1
|
Nicholson KR, Yin S, Edwards JL, Luan CH, Seifert HS. Natural compounds target the M23B zinc metallopeptidase Mpg to modulate Neisseria gonorrhoeae Type IV pilus expression. mBio 2025; 16:e0402724. [PMID: 39998224 PMCID: PMC11980366 DOI: 10.1128/mbio.04027-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/29/2025] [Indexed: 02/26/2025] Open
Abstract
Neisseria gonorrhoeae uses the Type IV pilus (T4p) to colonize several sites within humans by adhering to host cells and tissues. Previously, we identified a periplasmic M23B zinc metallopeptidase, Mpg, that is necessary to protect from oxidative and nonoxidative killing and these phenotypes are mediated by Mpg activities on T4p expression. Here, we use a high-throughput, target-based screening approach to identify novel inhibitors of Mpg's enzymatic activity. We identified two natural compounds, punicalagin and chebulinic acid, which inhibit the peptidoglycan-hydrolyzing activity of Mpg in a dose-dependent manner. Moreover, treatment of N. gonorrhoeae with these compounds leads to a concomitant decrease in the number of T4p, similar to an mpg mutant. However, these compounds are not toxic to N. gonorrhoeae. These compounds exhibit activity against Mpg orthologs from other bacterial species. Notably, these natural compounds inhibit N. gonorrhoeae colonization and survival in cell culture models of infection. This work provides the characterization of two natural compounds with activity against N. gonorrhoeae T4p through the Mpg M23B class zinc metallopeptidase. IMPORTANCE Neisseria gonorrhoeae is a global health burden with high transmission rates and multidrug resistance. N. gonorrhoeae encodes a Type IV pilus (T4p), which is a major colonization and virulence factor. The importance of the T4p in multiple stages of infection makes it an attractive drug target. Previously, we identified an M23B zinc metallopeptidase, Mpg, important for T4p production and T4p-mediated resistance to neutrophil killing. In this study, we identified two natural compounds, punicalagin and chebulinic acid, as novel inhibitors of Mpg's enzymatic activity that thus inhibit T4p expression. These findings identify two potential anti-colonization and anti-virulence compounds and provide a framework to target T4p components for future screens, poising the field to potentially discover additional compounds to combat N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Kathleen R. Nicholson
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shaohui Yin
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jennifer L. Edwards
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Ohio State University, Columbus, Ohio, USA
| | - Chi-Hao Luan
- High Throughput Analysis Laboratory and Department of Molecular Biosciences, Northwestern University, Evanston, USA
| | - H Steven Seifert
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
2
|
Menkiti CJ, Snyder LAS. Improved Neisseria gonorrhoeae culture media without atmospheric CO 2. Appl Microbiol Biotechnol 2025; 109:68. [PMID: 40116932 PMCID: PMC11928391 DOI: 10.1007/s00253-025-13449-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/05/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025]
Abstract
Bacterial culture on solid media is the crucial step in diagnosing Neisseria gonorrhoeae infections and is the gold standard for determining their antimicrobial resistance profile. However, culture of Neisseria spp. can be challenging in resource poor areas, relying on specialist incubators or other methods of supplying 5% CO2 for growth of the bacteria. Even when such incubators are available, the CO2 to run them may be scarce; there were CO2 shortages during the COVID-19 pandemic, for example. Although culture jars with gas packs or candles can be used, these are inefficient in terms of use of incubator space and researcher time. To achieve simplicity in culturing of N. gonorrhoeae, the standard Oxoid GC agar base medium, made with the Kellogg's glucose and iron supplements was improved with the addition of 0.75 g/l sodium bicarbonate (NaHCO3), which is inexpensive and readily available. This improved media in a standard incubator performed as well as standard Oxoid GC agar media with supplements in a 5% CO2 incubator. Chocolate agar and Thayer-Martin agar with sodium bicarbonate were also developed, with all showing good growth of N. gonorrhoeae without the need for atmospheric CO2. KEY POINTS: • Neisseria spp. (N. gonorrhoeae, N. meningitidis) require atmospheric CO2 to grow. • Sources of CO2 may be scarce depending on geography and lab supply availability. • We have developed GC, Chocolate, and Thayer-Martin media that does not need CO2.
Collapse
Affiliation(s)
- Chukwuma Jude Menkiti
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK
| | - Lori A S Snyder
- School of Life Sciences, Pharmacy, and Chemistry, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, UK.
| |
Collapse
|
3
|
Byrne AS, Bissonnette N, Tahlan K. Mechanisms and implications of phenotypic switching in bacterial pathogens. Can J Microbiol 2025; 71:1-19. [PMID: 39361974 DOI: 10.1139/cjm-2024-0116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Bacteria encounter various stressful conditions within a variety of dynamic environments, which they must overcome for survival. One way they achieve this is by developing phenotypic heterogeneity to introduce diversity within their population. Such distinct subpopulations can arise through endogenous fluctuations in regulatory components, wherein bacteria can express diverse phenotypes and switch between them, sometimes in a heritable and reversible manner. This switching may also lead to antigenic variation, enabling pathogenic bacteria to evade the host immune response. Therefore, phenotypic heterogeneity plays a significant role in microbial pathogenesis, immune evasion, antibiotic resistance, host niche tissue establishment, and environmental persistence. This heterogeneity can result from stochastic and responsive switches, as well as various genetic and epigenetic mechanisms. The development of phenotypic heterogeneity may create clonal populations that differ in their level of virulence, contribute to the formation of biofilms, and allow for antibiotic persistence within select morphological variants. This review delves into the current understanding of the molecular switching mechanisms underlying phenotypic heterogeneity, highlighting their roles in establishing infections caused by select bacterial pathogens.
Collapse
Affiliation(s)
| | - Nathalie Bissonnette
- Sherbrooke Research and Development Center, Agriculture and Agri-Food Canada, Sherbrooke, QC, Canada
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
4
|
Kraus-Römer S, Wielert I, Rathmann I, Grossbach J, Maier B. External Stresses Affect Gonococcal Type 4 Pilus Dynamics. Front Microbiol 2022; 13:839711. [PMID: 35283813 PMCID: PMC8914258 DOI: 10.3389/fmicb.2022.839711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial type 4 pili (T4P) are extracellular polymers that serve both as adhesins and molecular motors. Functionally, they are involved in adhesion, colony formation, twitching motility, and horizontal gene transfer. T4P of the human pathogen Neisseria gonorrhoeae have been shown to enhance survivability under treatment with antibiotics or hydrogen peroxide. However, little is known about the effect of external stresses on T4P production and motor properties. Here, we address this question by directly visualizing gonococcal T4P dynamics. We show that in the absence of stress gonococci produce T4P at a remarkably high rate of ∼200 T4P min–1. T4P retraction succeeds elongation without detectable time delay. Treatment with azithromycin or ceftriaxone reduces the T4P production rate. RNA sequencing results suggest that reduced piliation is caused by combined downregulation of the complexes required for T4P extrusion from the cell envelope and cellular energy depletion. Various other stresses including inhibitors of cell wall synthesis and DNA replication, as well as hydrogen peroxide and lactic acid, inhibit T4P production. Moreover, hydrogen peroxide and acidic pH strongly affect pilus length and motor function. In summary, we show that gonococcal T4P are highly dynamic and diverse external stresses reduce piliation despite the protective effect of T4P against some of these stresses.
Collapse
Affiliation(s)
| | - Isabelle Wielert
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Isabel Rathmann
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - Jan Grossbach
- Faculty of Mathematics and Natural Sciences, CECAD, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Institute for Biological Physics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
- *Correspondence: Berenike Maier,
| |
Collapse
|
5
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
6
|
Garnett JA, Atherton J. Structure Determination of Microtubules and Pili: Past, Present, and Future Directions. Front Mol Biosci 2022; 8:830304. [PMID: 35096976 PMCID: PMC8795688 DOI: 10.3389/fmolb.2021.830304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/30/2022] Open
Abstract
Historically proteins that form highly polymeric and filamentous assemblies have been notoriously difficult to study using high resolution structural techniques. This has been due to several factors that include structural heterogeneity, their large molecular mass, and available yields. However, over the past decade we are now seeing a major shift towards atomic resolution insight and the study of more complex heterogenous samples and in situ/ex vivo examination of multi-subunit complexes. Although supported by developments in solid state nuclear magnetic resonance spectroscopy (ssNMR) and computational approaches, this has primarily been due to advances in cryogenic electron microscopy (cryo-EM). The study of eukaryotic microtubules and bacterial pili are good examples, and in this review, we will give an overview of the technical innovations that have enabled this transition and highlight the advancements that have been made for these two systems. Looking to the future we will also describe systems that remain difficult to study and where further technical breakthroughs are required.
Collapse
Affiliation(s)
- James A. Garnett
- Centre for Host-Microbiome Interactions, Faculty of Dental, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom
| | - Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Zachary M, Bauer S, Klepsch M, Wagler K, Hüttel B, Rudel T, Beier D. Identification and initial characterization of a new pair of sibling sRNAs of Neisseria gonorrhoeae involved in type IV pilus biogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 34515630 DOI: 10.1099/mic.0.001080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Non-coding regulatory RNAs mediate post-transcriptional gene expression control by a variety of mechanisms relying mostly on base-pairing interactions with a target mRNA. Though a plethora of putative non-coding regulatory RNAs have been identified by global transcriptome analysis, knowledge about riboregulation in the pathogenic Neisseriae is still limited. Here we report the initial characterization of a pair of sRNAs of N. gonorrhoeae, TfpR1 and TfpR2, which exhibit a similar secondary structure and identical single-stranded seed regions, and therefore might be considered as sibling sRNAs. By combination of in silico target prediction and sRNA pulse expression followed by differential RNA sequencing we identified target genes of TfpR1 which are involved in type IV pilus biogenesis and DNA damage repair. We provide evidence that members of the TfpR1 regulon can also be targeted by the sibling TfpR2.
Collapse
Affiliation(s)
- Marie Zachary
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | - Susanne Bauer
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | | | - Katharina Wagler
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | | | - Thomas Rudel
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| | - Dagmar Beier
- Chair of Microbiology, Biocenter, University of Würzburg, Germany
| |
Collapse
|