1
|
Passaris I, Depickère S, Braeye T, Mukovnikova M, Vodolazkaia A, Abels C, Cuypers L, Desmet S, Ceyssens PJ. Non-invasive Streptococcus pneumoniae infections are associated with different serotypes than invasive infections, Belgium, 2020 to 2023. Euro Surveill 2024; 29:2400108. [PMID: 39512163 PMCID: PMC11544722 DOI: 10.2807/1560-7917.es.2024.29.45.2400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/02/2024] [Indexed: 11/15/2024] Open
Abstract
BackgroundDespite widely implemented pneumococcal vaccination programmes, Streptococcus pneumoniae remains a global risk for human health. Streptococcus pneumoniae can cause invasive (IPD) or non-invasive pneumococcal disease (NIPD). Surveillance is mainly focusing on IPD, assessing the full impact of pneumococcal vaccination programmes on pneumococcal disease is challenging.AimWe aimed to prospectively investigate serotype distribution and antimicrobial resistance (AMR) of S. pneumoniae isolates from patients with NIPD and compare with data on IPD isolates and with a 2007-2008 dataset on NIPD.MethodsBetween September 2020 and April 2023, we collected isolates and patient data from patients with NIPD from 23 clinical laboratories in Belgium. Capsular typing was performed by a validated Fourier-Transform Infrared spectroscopic method, and AMR was assessed with broth microdilution, using the European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints.ResultsWe received S. pneumoniae isolates from 1,008 patients with lower respiratory tract infections (n = 760), otitis media (n = 190) and sinusitis (n = 58). Serotype 3 was the most prevalent serotype among the NIPD isolates. Serotypes not included in the 20-valent pneumococcal conjugate vaccine (PCV20) were significantly more common among the NIPD than among the IPD isolates. Antimicrobial resistance levels were significantly higher among the NIPD isolates (n = 539; 2020-2022) compared with the IPD isolates (n = 2,344; 2021-2022). Resistance to several β-lactam antimicrobials had increased significantly compared with 15 years before.ConclusionsThe NIPD isolates were strongly associated with non-vaccine serotypes and with increased AMR levels. This underlines the importance of continued NIPD surveillance for informed policy making on vaccination programmes.
Collapse
Affiliation(s)
| | | | - Toon Braeye
- Epidemiology of Infectious Diseases, Sciensano, Brussels, Belgium
| | | | | | | | - Lize Cuypers
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Centre for invasive Streptococcus pneumoniae, UZ Leuven, Leuven, Belgium
| | - Stefanie Desmet
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- National Reference Centre for invasive Streptococcus pneumoniae, UZ Leuven, Leuven, Belgium
| | | |
Collapse
|
2
|
Miao C, Cui Y, Li Y, Qi Q, Shang W, Chen H, Gao Y, Yuan R, Long Q, Wu W, Wang X, Yan Z, Jiang Y. Immunoinformatics Prediction and Protective Efficacy of Vaccine Candidate PiuA-PlyD4 Against Streptococcus Pneumoniae. Drug Des Devel Ther 2023; 17:3783-3801. [PMID: 38146490 PMCID: PMC10749580 DOI: 10.2147/dddt.s441302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/15/2023] [Indexed: 12/27/2023] Open
Abstract
Purpose This study was designed to evaluate the immune protective efficacy of the novel Streptococcus pneumoniae (S. pneumoniae) protein vaccine PiuA-PlyD4 through immunoinformatics prediction and in vitro and in vivo experiments. Methods In this study, we conducted immunoinformatics prediction and protection analysis on the fusion protein PiuA-PlyD4. The epitope composition of the vaccine was analyzed based on the prediction of B-cell and helper T-cell epitopes. Meanwhile, the molecular docking of PiuA and TLR2/4 was simulated. After immunizing C57BL/6 mice with the prepared vaccine, the biological safety, immunogenicity and conservation were evaluated. By constructing different infection models and from the aspects of adhesion inhibition and cytokines, the protective effect of the fusion protein vaccine PiuA-PlyD4 on S. pneumoniae infection was explored. Results PiuA-PlyD4 has abundant B-cell and helper T-cell epitopes and shows a high antigenicity score and structural stability. Molecular docking analysis suggested the potential interaction between PiuA and TLR2/4. The specific antibody titer of fusion protein antiserum was as high as (7.81±2.32) ×105. The protective effect of the immunized mice on nasal and lung colonization was significantly better than that of the control group, and the survival rate against S. pneumoniae infection of serotype 3 reached 50%. Cytokine detection showed that the humoral immune response, Th1, Th2 and Th17 cellular immune pathways were all involved in the process. Conclusion The study indicates that PiuA-PlyD4, whether the results are predicted by immunoinformatics or experimentally validated in vivo and in vitro, has good immunogenicity and immunoreactivity and can provide effective protection against S. pneumoniae infection. Therefore, it can be considered a promising prophylactic vaccine candidate for S. pneumoniae.
Collapse
Affiliation(s)
- Chenglin Miao
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yali Cui
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Yingying Li
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Qianqian Qi
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Wenling Shang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Huilian Chen
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Yujie Gao
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Ruomei Yuan
- Department of Laboratory Medicine, Meishan Women and Children’s Hospital, Alliance Hospital of West China Second University Hospital, Sichuan University, Meishan, Sichuan Province, People’s Republic of China
- Department of Laboratory Medicine, West China Second University Hospital (Tianfu), Sichuan University/Sichuan Provincial Children’s Hospital, Meishan, Sichuan Province, People’s Republic of China
| | - Qichen Long
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, People’s Republic of China
| | - Wenjing Wu
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Ziyi Yan
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
| | - Yongmei Jiang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan Province, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan Province, People’s Republic of China
| |
Collapse
|
3
|
Uddin MS, Schwartzkopf-Genswein KS, Waldner M, Meléndez DM, Niu YD, Alexander TW. Auction market placement and a rest stop during transportation affect the respiratory bacterial microbiota of beef cattle. Front Microbiol 2023; 14:1192763. [PMID: 37808284 PMCID: PMC10556482 DOI: 10.3389/fmicb.2023.1192763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
Background Bovine respiratory disease (BRD) is a significant health problem in beef cattle production, resulting in considerable economic losses due to mortalities, cost of treatment, and reduced feed efficiency. The onset of BRD is multifactorial, with numerous stressors being implicated, including transportation from farms to feedlots. In relation to animal welfare, regulations or practices may require mandatory rest times during transportation. Despite this, there is limited information on how transportation and rest stops affect the respiratory microbiota. Results This study evaluated the effect of cattle source (ranch-direct or auction market-derived) and rest stop duration (0 or 8 h of rest) on the upper respiratory tract microbiota and its relationship to stress response indicators (blood cortisol and haptoglobin) of recently weaned cattle transported for 36 h. The community structure of bacteria was altered by feedlot placement. When cattle were off-loaded for a rest, several key bacterial genera associated with BRD (Mannheimia, Histophilus, Pasteurella) were increased for most sampling times after feedlot placement for the ranch-direct cattle group, compared to animals given no rest stop. Similarly, more sampling time points had elevated levels of BRD-associated genera when auction market cattle were compared to ranch-direct. When evaluated across time and treatments several genera including Mannheimia, Moraxella, Streptococcus and Corynebacterium were positively correlated with blood cortisol concentrations. Conclusion This is the first study to assess the effect of rest during transportation and cattle source on the respiratory microbiota in weaned beef calves. The results suggest that rest stops and auction market placement may be risk factors for BRD, based solely on increased abundance of BRD-associated genera in the upper respiratory tract. However, it was not possible to link these microbiota to disease outcome, due to low incidence of BRD in the study populations. Larger scale studies are needed to further define how transportation variables impact cattle health.
Collapse
Affiliation(s)
- Muhammed Salah Uddin
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | - Matthew Waldner
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Daniela M. Meléndez
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Yan D. Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Trevor W. Alexander
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| |
Collapse
|
4
|
Yu WL, Pan JG, Qin RX, Lu ZH, Bai XH, Sun Y. TCS01 Two-Component System Influenced the Virulence of Streptococcus pneumoniae by Regulating PcpA. Infect Immun 2023; 91:e0010023. [PMID: 37052497 PMCID: PMC10187121 DOI: 10.1128/iai.00100-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 03/26/2023] [Indexed: 04/14/2023] Open
Abstract
Streptococcus pneumoniae relies on two-component systems (TCSs) to regulate the processes of pathogenicity, osmotic pressure, chemotaxis, and energy metabolism. The TCS01 system of S. pneumoniae is composed of HK01 (histidine kinase) and RR01 (response regulator). Previous studies have reported that an rr01 mutant reduced the pneumococcal virulence in rat pneumonia, bacteremia, a nasopharyngeal model, and infective endocarditis. However, the mechanism of TCS01 (HK/RR01) regulating pneumococcal virulence remains unclear. Here, pneumococcal mutant strains Δrr01, Δhk01, and Δrr01&hk01 were constructed, and bacterial adhesion and invasion to A549 cells were compared. RNA sequencing was performed in D39 wild-type and Δrr01 strains, and transcript profile changes were analyzed. Differentially expressed virulence genes in the Δrr01 strain were screened out and identified by quantitative real-time PCR (qRT-PCR). Our results showed that pneumococcal mutant strains exhibited attenuated adhesion and invasion to A549 cells and differential transcript profiles. Results of qRT-PCR identification showed that the differential virulence genes screened out were downregulated. Among those changed virulence genes in the Δrr01 strain, the downregulated expression level of choline binding protein pcpA was the most obvious. Complementation of rr01 and overexpression of pcpA in the Δrr01 strain partially restored both pneumococcal adhesion and invasion, and rr01 complementation made the expression of pcpA upregulated. These findings revealed that rr01 influenced pneumococcal virulence by regulating pcpA.
Collapse
Affiliation(s)
- Wei-Li Yu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jin-Ge Pan
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ru-Xue Qin
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhong-Hua Lu
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Hui Bai
- College of Life and Environment Sciences, Huangshan University, Huangshan, Anhui, China
| | - Yun Sun
- The First Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
5
|
Gazioglu O, Habtom M, Andrew PW, Yesilkaya H. The involvement of CiaR and the CiaR-regulated serine protease HtrA in thermal adaptation of Streptococcus pneumoniae. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36811449 DOI: 10.1099/mic.0.001304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The in vivo temperature can vary according to the host tissue and the response to infection. Streptococcus pneumoniae has evolved mechanisms to survive these temperature differences, but neither the consequences of different temperatures for pneumococcal phenotype nor the genetic basis of thermal adaptation are known in detail. In our previous study [16], we found that CiaR, which is a part of two-component regulatory system CiaRH, as well as 17 genes known to be controlled by CiaRH, were identified to be differentially expressed with temperature. One of the CiaRH-regulated genes shown to be differentially regulated by temperature is for the high-temperature requirement protein (HtrA), coded by SPD_2068 (htrA). In this study, we hypothesized that the CiaRH system plays an important role in pneumococcal thermal adaptation through its control over htrA. This hypothesis was evaluated by testing strains mutated or overexpressing ciaR and/or htrA, in in vitro and in vivo assays. The results showed that in the absence of ciaR, the growth, haemolytic activity, amount of capsule and biofilm formation were considerably diminished at 40 °C only, while the cell size and virulence were affected at both 34 and 40 °C. The overexpression of htrA in the ∆ciaR background reconstituted the growth at all temperatures, and the haemolytic activity, biofilm formation and virulence of ∆ciaR partially at 40 °C. We also showed that overexpression of htrA in the wild-type promoted pneumococcal virulence at 40 °C, while the increase of capsule was observed at 34 °C, suggesting that the role of htrA changes at different temperatures. Our data suggest that CiaR and HtrA play an important role in pneumococcal thermal adaptation.
Collapse
Affiliation(s)
- Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
6
|
Zhang Y, Martin JE, Edmonds KA, Winkler ME, Giedroc DP. SifR is an Rrf2-family quinone sensor associated with catechol iron uptake in Streptococcus pneumoniae D39. J Biol Chem 2022; 298:102046. [PMID: 35597283 PMCID: PMC9218516 DOI: 10.1016/j.jbc.2022.102046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 01/15/2023] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a Gram-positive commensal and human respiratory pathogen. How this bacterium satisfies its nutritional iron (Fe) requirement in the context of endogenously produced hydrogen peroxide is not well understood. Here, we characterize a novel virulence-associated Rrf2-family transcriptional repressor that we term SifR (streptococcal IscR-like family transcriptional repressor) encoded by spd_1448 and conserved in Streptococci. Global transcriptomic analysis of a ΔsifR strain defines the SifR regulon as genes encoding a candidate catechol dioxygenase CatE, an uncharacterized oxidoreductase YwnB, a candidate flavin-dependent ferric reductase YhdA, a candidate heme-based ferric reductase domain-containing protein and the Piu (pneumococcus iron uptake) Fe transporter (piuBCDA). Previous work established that membrane-anchored PiuA binds FeIII-bis-catechol or monocatechol complexes with high affinity, including the human catecholamine stress hormone, norepinephrine. We demonstrate that SifR senses quinone via a single conserved cysteine that represses its regulon when in the reduced form. Upon reaction with catechol-derived quinones, we show that SifR dissociates from the DNA leading to regulon derepression, allowing the pneumococcus to access a catechol-derived source of Fe while minimizing reactive electrophile stress induced by quinones. Consistent with this model, we show that CatE is an FeII-dependent 2,3-catechol dioxygenase with broad substrate specificity, YwnB is an NAD(P)H-dependent quinone reductase capable of reducing the oxidized and cyclized norepinephrine, adrenochrome, and YhdA is capable of reducing a number of FeIII complexes, including PiuA-binding transport substrates. These findings are consistent with a model where FeIII-catechol complexes serve as significant nutritional Fe sources in the host.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | - Julia E Martin
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA; Department of Biological Sciences, Idaho State University, Pocatello, Idaho, USA
| | | | - Malcolm E Winkler
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA; Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA; Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA.
| |
Collapse
|