1
|
Godwin J, Shah DM. Evaluating In Vivo Translation Inhibition via Puromycin Labeling in Botrytis cinerea Germlings Treated With Antifungal Peptides. Bio Protoc 2025; 15:e5250. [PMID: 40395850 PMCID: PMC12086312 DOI: 10.21769/bioprotoc.5250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 05/22/2025] Open
Abstract
Antimicrobial peptides are effective agents against various pathogens, often targeting essential processes like protein translation to exert their antimicrobial effects. Traditional methods such as puromycin labeling have been extensively used to measure protein synthesis in mammalian and yeast systems; however, protocols tailored for plant pathogenic filamentous fungi, particularly those investigating translation inhibition by antifungal peptides, are lacking. This protocol adapts puromycin labeling to quantify translation inhibition in Botrytis cinerea germlings treated with antifungal peptides. Optimizing the method specifically for fungal germlings provides a precise tool to investigate peptide effects on fungal protein synthesis, advancing our understanding of translation dynamics during pathogen-host interactions in filamentous fungi. Key features • This protocol is designed for in vivo experiments, enabling the estimation of protein translation inhibition by antifungal peptides in Botrytis cinerea. • It is optimized for antifungal peptides capable of penetrating fungal cells and inhibiting translation, making it applicable to other filamentous fungal pathogens. • The protocol is ideal for laboratories utilizing traditional western blotting techniques, ensuring accessibility and ease of implementation. • This protocol for in vivo application in filamentous fungi is adapted from the SUnSET method [1]. Graphical overview.
Collapse
Affiliation(s)
- James Godwin
- Donald Danforth Plant Science Center, St Louis, MO, USA
| | - Dilip M. Shah
- Donald Danforth Plant Science Center, St Louis, MO, USA
| |
Collapse
|
2
|
Goich D, Bloom ALM, Duffy SR, Ventura MN, Panepinto JC. Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress. mBio 2025; 16:e0176224. [PMID: 39670714 PMCID: PMC11796416 DOI: 10.1128/mbio.01762-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024] Open
Abstract
The fungus Cryptococcus neoformans is an opportunistic pathogen of humans that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.IMPORTANCECryptococcus neoformans is an opportunistic pathogen of humans that causes deadly cryptococcal meningitis, which is is responsible for an estimated 19% of AIDS-related mortality. When left untreated, cryptococcal meningitis is uniformly fatal, and in patients receiving the most effective antifungal regimens, mortality remains high. Thus, there is a critical need to identify additional targets that play a role in the adaptation to the human host and virulence. This study explores the role of the stress response kinases Hog1 and Gcn2 in thermoadaptation, which is a pre-requisite for virulence. Our results show that compensatory signaling occurs via the Gcn2 pathway when Hog1 is deleted, and that disruption of both pathways increases sensitivity to thermal stress. Importantly, our study highlights the insufficiency of using single-gene deletion mutants to study gene function, since many phenotypes associated with Hog1 deletion were driven by Gcn2 signaling in this background, rather than loss of direct Hog1 activity.
Collapse
Affiliation(s)
- David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Sean R. Duffy
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Maritza N. Ventura
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
3
|
Chantanaskul T, Patumcharoenpol P, Roytrakul S, Kingkaw A, Vongsangnak W. Exploring Protein Functions of Gut Bacteriome and Mycobiome in Thai Infants Associated with Atopic Dermatitis Through Metaproteomic and Host Interaction Analysis. Int J Mol Sci 2024; 25:13533. [PMID: 39769296 PMCID: PMC11676981 DOI: 10.3390/ijms252413533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Atopic dermatitis (AD), a prevalent allergic skin condition in children, has been closely associated with imbalances in the gut microbiome. To investigate these microbial alterations and their functional implications, we investigated protein expression, functions and interactions of the gut bacteriome and mycobiome as well as the human proteome in Thai infants with AD using integrative metaproteomic and host interaction analysis. As we observed, probiotic species, such as Lactobacillus acidophilus and Bacteroides salyersiae, were reduced in abundance in the AD group while key pathogenic bacteria and fungi, such as Streptococcus constellatus and Penicillium chrysogenum, increased in abundance. Additionally, the functional analysis of expressed proteins was enriched in response to stress and DNA repair in the bacteriome and ribosome biogenesis-related processes in the mycobiome of the AD group, potentially associated to increased reactive oxygen species (ROS), intestinal inflammation, fungal growth and microbial dysbiosis. Further, a protein-protein interactions (PPIs) network analysis incorporating the human proteome revealed 10 signature proteins related to stress and immune system processes associated with AD. Our findings propose the interactions of the key species and signature protein functions between the gut microbes and the human host in response to AD in Thai infants. To our knowledge, this study serves as the first framework for monitoring bacteriome-mycobiome-human gut studies associated with AD and other allergic diseases in infants.
Collapse
Affiliation(s)
- Thanawit Chantanaskul
- Genetic Engineering and Bioinformatics Program, Graduate School, Kasetsart University, Bangkok 10900, Thailand;
| | | | - Sittirak Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, 144 Thailand Science Park, Phaholyothin Road, Pathum Thani 12120, Thailand;
| | - Amornthep Kingkaw
- Interdisciplinary Graduate Program in Bioscience, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Wanwipa Vongsangnak
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
4
|
Rai MN, Lan Q, Parsania C, Rai R, Shirgaonkar N, Chen R, Shen L, Tan K, Wong KH. Temporal transcriptional response of Candida glabrata during macrophage infection reveals a multifaceted transcriptional regulator CgXbp1 important for macrophage response and fluconazole resistance. eLife 2024; 13:e73832. [PMID: 39356739 PMCID: PMC11554308 DOI: 10.7554/elife.73832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/01/2024] [Indexed: 10/04/2024] Open
Abstract
Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata's survival in macrophages and drug tolerance.
Collapse
Affiliation(s)
| | - Qing Lan
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Rikky Rai
- Faculty of Health Sciences, University of MacauTaipaChina
| | | | - Ruiwen Chen
- Faculty of Health Sciences, University of MacauTaipaChina
| | - Li Shen
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Kaeling Tan
- Faculty of Health Sciences, University of MacauTaipaChina
- Gene Expression, Genomics and Bioinformatics Core, Faculty of Health Sciences, University of MacauTaipaChina
| | - Koon Ho Wong
- Faculty of Health Sciences, University of MacauTaipaChina
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau,Avenida da UniversidadeTaipaChina
- MoE Frontiers Science Center for Precision Oncology, University of MacauTaipaChina
| |
Collapse
|
5
|
Ball B, Sukumaran A, Pladwig S, Kazi S, Chan N, Honeywell E, Modrakova M, Geddes-McAlister J. Proteome signatures reveal homeostatic and adaptive oxidative responses by a putative co-chaperone, Wos2, to influence fungal virulence determinants in cryptococcosis. Microbiol Spectr 2024; 12:e0015224. [PMID: 38953322 PMCID: PMC11302251 DOI: 10.1128/spectrum.00152-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
The increasing prevalence of invasive fungal pathogens is dramatically changing the clinical landscape of infectious diseases, posing an imminent threat to public health. Specifically, Cryptococcus neoformans, the human opportunistic pathogen, expresses elaborate virulence mechanisms and is equipped with sophisticated adaptation strategies to survive in harsh host environments. This study extensively characterizes Wos2, an Hsp90 co-chaperone homolog, featuring bilateral functioning for both cryptococcal adaptation and the resulting virulence response. In this study, we evaluated the proteome and secretome signatures associated with wos2 deletion in enriched and infection-mimicking conditions to reveal Wos2-dependent regulation of the oxidative stress response through global translational reprogramming. The wos2Δ strain demonstrates defective intracellular and extracellular antioxidant protection systems, measurable through a decreased abundance of critical antioxidant enzymes and reduced growth in the presence of peroxide stress. Additional Wos2-associated stress phenotypes were observed upon fungal challenge with heat shock, osmotic stress, and cell membrane stressors. We demonstrate the importance of Wos2 for intracellular lifestyle of C. neoformans during in vitro macrophage infection and provide evidence for reduced phagosomal replication levels associated with wos2Δ. Accordingly, wos2Δ featured significantly reduced virulence within impacting fungal burden in a murine model of cryptococcosis. Our study highlights a vulnerable point in the fungal chaperone network that offers a therapeutic opportunity to interfere with both fungal virulence and fitness.IMPORTANCEThe global impact of fungal pathogens, both emerging and emerged, is undeniable, and the alarming increase in antifungal resistance rates hampers our ability to protect the global population from deadly infections. For cryptococcal infections, a limited arsenal of antifungals and increasing rates of resistance demand alternative therapeutic strategies, including an anti-virulence approach, which disarms the pathogen of critical virulence factors, empowering the host to remove the pathogens and clear the infection. To this end, we apply state-of-the-art mass spectrometry-based proteomics to evaluate the impact of a recently defined novel co-chaperone, Wos2, toward cryptococcal virulence using in vitro and in vivo models of infection. We explore global proteome and secretome remodeling driven by the protein and uncover the novel role in modulating the fungal oxidative stress response. Complementation of proteome findings with in vitro infectivity assays demonstrated the protective role of Wos2 within the macrophage phagosome, influencing fungal replication and survival. These results underscore differential cryptococcal survivability and weakened patterns of dissemination in the absence of wos2. Overall, our study establishes Wos2 as an important contributor to fungal pathogenesis and warrants further research into critical proteins within global stress response networks as potential druggable targets to reduce fungal virulence and clear infection.
Collapse
Affiliation(s)
- Brianna Ball
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Arjun Sukumaran
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samanta Pladwig
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Samiha Kazi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Norris Chan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Effie Honeywell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Manuela Modrakova
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
6
|
Goich D, Bloom ALM, Duffy SR, Ventura MN, Panepinto JC. Gcn2 rescues reprogramming in the absence of Hog1/p38 signaling in C. neoformans during thermal stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598457. [PMID: 38915642 PMCID: PMC11195226 DOI: 10.1101/2024.06.11.598457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The fungus Cryptococcus neoformans is an opportunistic pathogen of people that reprograms its translatome to facilitate adaptation and virulence within the host. We studied the role of Hog1/p38 in reprogramming translation during thermal stress adaptation, and found that this pathway acts on translation via crosstalk with the Gcn2 pathway, a well-studied regulator of general translation control. Using a combination of molecular assays and phenotypic analysis, we show that increased output from the Gcn2 pathway in a Hog1 deletion mutant is associated with rescue of thermal stress adaptation at both molecular and phenotypic scales. We characterize known outputs of the Hog1 pathway during thermal stress as either Gcn2-dependent or Gcn2-independent, and demonstrate that Hog1 activation regulates the Gcn2 pathway even in the absence of thermal stress. Finally, we implicate this phenomenon in another Hog1-regulated process, morphogenesis, and recapitulate Hog1-Gcn2 crosstalk in the distantly related fungal pathogen, Candida albicans. Our results point to an important link between the stress response machinery and translation control, and clarify the etiology of phenotypes associated with Hog1 deletion. More broadly, this study highlights complex interplay between core conserved signal transduction pathways and the utility of molecular assays to better understand how these pathways are connected.
Collapse
Affiliation(s)
- David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Sean R. Duffy
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Maritza N. Ventura
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
7
|
dos Santos JV, Medina JM, Dias Teixeira KL, Agostinho DMJ, Chorev M, Diotallevi A, Galluzzi L, Aktas BH, Gazos Lopes U. Activity of the Di-Substituted Urea-Derived Compound I-17 in Leishmania In Vitro Infections. Pathogens 2024; 13:104. [PMID: 38392842 PMCID: PMC10893125 DOI: 10.3390/pathogens13020104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.
Collapse
Affiliation(s)
- José Vitorino dos Santos
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| | - Jorge Mansur Medina
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| | | | - Daniel Marcos Julio Agostinho
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| | - Michael Chorev
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Aurora Diotallevi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.D.)
| | - Luca Galluzzi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (A.D.)
| | - Bertal Huseyin Aktas
- Division of Hematology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Ulisses Gazos Lopes
- Laboratory of Molecular Parasitology, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (J.V.d.S.); (J.M.M.); (D.M.J.A.)
| |
Collapse
|
8
|
Knowles CM, Goich D, Bloom ALM, Kalem MC, Panepinto JC. Contributions of Ccr4 and Gcn2 to the Translational Response of C. neoformans to Host-Relevant Stressors and Integrated Stress Response Induction. mBio 2023; 14:e0019623. [PMID: 37017529 PMCID: PMC10127693 DOI: 10.1128/mbio.00196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/06/2023] [Indexed: 04/06/2023] Open
Abstract
In response to the host environment, the human pathogen Cryptococcus neoformans must rapidly reprogram its translatome from one which promotes growth to one which is responsive to host stress. In this study, we investigate the two events which comprise translatome reprogramming: the removal of abundant, pro-growth mRNAs from the translating pool, and the regulated entry of stress-responsive mRNAs into the translating pool. Removal of pro-growth mRNAs from the translating pool is controlled primarily by two regulatory mechanisms, repression of translation initiation via Gcn2, and decay mediated by Ccr4. We determined that translatome reprogramming in response to oxidative stress requires both Gcn2 and Ccr4, whereas the response to temperature requires only Ccr4. Additionally, we assessed ribosome collision in response to host-relevant stress and found that collided ribosomes accumulated during temperature stress but not during oxidative stress. The phosphorylation of eIF2α that occurred as a result of translational stress led us to investigate the induction of the integrated stress response (ISR). We found that eIF2α phosphorylation varied in response to the type and magnitude of stress, yet all tested conditions induced translation of the ISR transcription factor Gcn4. However, Gcn4 translation did not necessarily result in canonical Gcn4-dependent transcription. Finally, we define the ISR regulon in response to oxidative stress. In conclusion, this study begins to reveal the translational regulation in response to host-relevant stressors in an environmental fungus which is capable of adapting to the environment inside the human host. IMPORTANCE Cryptococcus neoformans is a human pathogen capable of causing devastating infections. It must rapidly adapt to changing environments as it leaves its niche in the soil and enters the human lung. Previous work has demonstrated a need to reprogram gene expression at the level of translation to promote stress adaptation. In this work, we investigate the contributions and interplay of the major mechanisms that regulate entry of new mRNAs into the pool (translation initiation) and the clearance of unneeded mRNAs from the pool (mRNA decay). One result of this reprogramming is the induction of the integrated stress response (ISR) regulon. Surprisingly, all stresses tested led to the production of the ISR transcription factor Gcn4, but not necessarily to transcription of ISR target genes. Furthermore, stresses result in differential levels of ribosome collisions, but these are not necessarily predictive of initiation repression as has been suggested in the model yeast.
Collapse
Affiliation(s)
- Corey M. Knowles
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - David Goich
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Amanda L. M. Bloom
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Murat C. Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
de Almeida Campos L, Fin MT, Santos KS, de Lima Gualque MW, Freire Cabral AKL, Khalil NM, Fusco-Almeida AM, Mainardes RM, Mendes-Giannini MJS. Nanotechnology-Based Approaches for Voriconazole Delivery Applied to Invasive Fungal Infections. Pharmaceutics 2023; 15:pharmaceutics15010266. [PMID: 36678893 PMCID: PMC9863752 DOI: 10.3390/pharmaceutics15010266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/15/2023] Open
Abstract
Invasive fungal infections increase mortality and morbidity rates worldwide. The treatment of these infections is still limited due to the low bioavailability and toxicity, requiring therapeutic monitoring, especially in the most severe cases. Voriconazole is an azole widely used to treat invasive aspergillosis, other hyaline molds, many dematiaceous molds, Candida spp., including those resistant to fluconazole, and for infections caused by endemic mycoses, in addition to those that occur in the central nervous system. However, despite its broad activity, using voriconazole has limitations related to its non-linear pharmacokinetics, leading to supratherapeutic doses and increased toxicity according to individual polymorphisms during its metabolism. In this sense, nanotechnology-based drug delivery systems have successfully improved the physicochemical and biological aspects of different classes of drugs, including antifungals. In this review, we highlighted recent work that has applied nanotechnology to deliver voriconazole. These systems allowed increased permeation and deposition of voriconazole in target tissues from a controlled and sustained release in different routes of administration such as ocular, pulmonary, oral, topical, and parenteral. Thus, nanotechnology application aiming to delivery voriconazole becomes a more effective and safer therapeutic alternative in the treatment of fungal infections.
Collapse
Affiliation(s)
- Laís de Almeida Campos
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Margani Taise Fin
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Kelvin Sousa Santos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Marcos William de Lima Gualque
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Ana Karla Lima Freire Cabral
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Najeh Maissar Khalil
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
| | - Ana Marisa Fusco-Almeida
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
| | - Rubiana Mara Mainardes
- Pharmaceutical Nanotechnology Laboratory, Department of Pharmacy, Midwest State University (UNICENTRO), Alameda Élio Antonio Dalla Vecchia St, 838, Guarapuava 85040-167, PR, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| | - Maria José Soares Mendes-Giannini
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Rodovia Araraquara Jaú, Km 01, Araraquara 14801-902, SP, Brazil
- Correspondence: (R.M.M.); (M.J.S.M.-G.)
| |
Collapse
|
10
|
The Dynamics of Cryptococcus neoformans Cell and Transcriptional Remodeling during Infection. Cells 2022; 11:cells11233896. [PMID: 36497155 PMCID: PMC9740611 DOI: 10.3390/cells11233896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The phenotypic plasticity of Cryptococcus neoformans is widely studied and demonstrated in vitro, but its influence on pathogenicity remains unclear. In this study, we investigated the dynamics of cryptococcal cell and transcriptional remodeling during pulmonary infection in a murine model. We showed that in Cryptococcus neoformans, cell size reduction (cell body ≤ 3 µm) is important for initial adaptation during infection. This change was associated with reproductive fitness and tissue invasion. Subsequently, the fungus develops mechanisms aimed at resistance to the host’s immune response, which is determinant for virulence. We investigated the transcriptional changes involved in this cellular remodeling and found an upregulation of transcripts related to ribosome biogenesis at the beginning (6 h) of infection and a later (10 days) upregulation of transcripts involved in the inositol pathway, energy production, and the proteasome. Consistent with a role for the proteasome, we found that its inhibition delayed cell remodeling during infection with the H99 strain. Altogether, these results further our understanding of the infection biology of C. neoformans and provide perspectives to support therapeutic and diagnostic targets for cryptococcosis.
Collapse
|
11
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
12
|
RNase Z Oxidative Degradation Impedes tRNA Maturation and is Involved in Streptococcal Translation Regulation in Response to Oxidative Stress. Microbiol Spectr 2021; 9:e0116721. [PMID: 34704809 PMCID: PMC8549757 DOI: 10.1128/spectrum.01167-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
When encountering oxidative stress, organisms selectively upregulate antioxidant genes and simultaneously suppress the translation of most other proteins. Eukaryotes employ multiple strategies to adjust translation at both the initiation and elongation stages; however, how prokaryotes modulate translation under oxidative stress remains unclear. Here, we report that upon hydrogen peroxide (H2O2) challenge, Streptococcus oligofermentans reduced translation via RNase Z (So-RNaseZ) oxidative degradation, thus hindering tRNA maturation. S. oligofermentans encodes all CCA-less tRNAs that require So-RNaseZ for 3′ end maturation. A combination of nonreducing SDS-PAGE and liquid chromatography/tandem mass spectrometry (LC/MS-MS) assays demonstrated that H2O2 oxidation induced Cys38-Cys149 disulfide linkages in recombinant So-RNaseZ protein, and serine substitution of Cys38 or Cys149 abolished these disulfide linkages. Consistently, redox Western blotting also determined intramolecular disulfide-linked So-RNaseZ in H2O2-treated S. oligofermentans cells. The disulfide-linked So-RNaseZ and monomer were both subject to proteolysis, whereas C149S mutation alleviated oxidative degradation of So-RNaseZ, suggesting that H2O2-mediated disulfide linkages substantially contributed to So-RNaseZ degradation. Accordingly, Northern blotting determined that tRNA precursor accumulation and mature tRNA species decrease in H2O2-treated S. oligofermentans. Moreover, reduced overall protein synthesis, as indicated by puromycin incorporation, and retarded growth of S. oligofermentans occurred in an H2O2 concentration-dependent manner. Overexpression of So-RNaseZ not only elevated tRNA precursor processing and protein synthesis but also partly rescued H2O2-suppressed S. oligofermentans growth. Moreover, So-RNaseZ oxidative degradation-mediated translation repression elevated S. oligofermentans survival under high H2O2 stress. Therefore, this work found that So-RNaseZ oxidative degradation-impeded tRNA maturation contributes to streptococcal translation repression and provides the oxidative stress adaptability for S. oligofermentans. IMPORTANCE Translation regulation is a common strategy used by organisms to reduce oxidative damage. Catalase-negative streptococci produce as well as tolerate high levels of H2O2. This work reports a novel translation regulation mechanism employed by Streptococcus oligofermentans in response to H2O2 challenge, in which the key tRNA endonuclease So-RNaseZ is oxidized to form Cys38-Cys149 disulfide linkages and both the disulfide-linked So-RNaseZ and monomers are subject to proteolysis; thus, tRNA maturation, protein translation, and growth are all suppressed. Notably, So-RNaseZ oxidative degradation-mediated translation repression offers oxidative adaptability to S. oligofermentans and enhances its survival against high H2O2 challenge. So-RNaseZ orthologs and H2O2-sensitive cysteines (Cys38 and Cys149) are widely distributed in Streptococcus and Lactococcus species genomes, which also encode all CCA-less tRNAs and lack catalase. Therefore, RNase Z oxidative degradation-based translation regulation could be widely employed by these lactic acid bacteria, including pathogenic streptococci, to cope with H2O2.
Collapse
|
13
|
Bhalla M, Heinzinger LR, Morenikeji OB, Marzullo B, Thomas BN, Bou Ghanem EN. Transcriptome Profiling Reveals CD73 and Age-Driven Changes in Neutrophil Responses against Streptococcus pneumoniae. Infect Immun 2021; 89:e0025821. [PMID: 34310891 PMCID: PMC8519284 DOI: 10.1128/iai.00258-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/15/2021] [Indexed: 11/20/2022] Open
Abstract
Neutrophils are required for host resistance against Streptococcus pneumoniae, but their function declines with age. We previously found that CD73, an enzyme required for antimicrobial activity, is downregulated in neutrophils (also known as polymorphonuclear leukocytes [PMNs]) from aged mice. This study explored transcriptional changes in neutrophils induced by S. pneumoniae to identify pathways controlled by CD73 and dysregulated with age. Pure bone marrow-derived neutrophils isolated from wild-type (WT) young and old and CD73 knockout (CD73KO) young mice were mock challenged or infected with S. pneumoniae ex vivo. RNA sequencing (RNA-Seq) was performed to identify differentially expressed genes (DEGs). We found that infection triggered distinct global transcriptional changes across hosts that were strongest in CD73KO neutrophils. Surprisingly, there were more downregulated than upregulated genes in all groups upon infection. Downregulated DEGs indicated a dampening of immune responses in old and CD73KO hosts. Further analysis revealed that CD73KO neutrophils expressed higher numbers of long noncoding RNAs (lncRNAs) than those in WT controls. Predicted network analysis indicated that CD73KO-specific lncRNAs control several signaling pathways. We found that genes in the c-Jun N-terminal kinase (JNK)-mitogen-activated protein kinase (MAPK) pathway were upregulated upon infection in CD73KO mice and in WT old mice, but not in WT young mice. This corresponded to functional differences, as phosphorylation of the downstream AP-1 transcription factor component c-Jun was significantly higher in neutrophils from infected CD73KO mice and old mice. Importantly, inhibition of JNK/AP-1 rescued the ability of these neutrophils to kill S. pneumoniae. Together, our findings revealed that the ability of neutrophils to modify their gene expression to better adapt to bacterial infection is in part regulated by CD73 and declines with age.
Collapse
Affiliation(s)
- Manmeet Bhalla
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | - Lauren R. Heinzinger
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| | - Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, New York, USA
- Division of Biological and Health Sciences, University of Pittsburgh–Bradford, Bradford, Pennsylvania, USA
| | - Brandon Marzullo
- Department of Biochemistry and Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, New York, USA
| | - Elsa N. Bou Ghanem
- Department of Microbiology and Immunology, State University of New York at Buffalo School of Medicine, Buffalo, New York, USA
| |
Collapse
|
14
|
Rana A, Gupta N, Thakur A. Post-transcriptional and translational control of the morphology and virulence in human fungal pathogens. Mol Aspects Med 2021; 81:101017. [PMID: 34497025 DOI: 10.1016/j.mam.2021.101017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
Host-pathogen interactions at the molecular level are the key to fungal pathogenesis. Fungal pathogens utilize several mechanisms such as adhesion, invasion, phenotype switching and metabolic adaptations, to survive in the host environment and respond. Post-transcriptional and translational regulations have emerged as key regulatory mechanisms ensuring the virulence and survival of fungal pathogens. Through these regulations, fungal pathogens effectively alter their protein pool, respond to various stress, and undergo morphogenesis, leading to efficient and comprehensive changes in fungal physiology. The regulation of virulence through post-transcriptional and translational regulatory mechanisms is mediated through mRNA elements (cis factors) or effector molecules (trans factors). The untranslated regions upstream and downstream of the mRNA, as well as various RNA-binding proteins involved in translation initiation or circularization of the mRNA, play pivotal roles in the regulation of morphology and virulence by influencing protein synthesis, protein isoforms, and mRNA stability. Therefore, post-transcriptional and translational mechanisms regulating the morphology, virulence and drug-resistance processes in fungal pathogens can be the target for new therapeutics. With improved "omics" technologies, these regulatory mechanisms are increasingly coming to the forefront of basic biology and drug discovery. This review aims to discuss various modes of post-transcriptional and translation regulations, and how these mechanisms exert influence in the virulence and morphogenesis of fungal pathogens.
Collapse
Affiliation(s)
- Aishwarya Rana
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Nidhi Gupta
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India
| | - Anil Thakur
- Regional Centre for Biotechnology, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad 121001, India.
| |
Collapse
|
15
|
Sun T, Li Y, Li Y, Li H, Gong Y, Wu J, Ning Y, Ding C, Xu Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front Cell Infect Microbiol 2021; 11:662404. [PMID: 34485169 PMCID: PMC8415117 DOI: 10.3389/fcimb.2021.662404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingxing Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Hailong Li
- National Health Commission Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiyi Gong
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jianqiang Wu
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yating Ning
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
16
|
Mundodi V, Choudhary S, Smith AD, Kadosh D. Global translational landscape of the Candida albicans morphological transition. G3-GENES GENOMES GENETICS 2021; 11:6046988. [PMID: 33585865 PMCID: PMC7849906 DOI: 10.1093/g3journal/jkaa043] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022]
Abstract
Candida albicans, a major human fungal pathogen associated with high mortality and/or morbidity rates in a wide variety of immunocompromised individuals, undergoes a reversible morphological transition from yeast to filamentous cells that is required for virulence. While previous studies have identified and characterized global transcriptional mechanisms important for driving this transition, as well as other virulence properties, in C. albicans and other pathogens, considerably little is known about the role of genome-wide translational mechanisms. Using ribosome profiling, we report the first global translational profile associated with C. albicans morphogenesis. Strikingly, many genes involved in pathogenesis, filamentation, and the response to stress show reduced translational efficiency (TE). Several of these genes are known to be strongly induced at the transcriptional level, suggesting that a translational fine-tuning mechanism is in place. We also identify potential upstream open reading frames (uORFs), associated with genes involved in pathogenesis, and novel ORFs, several of which show altered TE during filamentation. Using a novel bioinformatics method for global analysis of ribosome pausing that will be applicable to a wide variety of genetic systems, we demonstrate an enrichment of ribosome pausing sites in C. albicans genes associated with protein synthesis and cell wall functions. Altogether, our results suggest that the C. albicans morphological transition, and most likely additional virulence processes in fungal pathogens, is associated with widespread global alterations in TE that do not simply reflect changes in transcript levels. These alterations affect the expression of many genes associated with processes essential for virulence and pathogenesis.
Collapse
Affiliation(s)
- Vasanthakrishna Mundodi
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Saket Choudhary
- Department of Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew D Smith
- Department of Computational Biology and Bioinformatics, University of Southern California, Los Angeles, CA 90089, USA
| | - David Kadosh
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
17
|
Bosch C, Bhana Z, Toplis B, Volschenk H, Botha A. Transcriptomic response of Cryptococcus neoformans to ecologically relevant nitrogen concentrations. FEMS Yeast Res 2021; 21:6249451. [PMID: 33893798 DOI: 10.1093/femsyr/foab028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/22/2021] [Indexed: 11/12/2022] Open
Abstract
Nitrogen availability is vital for the growth and survival of Cryptococcus neoformans in the natural environment. Two major ecological reservoirs were previously described for C. neoformans, namely, pigeon guano and the woody debris of various tree species. In contrast to the abundance of available nitrogen in guano, C. neoformans must adapt to severely limited nitrogen conditions within arboreal ecological niches. Previously, we demonstrated the role of nitrogen limitation in the production of cryptococcal virulence factors and drug tolerance. The genetic response underlying this adaptation to nitrogen deficiency, however, remains to be determined. Therefore, in the present study we investigated the transcriptomic response of C. neoformans to ecologically relevant nitrogen concentrations using RNA-sequencing. Our data revealed that low nitrogen conditions modulate the expression of numerous virulence genes in C. neoformans. Among these were, CTR4 and CGP1, which showed highly significant modulation under low nitrogen conditions. Furthermore, data analysis revealed the upregulation of antifungal tolerance-related genes in low nitrogen conditions, including genes involved in ergosterol biosynthetic processes and cell wall integrity. Overall, our findings provide insight into the survival of C. neoformans in nitrogen-poor ecological niches and suggest that pre-adaptation to these conditions may influence the pathobiology of this yeast.
Collapse
Affiliation(s)
- Caylin Bosch
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Zoë Bhana
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Barbra Toplis
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Heinrich Volschenk
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| | - Alfred Botha
- Department of Microbiology, Stellenbosch University, Van der Bijl Street, Stellenbosch, South Africa
| |
Collapse
|
18
|
Stovall AK, Knowles CM, Kalem MC, Panepinto JC. A Conserved Gcn2-Gcn4 Axis Links Methionine Utilization and the Oxidative Stress Response in Cryptococcus neoformans. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:640678. [PMID: 34622246 PMCID: PMC8494424 DOI: 10.3389/ffunb.2021.640678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022]
Abstract
The fungal pathogen Cryptococcus neoformans relies on post-transcriptional mechanisms of gene regulation to adapt to stressors it encounters in the human host, such as oxidative stress and nutrient limitation. The kinase Gcn2 regulates translation in response to stress by phosphorylating the initiation factor eIF2, and it is a crucial factor in withstanding oxidative stress in C. neoformans, and amino acid limitation in many fungal species. However, little is known about the role of Gcn2 in nitrogen limitation in C. neoformans. In this study, we demonstrate that Gcn2 is required for C. neoformans to utilize methionine as a source of nitrogen, and that the presence of methionine as a sole nitrogen source induces eIF2 phosphorylation. The stress imposed by methionine leads to an oxidative stress response at both the levels of transcription and translation, as seen through polysome profiling as well as increased abundance of select oxidative stress response transcripts. The transcription factor Gcn4 is also required for methionine utilization and oxidative stress resistance, and RT-qPCR data suggests that it regulates expression of certain transcripts in response to oxidative stress. The results of this study suggest a connection between nitrogen metabolism and oxidative stress in C. neoformans that is mediated by Gcn4, possibly indicating the presence of a compound stress response in this clinically important fungal pathogen.
Collapse
Affiliation(s)
| | | | | | - John C. Panepinto
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York (SUNY), Buffalo, NY, United States
| |
Collapse
|
19
|
Knowles CM, McIntyre KM, Panepinto JC. Tools for Assessing Translation in Cryptococcus neoformans. J Fungi (Basel) 2021; 7:jof7030159. [PMID: 33668175 PMCID: PMC7995980 DOI: 10.3390/jof7030159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a ubiquitous environmental fungus capable of establishing an infection in a human host. Rapid changes in environments and exposure to the host immune system results in a significant amount of cellular stress, which is effectively combated at the level of translatome reprogramming. Repression of translation following stress allows for the specific reallocation of limited resources. Understanding the mechanisms involved in regulating translation in C. neoformans during host infection is critical in the development of new antifungal drugs. In this review, we discuss the main tools available for assessing changes in translation state and translational output during cellular stress.
Collapse
|
20
|
Puf4 Mediates Post-transcriptional Regulation of Cell Wall Biosynthesis and Caspofungin Resistance in Cryptococcus neoformans. mBio 2021; 12:mBio.03225-20. [PMID: 33436441 PMCID: PMC7844544 DOI: 10.1128/mbio.03225-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The human fungal pathogen Cryptococcus neoformans is intrinsically resistant to the echinocandin antifungal drug caspofungin, which targets the β-1,3-glucan synthase encoded by FKS1 Echinocandins have been on the market for 20 years, yet they are the newest class of antifungal drugs. Analysis of a C. neoformans puf4Δ mutant, lacking the pumilio/FBF RNA binding protein family member Puf4, revealed exacerbated caspofungin resistance. In contrast, overexpression of PUF4 resulted in caspofungin sensitivity. The FKS1 mRNA contains three Puf4-binding elements (PBEs) in its 5' untranslated region. Puf4 binds with specificity to this region of FKS1 The FKS1 mRNA was destabilized in the puf4Δ mutant, and the abundance of the FKS1 mRNA was reduced compared to wild type, suggesting that Puf4 is a positive regulator of FKS1 mRNA stability. In addition to FKS1, the abundance of additional cell wall biosynthesis genes, including chitin synthases (CHS3, CHS4, and CHS6) and deacetylases (CDA1, CDA2, and CDA3) as well as a β-1,6-glucan synthase gene (SKN1), was regulated by Puf4. The use of fluorescent dyes to quantify cell wall components revealed that the puf4Δ mutant had increased chitin content, suggesting a cell wall composition that is less reliant on β-1,3-glucan. Overall, our findings suggest a mechanism by which caspofungin resistance, and more broadly, cell wall biogenesis, is regulated post-transcriptionally by Puf4.IMPORTANCE Cryptococcus neoformans is an environmental fungus that causes pulmonary and central nervous system infections. It is also responsible for 15% of AIDS-related deaths. A significant contributor to the high morbidity and mortality statistics is the lack of safe and effective antifungal therapies, especially in resource-poor settings. Yet, antifungal drug development has stalled in the pharmaceutical industry. Therefore, it is essential to understand the mechanism by which C. neoformans is resistant to caspofungin to design adjunctive therapies to potentiate the drug's activity toward this important pathogen.
Collapse
|
21
|
Song J, Zhou J, Zhang L, Li R. Mitochondria-Mediated Azole Drug Resistance and Fungal Pathogenicity: Opportunities for Therapeutic Development. Microorganisms 2020; 8:E1574. [PMID: 33066090 PMCID: PMC7600254 DOI: 10.3390/microorganisms8101574] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/09/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, the role of mitochondria in pathogenic fungi in terms of azole resistance and fungal pathogenicity has been a rapidly developing field. In this review, we describe the molecular mechanisms by which mitochondria are involved in regulating azole resistance and fungal pathogenicity. Mitochondrial function is involved in the regulation of drug efflux pumps at the transcriptional and posttranslational levels. On the one hand, defects in mitochondrial function can serve as the signal leading to activation of calcium signaling and the pleiotropic drug resistance pathway and, therefore, can globally upregulate the expression of drug efflux pump genes, leading to azole drug resistance. On the other hand, mitochondria also contribute to azole resistance through modulation of drug efflux pump localization and activity. Mitochondria further contribute to azole resistance through participating in iron homeostasis and lipid biosynthesis. Additionally, mitochondrial dynamics play an important role in azole resistance. Meanwhile, mitochondrial morphology is important for fungal virulence, playing roles in growth in stressful conditions in a host. Furthermore, there is a close link between mitochondrial respiration and fungal virulence, and mitochondrial respiration plays an important role in morphogenetic transition, hypoxia adaptation, and cell wall biosynthesis. Finally, we discuss the possibility for targeting mitochondrial factors for the development of antifungal therapies.
Collapse
Affiliation(s)
- Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Jingwen Zhou
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| | - Lei Zhang
- Shandong Provincial Key Laboratory of Infection and Immunity, Jinan 250012, China;
| | - Rongpeng Li
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China;
| |
Collapse
|