1
|
Biggs TEG, Piedade GJ, Wesdorp EM, Meredith MP, Evans C, Brussaard CPD. Temperature-induced changes in the relevance of viral lysis and microzooplankton grazing of Antarctic phytoplankton indicates future alterations in seasonal carbon flow. FEMS Microbiol Ecol 2025; 101:fiae158. [PMID: 39963721 DOI: 10.1093/femsec/fiae158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/26/2024] [Accepted: 02/14/2025] [Indexed: 03/06/2025] Open
Abstract
Phytoplankton play a pivotal role as the primary producers in polar marine ecosystems. Despite evidence suggesting that production rates and loss factors vary from year to year, and thus drive dynamic ecosystem functioning, interannual comparisons remain sparse. In this study, we examined viral lysis and microzooplankton grazing rates on Antarctic phytoplankton during two productive seasons and compared them with published data from a previous year. Higher rates of phytoplankton gross growth and total mortality during the warmer productive season suggest global warming induced increases in the magnitude of ecosystem carbon flow. Viral lysis rates appear to be relatively independent of average seasonal temperatures, whereas grazing rates were lower during the colder productive seasons (average temperature <0°C). This resulted in a greater relative impact of viral lysis on phytoplankton mortality, particularly pronounced during periods of phytoplankton accumulation. The interannual variations in phytoplankton fate are likely due to a stronger coupling between rates of viral infection and phytoplankton growth compared with grazing. Our results emphasize the importance of monitoring rates of viral lysis, specifically in combination with the size and taxonomy of the phytoplankton community. Collectively these factors determine the relative significance of the different carbon fates, and hence the ocean's efficacy as a carbon sink.
Collapse
Affiliation(s)
- Tristan E G Biggs
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Gonçalo J Piedade
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Ella M Wesdorp
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - Michael P Meredith
- British Antarctic Survey, Natural Environmental Research Council, CB3 0ET, Cambridge, United Kingdom
| | - Claire Evans
- Ocean BioGeosciences, National Oceanography Centre, SO14 3ZH, Southampton, United Kingdom
| | - Corina P D Brussaard
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, 1797 SZ, Texel, The Netherlands
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Krinos AI, Mars Brisbin M, Hu SK, Cohen NR, Rynearson TA, Follows MJ, Schulz F, Alexander H. Missing microbial eukaryotes and misleading meta-omic conclusions. Nat Commun 2024; 15:9873. [PMID: 39543100 PMCID: PMC11564645 DOI: 10.1038/s41467-024-52212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/23/2024] [Indexed: 11/17/2024] Open
Abstract
Meta-omics is commonly used for large-scale analyses of microbial eukaryotes, including species or taxonomic group distribution mapping, gene catalog construction, and inference on the functional roles and activities of microbial eukaryotes in situ. Here, we explore the potential pitfalls of common approaches to taxonomic annotation of protistan meta-omic datasets. We re-analyze three environmental datasets at three levels of taxonomic hierarchy in order to illustrate the crucial importance of database completeness and curation in enabling accurate environmental interpretation. We show that taxonomic membership of sequence clusters estimates community composition more accurately than returning exact sequence labels, and overlap between clusters can address database shortcomings. Clustering approaches can be applied to diverse environments while continuing to exploit the wealth of annotation data collated in databases, and selecting and evaluating these databases is a critical part of correctly annotating protistan taxonomy in environmental datasets. We argue that ongoing curation of genetic resources is crucial in accurately annotating protists in in situ meta-omic datasets. Moreover, we propose that precise taxonomic annotation of meta-omic data is a clustering problem rather than a feasible alignment problem.
Collapse
Affiliation(s)
- Arianna I Krinos
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, Cambridge, MA, USA.
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Margaret Mars Brisbin
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- College of Marine Science, University of South Florida, St. Petersburg, FL, USA
| | - Sarah K Hu
- Department of Oceanography, Texas A&M University, College Station, TX, USA
| | - Natalie R Cohen
- Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| | - Tatiana A Rynearson
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | - Michael J Follows
- Department of Earth, Atmospheric, and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Frederik Schulz
- Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Harriet Alexander
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
3
|
Huber P, De Angelis D, Sarmento H, Metz S, Giner CR, Vargas CD, Maiorano L, Massana R, Logares R. Global distribution, diversity, and ecological niche of Picozoa, a widespread and enigmatic marine protist lineage. MICROBIOME 2024; 12:162. [PMID: 39232839 PMCID: PMC11373171 DOI: 10.1186/s40168-024-01874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/16/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND The backbone of the eukaryotic tree of life contains taxa only found in molecular surveys, of which we still have a limited understanding. Such is the case of Picozoa, an enigmatic lineage of heterotrophic picoeukaryotes within the supergroup Archaeplastida, which has emerged as a significant component of marine microbial planktonic communities. To enhance our understanding of the diversity, distribution, and ecology of Picozoa, we conduct a comprehensive assessment at different levels, from assemblages to taxa, employing phylogenetic analysis, species distribution modeling, and ecological niche characterization. RESULTS Picozoa was among the ten most abundant eukaryotic groups, found almost exclusively in marine environments. The phylum was represented by 179 Picozoa's OTU (pOTUs) placed in five phylogenetic clades. Picozoa community structure had a clear latitudinal pattern, with polar assemblages tending to cluster separately from non-polar ones. Based on the abundance and occupancy pattern, the pOTUs were classified into four categories: Low-abundant, Widespread, Polar, and Non-polar. We calculated the ecological niche of each of these categories. Notably, pOTUs sharing similar ecological niches were not closely related species, indicating a phylogenetic overdispersion in Picozoa communities. This could be attributed to competitive exclusion and the strong influence of the seasonal amplitude of variations in environmental factors, such as temperature, shaping physiological and ecological traits. CONCLUSIONS Overall, this work advances our understanding of uncharted protists' evolutionary dynamics and ecological strategies. Our results highlight the importance of understanding the species-level ecology of marine heteroflagellates like Picozoa. The observed phylogenetic overdispersion challenges the concept of phylogenetic niche conservatism in protist communities, suggesting that closely related species do not necessarily share similar ecological niches. Video Abstract.
Collapse
Affiliation(s)
- Paula Huber
- Departamento de Hidrobiología, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Daniele De Angelis
- Dipartimento Di Biologia E Biotecnologie "Charles Darwin", Università Di Roma La Sapienza, Rome, Italy
| | - Hugo Sarmento
- Departamento de Hidrobiología, Universidade Federal de São Carlos, São Carlos, Brazil.
| | | | - Caterina R Giner
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Colomban De Vargas
- Sorbonne Universités, CNRS, Station Biologique de Roscoff, Roscoff, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, Paris, France
| | - Luigi Maiorano
- Dipartimento Di Biologia E Biotecnologie "Charles Darwin", Università Di Roma La Sapienza, Rome, Italy
| | - Ramon Massana
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain
| | - Ramiro Logares
- Institut de Ciències del Mar (ICM), CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
4
|
Narayanan M, Devarayan K, Verma M, Selvaraj M, Ghramh HA, Kandasamy S. Assessing the ecological impact of pesticides/herbicides on algal communities: A comprehensive review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 268:106851. [PMID: 38325057 DOI: 10.1016/j.aquatox.2024.106851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
The escalating use of pesticides in agriculture for enhanced crop productivity threatens aquatic ecosystems, jeopardizing environmental integrity and human well-being. Pesticides infiltrate water bodies through runoff, chemical spills, and leachate, adversely affecting algae, vital primary producers in marine ecosystems. The repercussions cascade through higher trophic levels, underscoring the need for a comprehensive understanding of the interplay between pesticides, algae, and the broader ecosystem. Algae, susceptible to pesticides via spillage, runoff, and drift, experience disruptions in community structure and function, with certain species metabolizing and bioaccumulating these contaminants. The toxicological mechanisms vary based on the specific pesticide and algal species involved, particularly evident in herbicides' interference with photosynthetic activity in algae. Despite advancements, gaps persist in comprehending the precise toxic effects and mechanisms affecting algae and non-target species. This review consolidates information on the exposure and toxicity of diverse pesticides and herbicides to aquatic algae, elucidating underlying mechanisms. An emphasis is placed on the complex interactions between pesticides/herbicides, nutrient content, and their toxic effects on algae and microbial species. The variability in the harmful impact of a single pesticide across different algae species underscores the necessity for further research. A holistic approach considering these interactions is imperative to enhance predictions of pesticide effects in marine ecosystems. Continued research in this realm is crucial for a nuanced understanding of the repercussions of pesticides and herbicides on aquatic ecosystems, mainly algae.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Center for Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai 602 105, Tamil Nadu, India.
| | - Kesavan Devarayan
- Department of Basic Sciences, College of Fisheries Engineering, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Vettar River View Campus, Nagapattinam 611 002, India
| | - Monu Verma
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, South Korea; Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Hamed A Ghramh
- Research Centre for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641004, India.
| |
Collapse
|
5
|
Xu S, Li G, He C, Huang Y, Yu D, Deng H, Tong Z, Wang Y, Dupuy C, Huang B, Shen Z, Xu J, Gong J. Diversity, community structure, and quantity of eukaryotic phytoplankton revealed using 18S rRNA and plastid 16S rRNA genes and pigment markers: a case study of the Pearl River Estuary. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:415-430. [PMID: 37637251 PMCID: PMC10449762 DOI: 10.1007/s42995-023-00186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 06/11/2023] [Indexed: 08/29/2023]
Abstract
Understanding consistencies and discrepancies in characterizing diversity and quantity of phytoplankton is essential for better modeling ecosystem change. In this study, eukaryotic phytoplankton in the Pearl River Estuary, South China Sea were investigated using nuclear 18S rRNA and plastid 16S or 23S rRNA genes and pigment analysis. It was found that 18S abundance poorly explained the variations in total chlorophyll a (Chl-a). However, the ratios of log-transformed 18S abundance to Chl-a in the major phytoplankton groups were generally environment dependent, suggesting that the ratio has potential as an indicator of the physiological state of phytoplankton. The richness of 18S-based operational taxonomic units was positively correlated with the richness of 16S-based amplicon sequence variants of the whole phytoplankton community, but insignificant or weak for individual phytoplankton groups. Overall, the 18S based, rather than the 16S based, community structure had a greater similarity to pigment-based estimations. Relative to the pigment data, the proportion of haptophytes in the 18S dataset, and diatoms and cryptophytes in the 16S dataset, were underestimated. This study highlights that 18S metabarcoding tends to reflect biomass-based community organization of eukaryotic phytoplankton. Because there were lower copy numbers of plastid 16S than 18S per genome, metabarcoding of 16S probably approximates cell abundance-based community organization. Changes in biomass organization of the pigment-based community were sensitive to environmental changes. Taken together, multiple methodologies are recommended to be applied to more accurately profile the diversity and community composition of phytoplankton in natural ecosystems. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00186-x.
Collapse
Affiliation(s)
- Shumin Xu
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510006 China
| | - Guihao Li
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Cui He
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Yi Huang
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Dan Yu
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Huiwen Deng
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Zhuyin Tong
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Yichong Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Christine Dupuy
- BIOFEEL, UMRi LIENSs, La Rochelle Université/CNRS, La Rochelle, France
| | - Bangqin Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102 China
| | - Zhuo Shen
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
| | - Jie Xu
- Centre for Regional Oceans, Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Jun Gong
- School of Marine Sciences, Sun Yat-Sen University (Zhuhai Campus), and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000 China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, 510006 China
| |
Collapse
|
6
|
Flegontova O, Flegontov P, Jachníková N, Lukeš J, Horák A. Water masses shape pico-nano eukaryotic communities of the Weddell Sea. Commun Biol 2023; 6:64. [PMID: 36653511 PMCID: PMC9849203 DOI: 10.1038/s42003-023-04452-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Polar oceans belong to the most productive and rapidly changing environments, yet our understanding of this fragile ecosystem remains limited. Here we present an analysis of a unique set of DNA metabarcoding samples from the western Weddell Sea sampled throughout the whole water column and across five water masses with different characteristics and different origin. We focus on factors affecting the distribution of planktonic pico-nano eukaryotes and observe an ecological succession of eukaryotic communities as the water masses move away from the surface and as oxygen becomes depleted with time. At the beginning of this succession, in the photic zone, algae, bacteriovores, and predators of small eukaryotes dominate the community, while another community develops as the water sinks deeper, mostly composed of parasitoids (syndinians), mesoplankton predators (radiolarians), and diplonemids. The strongly correlated distribution of syndinians and diplonemids along the depth and oxygen gradients suggests their close ecological link and moves us closer to understanding the biological role of the latter group in the ocean ecosystem.
Collapse
Affiliation(s)
- Olga Flegontova
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Pavel Flegontov
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.412684.d0000 0001 2155 4545Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Nikola Jachníková
- grid.14509.390000 0001 2166 4904Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Julius Lukeš
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.14509.390000 0001 2166 4904Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aleš Horák
- grid.418338.50000 0001 2255 8513Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic ,grid.14509.390000 0001 2166 4904Department of Molecular Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
7
|
Bacterial, Phytoplankton, and Viral Distributions and Their Biogeochemical Contexts in Meromictic Lake Cadagno Offer Insights into the Proterozoic Ocean Microbial Loop. mBio 2022; 13:e0005222. [PMID: 35726916 PMCID: PMC9426590 DOI: 10.1128/mbio.00052-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lake Cadagno, a permanently stratified high-alpine lake with a persistent microbial bloom in its chemocline, has long been considered a model for the low-oxygen, high-sulfide Proterozoic ocean. Although the lake has been studied for over 25 years, the absence of concerted study of the bacteria, phytoplankton, and viruses, together with primary and secondary production, has hindered a comprehensive understanding of its microbial food web. Here, the identities, abundances, and productivity of microbes were evaluated in the context of Lake Cadagno biogeochemistry. Photosynthetic pigments together with 16S rRNA gene phylogenies suggest the prominence of eukaryotic phytoplankton chloroplasts, primarily chlorophytes. Chloroplasts closely related to those of high-alpine-adapted Ankyra judayi persisted with oxygen in the mixolimnion, where photosynthetic efficiency was high, while chloroplasts of Closteriopsis-related chlorophytes peaked in the chemocline and monimolimnion. The anoxygenic phototrophic sulfur bacterium Chromatium dominated the chemocline along with Lentimicrobium, a genus of known fermenters. Secondary production peaked in the chemocline, which suggested that anoxygenic primary producers depended on heterotrophic nutrient remineralization. The virus-to-microbe ratio peaked with phytoplankton abundances in the mixolimnion and were at a minimum where Chromatium abundance was highest, trends that suggest that viruses may play a role in the modulation of primary production. Through the combined analysis of bacterial, eukaryotic, viral, and biogeochemical spatial dynamics, we provide a comprehensive synthesis of the Lake Cadagno microbial loop. This study offers a new ecological perspective on how biological and geochemical connections may have occurred in the chemocline of the Proterozoic ocean, where eukaryotic microbial life is thought to have evolved.
Collapse
|
8
|
Bachy C, Wittmers F, Muschiol J, Hamilton M, Henrissat B, Worden AZ. The Land-Sea Connection: Insights Into the Plant Lineage from a Green Algal Perspective. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:585-616. [PMID: 35259927 DOI: 10.1146/annurev-arplant-071921-100530] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The colonization of land by plants generated opportunities for the rise of new heterotrophic life forms, including humankind. A unique event underpinned this massive change to earth ecosystems-the advent of eukaryotic green algae. Today, an abundant marine green algal group, the prasinophytes, alongside prasinodermophytes and nonmarine chlorophyte algae, is facilitating insights into plant developments. Genome-level data allow identification of conserved proteins and protein families with extensive modifications, losses, or gains and expansion patterns that connect to niche specialization and diversification. Here, we contextualize attributes according to Viridiplantae evolutionary relationships, starting with orthologous protein families, and then focusing on key elements with marked differentiation, resulting in patchy distributions across green algae and plants. We place attention on peptidoglycan biosynthesis, important for plastid division and walls; phytochrome photosensors that are master regulators in plants; and carbohydrate-active enzymes, essential to all manner of carbohydratebiotransformations. Together with advances in algal model systems, these areas are ripe for discovering molecular roles and innovations within and across plant and algal lineages.
Collapse
Affiliation(s)
- Charles Bachy
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Fabian Wittmers
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jan Muschiol
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Maria Hamilton
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS UMR 7257, Aix-Marseille Université (AMU), Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Alexandra Z Worden
- Ocean EcoSystems Biology Unit, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Marine Biological Laboratories, Woods Hole, Massachusetts, USA
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
9
|
Bachy C, Sudek L, Choi CJ, Eckmann CA, Nöthig EM, Metfies K, Worden AZ. Phytoplankton Surveys in the Arctic Fram Strait Demonstrate the Tiny Eukaryotic Alga Micromonas and Other Picoprasinophytes Contribute to Deep Sea Export. Microorganisms 2022; 10:961. [PMID: 35630405 PMCID: PMC9144618 DOI: 10.3390/microorganisms10050961] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
Critical questions exist regarding the abundance and, especially, the export of picophytoplankton (≤2 µm diameter) in the Arctic. These organisms can dominate chlorophyll concentrations in Arctic regions, which are subject to rapid change. The picoeukaryotic prasinophyte Micromonas grows in polar environments and appears to constitute a large, but variable, proportion of the phytoplankton in these waters. Here, we analyze 81 samples from the upper 100 m of the water column from the Fram Strait collected over multiple years (2009−2015). We also analyze sediment trap samples to examine picophytoplankton contributions to export, using both 18S rRNA gene qPCR and V1-V2 16S rRNA Illumina amplicon sequencing to assess the Micromonas abundance within the broader diversity of photosynthetic eukaryotes based on the phylogenetic placement of plastid-derived 16S amplicons. The material sequenced from the sediment traps in July and September 2010 showed that 11.2 ± 12.4% of plastid-derived amplicons are from picoplanktonic prasinophyte algae and other green lineage (Viridiplantae) members. In the traps, Micromonas dominated (83.6 ± 21.3%) in terms of the overall relative abundance of Viridiplantae amplicons, specifically the species Micromonas polaris. Temporal variations in Micromonas abundances quantified by qPCR were also observed, with higher abundances in the late-July traps and deeper traps. In the photic zone samples, four prasinophyte classes were detected in the amplicon data, with Micromonas again being the dominant prasinophyte, based on the relative abundance (89.4 ± 8.0%), but with two species (M. polaris and M. commoda-like) present. The quantitative PCR assessments showed that the photic zone samples with higher Micromonas abundances (>1000 gene copies per mL) had significantly lower standing stocks of phosphate and nitrate, and a shallower average depth (20 m) than those with fewer Micromonas. This study shows that despite their size, prasinophyte picophytoplankton are exported to the deep sea, and that Micromonas is particularly important within this size fraction in Arctic marine ecosystems.
Collapse
Affiliation(s)
- Charles Bachy
- Monterey Bay Aquarium Research Institute, Moss Landing, Monterey, CA 95039, USA; (C.B.); (L.S.); (C.J.C.); (C.A.E.)
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Lisa Sudek
- Monterey Bay Aquarium Research Institute, Moss Landing, Monterey, CA 95039, USA; (C.B.); (L.S.); (C.J.C.); (C.A.E.)
| | - Change Jae Choi
- Monterey Bay Aquarium Research Institute, Moss Landing, Monterey, CA 95039, USA; (C.B.); (L.S.); (C.J.C.); (C.A.E.)
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Charlotte A. Eckmann
- Monterey Bay Aquarium Research Institute, Moss Landing, Monterey, CA 95039, USA; (C.B.); (L.S.); (C.J.C.); (C.A.E.)
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
| | - Eva-Maria Nöthig
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; (E.-M.N.); (K.M.)
| | - Katja Metfies
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, 27570 Bremerhaven, Germany; (E.-M.N.); (K.M.)
| | - Alexandra Z. Worden
- Monterey Bay Aquarium Research Institute, Moss Landing, Monterey, CA 95039, USA; (C.B.); (L.S.); (C.J.C.); (C.A.E.)
- Ocean EcoSystems Biology Unit, RD3, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|