, Giovanelli T, Dittmer J, Schuler H. Seasonal wild dance of dual endosymbionts in the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea). Sci Rep 2023; 13:16038. [PMID: 37749181 PMCID: PMC10519999 DOI: 10.1038/s41598-023-43130-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023] Open
Abstract
Most sap-feeding insects maintain obligate relationships with endosymbiotic bacteria that provide their hosts with essential nutrients. However, knowledge about the dynamics of endosymbiont titers across seasons in natural host populations is scarce. Here, we used quantitative PCR to investigate the seasonal dynamics of the dual endosymbionts "Candidatus Carsonella ruddii" and "Ca. Psyllophila symbiotica" in a natural population of the pear psyllid Cacopsylla pyricola (Hemiptera: Psylloidea: Psyllidae). Psyllid individuals were collected across an entire year, covering both summer and overwintering generations. Immatures harboured the highest titers of both endosymbionts, while the lowest endosymbiont density was observed in males. The density of Carsonella remained high and relatively stable across the vegetative period of the pear trees, but significantly dropped during the non-vegetative period, overlapping with C. pyricola's reproductive diapause. In contrast, the titer of Psyllophila was consistently higher than Carsonella's and exhibited fluctuations throughout the sampling year, which might be related to host age. Despite a tightly integrated metabolic complementarity between Carsonella and Psyllophila, our findings highlight differences in their density dynamics throughout the year, that might be linked to their metabolic roles at different life stages of the host.
Collapse
Affiliation(s)
- Liliya Štarhová Serbina
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy.
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 60200, Brno, Czech Republic.
| | - Erika Corretto
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Juan Sebastian Enciso Garcia
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Michela Berta
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Tobia Giovanelli
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| | - Jessica Dittmer
- UMR 1345, Institut Agro, INRAE, IRHS, SFR Quasav, Université d'Angers, Angers, France
| | - Hannes Schuler
- Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
- Competence Centre for Plant Health, Free University of Bozen-Bolzano, 39100, Bolzano, Italy
| |
Collapse
|
5
|
Spencer N, Łukasik P, Meyer M, Veloso C, McCutcheon JP. No Transcriptional Compensation for Extreme Gene Dosage Imbalance in Fragmented Bacterial Endosymbionts of Cicadas. Genome Biol Evol 2023; 15:evad100. [PMID: 37267326 PMCID: PMC10287537 DOI: 10.1093/gbe/evad100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
Bacteria that form long-term intracellular associations with host cells lose many genes, a process that often results in tiny, gene-dense, and stable genomes. Paradoxically, the some of the same evolutionary processes that drive genome reduction and simplification may also cause genome expansion and complexification. A bacterial endosymbiont of cicadas, Hodgkinia cicadicola, exemplifies this paradox. In many cicada species, a single Hodgkinia lineage with a tiny, gene-dense genome has split into several interdependent cell and genome lineages. Each new Hodgkinia lineage encodes a unique subset of the ancestral unsplit genome in a complementary way, such that the collective gene contents of all lineages match the total found in the ancestral single genome. This splitting creates genetically distinct Hodgkinia cells that must function together to carry out basic cellular processes. It also creates a gene dosage problem where some genes are encoded by only a small fraction of cells while others are much more abundant. Here, by sequencing DNA and RNA of Hodgkinia from different cicada species with different amounts of splitting-along with its structurally stable, unsplit partner endosymbiont Sulcia muelleri-we show that Hodgkinia does not transcriptionally compensate to rescue the wildly unbalanced gene and genome ratios that result from lineage splitting. We also find that Hodgkinia has a reduced capacity for basic transcriptional control independent of the splitting process. Our findings reveal another layer of degeneration further pushing the limits of canonical molecular and cell biology in Hodgkinia and may partially explain its propensity to go extinct through symbiont replacement.
Collapse
Affiliation(s)
- Noah Spencer
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Institute of Environmental Sciences, Jagiellonian University, Kraków, Poland
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, Santiago, Chile
| | - John P McCutcheon
- Biodesign Center for Mechanisms of Evolution and School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| |
Collapse
|
6
|
A Study on Symbiotic Systems of Cicadas Provides New Insights into Distribution of Microbial Symbionts and Improves Fluorescence In Situ Hybridization Technique. Int J Mol Sci 2023; 24:ijms24032434. [PMID: 36768757 PMCID: PMC9917331 DOI: 10.3390/ijms24032434] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/18/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Nutritional symbionts of sap-sucking auchenorrhynchan insects of Hemiptera are usually confined to the bacteriomes and/or fat bodies. Knowledge is limited about the distribution of microbial symbionts in other organs. We investigated the distribution of obligate symbionts in the salivary glands, gut tissues, reproductive organs, bacteriomes, and fat bodies of two cicada species, Karenia caelatata and Tanna sp., using integrated methods, including a modified fluorescence in situ hybridization (FISH) technique, which can greatly enhance the FISH signal intensity of related symbionts. We revealed that Candidatus Sulcia muelleri (Sulcia) and a yeast-like fungal symbiont (YLS) were harbored in the bacteriomes and fat bodies, respectively. Both of Sulcia and YLS can be transmitted to the offspring via ovaries, forming a "symbiont ball" in each egg. Neither Sulcia nor YLS were harbored in the salivary glands, gut tissues and testes. Phylogenetic trees of both Sulcia and cicadas confirm that K. caelatata is a member of the tribe Dundubiini, and the tribe Leptopsaltriini that comprises Ta. sp. is not monophyletic. YLS of K. caelatata is embedded inside the lineage of YLS of Dundubiini, whereas YLS of Ta. sp. is closely related to the clade comprising both cicada-parasitizing fungi Ophiocordyceps and YLS of Mogannia conica and Meimuna mongolica, suggesting an evolutionary replacement of YLS in Ta. sp. from an Ophiocordyceps fungus to another Ophiocordyceps fungus. Our results provide new insights into the symbiosis between Cicadidae and related symbionts. Modification through the addition of helpers and heat shock greatly enhanced the FISH signal intensity of YLS, which may provide guidelines for enhancement of the hybridization signal intensity of other symbiont(s) in the FISH experiments.
Collapse
|
7
|
Lack of host phylogenetic structure in the gut bacterial communities of New Zealand cicadas and their interspecific hybrids. Sci Rep 2022; 12:20559. [PMID: 36446872 PMCID: PMC9709078 DOI: 10.1038/s41598-022-24723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
Host-microbe interactions are intimately linked to eukaryotic evolution, particularly in sap-sucking insects that often rely on obligate microbial symbionts for nutrient provisioning. Cicadas (Cicadidae: Auchenorrhyncha) specialize on xylem fluid and derive many essential amino acids and vitamins from intracellular bacteria or fungi (Hodgkinia, Sulcia, and Ophiocordyceps) that are propagated via transmission from mothers to offspring. Despite the beneficial role of these non-gut symbionts in nutrient provisioning, the role of beneficial microbiota within the gut remains unclear. Here, we investigate the relative abundance and impact of host phylogeny and ecology on gut microbial diversity in cicadas using 16S ribosomal RNA gene amplicon sequencing data from 197 wild-collected cicadas and new mitochondrial genomes across 38 New Zealand cicada species, including natural hybrids between one pair of two species. We find low abundance and a lack of phylogenetic structure and hybrid effects but a significant role of elevation in explaining variation in gut microbiota.
Collapse
|
8
|
Brumfield KD, Raupp MJ, Haji D, Simon C, Graf J, Cooley JR, Janton ST, Meister RC, Huq A, Colwell RR, Hasan NA. Gut microbiome insights from 16S rRNA analysis of 17-year periodical cicadas (Hemiptera: Magicicada spp.) Broods II, VI, and X. Sci Rep 2022; 12:16967. [PMID: 36217008 PMCID: PMC9550851 DOI: 10.1038/s41598-022-20527-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 09/14/2022] [Indexed: 12/29/2022] Open
Abstract
Periodical cicadas (Hemiptera: Magicicada) have coevolved with obligate bacteriome-inhabiting microbial symbionts, yet little is known about gut microbial symbiont composition or differences in composition among allochronic Magicicada broods (year classes) which emerge parapatrically or allopatrically in the eastern United States. Here, 16S rRNA amplicon sequencing was performed to determine gut bacterial community profiles of three periodical broods, including II (Connecticut and Virginia, 2013), VI (North Carolina, 2017), and X (Maryland, 2021, and an early emerging nymph collected in Ohio, 2017). Results showed similarities among all nymphal gut microbiomes and between morphologically distinct 17-year Magicicada, namely Magicicada septendecim (Broods II and VI) and 17-year Magicicada cassini (Brood X) providing evidence of a core microbiome, distinct from the microbiome of burrow soil inhabited by the nymphs. Generally, phyla Bacteroidetes [Bacteroidota] (> 50% relative abundance), Actinobacteria [Actinomycetota], or Proteobacteria [Pseudomonadota] represented the core. Acidobacteria and genera Cupriavidus, Mesorhizobium, and Delftia were prevalent in nymphs but less frequent in adults. The primary obligate endosymbiont, Sulcia (Bacteroidetes), was dominant amongst core genera detected. Chryseobacterium were common in Broods VI and X. Chitinophaga, Arthrobacter, and Renibacterium were common in Brood X, and Pedobacter were common to nymphs of Broods II and VI. Further taxonomic assignment of unclassified Alphaproteobacteria sequencing reads allowed for detection of multiple copies of the Hodgkinia 16S rRNA gene, distinguishable as separate operational taxonomic units present simultaneously. As major emergences of the broods examined here occur at 17-year intervals, this study will provide a valuable comparative baseline in this era of a changing climate.
Collapse
Affiliation(s)
- Kyle D Brumfield
- Maryland Pathogen Research Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA
| | - Michael J Raupp
- Department of Entomology, University of Maryland, College Park, MD, 20742, USA
| | - Diler Haji
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, CT, 06103, USA
| | - Susan T Janton
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Russell C Meister
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Anwar Huq
- Maryland Pathogen Research Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Rita R Colwell
- Maryland Pathogen Research Institute, Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
- University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD, 20742, USA.
| | | |
Collapse
|
9
|
Owen CL, Marshall DC, Wade EJ, Meister R, Goemans G, Kunte K, Moulds M, Hill K, Villet M, Pham TH, Kortyna M, Lemmon EM, Lemmon AR, Simon C. Detecting and removing sample contamination in phylogenomic data: an example and its implications for Cicadidae phylogeny (Insecta: Hemiptera). Syst Biol 2022; 71:1504-1523. [PMID: 35708660 DOI: 10.1093/sysbio/syac043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Contamination of a genetic sample with DNA from one or more non-target species is a continuing concern of molecular phylogenetic studies, both Sanger sequencing studies and Next-Generation Sequencing (NGS) studies. We developed an automated pipeline for identifying and excluding likely cross-contaminated loci based on detection of bimodal distributions of patristic distances across gene trees. When the contamination occurs between samples within a dataset, comparisons between a contaminated sample and its contaminant taxon will yield bimodal distributions with one peak close to zero patristic distance. This new method does not rely on a priori knowledge of taxon relatedness nor does it determine the causes(s) of the contamination. Exclusion of putatively contaminated loci from a dataset generated for the insect family Cicadidae showed that these sequences were affecting some topological patterns and branch supports, although the effects were sometimes subtle, with some contamination-influenced relationships exhibiting strong bootstrap support. Long tip branches and outlier values for one anchored phylogenomic pipeline statistic (AvgNHomologs) were correlated with the presence of contamination. While the AHE markers used here, which target hemipteroid taxa, proved effective in resolving deep and shallow level Cicadidae relationships in aggregate, individual markers contained inadequate phylogenetic signal, in part probably due to short length. The cleaned dataset, consisting of 429 loci, from 90 genera representing 44 of 56 current Cicadidae tribes, supported three of the four sampled Cicadidae subfamilies in concatenated-matrix maximum likelihood (ML) and multispecies coalescent-based species tree analyses, with the fourth subfamily weakly supported in the ML trees. No well-supported patterns from previous family-level Sanger sequencing studies of Cicadidae phylogeny were contradicted. One taxon (Aragualna plenalinea) did not fall with its current subfamily in the genetic tree, and this genus and its tribe Aragualnini is reclassified to Tibicininae following morphological re-examination. Only subtle differences were observed in trees after removal of loci for which divergent base frequencies were detected. Greater success may be achieved by increased taxon sampling and developing a probe set targeting a more recent common ancestor and longer loci. Searches for contamination are an essential step in phylogenomic analyses of all kinds and our pipeline is an effective solution.
Collapse
Affiliation(s)
- Christopher L Owen
- Systematic Entomology Laboratory, USDA-ARS, c/o National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - David C Marshall
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Elizabeth J Wade
- Dept. of Natural Science and Mathematics, Curry College, Milton, MA 02186, USA
| | - Russ Meister
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Geert Goemans
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - Krushnamegh Kunte
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK Campus, Bellary Road, Bangalore 560 065, India
| | - Max Moulds
- Australian Museum Research Institute, 1 William Street, Sydney N.S.W, Australia. 2010
| | - Kathy Hill
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| | - M Villet
- Dept. of Biology, Rhodes University, Grahamstown 6140, South Africa
| | - Thai-Hong Pham
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hue, Vietnam.,Vietnam National Museum of Nature and Graduate School of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Michelle Kortyna
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, USA
| | - Emily Moriarty Lemmon
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL 32306, USA
| | - Alan R Lemmon
- Department of Scientific Computing, Florida State University 400 Dirac Science Library, Tallahassee, FL 32306, USA
| | - Chris Simon
- Dept. of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
10
|
James EB, Pan X, Schwartz O, Wilson ACC. SymbiQuant: A Machine Learning Object Detection Tool for Polyploid Independent Estimates of Endosymbiont Population Size. Front Microbiol 2022; 13:816608. [PMID: 35663891 PMCID: PMC9160162 DOI: 10.3389/fmicb.2022.816608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Quantifying the size of endosymbiont populations is challenging because endosymbionts are typically difficult or impossible to culture and commonly polyploid. Current approaches to estimating endosymbiont population sizes include quantitative PCR (qPCR) targeting endosymbiont genomic DNA and flow-cytometry. While qPCR captures genome copy number data, it does not capture the number of bacterial cells in polyploid endosymbiont populations. In contrast, flow cytometry can capture accurate estimates of whole host-level endosymbiont population size, but it is not readily able to capture data at the level of endosymbiotic host cells. To complement these existing approaches for estimating endosymbiont population size, we designed and implemented an object detection/segmentation tool for counting the number of endosymbiont cells in micrographs of host tissues. The tool, called SymbiQuant, which makes use of recent advances in deep neural networks includes a graphic user interface that allows for human curation of tool output. We trained SymbiQuant for use in the model aphid/Buchnera endosymbiosis and studied Buchnera population dynamics and phenotype over aphid postembryonic development. We show that SymbiQuant returns accurate counts of endosymbionts, and readily captures Buchnera phenotype. By replacing our training data with data composed of annotated microscopy images from other models of endosymbiosis, SymbiQuant has the potential for broad application. Our tool, which is available on GitHub, adds to the repertoire of methods researchers can use to study endosymbiosis at the organismal, genome, and now endosymbiotic host tissue or cell levels.
Collapse
Affiliation(s)
- Edward B. James
- Department of Biology, University of Miami, Coral Gables, FL, United States
- *Correspondence: Edward B. James,
| | - Xu Pan
- Computational Neuroscience Lab, Department of Computer Science, University of Miami, Coral Gables, FL, United States
| | - Odelia Schwartz
- Computational Neuroscience Lab, Department of Computer Science, University of Miami, Coral Gables, FL, United States
| | - Alex C. C. Wilson
- Department of Biology, University of Miami, Coral Gables, FL, United States
- Alex C. C. Wilson,
| |
Collapse
|
11
|
Simon C, Cooley JR, Karban R, Sota T. Advances in the Evolution and Ecology of 13- and 17-Year Periodical Cicadas. ANNUAL REVIEW OF ENTOMOLOGY 2022; 67:457-482. [PMID: 34623904 DOI: 10.1146/annurev-ento-072121-061108] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Apart from model organisms, 13- and 17-year periodical cicadas (Hemiptera: Cicadidae: Magicicada) are among the most studied insects in evolution and ecology. They are attractive subjects because they predictably emerge in large numbers; have a complex biogeography shaped by both spatial and temporal isolation; and include three largely sympatric, parallel species groups that are, in a sense, evolutionary replicates. Magicicada are also relatively easy to capture and manipulate, and their spectacular, synchronized mass emergences facilitate outreach and citizen science opportunities. Since the last major review, studies of Magicicada have revealed insights into reproductive character displacement and the nature of species boundaries, provided additional examples of allochronic speciation, found evidence for repeated and parallel (but noncontemporaneous) evolution of 13- and 17-year life cycles, quantified the amount and direction of gene flow through time, revealed phylogeographic patterning resulting from paleoclimate change, examined the timing of juvenile development, and created hypotheses for the evolution of life-cycle control and the future effects of climate changeon Magicicada life cycles. New ecological studies have supported and questioned the role of prime numbers in Magicicada ecology and evolution, found bidirectional shifts in population size over generations, quantified the contribution of Magicicada to nutrient flow in forest ecosystems, and examined behavioral and biochemical interactions between Magicicada and their fungal parasites and bacterial endosymbionts.
Collapse
Affiliation(s)
- Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut 06269, USA;
| | - John R Cooley
- Department of Ecology and Evolutionary Biology, University of Connecticut, Hartford, Connecticut 06103, USA;
| | - Richard Karban
- Department of Entomology and Nematology, University of California, Davis, California 95616, USA;
| | - Teiji Sota
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan;
| |
Collapse
|
12
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Complex co-evolutionary relationships between cicadas and their symbionts. Environ Microbiol 2021; 24:195-211. [PMID: 34927333 DOI: 10.1111/1462-2920.15829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Previous evidence suggests that cicadas lacking Hodgkinia may harbour the yeast-like fungal symbionts (YLS). Here, we reinforce an earlier conclusion that the pathogenic ancestor of YLS independently infected different cicada lineages instead of the common ancestor of Cicadidae. Five independent replacement events in the loss of Hodgkinia/acquisition of YLS and seven other replacement events of YLS (from an Ophiocordyceps fungus to another Ophiocordyceps fungus) are hypothesised to have occurred within the sampled cicada taxa. The divergence time of YLS lineages was later than that of corresponding cicada lineages. The rapid shift of diversification rates of YLS and related cicada-parasitizing Ophiocordyceps began at approximately 32.94 Ma, and the diversification rate reached the highest value at approximately 24.82 Ma, which corresponds to the cooling climate changes at the Eocene-Oligocene boundary and the Oligocene-Miocene transition respectively. Combined with related acquisition/replacement events of YLS occurred during the cooling-climate periods, we hypothesise that the cooling-climate changes impacted the interactions between cicadas and related Ophiocordyceps, which coupled with the unusual life cycle and the differentiation of cicadas may finally led to the diversification of YLS in Cicadidae. Our results contribute to a better understanding of the evolutionary transition of YLS from entomopathogenic fungi in insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, Leuven, B-3000, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
13
|
Michalik A, Castillo Franco D, Kobiałka M, Szklarzewicz T, Stroiński A, Łukasik P. Alternative Transmission Patterns in Independently Acquired Nutritional Cosymbionts of Dictyopharidae Planthoppers. mBio 2021; 12:e0122821. [PMID: 34465022 PMCID: PMC8406288 DOI: 10.1128/mbio.01228-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/20/2021] [Indexed: 11/20/2022] Open
Abstract
Sap-sucking hemipterans host specialized, heritable microorganisms that supplement their diet with essential nutrients. These microbes show unusual features that provide a unique perspective on the coevolution of host-symbiont systems but are still poorly understood. Here, we combine microscopy with high-throughput sequencing to revisit 80-year-old reports on the diversity of symbiont transmission modes in a broadly distributed planthopper family, Dictyopharidae. We show that in seven species examined, the ancestral nutritional symbionts Sulcia and Vidania producing essential amino acids are complemented by co-primary symbionts, either Arsenophonus or Sodalis, acquired several times independently by different host lineages and contributing to the biosynthesis of B vitamins. These symbionts reside within separate bacteriomes within the abdominal cavity, although in females Vidania also occupies bacteriocytes in the rectal organ. Notably, the symbionts are transovarially transmitted from mothers to offspring in two alternative ways. In most examined species, all nutritional symbionts simultaneously infect the posterior end of the full-grown oocytes and next gather in their perivitelline space. In contrast, in other species, Sodalis colonizes the cytoplasm of the anterior pole of young oocytes, forming a cluster separate from the "symbiont ball" formed by late-invading Sulcia and Vidania. Our results show how newly arriving microbes may utilize different strategies to establish long-term heritable symbiosis. IMPORTANCE Sup-sucking hemipterans host ancient heritable microorganisms that supplement their unbalanced diet with essential nutrients and have repeatedly been complemented or replaced by other microorganisms. These symbionts need to be reliably transmitted to subsequent generations through the reproductive system, and often they end up using the same route as the most ancient ones. We show for the first time that in a single family of planthoppers, the complementing symbionts that have established infections independently utilize different transmission strategies, one of them novel, with the transmission of different microbes separated spatially and temporally. These data show how newly arriving microbes may utilize different strategies to establish long-term heritable symbioses.
Collapse
Affiliation(s)
- Anna Michalik
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Diego Castillo Franco
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Michał Kobiałka
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Teresa Szklarzewicz
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Adam Stroiński
- Museum and Institute of Zoology, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Łukasik
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Wang D, Huang Z, Billen J, Zhang G, He H, Wei C. Structural diversity of symbionts and related cellular mechanisms underlying vertical symbiont transmission in cicadas. Environ Microbiol 2021; 23:6603-6621. [PMID: 34390615 DOI: 10.1111/1462-2920.15711] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 11/29/2022]
Abstract
Many insects depend on symbiont(s) for survival. This is particularly the case for sap-feeding hemipteran insects. In this study, we revealed that symbionts harbored in cicadas are diverse and complex, and the yeast-like fungal symbionts (YLS) are present in most cicada species but Hodgkinia is absent. During vertical transmission, Sulcia became swollen with the outer membrane drastically changed, while Hodgkinia became shrunken and changed from irregular to roughly spherical. Sulcia and/or Hodgkinia were exocytosed from the bacteriocytes to the intercellular space of bacteriomes, where they gathered together and were extruded to hemolymph. YLS and associated facultative symbiont(s) in the fat bodies were released to the hemolymph based on bacteriocyte disintegration. The obligate symbiont(s) were endocytosed and exocytosed successively by the epithelial cells of the terminal oocyte, while associated facultative symbiont(s), and possibly also YLS, may take a 'free ride' on the transmission of obligate symbiont(s) to gain entry into the oocyte. Then, the intermixed symbionts formed a characteristic 'symbiont ball' in the oocyte. Our results suggest that YLS in cicadas represent a new example of a relatively early stage of symbiogenesis in insects, and contribute to a better understanding of the diversity and transmission mechanisms of symbionts in insects. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China.,Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Johan Billen
- Zoological Institute, University of Leuven, Naamsestraat 59, B-3000, Leuven, Belgium
| | - Guoyun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong He
- Key Laboratory of National Forestry and Grassland Administration for Control of Forest Biological Disasters in Western China, College of Forestry, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.,State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
15
|
Xue H, Zhu X, Wang L, Zhang K, Li D, Ji J, Niu L, Wu C, Gao X, Luo J, Cui J. Gut Bacterial Diversity in Different Life Cycle Stages of Adelphocoris suturalis (Hemiptera: Miridae). Front Microbiol 2021; 12:670383. [PMID: 34149656 PMCID: PMC8208491 DOI: 10.3389/fmicb.2021.670383] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/27/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria and insects have a mutually beneficial symbiotic relationship. Bacteria participate in several physiological processes such as reproduction, metabolism, and detoxification of the host. Adelphocoris suturalis is considered a pest by the agricultural industry and is now a major pest in cotton, posing a serious threat to agricultural production. As with many insects, various microbes live inside A. suturalis. However, the microbial composition and diversity of its life cycle have not been well-studied. To identify the species and community structure of symbiotic bacteria in A. suturalis, we used the HiSeq platform to perform high-throughput sequencing of the V3-V4 region in the 16S rRNA of symbiotic bacteria found in A. suturalis throughout its life stages. Our results demonstrated that younger nymphs (1st and 2nd instar nymphs) have higher species richness. Proteobacteria (87.06%) and Firmicutes (9.43%) were the dominant phyla of A. suturalis. At the genus level, Erwinia (28.98%), Staphylococcus (5.69%), and Acinetobacter (4.54%) were the dominant bacteria. We found that the relative abundance of Erwinia was very stable during the whole developmental stage. On the contrary, the relative abundance of Staphylococcus, Acinetobacter, Pseudomonas, and Corynebacterium showed significant dynamic changes at different developmental stages. Functional prediction of symbiotic bacteria mainly focuses on metabolic pathways. Our findings document symbiotic bacteria across the life cycle of A. suturalis, as well as differences in both the composition and richness in nymph and adult symbiotic bacteria. Our analysis of the bacteria in A. suturalis provides important information for the development of novel biological control strategies.
Collapse
Affiliation(s)
- Hui Xue
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Zhu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Li Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Kaixin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Dongyang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jichao Ji
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Lin Niu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Changcai Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xueke Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinjie Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China.,Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Wang D, Liu Y, Su Y, Wei C. Bacterial Communities in Bacteriomes, Ovaries and Testes of three Geographical Populations of a Sap-Feeding Insect, Platypleura kaempferi (Hemiptera: Cicadidae). Curr Microbiol 2021; 78:1778-1791. [PMID: 33704532 DOI: 10.1007/s00284-021-02435-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/24/2021] [Indexed: 11/28/2022]
Abstract
Mutualistic associations between symbiotic bacteria and their insect hosts are widespread. The bacterial diversity and community composition within hosts may play an important role in shaping insect biology, ecology, and evolution. Here, we focused on the bacterial communities in bacteriomes, ovaries and testes of three representative populations of the cicada Platypleura kaempferi (Fabricius) using high-throughput 16S rRNA amplicon sequencing approach combined with light microscopy and confocal imaging approach. The obligate symbiont Sulcia was detected in all the examined samples, which showed a relatively high abundance in most bacteriomes and ovaries. The unclassified OTUs formerly identified as an unclassified Rhizobiales bacterium was demonstrated to be the co-obligate symbiont Hodgkinia, which showed 100% infection rate in all the examined samples and had an especially high abundance in most bacteriomes and ovaries. Hodgkinia and Sulcia occupy the central and peripheral bacteriocytes of each bacteriome unit, respectively. Cluster analysis revealed that the bacterial communities in bacteriomes, ovaries and testes of Zhouzhi and Ningshan populations separated strongly from each other. Significant difference was also detected between the Yangling and Ningshan populations, but no significant difference was detected between the Yangling and Zhouzhi populations. This may be related to the difference of host plants and genetic differentiation of these populations. Our findings show that the bacterial communities can be influenced by the population differentiation of the host cicadas and/or the host plants of cicadas, which improve our understanding of the associations between the bacterial community and population differentiation of sap-feeding insects.
Collapse
Affiliation(s)
- Dandan Wang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunxiang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yan Su
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cong Wei
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
17
|
Waneka G, Vasquez YM, Bennett GM, Sloan DB. Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects. Genome Biol Evol 2020; 13:6020258. [PMID: 33275136 PMCID: PMC7952229 DOI: 10.1093/gbe/evaa254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2020] [Indexed: 11/16/2022] Open
Abstract
Compared with free-living bacteria, endosymbionts of sap-feeding insects have tiny and rapidly evolving genomes. Increased genetic drift, high mutation rates, and relaxed selection associated with host control of key cellular functions all likely contribute to genome decay. Phylogenetic comparisons have revealed massive variation in endosymbiont evolutionary rate, but such methods make it difficult to partition the effects of mutation versus selection. For example, the ancestor of Auchenorrhynchan insects contained two obligate endosymbionts, Sulcia and a betaproteobacterium (BetaSymb; called Nasuia in leafhoppers) that exhibit divergent rates of sequence evolution and different propensities for loss and replacement in the ensuing ∼300 Ma. Here, we use the auchenorrhynchan leafhopper Macrosteles sp. nr. severini, which retains both of the ancestral endosymbionts, to test the hypothesis that differences in evolutionary rate are driven by differential mutagenesis. We used a high-fidelity technique known as duplex sequencing to measure and compare low-frequency variants in each endosymbiont. Our direct detection of de novode novo mutations reveals that the rapidly evolving endosymbiont (Nasuia) has a much higher frequency of single-nucleotide variants than the more stable endosymbiont (Sulcia) and a mutation spectrum that is potentially even more AT-biased than implied by the 83.1% AT content of its genome. We show that indels are common in both endosymbionts but differ substantially in length and distribution around repetitive regions. Our results suggest that differences in long-term rates of sequence evolution in Sulcia versus BetaSymb, and perhaps the contrasting degrees of stability of their relationships with the host, are driven by differences in mutagenesis.
Collapse
Affiliation(s)
- Gus Waneka
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Yumary M Vasquez
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Santos-Garcia D, Mestre-Rincon N, Ouvrard D, Zchori-Fein E, Morin S. Portiera Gets Wild: Genome Instability Provides Insights into the Evolution of Both Whiteflies and Their Endosymbionts. Genome Biol Evol 2020; 12:2107-2124. [PMID: 33049039 PMCID: PMC7821994 DOI: 10.1093/gbe/evaa216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Whiteflies (Hemiptera: Sternorrhyncha: Aleyrodidae) are a superfamily of small phloem-feeding insects. They rely on their primary endosymbionts "Candidatus Portiera aleyrodidarum" to produce essential amino acids not present in their diet. Portiera has been codiverging with whiteflies since their origin and therefore reflects its host's evolutionary history. Like in most primary endosymbionts, the genome of Portiera stays stable across the Aleyrodidae superfamily after millions of years of codivergence. However, Portiera of the whitefly Bemisia tabaci has lost the ancestral genome order, reflecting a rare event in the endosymbiont evolution: the appearance of genome instability. To gain a better understanding of Portiera genome evolution, identify the time point in which genome instability appeared and contribute to the reconstruction of whitefly phylogeny, we developed a new phylogenetic framework. It targeted five Portiera genes and determined the presence of the DNA polymerase proofreading subunit (dnaQ) gene, previously associated with genome instability, and two alternative gene rearrangements. Our results indicated that Portiera gene sequences provide a robust tool for studying intergenera phylogenetic relationships in whiteflies. Using these new framework, we found that whitefly species from the Singhiella, Aleurolobus, and Bemisia genera form a monophyletic tribe, the Aleurolobini, and that their Portiera exhibit genome instability. This instability likely arose once in the common ancestor of the Aleurolobini tribe (at least 70 Ma), drawing a link between the appearance of genome instability in Portiera and the switch from multibacteriocyte to a single-bacteriocyte mode of inheritance in this tribe.
Collapse
Affiliation(s)
- Diego Santos-Garcia
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Natividad Mestre-Rincon
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - David Ouvrard
- Department of Life Sciences, Natural History Museum, London, United Kingdom.,Entomology and Invasive Plants Unit, Plant Health Laboratory, ANSES, Montferrier-sur-Lez, France
| | - Einat Zchori-Fein
- Department of Entomology, Newe-Ya'ar Research Center, ARO, Ramat-Yishai, Israel
| | - Shai Morin
- Department of Entomology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
19
|
Entomogenous fungi isolated from Cryptotympana atrata with antibacterial and antifungal activity. Antonie van Leeuwenhoek 2020; 113:1507-1521. [PMID: 32852662 DOI: 10.1007/s10482-020-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022]
Abstract
Although many entomogenous fungi have been discovered over the years, few studies on the crude extracts of fungi isolated from Cryptotympana atrata with antibacterial and antifungal activity were reported. In this study, total twenty entomogenous fungi were isolated for the first time. And among of them, two pure cultures were identified as Purpureocillium lilacinum and Aspergillus fumigatus with apparent morphology, microscopic identification and 18S rRNA gene sequence. The active strains were fermented to optimize in six different culture media at three different pH values. The antibacterial and antifungal activities of the metabolites were more potent and efficient in Fungal medium 3# at a pH of 6.2 than in the other tested media or at the other tested pH values. Total seven human pathogens and one insect pathogen were used to evaluate the antibacterial and antifungal activity of crude extracts, among which 25% of the extracts exhibited antifungal activity against Verticillium lecanii, while 33.3% and 47.2% of the extracts exhibited antibacterial activity against the important human pathogens Staphylococcus aureus and Bacillus cereus, respectively. The range of the MICs was from 15.6 to 250 μg mL-1, and 35% of the fungal metabolites exhibited antibacterial activity against Pseudomonas aeruginosa, Bacillus thuringiensis and Enterobacter aerogenes at 1000 μg mL-1 except the previously described antibacterial activities. Furthermore, the phylogenetic relationships of the two identified fungi were also constructed. In brief, it is the first reporting about enthompathogenic fungi from Cryptotympana atrata and provides candidate strains with potential use as biological agents and against multidrug-resistant organisms.
Collapse
|
20
|
Abstract
Host-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time. But recent evidence suggests that this stable state is often born from turbulent and conflicting origins, and that the apparent stability of many beneficial endosymbiotic relationships - although certainly real in many cases - is not an inevitable outcome of these associations. Here we review how stable endosymbioses form, how they are maintained, and how they sometimes break down and are reborn. We focus on relationships formed by insects and their resident microorganisms because these symbioses have been the focus of significant empirical work over the last two decades. We review these relationships over five life stages: origin, birth, middle age, old age, and death.
Collapse
|
21
|
Transovarial Transmission of Bacteriome-Associated Symbionts in the Cicada Pycna repanda (Hemiptera: Cicadidae). Appl Environ Microbiol 2020; 86:AEM.02957-19. [PMID: 32276978 DOI: 10.1128/aem.02957-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/06/2020] [Indexed: 11/20/2022] Open
Abstract
Although transovarial transmission of bacteriome-associated symbionts in hemipteran insects is extremely important for maintaining intimate host-symbiont associations, our knowledge of cellular mechanisms underlying the transmission process is quite limited. We investigated bacterial communities of salivary glands, bacteriomes, and digestive and reproductive organs and clarified the transovarial transmission of bacteriome-associated symbionts of the mountain-habitat specialist Pycna repanda using integrated methods. The bacterial communities among different gut tissues and those of bacteriomes of males and females both show similarity, whereas differences are exhibited among bacterial communities in testes and ovaries. The primary symbionts "Candidatus Sulcia muelleri" (hereafter "Ca Sulcia") and "Candidatus Hodgkinia cicadicola" (hereafter "Ca Hodgkinia") were not only restricted to but also dominant in the bacteriomes and ovaries. "Ca Hodgkinia" cells in the bacteriomes of both sexes exhibited different colors by histological and electron microscopy. Also considering the results of a restriction fragment length polymorphism (RFLP)-based cloning approach, we hypothesize that "Ca Hodgkinia" may have split into cytologically different cellular lineages within this cicada species. Regarding the dominant secondary symbionts, Rickettsia was detected in the salivary glands, digestive organs, and testes, whereas Arsenophonus was detected in the bacteriomes and ovaries. Our results show that Arsenophonus can coexist with "Ca Sulcia" and "Ca Hodgkinia" within bacteriomes and can be transovarially transmitted with these obligate symbionts together from mother to offspring in cicadas, but it is not harbored in the cytoplasm of "Ca Sulcia." The change in the shape of "Ca Sulcia" and "Ca Hodgkinia" during the transovarial transmission process is hypothesized to be related to the limited space and novel microenvironment.IMPORTANCE Cicadas establish an intimate symbiosis with microorganisms to obtain essential nutrients that are extremely deficient in host plant sap. Previous studies on bacterial communities of cicadas mainly focused on a few widely distributed species, but knowledge about mountain-habitat species is quite poor. We initially revealed the physical distribution of the primary symbionts "Ca Sulcia" and "Ca Hodgkinia" and the dominant secondary symbionts Rickettsia and Arsenophonus in the mountain-habitat specialist Pycna repanda and then clarified the transovarial transmission process of bacteriome-associated symbionts in this species. Our observations suggest that "Ca Hodgkinia" may have split into cytologically distinct lineages within this cicada species, and related cicadas might have developed complex mechanisms for the vertical transmission of the bacteriome-associated symbionts. We also revealed that Arsenophonus can be transovarially transmitted in auchenorrhynchan insects when it is not harbored in the cytoplasm of other endosymbionts. Our results highlight transovarial transmission mechanisms of bacteriome-associated symbionts in sap-feeding insects.
Collapse
|
22
|
Burkholderia insecticola triggers midgut closure in the bean bug Riptortus pedestris to prevent secondary bacterial infections of midgut crypts. ISME JOURNAL 2020; 14:1627-1638. [PMID: 32203122 DOI: 10.1038/s41396-020-0633-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 03/03/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023]
Abstract
In addition to abiotic triggers, biotic factors such as microbial symbionts can alter development of multicellular organisms. Symbiont-mediated morphogenesis is well-investigated in plants and marine invertebrates but rarely in insects despite the enormous diversity of insect-microbe symbioses. The bean bug Riptortus pedestris is associated with Burkholderia insecticola which are acquired from the environmental soil and housed in midgut crypts. To sort symbionts from soil microbiota, the bean bug develops a specific organ called the "constricted region" (CR), a narrow and symbiont-selective channel, located in the midgut immediately upstream of the crypt-bearing region. In this study, inoculation of fluorescent protein-labeled symbionts followed by spatiotemporal microscopic observations revealed that after the initial passage of symbionts through the CR, it closes within 12-18 h, blocking any potential subsequent infection events. The "midgut closure" developmental response was irreversible, even after symbiont removal from the crypts by antibiotics. It never occurred in aposymbiotic insects, nor in insects infected with nonsymbiotic bacteria or B. insecticola mutants unable to cross the CR. However, species of the genus Burkholderia and its outgroup Pandoraea that can pass the CR and partially colonize the midgut crypts induce the morphological alteration, suggesting that the molecular trigger signaling the midgut closure is conserved in this bacterial lineage. We propose that this drastic and quick alteration of the midgut morphology in response to symbiont infection is a mechanism for stabilizing the insect-microbe gut symbiosis and contributes to host-symbiont specificity in a symbiosis without vertical transmission.
Collapse
|
23
|
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett 2020; 366:5637388. [PMID: 31750894 DOI: 10.1093/femsle/fnz232] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation and antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here, we review both environmental and biological factors modulating Wolbachia titers in arthropods.
Collapse
Affiliation(s)
| | - Elves H Duarte
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande, 6. 2780-156 Oeiras, Portugal.,Departamento de Ciências e Tecnologia, Universidade de Cabo Verde. Palmarejo, CP 279 - Praia, Cabo Verde
| |
Collapse
|
24
|
Abstract
Endosymbiosis is found in all types of ecosystems and it can be sensitive to environmental changes due to the intimate interaction between the endosymbiont and the host. Indeed, global climate change disturbs the local ambient environment and threatens endosymbiotic species, and in some cases leads to local ecosystem collapse. Recent studies have revealed that the endosymbiont can affect holobiont (endosymbiont and host together) stress tolerance as much as the host does, and manipulation of the microbial partners in holobionts may mitigate the impacts of the environmental stress. Here, we first show how the endosymbiont presence affects holobiont stress tolerance by discussing three well-studied endosymbiotic systems, which include plant-fungi, aquatic organism-algae, and insect-bacteria systems. We then review how holobionts are able to alter their stress tolerance via associated endosymbionts by changing their endosymbiont composition, by adaptation of their endosymbionts, or by acclimation of their endosymbionts. Finally, we discuss how different transmission modes (vertical or horizontal transmission) might affect the adaptability of holobionts. We propose that the endosymbiont is a good target for modifying holobiont stress tolerance, which makes it critical to more fully investigate the role of endosymbionts in the adaptive responses of holobionts to stress.
Collapse
|
25
|
Kuechler SM, Fukatsu T, Matsuura Y. Repeated evolution of bacteriocytes in lygaeoid stinkbugs. Environ Microbiol 2019; 21:4378-4394. [PMID: 31573127 DOI: 10.1111/1462-2920.14804] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
Abstract
Host-microbe symbioses often evolved highly complex developmental processes and colonization mechanisms for establishment of stable associations. It has long been recognized that many insects harbour beneficial bacteria inside specific symbiotic cells (bacteriocytes) or organs (bacteriomes). However, the evolutionary origin and mechanisms underlying bacterial colonization in bacteriocyte/bacteriome formation have been poorly understood. In order to uncover the origin of such evolutionary novelties, we studied the development of symbiotic organs in five stinkbug species representing the superfamily Lygaeoidea in which diverse bacteriocyte/bacteriome systems have evolved. We tracked the symbiont movement within the eggs during the embryonic development and determined crucial stages at which symbiont infection and bacteriocyte formation occur, using whole-mount fluorescence in situ hybridization. In summary, three distinct developmental patterns were observed: two different modes of symbiont transfer from initial symbiont cluster (symbiont ball) to presumptive bacteriocytes in the embryonic abdomen, and direct incorporation of the symbiont ball without translocation of bacterial cells. Across the host taxa, only closely related species seemed to have evolved relatively conserved types of bacteriome development, suggesting repeated evolution of host symbiotic cells and organs from multiple independent origins.
Collapse
Affiliation(s)
- Stefan Martin Kuechler
- Department of Animal Ecology II, University of Bayreuth, Bayreuth, Germany.,Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yu Matsuura
- Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
26
|
Hammer TJ, Sanders JG, Fierer N. Not all animals need a microbiome. FEMS Microbiol Lett 2019; 366:5499024. [DOI: 10.1093/femsle/fnz117] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/25/2019] [Indexed: 02/07/2023] Open
Abstract
ABSTRACTIt is often taken for granted that all animals host and depend upon a microbiome, yet this has only been shown for a small proportion of species. We propose that animals span a continuum of reliance on microbial symbionts. At one end are the famously symbiont-dependent species such as aphids, humans, corals and cows, in which microbes are abundant and important to host fitness. In the middle are species that may tolerate some microbial colonization but are only minimally or facultatively dependent. At the other end are species that lack beneficial symbionts altogether. While their existence may seem improbable, animals are capable of limiting microbial growth in and on their bodies, and a microbially independent lifestyle may be favored by selection under some circumstances. There is already evidence for several ‘microbiome-free’ lineages that represent distantly related branches in the animal phylogeny. We discuss why these animals have received such little attention, highlighting the potential for contaminants, transients, and parasites to masquerade as beneficial symbionts. We also suggest ways to explore microbiomes that address the limitations of DNA sequencing. We call for further research on microbiome-free taxa to provide a more complete understanding of the ecology and evolution of macrobe-microbe interactions.
Collapse
Affiliation(s)
- Tobin J Hammer
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, NMS 4.216, Austin, TX 78712, USA
| | - Jon G Sanders
- Cornell Institute of Host–Microbe Interactions and Disease, Cornell University, E145 Corson Hall, Ithaca, NY 14853, USA
| | - Noah Fierer
- Department of Ecology & Evolutionary Biology, University of Colorado at Boulder, 216 UCB, Boulder, CO 80309, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado at Boulder, CIRES Bldg. Rm. 318, Boulder, CO 80309, USA
| |
Collapse
|