1
|
Johura FT, Biswas SR, Rashed SM, Islam MT, Islam S, Sultana M, Watanabe H, Huq A, Thomson NR, Colwell RR, Alam M. Vibrio cholerae O1 El Tor strains linked to global cholera show region-specific patterns by pulsed-field gel electrophoresis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 105:105363. [PMID: 36087684 PMCID: PMC10695325 DOI: 10.1016/j.meegid.2022.105363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Vibrio cholerae O1 El Tor, causative agent of the ongoing seventh cholera pandemic, is native to the aquatic environment of the Ganges Delta, Bay of Bengal (GDBB). Recent studies traced pandemic strains to the GDBB and proposed global spread of cholera had occurred via intercontinental transmission. In the research presented here, NotI-digested genomic DNA extracted from V. cholerae O1 clinical and environmental strains isolated in Bangladesh during 20042014 was analyzed by pulsed-field gel electrophoresis (PFGE). Results of cluster analysis showed 94.67% of the V. cholerae strains belonged to clade A and included the majority of clinical strains of spatio-temporal origin and representing different cholera endemic foci. The rest of the strains were estuarine, all environmental strains from Mathbaria, Bangladesh, and occurred as singletons, clustered in clades B and C, or in the small clades D and E. Cluster analysis of the Bangladeshi strains and including 157 El Tor strains from thirteen countries in Asia, Africa, and the Americas revealed 85% of the total set of strains belonged to clade A, indicating all were related, yet did not form an homogeneous cluster. Overall, 15% of the global strains comprised multiple small clades or segregated as singletons. Three sub-clades could be discerned within the major clade A, reflecting distinct lineages of V. cholerae O1 El Tor associated with cholera in Asia, Africa, and the Americas. The presence in Asia and the Americas of non-pandemic V. cholerae O1 El Tor populations differing by PFGE and from strains associated with cholera globally suggests different ecotypes are resident in distant geographies.
Collapse
Affiliation(s)
- Fatema-Tuz Johura
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sahitya Ranjan Biswas
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Shah M Rashed
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Mohammad Tarequl Islam
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Saiful Islam
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Marzia Sultana
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Haruo Watanabe
- National Institutes of Infectious Diseases (NIID), Tokyo, Japan
| | - Anwar Huq
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rita R Colwell
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Center for Bioinformatics and Computational Biology, University of Maryland Institute of Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA
| | - Munirul Alam
- icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh.
| |
Collapse
|
2
|
Abstract
Since 1817, cholera, caused by Vibrio cholerae, has been characterized by seven distinct pandemics. The ongoing seventh pandemic (7P) began in 1961. In this study, we developed a Multilevel Genome Typing (MGT) tool for classifying the V. cholerae species with a focus on the 7P. MGT is based on multilocus sequence typing (MLST), but the concept has been expanded to include a series of MLST schemes that compare population structure from broad to fine resolutions. The V. cholerae MGT consists of eight levels, with the lowest, MGT1, composed of 7 loci and the highest, MGT8, consisting of the 7P core genome (3,759 loci). We used MGT to analyze 5,771 V. cholerae genomes. The genetic relationships revealed by lower MGT levels recapitulated previous findings of large-scale 7P transmission across the globe. Furthermore, the higher MGT levels provided an increased discriminatory power to differentiate subgroups within a national outbreak. Additionally, we demonstrated the usefulness of MGT for non-7P classification. In a large non-7P MGT1 type, MGT2 and MGT3 described continental and regional distributions, respectively. Finally, MGT described trends of 7P in virulence, and MGT2 to MGT3 sequence types (STs) grouped isolates of the same ctxB, tcpA, and ctxB-tcpA genotypes and characterized their trends over the pandemic. MGT offers a range of resolutions for typing V. cholerae. The MGT nomenclature is stable, transferable, and directly comparable between investigations. The MGT database (https://mgtdb.unsw.edu.au/) can accept and process newly submitted samples. MGT allows tracking of existing and new isolates and will be useful for understanding future spread of cholera. IMPORTANCE In 2017, the World Health Organization launched the “Ending Cholera” initiative to reduce cholera-related deaths by 90% by 2030. This strategy emphasized the importance of the speed and accessibility of newer technologies to contain outbreaks. Here, we present a new tool named Multilevel Genome Typing (MGT), which classifies isolates of the cholera-causing agent, Vibrio cholerae. MGT is a freely available online database that groups genetically similar V. cholerae isolates to quickly indicate the origins of outbreaks. We validated the MGT database retrospectively in an outbreak setting, showcasing rapid confirmation of the Nepalese origins for the 2010 Haiti outbreak. In the past 5 years, thousands of V. cholerae genomes have been submitted to the NCBI database, which underscores the importance of and need for proper genome data classification for cholera epidemiology. The V. cholerae MGT database can assist in early decision making that directly impacts controlling both the local and global spread of cholera.
Collapse
|
3
|
Islam MT, Nasreen T, Kirchberger PC, Liang KYH, Orata FD, Johura FT, Hussain NAS, Im MS, Tarr CL, Alam M, Boucher YF. Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species ( Vibrio paracholerae sp. nov.) with a History of Association with Humans. Appl Environ Microbiol 2021; 87:e0042221. [PMID: 34132593 PMCID: PMC8357300 DOI: 10.1128/aem.00422-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Most efforts to understand the biology of Vibrio cholerae have focused on a single group, the pandemic-generating lineage harboring the strains responsible for all known cholera pandemics. Consequently, little is known about the diversity of this species in its native aquatic environment. To understand the differences in the V. cholerae populations inhabiting regions with a history of cholera cases and those lacking such a history, a comparative analysis of population composition was performed. Little overlap was found in lineage compositions between those in Dhaka, Bangladesh (where cholera is endemic), located in the Ganges Delta, and those in Falmouth, MA (no known history of cholera), a small coastal town on the United States east coast. The most striking difference was the presence of a group of related lineages at high abundance in Dhaka, which was completely absent from Falmouth. Phylogenomic analysis revealed that these lineages form a cluster at the base of the phylogeny for the V. cholerae species and were sufficiently differentiated genetically and phenotypically to form a novel species. A retrospective search revealed that strains from this species have been anecdotally found from around the world and were isolated as early as 1916 from a British soldier in Egypt suffering from choleraic diarrhea. In 1935, Gardner and Venkatraman unofficially referred to a member of this group as Vibrio paracholerae. In recognition of this earlier designation, we propose the name Vibrio paracholerae sp. nov. for this bacterium. Genomic analysis suggests a link with human populations for this novel species and substantial interaction with its better-known sister species. IMPORTANCE Cholera continues to remain a major public health threat around the globe. Understanding the ecology, evolution, and environmental adaptation of the causative agent (Vibrio cholerae) and tracking the emergence of novel lineages with pathogenic potential are essential to combat the problem. In this study, we investigated the population dynamics of Vibrio cholerae in an inland locality, which is known as endemic for cholera, and compared them with those of a cholera-free coastal location. We found the consistent presence of the pandemic-generating lineage of V. cholerae in Dhaka, where cholera is endemic, and an exclusive presence of a lineage phylogenetically distinct from other V. cholerae lineages. Our study suggests that this lineage represents a novel species that has pathogenic potential and a human link to its environmental abundance. The possible association with human populations and coexistence and interaction with toxigenic V. cholerae in the natural environment make this potential human pathogen an important subject for future studies.
Collapse
Affiliation(s)
| | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Kevin Y. H. Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D. Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatema-Tuz Johura
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Monica S. Im
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheryl L. Tarr
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
4
|
Bhandari M, Jennison AV, Rathnayake IU, Huygens F. Evolution, distribution and genetics of atypical Vibrio cholerae - A review. INFECTION GENETICS AND EVOLUTION 2021; 89:104726. [PMID: 33482361 DOI: 10.1016/j.meegid.2021.104726] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.
Collapse
Affiliation(s)
- Murari Bhandari
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia; Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Amy V Jennison
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Irani U Rathnayake
- Public Health Microbiology, Forensic and Scientific Services, Queensland Department of Health, Brisbane, QLD, Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Liang KYH, Orata FD, Islam MT, Nasreen T, Alam M, Tarr CL, Boucher YF. A Vibrio cholerae Core Genome Multilocus Sequence Typing Scheme To Facilitate the Epidemiological Study of Cholera. J Bacteriol 2020; 202:e00086-20. [PMID: 32540931 PMCID: PMC7685551 DOI: 10.1128/jb.00086-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022] Open
Abstract
Core genome multilocus sequence typing (cgMLST) has gained popularity in recent years in epidemiological research and subspecies-level classification. cgMLST retains the intuitive nature of traditional MLST but offers much greater resolution by utilizing significantly larger portions of the genome. Here, we introduce a cgMLST scheme for Vibrio cholerae, a bacterium abundant in marine and freshwater environments and the etiologic agent of cholera. A set of 2,443 core genes ubiquitous in V. cholerae were used to analyze a comprehensive data set of 1,262 clinical and environmental strains collected from 52 countries, including 65 newly sequenced genomes in this study. We established a sublineage threshold based on 133 allelic differences that creates clusters nearly identical to traditional MLST types, providing backwards compatibility to new cgMLST classifications. We also defined an outbreak threshold based on seven allelic differences that is capable of identifying strains from the same outbreak and closely related isolates that could give clues on outbreak origin. Using cgMLST, we confirmed the South Asian origin of modern epidemics and identified clustering affinity among sublineages of environmental isolates from the same geographic origin. Advantages of this method are highlighted by direct comparison with existing classification methods, such as MLST and single-nucleotide polymorphism-based methods. cgMLST outperforms all existing methods in terms of resolution, standardization, and ease of use. We anticipate this scheme will serve as a basis for a universally applicable and standardized classification system for V. cholerae research and epidemiological surveillance in the future. This cgMLST scheme is publicly available on PubMLST (https://pubmlst.org/vcholerae/).IMPORTANCE Toxigenic Vibrio cholerae isolates of the O1 and O139 serogroups are the causative agents of cholera, an acute diarrheal disease that plagued the world for centuries, if not millennia. Here, we introduce a core genome multilocus sequence typing scheme for V. cholerae Using this scheme, we have standardized the definition for subspecies-level classification, facilitating global collaboration in the surveillance of V. cholerae In addition, this typing scheme allows for quick identification of outbreak-related isolates that can guide subsequent analyses, serving as an important first step in epidemiological research. This scheme is also easily scalable to analyze thousands of isolates at various levels of resolution, making it an invaluable tool for large-scale ecological and evolutionary analyses.
Collapse
Affiliation(s)
- Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Cheryl L Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Singapore Center for Environmental Life Sciences Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
6
|
Smirnova NI, Kritsky AA, Alkhova JV, Agafonova EY, Shchelkanova EY, Badanin DV, Kutyrev VV. Genomic Variability of Pathogenicity Islands in Nontoxigenic Strains of Vibrio cholerae O1 Biotype El Tor. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420080141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kirchberger PC, Orata FD, Nasreen T, Kauffman KM, Tarr CL, Case RJ, Polz MF, Boucher YF. Culture-independent tracking of Vibrio cholerae lineages reveals complex spatiotemporal dynamics in a natural population. Environ Microbiol 2020; 22:4244-4256. [PMID: 31970854 DOI: 10.1111/1462-2920.14921] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 01/26/2023]
Abstract
Populations of the bacterium Vibrio cholerae consist of dozens of distinct lineages, with primarily (but not exclusively) members of the pandemic generating lineage capable of causing the diarrhoeal disease cholera. Assessing the composition and temporal dynamics of such populations requires extensive isolation efforts and thus only rarely covers large geographic areas or timeframes exhaustively. We developed a culture-independent amplicon sequencing strategy based on the protein-coding gene viuB (vibriobactin utilization) to study the structure of a V. cholerae population over the course of a summer. We show that the 26 co-occurring V. cholerae lineages continuously compete for limited space on nutrient-rich particles where only a few of them can grow to large numbers. Differential abundance of lineages between locations and size-fractions associated with a particle-attached or free-swimming lifestyle could reflect adaptation to various environmental niches. In particular, a major V. cholerae lineage occasionally grows to large numbers on particles but remain undetectable using isolation-based methods, indicating selective culturability for some members of the species. We thus demonstrate that isolation-based studies may not accurately reflect the structure and complex dynamics of V. cholerae populations and provide a scalable high-throughput method for both epidemiological and ecological approaches to studying this species.
Collapse
Affiliation(s)
- Paul C Kirchberger
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Fabini D Orata
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Kathryn M Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Cheryl L Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Rebecca J Case
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Yann F Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
8
|
Wang H, Yang C, Sun Z, Zheng W, Zhang W, Yu H, Wu Y, Didelot X, Yang R, Pan J, Cui Y. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis 2020; 14:e0008046. [PMID: 32069325 PMCID: PMC7048298 DOI: 10.1371/journal.pntd.0008046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains.
Collapse
Affiliation(s)
- Haoqiu Wang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhou Sun
- Institution of Infectious Disease Control, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zhang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hua Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingcao Pan
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
9
|
Hounmanou YMG, Leekitcharoenphon P, Kudirkiene E, Mdegela RH, Hendriksen RS, Olsen JE, Dalsgaard A. Genomic insights into Vibrio cholerae O1 responsible for cholera epidemics in Tanzania between 1993 and 2017. PLoS Negl Trop Dis 2019; 13:e0007934. [PMID: 31869327 PMCID: PMC6927581 DOI: 10.1371/journal.pntd.0007934] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Tanzania is one of seven countries with the highest disease burden caused by cholera in Africa. We studied the evolution of Vibrio cholerae O1 isolated in Tanzania during the past three decades. METHODOLOGY/PRINCIPAL FINDINGS Genome-wide analysis was performed to characterize V. cholerae O1 responsible for the Tanzanian 2015-2017 outbreak along with strains causing outbreaks in the country for the past three decades. The genomes were further analyzed in a global context of 590 strains of the seventh cholera pandemic (7PET), as well as environmental isolates from Lake Victoria. All Tanzanian cholera outbreaks were caused by the 7PET lineage. The T5 sub-lineage (ctxB3) dominated outbreaks until 1997, followed by the T10 atypical El Tor (ctxB1) up to 2015, which were replaced by the T13 atypical El Tor of the current third wave (ctxB7) causing most cholera outbreaks until 2017 with T13 being phylogenetically related to strains from East African countries, Yemen and Lake Victoria. The strains were less drug resistant with approximate 10-kb deletions found in the SXT element, which encodes resistance to sulfamethoxazole and trimethoprim. Nucleotide deletions were observed in the CTX prophage of some strains, which warrants further virulence studies. Outbreak strains share 90% of core genes with V. cholerae O1 from Lake Victoria with as low as three SNPs difference and a significantly similar accessory genome, composed of genomic islands namely the CTX prophage, Vibrio Pathogenicity Islands; toxin co-regulated pilus biosynthesis proteins and the SXT-ICE element. CONCLUSION/SIGNIFICANCE Characterization of V. cholerae O1 from Tanzania reveals genetic diversity of the 7PET lineage composed of T5, T10 and T13 sub-lineages with introductions of new sequence types from neighboring countries. The presence of these sub-lineages in environmental isolates suggests that the African Great Lakes may serve as aquatic reservoirs for survival of V. cholerae O1 favoring continuous human exposure.
Collapse
Affiliation(s)
| | | | - Egle Kudirkiene
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Robinson H. Mdegela
- Department of Veterinary Medicine and Public Health, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Rene S. Hendriksen
- National Food Institute, Technical University of Denmark, Lyngby, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore city, Singapore
| |
Collapse
|
10
|
Ramamurthy T, Mutreja A, Weill FX, Das B, Ghosh A, Nair GB. Revisiting the Global Epidemiology of Cholera in Conjuction With the Genomics of Vibrio cholerae. Front Public Health 2019; 7:203. [PMID: 31396501 PMCID: PMC6664003 DOI: 10.3389/fpubh.2019.00203] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/08/2019] [Indexed: 11/13/2022] Open
Abstract
Toxigenic Vibrio cholerae is responsible for 1.4 to 4.3 million cases with about 21,000-143,000 deaths per year. Dominance of O1 and O139 serogroups, classical and El tor biotypes, alterations in CTX phages and the pathogenicity Islands are some of the major features of V. cholerae isolates that are responsible for cholera epidemics. Whole-genome sequencing (WGS) based analyses of single-nucleotide polymorphisms (SNPs) and other infrequent genetic variants provide a robust phylogenetic framework. Recent studies on the global transmission of pandemic V. cholerae O1 strains have shown the existence of eight different phyletic lineages. In these, the classical and El Tor biotype strains were separated as two distinctly evolved lineages. The frequency of SNP accumulation and the temporal and geographical distribution supports the perception that the seventh cholera pandemic (7CP) has spread from the Bay of Bengal region in three independent but overlapping waves. The 2010 Haitian outbreak shared a common ancestor with South-Asian wave-3 strains. In West Africa and East/Southern Africa, cholera epidemics are caused by single expanded lineage, which has been introduced several times since 1970. The Latin American epidemics that occurred in 1991 and 2010 were the result of introductions of two 7CP sublineages. Sublineages representing wave-3 have caused huge outbreaks in Haiti and Yemen. The Ogawa-Inaba serotype switchover in several cholera epidemics are believed to be due to the involvement of certain selection mechanism(s) rather than due to random events. V. cholerae O139 serogroup is phylogenetically related to the 7CP El Tor, and almost all these isolates belonged to the multilocus sequence type-69. Additional phenotypic and genotypic information have been generated to understand the pathogenicity of classical and El Tor vibrios. Presence of integrative conjugative elements (ICE) with antibiotic resistance gene cassettes, clustered regularly interspaced short palindromic repeats-associated protein system and ctxAB promoter based ToxRS expression of cholera toxin (CT) separates classical and El Tor biotypes. With the availability of WGS information, several important applications including, molecular typing, antimicrobial resistance, new diagnostics, and vaccination strategies could be generated.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Ankur Mutreja
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India.,Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, United Kingdom
| | | | - Bhabatosh Das
- Centre for Human Microbial Ecology, Translational Health Science and Technology Institute, Faridabad, India
| | - Amit Ghosh
- Department of Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | |
Collapse
|
11
|
Guardiola-Avila I, Martínez-Vázquez V, Requena-Castro R, Juárez-Rendón K, Aguilera-Arreola M, Rivera G, Bocanegra-García V. Isolation and identification ofVibriospecies in the Rio Bravo/Grande and water bodies from Reynosa, Tamaulipas. Lett Appl Microbiol 2018; 67:190-196. [DOI: 10.1111/lam.13009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/11/2018] [Accepted: 05/12/2018] [Indexed: 02/02/2023]
Affiliation(s)
- I. Guardiola-Avila
- CONACyT Research Fellow; Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - V. Martínez-Vázquez
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - R. Requena-Castro
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - K. Juárez-Rendón
- CONACyT Research Fellow; Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - M.G. Aguilera-Arreola
- Escuela Nacional de Ciencias Biológicas; Instituto Politécnico Nacional; Ciudad de México; Mexico City México
| | - G. Rivera
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| | - V. Bocanegra-García
- Centro de Biotecnología Genómica; Instituto Politécnico Nacional; Reynosa Tamaulipas México
| |
Collapse
|
12
|
Closed Genome Sequence of Vibrio cholerae O1 El Tor Inaba Strain A1552. GENOME ANNOUNCEMENTS 2018; 6:6/9/e00098-18. [PMID: 29496831 PMCID: PMC5834340 DOI: 10.1128/genomea.00098-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Vibrio cholerae is a Gram-negative waterborne human pathogen and the causative agent of cholera. Here, we present the complete genome sequence of the seventh pandemic O1 biovar El Tor Inaba strain A1552 isolated in 1992. This clinical strain has served as an important model strain for studying cholera pathogenicity traits.
Collapse
|
13
|
A real-time multiplex PCR for the identification and typing of Vibrio cholerae. Diagn Microbiol Infect Dis 2018; 90:171-176. [DOI: 10.1016/j.diagmicrobio.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/23/2022]
|
14
|
Nguyen TH, Pham TD, Higa N, Iwashita H, Takemura T, Ohnishi M, Morita K, Yamashiro T. Analysis of Vibrio seventh pandemic island II and novel genomic islands in relation to attachment sequences among a wide variety of Vibrio cholerae strains. Microbiol Immunol 2018; 62:150-157. [PMID: 29315809 PMCID: PMC5900727 DOI: 10.1111/1348-0421.12570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/09/2017] [Accepted: 12/26/2017] [Indexed: 12/14/2022]
Abstract
Vibrio cholerae O1 El Tor, the pathogen responsible for the current cholera pandemic, became pathogenic by acquiring virulent factors including Vibrio seventh pandemic islands (VSP)‐I and −II. Diversity of VSP‐II is well recognized; however, studies addressing attachment sequence left (attL) sequences of VSP‐II are few. In this report, a wide variety of V. cholerae strains were analyzed for the structure and distribution of VSP‐II in relation to their attachment sequences. Of 188 V. cholerae strains analyzed, 81% (153/188) strains carried VSP‐II; of these, typical VSP‐II, and a short variant was found in 36% (55/153), and 63% (96/153), respectively. A novel VSP‐II was found in two V. cholerae non‐O1/non‐O139 strains. In addition to the typical 14‐bp attL, six new attL‐like sequences were identified. The 14‐bp attL was associated with VSP‐II in 91% (139/153), whereas the remaining six types were found in 9.2% (14/153) of V. cholerae strains. Of note, six distinct types of the attL‐like sequence were found in the seventh pandemic wave 1 strains; however, only one or two types were found in the wave 2 or 3 strains. Interestingly, 86% (24/28) of V. cholerae seventh pandemic strains harboring a 13‐bp attL‐like sequence were devoid of VSP‐II. Six novel genomic islands using two unique insertion sites to those of VSP‐II were identified in 11 V. cholerae strains in this study. Four of those shared similar gene clusters with VSP‐II, except integrase gene.
Collapse
Affiliation(s)
- Tuan Hai Nguyen
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan
| | - Tho Duc Pham
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan
| | - Naomi Higa
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hanako Iwashita
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Taichiro Takemura
- Department of Tropical Microbiology, Nagasaki University Institute of Tropical Medicine, Nagasaki, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kouichi Morita
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto Nagasaki city, Nagasaki 852-8523, Japan.,Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
15
|
Domman D, Quilici ML, Dorman MJ, Njamkepo E, Mutreja A, Mather AE, Delgado G, Morales-Espinosa R, Grimont PAD, Lizárraga-Partida ML, Bouchier C, Aanensen DM, Kuri-Morales P, Tarr CL, Dougan G, Parkhill J, Campos J, Cravioto A, Weill FX, Thomson NR. Integrated view of Vibrio cholerae in the Americas. Science 2017; 358:789-793. [DOI: 10.1126/science.aao2136] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/10/2017] [Indexed: 01/24/2023]
Abstract
Latin America has experienced two of the largest cholera epidemics in modern history; one in 1991 and the other in 2010. However, confusion still surrounds the relationships between globally circulating pandemic Vibrio cholerae clones and local bacterial populations. We used whole-genome sequencing to characterize cholera across the Americas over a 40-year time span. We found that both epidemics were the result of intercontinental introductions of seventh pandemic El Tor V. cholerae and that at least seven lineages local to the Americas are associated with disease that differs epidemiologically from epidemic cholera. Our results consolidate historical accounts of pandemic cholera with data to show the importance of local lineages, presenting an integrated view of cholera that is important to the design of future disease control strategies.
Collapse
Affiliation(s)
- Daryl Domman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Marie-Laure Quilici
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Matthew J. Dorman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Elisabeth Njamkepo
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Ankur Mutreja
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Alison E. Mather
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Gabriella Delgado
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - Rosario Morales-Espinosa
- Department of Microbiology and Parasitology, Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - Patrick A. D. Grimont
- Institut Pasteur, Unité Biodiversité des Bactéries Pathogènes Emergentes, Paris, 75015, France
| | | | | | - David M. Aanensen
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Pablo Kuri-Morales
- Subsecretaría de Prevención y Promoción de la Salud, Secretaría de Salud, Ciudad de México, Mexico
| | - Cheryl L. Tarr
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0SP, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas, ANLIS, Buenos Aires, Argentina
| | - Alejandro Cravioto
- Faculty of Medicine, Universidad Nacional Autónoma de México, Mexico, D.F., Mexico
| | - François-Xavier Weill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Paris, 75015, France
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, UK
- London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
16
|
Afshinnekoo E, Chou C, Alexander N, Ahsanuddin S, Schuetz AN, Mason CE. Precision Metagenomics: Rapid Metagenomic Analyses for Infectious Disease Diagnostics and Public Health Surveillance. J Biomol Tech 2017; 28:40-45. [PMID: 28337072 DOI: 10.7171/jbt.17-2801-007] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Next-generation sequencing (NGS) technologies have ushered in the era of precision medicine, transforming the way we treat cancer patients and diagnose disease. Concomitantly, the advent of these technologies has created a surge of microbiome and metagenomic studies over the last decade, many of which are focused on investigating the host-gene-microbial interactions responsible for the development and spread of infectious diseases, as well as delineating their key role in maintaining health. As we continue to discover more information about the etiology of infectious diseases, the translational potential of metagenomic NGS methods for treatment and rapid diagnosis is becoming abundantly clear. Here, we present a robust protocol for the implementation and application of "precision metagenomics" across various sequencing platforms for clinical samples. Such a pipeline integrates DNA/RNA extraction, library preparation, sequencing, and bioinformatics analyses for taxonomic classification, antimicrobial resistance (AMR) marker screening, and functional analysis (biochemical and metabolic pathway abundance). Moreover, the pipeline has 3 tracks: STAT for results within 24 h; Comprehensive that affords a more in-depth analysis and takes between 5 and 7 d, but offers antimicrobial resistance information; and Targeted, which also requires 5-7 d, but with more sensitive analysis for specific pathogens. Finally, we discuss the challenges that need to be addressed before full integration in the clinical setting.
Collapse
Affiliation(s)
- Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA;; School of Medicine, New York Medical College, Valhalla, New York 10595, USA
| | - Chou Chou
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA
| | - Noah Alexander
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA
| | - Sofia Ahsanuddin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA
| | - Audrey N Schuetz
- Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota 55905, USA; and
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York 10065, USA;; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, New York 10021, USA;; Feil Family Brain & Mind Research Institute, New York, New York 10065, USA
| |
Collapse
|
17
|
Rangel-Vargas E, Gómez-Aldapa CA, Falfan-Cortes RN, Rodríguez-Marín ML, Godínez-Oviedo A, Acevedo-Sandoval OA, Castro-Rosas J. Attachment of 13 Types of Foodborne Bacteria to Jalapeño and Serrano Peppers and Antibacterial Effect of Roselle Calyx Extracts, Sodium Hypochlorite, Colloidal Silver, and Acetic Acid against These Foodborne Bacteria on Peppers. J Food Prot 2017; 80:406-413. [PMID: 28199144 DOI: 10.4315/0362-028x.jfp-16-269] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chili peppers are a very important crop in Mexico. However, these peppers have been associated with Salmonella infection outbreaks in the United States, and Salmonella and diarrheagenic Escherichia coli pathotypes have been isolated from jalapeño and serrano peppers in Mexico. To decrease microbial contamination of fruits and vegetables, chemical agents are commonly used; however, chemical agents used to eliminate pathogenic bacteria on vegetables have a limited antimicrobial effect. Roselle ( Hibiscus sabdariffa ) calyces have been reported to have an antimicrobial effect on pathogenic bacteria. In the present study, the antibacterial effect of four roselle calyx extracts (water, methanol, acetone, and ethyl acetate), sodium hypochlorite, colloidal silver, and acetic acid against foodborne bacteria was evaluated on contaminated jalapeño and serrano peppers. The 13 types of foodborne bacteria evaluated were Listeria monocytogenes , Shigella flexneri , Salmonella Typhimurium, Salmonella Typhi, Salmonella Montevideo, Staphylococcus aureus , E. coli O157:H7, five E. coli pathotypes (Shiga toxin producing, enteropathogenic, enterotoxigenic, enteroinvasive, and enteroaggregative), and Vibrio cholerae O1. All 13 types attached to both pepper types, with no significant differences in attachment between jalapeño and serrano peppers. Roselle calyx extract treatment resulted in a greater reduction in levels of all foodborne bacteria than did treatment with sodium hypochlorite, colloidal silver, and acetic acid on both pepper types. Roselle calyx extracts may be a useful for disinfection of chili peppers in the field, processing plants, restaurants, and homes.
Collapse
Affiliation(s)
- Esmeralda Rangel-Vargas
- Área Académica de Químicas, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42183 Mineral de la Reforma, Hidalgo, México
| | - Carlos A Gómez-Aldapa
- Área Académica de Químicas, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42183 Mineral de la Reforma, Hidalgo, México
| | - Reyna N Falfan-Cortes
- Área Académica de Químicas, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42183 Mineral de la Reforma, Hidalgo, México.,Catedrática CONACyT, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, México, D.F. México
| | - María L Rodríguez-Marín
- Área Académica de Químicas, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42183 Mineral de la Reforma, Hidalgo, México.,Catedrática CONACyT, Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez C.P. 03940, México, D.F. México
| | - Angélica Godínez-Oviedo
- Instituto de Ciencias Agropecuarias, Rancho Universitario, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad km 1, Ex Hacienda Aquetzalpa, Apartado Postal 32, Tulancingo, Hidalgo, México
| | - Otilio A Acevedo-Sandoval
- Instituto de Ciencias Agropecuarias, Rancho Universitario, Universidad Autónoma del Estado de Hidalgo, Avenida Universidad km 1, Ex Hacienda Aquetzalpa, Apartado Postal 32, Tulancingo, Hidalgo, México
| | - Javier Castro-Rosas
- Área Académica de Químicas, Instituto de Ciencias Básicas e Ingeniería, Ciudad del Conocimiento, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo km 4.5, 42183 Mineral de la Reforma, Hidalgo, México
| |
Collapse
|
18
|
Comparative genome analysis of VSP-II and SNPs reveals heterogenic variation in contemporary strains of Vibrio cholerae O1 isolated from cholera patients in Kolkata, India. PLoS Negl Trop Dis 2017; 11:e0005386. [PMID: 28192431 PMCID: PMC5349696 DOI: 10.1371/journal.pntd.0005386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/14/2017] [Accepted: 02/04/2017] [Indexed: 12/20/2022] Open
Abstract
Cholera is an acute diarrheal disease and a major public health problem in many developing countries in Asia, Africa, and Latin America. Since the Bay of Bengal is considered the epicenter for the seventh cholera pandemic, it is important to understand the genetic dynamism of Vibrio cholerae from Kolkata, as a representative of the Bengal region. We analyzed whole genome sequence data of V. cholerae O1 isolated from cholera patients in Kolkata, India, from 2007 to 2014 and identified the heterogeneous genomic region in these strains. In addition, we carried out a phylogenetic analysis based on the whole genome single nucleotide polymorphisms to determine the genetic lineage of strains in Kolkata. This analysis revealed the heterogeneity of the Vibrio seventh pandemic island (VSP)-II in Kolkata strains. The ctxB genotype was also heterogeneous and was highly related to VSP-II types. In addition, phylogenetic analysis revealed the shifts in predominant strains in Kolkata. Two distinct lineages, 1 and 2, were found between 2007 and 2010. However, the proportion changed markedly in 2010 and lineage 2 strains were predominant thereafter. Lineage 2 can be divided into four sublineages, I, II, III and IV. The results of this study indicate that lineages 1 and 2-I were concurrently prevalent between 2007 and 2009, and lineage 2-III observed in 2010, followed by the predominance of lineage 2-IV in 2011 and continued until 2014. Our findings demonstrate that the epidemic of cholera in Kolkata was caused by several distinct strains that have been constantly changing within the genetic lineages of V. cholerae O1 in recent years. Seven cholera pandemics have been recorded throughout history, and the sixth, and presumably earlier pandemics, emerged from the Bay of Bengal. The seventh pandemic strain also appeared and spread from this area to different area of the world. Thus, the Bay of Bengal has always been considered the epicenter of cholera pandemics. In this report, we characterized the V. cholerae strains isolated from patients with cholera in Kolkata as a representative area of the Bay of Bengal between 2007 and 2014. The analysis revealed that the cholera epidemics were caused by several distinct V. cholerae O1 strains and that the predominant strains have genetically changed several times in recent years.
Collapse
|
19
|
Abstract
Although the current cholera pandemic can trace its origin to a specific time and place, many variants of Vibrio cholerae have caused this disease over the last 50 years. The relative clinical importance and geographical distribution of these variants have changed with time, but most remain in circulation. Some countries, such as Mexico and Haiti, had escaped the current pandemic, until large epidemics struck them in 1991 and 2010, respectively. Cholera has been endemic in these countries ever since. A recent retrospective study in mBio presents the results of more than 3 decades of V. cholerae monitoring from environmental and clinical sources in Mexico (S. Y. Choi et al., mBio 7:e02160-15, 2016, http://dx.doi.org/10.1128/mBio.02160-15). It reveals that multiple V. cholerae variants, including classical strains from the previous pandemic, as well as completely novel biotypes, have been circulating in Mexico. This discovery has important implications for the epidemiology and evolution of V. cholerae.
Collapse
|