1
|
Jans M, Vereecke L. A guide to germ-free and gnotobiotic mouse technology to study health and disease. FEBS J 2025; 292:1228-1251. [PMID: 38523409 DOI: 10.1111/febs.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/17/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
The intestinal microbiota has major influence on human physiology and modulates health and disease. Complex host-microbe interactions regulate various homeostatic processes, including metabolism and immune function, while disturbances in microbiota composition (dysbiosis) are associated with a plethora of human diseases and are believed to modulate disease initiation, progression and therapy response. The vast complexity of the human microbiota and its metabolic output represents a great challenge in unraveling the molecular basis of host-microbe interactions in specific physiological contexts. To increase our understanding of these interactions, functional microbiota research using animal models in a reductionistic setting are essential. In the dynamic landscape of gut microbiota research, the use of germ-free and gnotobiotic mouse technology, in which causal disease-driving mechanisms can be dissected, represents a pivotal investigative tool for functional microbiota research in health and disease, in which causal disease-driving mechanisms can be dissected. A better understanding of the health-modulating functions of the microbiota opens perspectives for improved therapies in many diseases. In this review, we discuss practical considerations for the design and execution of germ-free and gnotobiotic experiments, including considerations around germ-free rederivation and housing conditions, route and timing of microbial administration, and dosing protocols. This comprehensive overview aims to provide researchers with valuable insights for improved experimental design in the field of functional microbiota research.
Collapse
Affiliation(s)
- Maude Jans
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Belgium
| | - Lars Vereecke
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Belgium
| |
Collapse
|
2
|
Lam HYP, Lai MJ, Wang PC, Wu WJ, Chen LK, Fan HW, Tseng CC, Peng SY, Chang KC. A Novel Bacteriophage with the Potential to Inhibit Fusobacterium nucleatum-Induced Proliferation of Colorectal Cancer Cells. Antibiotics (Basel) 2025; 14:45. [PMID: 39858331 PMCID: PMC11760851 DOI: 10.3390/antibiotics14010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/26/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Increasing evidence shows that Fusobacterium nucleatum (F. nucleatum) largely affects colorectal cancer (CRC) growth and progression; therefore, the inhibition of intratumoral F. nucleatum may be one realistic approach to combat CRC. Although antibiotics are helpful in eliminating bacteria, the major problem remains the rise of potential antibiotic-resistant strains and antibiotic-associated adverse effects. Currently, bacteriophage therapy has gained interest because of its high selectivity to bacterial hosts and may become a realistic approach in treating bacteria-associated cancers. METHODS In this study, a new F. nucleatum bacteriophage, ØTCUFN3, was isolated and its biological characteristics were identified. In vitro and in vivo studies were performed to investigate the effect of ØTCUFN3 in combating F. nucleatum-induced CRC growth. RESULTS By applying ØTCUFN3 to F. nucleatum-induced CRC cell lines, p53+/+, and p53-/- isogenic HCT116 cells, our results revealed an inhibition of CRC proliferation and the expression of epithelial-to-mesenchymal transition (EMT) markers. ØTCUFN3 injection also reduced the growth of F. nucleatum-induced mouse xenografts. CONCLUSIONS Our results demonstrated the use of F. nucleatum bacteriophage against CRC, laying the foundation for the future usage of bacteriophage in cancer treatment.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
- Institute of Medical Science, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Meng-Jiun Lai
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970374, Taiwan; (M.-J.L.); (P.-C.W.); (W.-J.W.)
| | - Pin-Chun Wang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970374, Taiwan; (M.-J.L.); (P.-C.W.); (W.-J.W.)
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970374, Taiwan; (M.-J.L.); (P.-C.W.); (W.-J.W.)
| | - Li-Kuang Chen
- Institute of Medical Science, College of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
- Branch of Clinical Pathology, Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970473, Taiwan
| | - Hsiang-Wei Fan
- Master Program in Biomedical Science, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Chun-Chieh Tseng
- Department and Graduate Institute of Public Health, Tzu Chi University, Hualien 970374, Taiwan;
| | - Shih-Yi Peng
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien 970374, Taiwan;
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970374, Taiwan; (M.-J.L.); (P.-C.W.); (W.-J.W.)
- Department of Laboratory Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan
| |
Collapse
|
3
|
Queen J, Cing Z, Minsky H, Nandi A, Southward T, Ferri J, McMann M, Iyadorai T, Vadivelu J, Roslani A, Loke MF, Wanyiri J, White JR, Drewes JL, Sears CL. Fusobacterium nucleatum is enriched in invasive biofilms in colorectal cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630810. [PMID: 39803475 PMCID: PMC11722383 DOI: 10.1101/2024.12.30.630810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Fusobacterium nucleatum is an oral bacterium known to colonize colorectal tumors, where it is thought to play an important role in cancer progression. Recent advances in sequencing and phenotyping of F. nucleatum have revealed important differences at the subspecies level, but whether these differences impact the overall tumor ecology, and tumorigenesis itself, remain poorly understood. In this study, we sought to characterize Fusobacteria in the tumor microbiome of a cohort of individuals with CRC through a combination of molecular, spatial, and microbiologic analyses. We assessed for relative abundance of F. nucleatum in tumors compared to paired normal tissue, and correlated abundance with clinical and pathological features. We demonstrate striking enrichment of F. nucleatum and the recently discovered subspecies animalis clade 2 (Fna C2) specifically in colon tumors that have biofilms, highlighting the importance of complex community partnerships in the pathogenesis of this important organism.
Collapse
Affiliation(s)
- Jessica Queen
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zam Cing
- University of Maryland Baltimore County, Baltimore, MD, USA
| | - Hana Minsky
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Asmita Nandi
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Madison McMann
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | - Julia L Drewes
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Hong BY, Chhaya A, Robles A, Cervantes J, Tiwari S. The role of Fusobacterium nucleatum in the pathogenesis of colon cancer. J Investig Med 2024; 72:819-827. [PMID: 39175147 DOI: 10.1177/10815589241277829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Previously, many studies have reported changes in the gut microbiota of patients with colorectal cancer (CRC). While CRC is a well-described disease, the relationship between its development and features of the intestinal microbiome is still being understood. Evidence linking Fusobacterium nucleatum enrichment in colorectal tumor tissue has prompted the elucidation of various molecular mechanisms and tumor-promoting attributes. In this review we highlight various aspects of our understanding of the relationship between the development of CRC and the alteration of intestinal microbiome, focusing specifically on the role of F. nucleatum. As the amount of F. nucleatum DNA in CRC tissue is associated with shorter survival, it may potentially serve as a prognostic biomarker, and most importantly may open the door for a role in CRC treatment.
Collapse
Affiliation(s)
- Bo-Young Hong
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Ajay Chhaya
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Alejandro Robles
- Department of Internal Medicine, Division of Gastroenterology, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Jorge Cervantes
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sangeeta Tiwari
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
5
|
Muñiz Pedrogo DA, Sears CL, Melia JMP. Colorectal Cancer in Inflammatory Bowel Disease: A Review of the Role of Gut Microbiota and Bacterial Biofilms in Disease Pathogenesis. J Crohns Colitis 2024; 18:1713-1725. [PMID: 38703073 DOI: 10.1093/ecco-jcc/jjae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
The risk of colorectal cancer [CRC] is increased in patients with inflammatory bowel disease [IBD], particularly in extensive ulcerative colitis [UC] and Crohn's colitis. Gut microbiota have been implicated in the pathogenesis of CRC via multiple mechanisms, including the release of reactive oxygen species and genotoxins, and induction of inflammation, as well as activation of the immune response. Gut microbiota can enhance their carcinogenic and proinflammatory properties by organising into biofilms, potentially making them more resistant to the host's immune system and to antibiotics. Colonic biofilms have the capacity to invade colonic tissue and accelerate tumorigenesis in tumour-prone models of mice. In the context of IBD, the prevalence of biofilms has been estimated to be up to 95%. Although the relationship between chronic inflammation and molecular mediators that contribute to IBD-associated CRC is well established, the role of gut microbiota and biofilms in this sequence is not fully understood. Because CRC can still arise in the absence of histological inflammation, there is a growing interest in identifying chemopreventive agents against IBD-associated CRC. Commonly used in the treatment of UC, 5-aminosalicylates have antimicrobial and anticarcinogenic properties that might have a role in the chemoprevention of CRC via the inhibition or modulation of carcinogenic gut microbiota and potentially of biofilm formation. Whether biologics and other IBD-targeted therapies can decrease the progression towards dysplasia and CRC, via mechanisms independent of inflammation, is still unknown. Further research is warranted to identify potential new microbial targets in therapy for chemoprevention of dysplasia and CRC in IBD.
Collapse
Affiliation(s)
- David A Muñiz Pedrogo
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joanna M P Melia
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
6
|
Jandl B, Dighe S, Gasche C, Makristathis A, Muttenthaler M. Intestinal biofilms: pathophysiological relevance, host defense, and therapeutic opportunities. Clin Microbiol Rev 2024; 37:e0013323. [PMID: 38995034 PMCID: PMC11391705 DOI: 10.1128/cmr.00133-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYThe human intestinal tract harbors a profound variety of microorganisms that live in symbiosis with the host and each other. It is a complex and highly dynamic environment whose homeostasis directly relates to human health. Dysbiosis of the gut microbiota and polymicrobial biofilms have been associated with gastrointestinal diseases, including irritable bowel syndrome, inflammatory bowel diseases, and colorectal cancers. This review covers the molecular composition and organization of intestinal biofilms, mechanistic aspects of biofilm signaling networks for bacterial communication and behavior, and synergistic effects in polymicrobial biofilms. It further describes the clinical relevance and diseases associated with gut biofilms, the role of biofilms in antimicrobial resistance, and the intestinal host defense system and therapeutic strategies counteracting biofilms. Taken together, this review summarizes the latest knowledge and research on intestinal biofilms and their role in gut disorders and provides directions toward the development of biofilm-specific treatments.
Collapse
Affiliation(s)
- Bernhard Jandl
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Satish Dighe
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Christoph Gasche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
- Loha for Life, Center for Gastroenterology and Iron Deficiency, Vienna, Austria
| | - Athanasios Makristathis
- Department of Laboratory Medicine, Division of Clinical Microbiology, Medical University of Vienna, Vienna, Austria
| | - Markus Muttenthaler
- Faculty of Chemistry, Institute of Biological Chemistry, University of Vienna, Vienna, Austria
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Hussain N, Muccee F, Ashraf NM, Afsar T, Husain FM, Hamid A, Razak S. Comparative analysis of adhesion virulence protein FadA from gut-associated bacteria of colorectal cancer patients ( F. nucleatum) and healthy individuals ( E. cloacae). J Cancer 2024; 15:5492-5505. [PMID: 39308684 PMCID: PMC11414602 DOI: 10.7150/jca.98951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/18/2024] [Indexed: 09/25/2024] Open
Abstract
Background: Colorectal cancer (CRC) is a gastrointestinal disease linked with GIT microbial dysbiosis. The present study has targeted the comparative analysis of virulent factor FadA from gut-associated bacteria of CRC patients (F. nucleatum) and healthy individuals (E. cloacae). Methods: For this purpose, FadA protein sequences of fifteen strains of F. nucleatum and four strains of E. cloacae, were retrieved from the UniProt database. These sequences were analysed through VirulentPred, PSLpred, ProtParam, PFP-FunDSeqE, PROTEUS Structure Prediction Server, SWISS-MODEL, SAVES validation server, MEME suite 5.5.0, CAVER Web tool, Webserver VaxinPAD, HPEPDOCK and HDOCK servers. Results: FadA protein from F. nucleatum was found to exhibit significant differences as compared to E. nucleatum i.e. it exhibited helical configuration, cytoplasmic, periplasmic, outer-membrane and extracellular localisation, 2D structure comprising of 70-96% helix, 0% beta-sheet, 4-30% coils and 17-20 signal peptide residues, hydrophilicity, strongly acidic character and smaller number of antigenic epitopes. In contrast, FadA protein from E. nucleatum was found to have globular 3D configuration, cytoplasmic localisation, 2D structure (30-56% helix, 12-21% beta-sheet, 33-50% coils and 43 signal peptide residues), highly hydrophobic, slightly acidic and more number of antigenic epitopes. Docking analyses of virulent factors revealed their high binding affinities with previously reported inhibitory peptide and FAD-approved drug COX2. Conclusion: The wide range of differences not only provided us the reason for the role of FadA protein as a virulent factor in F. nucleatum but also might help us in designing virulent FadA protein inhibiting strategies including peptide-based vaccine adjuvants and drugs designing, modification of tunnels and catalytic pockets to reduce substrate binding and FAD approved drugs selection. Inhibition of this virulent factor in CRC patients' gut bacteria might result in oncogenesis regression and reduced death rate.
Collapse
Affiliation(s)
- Nadia Hussain
- Department of Pharmaceutical Sciences, College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, Abu Dhabi, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi Campus, Abu Dhabi P. O. Box 112612, Abu Dhabi, United Arab Emirates
| | - Fatima Muccee
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, 52254, Pakistan
| | - Naeem Mahmood Ashraf
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, 52254, Pakistan
| | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Arslan Hamid
- University of Bonn, LIMES Institute (AG-Netea), Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
8
|
Nakatsu G, Andreeva N, MacDonald MH, Garrett WS. Interactions between diet and gut microbiota in cancer. Nat Microbiol 2024; 9:1644-1654. [PMID: 38907007 DOI: 10.1038/s41564-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2024] [Indexed: 06/23/2024]
Abstract
Dietary patterns and specific dietary components, in concert with the gut microbiota, can jointly shape susceptibility, resistance and therapeutic response to cancer. Which diet-microbial interactions contribute to or mitigate carcinogenesis and how they work are important questions in this growing field. Here we interpret studies of diet-microbial interactions to assess dietary determinants of intestinal colonization by opportunistic and oncogenic bacteria. We explore how diet-induced expansion of specific gut bacteria might drive colonic epithelial tumorigenesis or create immuno-permissive tumour milieus and introduce recent findings that provide insight into these processes. Additionally, we describe available preclinical models that are widely used to study diet, microbiome and cancer interactions. Given the rising clinical interest in dietary modulations in cancer treatment, we highlight promising clinical trials that describe the effects of different dietary alterations on the microbiome and cancer outcomes.
Collapse
Affiliation(s)
- Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Meghan H MacDonald
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Harvard Chan Microbiome in Public Health Center, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
9
|
Udayasuryan B, Zhou Z, Ahmad RN, Sobol P, Deng C, Nguyen TTD, Kodikalla S, Morrison R, Goswami I, Slade DJ, Verbridge SS, Lu C. Fusobacterium nucleatum infection modulates the transcriptome and epigenome of HCT116 colorectal cancer cells in an oxygen-dependent manner. Commun Biol 2024; 7:551. [PMID: 38720110 PMCID: PMC11079022 DOI: 10.1038/s42003-024-06201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Fusobacterium nucleatum, a gram-negative oral bacterium, has been consistently validated as a strong contributor to the progression of several types of cancer, including colorectal (CRC) and pancreatic cancer. While previous in vitro studies have shown that intracellular F. nucleatum enhances malignant phenotypes such as cell migration, the dependence of this regulation on features of the tumor microenvironment (TME) such as oxygen levels are wholly uncharacterized. Here we examine the influence of hypoxia in facilitating F. nucleatum invasion and its effects on host responses focusing on changes in the global epigenome and transcriptome. Using a multiomic approach, we analyze epigenomic alterations of H3K27ac and global transcriptomic alterations sustained within a hypoxia and normoxia conditioned CRC cell line HCT116 at 24 h following initial infection with F. nucleatum. Our findings reveal that intracellular F. nucleatum activates signaling pathways and biological processes in host cells similar to those induced upon hypoxia conditioning in the absence of infection. Furthermore, we show that a hypoxic TME favors F. nucleatum invasion and persistence and therefore infection under hypoxia may amplify malignant transformation by exacerbating the effects induced by hypoxia alone. These results motivate future studies to investigate host-microbe interactions in tumor tissue relevant conditions that more accurately define parameters for targeted cancer therapies.
Collapse
Affiliation(s)
- Barath Udayasuryan
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Zirui Zhou
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Raffae N Ahmad
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Polina Sobol
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chengyu Deng
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Tam T D Nguyen
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Shivanie Kodikalla
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ryan Morrison
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Ishan Goswami
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- School of Biomedical Engineering and Sciences, Virginia Tech-Wake Forest University, Blacksburg, VA, USA
| | - Chang Lu
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
10
|
Abstract
Colorectal cancer (CRC) is a substantial source of global morbidity and mortality in dire need of improved prevention and treatment strategies. As our understanding of CRC grows, it is becoming increasingly evident that the gut microbiota, consisting of trillions of microorganisms in direct interface with the colon, plays a substantial role in CRC development and progression. Understanding the roles that individual microorganisms and complex microbial communities play in CRC pathogenesis, along with their attendant mechanisms, will help yield novel preventive and therapeutic interventions for CRC. In this Review, we discuss recent evidence concerning global perturbations of the gut microbiota in CRC, associations of specific microorganisms with CRC, the underlying mechanisms by which microorganisms potentially drive CRC development and the roles of complex microbial communities in CRC pathogenesis. While our understanding of the relationship between the microbiota and CRC has improved in recent years, our findings highlight substantial gaps in current research that need to be filled before this knowledge can be used to the benefit of patients.
Collapse
Affiliation(s)
- Maxwell T White
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Zepeda-Rivera M, Minot SS, Bouzek H, Wu H, Blanco-Míguez A, Manghi P, Jones DS, LaCourse KD, Wu Y, McMahon EF, Park SN, Lim YK, Kempchinsky AG, Willis AD, Cotton SL, Yost SC, Sicinska E, Kook JK, Dewhirst FE, Segata N, Bullman S, Johnston CD. A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche. Nature 2024; 628:424-432. [PMID: 38509359 PMCID: PMC11006615 DOI: 10.1038/s41586-024-07182-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 02/08/2024] [Indexed: 03/22/2024]
Abstract
Fusobacterium nucleatum (Fn), a bacterium present in the human oral cavity and rarely found in the lower gastrointestinal tract of healthy individuals1, is enriched in human colorectal cancer (CRC) tumours2-5. High intratumoural Fn loads are associated with recurrence, metastases and poorer patient prognosis5-8. Here, to delineate Fn genetic factors facilitating tumour colonization, we generated closed genomes for 135 Fn strains; 80 oral strains from individuals without cancer and 55 unique cancer strains cultured from tumours from 51 patients with CRC. Pangenomic analyses identified 483 CRC-enriched genetic factors. Tumour-isolated strains predominantly belong to Fn subspecies animalis (Fna). However, genomic analyses reveal that Fna, considered a single subspecies, is instead composed of two distinct clades (Fna C1 and Fna C2). Of these, only Fna C2 dominates the CRC tumour niche. Inter-Fna analyses identified 195 Fna C2-associated genetic factors consistent with increased metabolic potential and colonization of the gastrointestinal tract. In support of this, Fna C2-treated mice had an increased number of intestinal adenomas and altered metabolites. Microbiome analysis of human tumour tissue from 116 patients with CRC demonstrated Fna C2 enrichment. Comparison of 62 paired specimens showed that only Fna C2 is tumour enriched compared to normal adjacent tissue. This was further supported by metagenomic analysis of stool samples from 627 patients with CRC and 619 healthy individuals. Collectively, our results identify the Fna clade bifurcation, show that specifically Fna C2 drives the reported Fn enrichment in human CRC and reveal the genetic underpinnings of pathoadaptation of Fna C2 to the CRC niche.
Collapse
Affiliation(s)
- Martha Zepeda-Rivera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Samuel S Minot
- Data Core, Shared Resources, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Heather Bouzek
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Hanrui Wu
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Aitor Blanco-Míguez
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Paolo Manghi
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Dakota S Jones
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Ying Wu
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elsa F McMahon
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun K Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Amy D Willis
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | | | | | - Ewa Sicinska
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Floyd E Dewhirst
- Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, USA
| | - Nicola Segata
- Department of Computational, Cellular and Integrative Biology, University of Trento, Trento, Italy
| | - Susan Bullman
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Christopher D Johnston
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
12
|
Crowley C, Selvaraj A, Hariharan A, Healy CM, Moran GP. Fusobacterium nucleatum subsp. polymorphum recovered from malignant and potentially malignant oral disease exhibit heterogeneity in adhesion phenotypes and adhesin gene copy number, shaped by inter-subspecies horizontal gene transfer and recombination-derived mosaicism. Microb Genom 2024; 10:001217. [PMID: 38529905 PMCID: PMC10995627 DOI: 10.1099/mgen.0.001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/27/2024] Open
Abstract
Fusobacterium nucleatum is an anaerobic commensal of the oral cavity associated with periodontitis and extra-oral diseases, including colorectal cancer. Previous studies have shown an increased relative abundance of this bacterium associated with oral dysplasia or within oral tumours. Using direct culture, we found that 75 % of Fusobacterium species isolated from malignant or potentially malignant oral mucosa were F. nucleatum subsp. polymorphum. Whole genome sequencing and pangenome analysis with Panaroo was carried out on 76 F. nucleatum subsp. polymorphum genomes. F. nucleatum subsp. polymorphum was shown to possesses a relatively small core genome of 1604 genes in a pangenome of 7363 genes. Phylogenetic analysis based on the core genome shows the isolates can be separated into three main clades with no obvious genotypic associations with disease. Isolates recovered from healthy and diseased sites in the same patient are generally highly related. A large repertoire of adhesins belonging to the type V secretion system (TVSS) could be identified with major variation in repertoire and copy number between strains. Analysis of intergenic recombination using fastGEAR showed that adhesin complement is shaped by horizontal gene transfer and recombination. Recombination events at TVSS adhesin genes were not only common between lineages of subspecies polymorphum, but also between different subspecies of F. nucleatum. Strains of subspecies polymorphum with low copy numbers of TVSS adhesin encoding genes tended to have the weakest adhesion to oral keratinocytes. This study highlights the genetic heterogeneity of F. nucleatum subsp. polymorphum and provides a new framework for defining virulence in this organism.
Collapse
Affiliation(s)
- Claire Crowley
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Ajith Selvaraj
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Arvind Hariharan
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Claire M. Healy
- Division of Oral and Maxillofacial Surgery, Oral Medicine and Oral Pathology, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital and School of Dental Science, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
El Tekle G, Andreeva N, Garrett WS. The Role of the Microbiome in the Etiopathogenesis of Colon Cancer. Annu Rev Physiol 2024; 86:453-478. [PMID: 38345904 DOI: 10.1146/annurev-physiol-042022-025619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Studies in preclinical models support that the gut microbiota play a critical role in the development and progression of colorectal cancer (CRC). Specific microbial species and their corresponding virulence factors or associated small molecules can contribute to CRC development and progression either via direct effects on the neoplastic transformation of epithelial cells or through interactions with the host immune system. Induction of DNA damage, activation of Wnt/β-catenin and NF-κB proinflammatory pathways, and alteration of the nutrient's availability and the metabolic activity of cancer cells are the main mechanisms by which the microbiota contribute to CRC. Within the tumor microenvironment, the gut microbiota alter the recruitment, activation, and function of various immune cells, such as T cells, macrophages, and dendritic cells. Additionally, the microbiota shape the function and composition of cancer-associated fibroblasts and extracellular matrix components, fashioning an immunosuppressive and pro-tumorigenic niche for CRC. Understanding the complex interplay between gut microbiota and tumorigenesis can provide therapeutic opportunities for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
| | - Natalia Andreeva
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research at MIT, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA;
- The Harvard Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
14
|
Greathouse KL, Stone JK, Vargas AJ, Choudhury A, Padgett RN, White JR, Jung A, Harris CC. Co-enrichment of cancer-associated bacterial taxa is correlated with immune cell infiltrates in esophageal tumor tissue. Sci Rep 2024; 14:2574. [PMID: 38296990 PMCID: PMC10831118 DOI: 10.1038/s41598-023-48862-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/30/2023] [Indexed: 02/02/2024] Open
Abstract
Esophageal carcinoma (ESCA) is a leading cause of cancer-related death worldwide, and certain oral and intestinal pathogens have been associated with cancer development and progression. We asked if esophageal microbiomes had shared alterations that could provide novel biomarkers for ESCA risk. We extracted DNA from tumor and non-tumor tissue of 212 patients in the NCI-MD case control study and sequenced the 16S rRNA gene (V3-4), with TCGA ESCA RNA-seq (n = 172) and WGS (n = 123) non-human reads used as validation. We identified four taxa, Campylobacter, Prevotella, Streptococcus, and Fusobacterium as highly enriched in esophageal cancer across all cohorts. Using SparCC, we discovered that Fusobacterium and Prevotella were also co-enriched across all cohorts. We then analyzed immune cell infiltration to determine if these dysbiotic taxa were associated with immune signatures. Using xCell to obtain predicted immune infiltrates, we identified a depletion of megakaryocyte-erythroid progenitor (MEP) cells in tumors with presence of any of the four taxa, along with enrichment of platelets in tumors with Campylobactor or Fusobacterium. Taken together, our results suggest that intratumoral presence of these co-occurring bacterial genera may confer tumor promoting immune alterations that allow disease progression in esophageal cancer.
Collapse
Affiliation(s)
- K L Greathouse
- Department of Biology, Baylor University, Waco, TX, USA.
- Nutrition Division, Human Sciences and Design, Baylor University, Waco, TX, USA.
| | - J K Stone
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - A J Vargas
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - A Choudhury
- Department of Biology, Baylor University, Waco, TX, USA
| | - R N Padgett
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - J R White
- Resphera Biosciences, LLC, Baltimore, MD, USA
| | - A Jung
- Department of Biology, Baylor University, Waco, TX, USA
| | - C C Harris
- Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
15
|
Krieger M, Guo M, Merritt J. Reexamining the role of Fusobacterium nucleatum subspecies in clinical and experimental studies. Gut Microbes 2024; 16:2415490. [PMID: 39394990 PMCID: PMC11486156 DOI: 10.1080/19490976.2024.2415490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
The Gram-negative anaerobic species Fusobacterium nucleatum was originally described as a commensal organism from the human oral microbiome. However, it is now widely recognized as a key inflammophilic pathobiont associated with a wide variety of oral and extraoral diseases. Historically, F. nucleatum has been classified into four subspecies that have been generally considered as functionally interchangeable in their pathogenic potential. Recent studies have challenged this notion, as clinical data reveal a highly biased distribution of F. nucleatum subspecies within disease sites of both inflammatory oral diseases and various malignancies. This review details the historical basis for the F. nucleatum subspecies designations and summarizes our current understanding of the similarities and distinctions between these organisms to provide important context for future clinical and laboratory studies of F. nucleatum.
Collapse
Affiliation(s)
- Madeline Krieger
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Mingzhe Guo
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| | - Justin Merritt
- Division of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University (OHSU), Portland, OR, USA
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University (OHSU), Portland, OR, USA
| |
Collapse
|
16
|
Pottie I, Vázquez Fernández R, Van de Wiele T, Briers Y. Phage lysins for intestinal microbiome modulation: current challenges and enabling techniques. Gut Microbes 2024; 16:2387144. [PMID: 39106212 PMCID: PMC11305034 DOI: 10.1080/19490976.2024.2387144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 07/26/2024] [Indexed: 08/09/2024] Open
Abstract
The importance of the microbiota in the intestinal tract for human health has been increasingly recognized. In this perspective, microbiome modulation, a targeted alteration of the microbial composition, has gained interest. Phage lysins, peptidoglycan-degrading enzymes encoded by bacteriophages, are a promising new class of antibiotics currently under clinical development for treating bacterial infections. Due to their high specificity, lysins are considered microbiome-friendly. This review explores the opportunities and challenges of using lysins as microbiome modulators. First, the high specificity of endolysins, which can be further modulated using protein engineering or targeted delivery methods, is discussed. Next, obstacles and possible solutions to assess the microbiome-friendliness of lysins are considered. Finally, lysin delivery to the intestinal tract is discussed, including possible delivery methods such as particle-based and probiotic vehicles. Mapping the hurdles to developing lysins as microbiome modulators and identifying possible ways to overcome these hurdles can help in their development. In this way, the application of these innovative antimicrobial agents can be expanded, thereby taking full advantage of their characteristics.
Collapse
Affiliation(s)
- Iris Pottie
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Roberto Vázquez Fernández
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, Gent, Belgium
| |
Collapse
|
17
|
Schorr L, Mathies M, Elinav E, Puschhof J. Intracellular bacteria in cancer-prospects and debates. NPJ Biofilms Microbiomes 2023; 9:76. [PMID: 37813921 PMCID: PMC10562400 DOI: 10.1038/s41522-023-00446-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023] Open
Abstract
Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
Collapse
Affiliation(s)
- Lena Schorr
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marius Mathies
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Jens Puschhof
- Microbiome and Cancer Division, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
18
|
Abstract
Cancer cells originate from a series of acquired genetic mutations that can drive their uncontrolled cell proliferation and immune evasion. Environmental factors, including the microorganisms that colonize the human body, can shift the metabolism, growth pattern and function of neoplastic cells and shape the tumour microenvironment. Dysbiosis of the gut microbiome is now recognized as a hallmark of cancer by the scientific community. However, only a few microorganisms have been identified that directly initiate tumorigenesis or skew the immune system to generate a tumour-permissive milieu. Over the past two decades, research on the human microbiome and its functionalities within and across individuals has revealed microbiota-focused strategies for health and disease. Here, we review the evolving understanding of the mechanisms by which the microbiota acts in cancer initiation, promotion and progression. We explore the roles of bacteria in gastrointestinal tract malignancies and cancers of the lung, breast and prostate. Finally, we discuss the promises and limitations of targeting or harnessing bacteria in personalized cancer prevention, diagnostics and treatment.
Collapse
Affiliation(s)
- Geniver El Tekle
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- The Harvard T. H. Chan Microbiome in Public Health Center, Boston, MA, USA.
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
19
|
Queen J, Shaikh F, Sears CL. Understanding the mechanisms and translational implications of the microbiome for cancer therapy innovation. NATURE CANCER 2023; 4:1083-1094. [PMID: 37525016 DOI: 10.1038/s43018-023-00602-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
The intersection of the microbiota and cancer and the mechanisms that define these interactions are a fascinating, rapidly evolving area of cancer biology and therapeutics. Here we present recent insights into the mechanisms by which specific bacteria or their communities contribute to carcinogenesis and discuss the bidirectional interplay between microbiota and host gene or epigenome signaling. We conclude with comments on manipulation of the microbiota for the therapeutic benefit of patients with cancer.
Collapse
Affiliation(s)
- Jessica Queen
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Fyza Shaikh
- Cancer Immunology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cynthia L Sears
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Cancer Immunology Program, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Molecular Immunology, Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
20
|
McGregor AK, Chan ACK, Schroeder MD, Do LTM, Saini G, Murphy MEP, Wolthers KR. A new member of the flavodoxin superfamily from Fusobacterium nucleatum that functions in heme trafficking and reduction of anaerobilin. J Biol Chem 2023; 299:104902. [PMID: 37302554 PMCID: PMC10404700 DOI: 10.1016/j.jbc.2023.104902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023] Open
Abstract
Fusobacterium nucleatum is an opportunistic oral pathogen that is associated with various cancers. To fulfill its essential need for iron, this anaerobe will express heme uptake machinery encoded at a single genetic locus. The heme uptake operon includes HmuW, a class C radical SAM-dependent methyltransferase that degrades heme anaerobically to release Fe2+ and a linear tetrapyrrole called anaerobilin. The last gene in the operon, hmuF encodes a member of the flavodoxin superfamily of proteins. We discovered that HmuF and a paralog, FldH, bind tightly to both FMN and heme. The structure of Fe3+-heme-bound FldH (1.6 Å resolution) reveals a helical cap domain appended to the ⍺/β core of the flavodoxin fold. The cap creates a hydrophobic binding cleft that positions the heme planar to the si-face of the FMN isoalloxazine ring. The ferric heme iron is hexacoordinated to His134 and a solvent molecule. In contrast to flavodoxins, FldH and HmuF do not stabilize the FMN semiquinone but instead cycle between the FMN oxidized and hydroquinone states. We show that heme-loaded HmuF and heme-loaded FldH traffic heme to HmuW for degradation of the protoporphyrin ring. Both FldH and HmuF then catalyze multiple reductions of anaerobilin through hydride transfer from the FMN hydroquinone. The latter activity eliminates the aromaticity of anaerobilin and the electrophilic methylene group that was installed through HmuW turnover. Hence, HmuF provides a protected path for anaerobic heme catabolism, offering F. nucleatum a competitive advantage in the colonization of anoxic sites of the human body.
Collapse
Affiliation(s)
| | - Anson C K Chan
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Megan D Schroeder
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Long T M Do
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Gurpreet Saini
- Department of Chemistry, University of British Columbia, Kelowna, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Kelowna, Canada.
| |
Collapse
|
21
|
Xia C, Su J, Liu C, Mai Z, Yin S, Yang C, Fu L. Human microbiomes in cancer development and therapy. MedComm (Beijing) 2023; 4:e221. [PMID: 36860568 PMCID: PMC9969057 DOI: 10.1002/mco2.221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 03/03/2023] Open
Abstract
Colonies formed by bacteria, archaea, fungi, and viral groups and their genomes, metabolites, and expressed proteins constitute complex human microbiomes. An increasing evidences showed that carcinogenesis and disease progression were link to microbiomes. Different organ sources, their microbial species, and their metabolites are different; the mechanisms of carcinogenic or procancerous are also different. Here, we summarize how microbiomes contribute to carcinogenesis and disease progression in cancers of the skin, mouth, esophagus, lung, gastrointestinal, genital, blood, and lymph malignancy. We also insight into the molecular mechanisms of triggering, promoting, or inhibiting carcinogenesis and disease progress induced by microbiomes or/and their secretions of bioactive metabolites. And then, the strategies of application of microorganisms in cancer treatment were discussed in detail. However, the mechanisms by which human microbiomes function are still poorly understood. The bidirectional interactions between microbiotas and endocrine systems need to be clarified. Probiotics and prebiotics are believed to benefit human health via a variety of mechanisms, in particular, in tumor inhibition. It is largely unknown how microbial agents cause cancer or how cancer progresses. We expect this review may open new perspectives on possible therapeutic approaches of patients with cancer.
Collapse
Affiliation(s)
- Chenglai Xia
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Jiyan Su
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Can Liu
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Zhikai Mai
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Shuanghong Yin
- Affiliated Foshan Maternity and Chlid Healthcare HospitalSouthern Medical University, Foshan, China; School of Pharmaceutical Sciences, Southern Medical UniversityGuangzhouChina
| | - Chuansheng Yang
- Department of Head‐Neck and Breast SurgeryYuebei People's Hospital of Shantou UniversityShaoguanChina
| | - Liwu Fu
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer Medicine; Guangdong Esophageal Cancer Institute; Sun Yat‐sen University Cancer CenterGuangzhouPeople's Republic of China
| |
Collapse
|
22
|
Shi YT, He JM, Tong ZA, Qian YJ, Wang QW, Jia DJC, Zhu WJ, Zhao YX, Cai BB, Chen SJ, Si MS. Ligature-Induced Periodontitis Drives Colorectal Cancer: An Experimental Model in Mice. J Dent Res 2023; 102:689-698. [PMID: 36942967 DOI: 10.1177/00220345231158269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Periodontitis is a prevalent inflammatory oral disease associated with an increased risk of colorectal cancer. Experimental animal models are critical tools to investigate the effects and mechanisms of periodontitis on colorectal cancer. Several murine periodontitis models have been used in research, including oral gavage, periodontal pathogen injection, and ligature models. The role of experimental periodontitis caused by silk ligation in colorectal cancer remains unclear. In this study, we used an experimental periodontitis model on a colitis-associated colorectal cancer model and a spontaneous model, respectively. We observed the promotion of colorectal cancer in ligature-induced periodontitis mice compared to those control mice in 2 different models, as assessed by tumor number, tumor size, and tumor load. Since bacterial dysbiosis is an important feature of periodontitis, we next analyzed the oral and gut microbiomes using 16S ribosomal RNA gene sequencing. We found that the experimental periodontitis model reshaped the microbial community in the oral cavity and gut. In addition, we found a higher extent of programmed death 1 (PD-1)-positive CD8+ T-cell infiltration in tumor samples of the periodontitis group than in controls by immunofluorescence staining. Regarding the potential molecular mechanism, we transplanted the fecal microbiota of the periodontitis patient into mice and observed a tumor-promoting effect in the periodontitis group, assessed by tumor volume and tumor weight, together with a low level of INF-γ+ CD8+ T-cell infiltration in subcutaneous tumor mice. Taken together, we show that ligature-induced periodontitis model promotes colorectal cancer by microbiota remodeling and suppression of the immune response.
Collapse
Affiliation(s)
- Y T Shi
- Department of Stomatology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - J M He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Z A Tong
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Y J Qian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Q W Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - D J C Jia
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - W J Zhu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
- Department of Stomatology, the First People's Hospital of Yuhang District, Hangzhou, Zhejiang Province, China
| | - Y X Zhao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - B B Cai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - S J Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province, China
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - M S Si
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Ferreira MR, Andreyev JN, Wedlake L, Dearnaley DP. Comment on "Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients". Br J Cancer 2023; 128:711-712. [PMID: 36717675 PMCID: PMC9977733 DOI: 10.1038/s41416-023-02163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Affiliation(s)
- Miguel R Ferreira
- Guys and St Thomas NHS Foundation Trust, London, UK.
- King's College London, London, UK.
| | | | | | - David P Dearnaley
- The Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
24
|
Dougherty MW, Jobin C. Intestinal bacteria and colorectal cancer: etiology and treatment. Gut Microbes 2023; 15:2185028. [PMID: 36927206 PMCID: PMC10026918 DOI: 10.1080/19490976.2023.2185028] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
The etiology of colorectal cancer (CRC) is influenced by bacterial communities that colonize the gastrointestinal tract. These microorganisms derive essential nutrients from indigestible dietary or host-derived compounds and activate molecular signaling pathways necessary for normal tissue and immune function. Associative and mechanistic studies have identified bacterial species whose presence may increase CRC risk, including notable examples such as Fusobacterium nucleatum, Enterotoxigenic Bacteroides fragilis, and pks+ E. coli. In recent years this work has expanded in scope to include aspects of host mutational status, intra-tumoral microbial heterogeneity, transient infection, and the cumulative influence of multiple carcinogenic bacteria after sequential or co-colonization. In this review, we will provide an updated overview of how host-bacteria interactions influence CRC development, how this knowledge may be utilized to diagnose or prevent CRC, and how the gut microbiome influences CRC treatment efficacy.
Collapse
Affiliation(s)
- Michael W. Dougherty
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Infectious Diseases and Immunology, University of Florida College of Medicine, Gainesville, FL, USA
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
25
|
Wang Y, Xu S, He Q, Sun K, Wang X, Zhang X, Li Y, Zeng J. Crosstalk between microbial biofilms in the gastrointestinal tract and chronic mucosa diseases. Front Microbiol 2023; 14:1151552. [PMID: 37125198 PMCID: PMC10133492 DOI: 10.3389/fmicb.2023.1151552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/16/2023] [Indexed: 05/02/2023] Open
Abstract
The gastrointestinal (GI) tract is the largest reservoir of microbiota in the human body; however, it is still challenging to estimate the distribution and life patterns of microbes. Biofilm, as the predominant form in the microbial ecosystem, serves ideally to connect intestinal flora, molecules, and host mucosa cells. It gives bacteria the capacity to inhabit ecological niches, communicate with host cells, and withstand environmental stresses. This study intends to evaluate the connection between GI tract biofilms and chronic mucosa diseases such as chronic gastritis, inflammatory bowel disease, and colorectal cancer. In each disease, we summarize the representative biofilm makers including Helicobacter pylori, adherent-invasive Escherichia coli, Bacteroides fragilis, and Fusobacterium nucleatum. We address biofilm's role in causing inflammation and the pro-carcinogenic stage in addition to discussing the typical resistance, persistence, and recurrence mechanisms seen in vitro. Biofilms may serve as a new biomarker for endoscopic and pathologic detection of gastrointestinal disease and suppression, which may be a useful addition to the present therapy strategy.
Collapse
Affiliation(s)
- Yumeng Wang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shixi Xu
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Qiurong He
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Kun Sun
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaorui Zhang
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yuqing Li,
| | - Jumei Zeng
- West China-PUMC C.C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Jumei Zeng,
| |
Collapse
|
26
|
Fusobacterium Nucleatum-Induced Tumor Mutation Burden Predicts Poor Survival of Gastric Cancer Patients. Cancers (Basel) 2022; 15:cancers15010269. [PMID: 36612265 PMCID: PMC9818776 DOI: 10.3390/cancers15010269] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Co-infection of Helicobacter pylori and Fusobacterium nucleatum is a microbial biomarker for poor prognosis of gastric cancer patients. Fusobacterium nucleatum is associated with microsatellite instability and the accumulation of mutations in colorectal cancer. Here, we investigated the mutation landscape of Fusobacterium nucleatum-positive resected gastric cancer tissues using Illumina TruSight Oncology 500 comprehensive panel. Sequencing data were processed to identify the small nucleotide variants, small insertions and deletions, and unstable microsatellite sites. The bioinformatic algorithm also calculated copy number gains of preselected genes and tumor mutation burden. The recurrent genetic aberrations were identified in this study cohort. For gene amplification events, ERBB2, cell cycle regulators, and specific FGF ligands and receptors were the most frequently amplified genes. Pathogenic activation mutations of ERBB2, ERBB3, and PIK3CA, as well as loss-of-function of TP53, were identified in multiple patients. Furthermore, Fusobacterium nucleatum infection is positively correlated with a higher tumor mutation burden. Survival analysis showed that the combination of Fusobacterium nucleatum infection and high tumor mutation burden formed an extremely effective biomarker to predict poor prognosis. Our results indicated that the ERBB2-PIK3-AKT-mTOR pathway is frequently activated in gastric cancer and that Fusobacterium nucleatum and high mutation burden are strong biomarkers of poor prognosis for gastric cancer patients.
Collapse
|
27
|
Enhanced Fusobacterium nucleatum Genetics Using Host DNA Methyltransferases To Bypass Restriction-Modification Systems. J Bacteriol 2022; 204:e0027922. [PMID: 36326270 PMCID: PMC9764991 DOI: 10.1128/jb.00279-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacterial restriction-modification (R-M) systems are a first-line immune defense against foreign DNA from viruses and other bacteria. While R-M systems are critical in maintaining genome integrity, R-M nucleases unfortunately present significant barriers to targeted genetic modification. Bacteria of the genus Fusobacterium are oral, Gram-negative, anaerobic, opportunistic pathogens that are implicated in the progression and severity of multiple cancers and tissue infections, yet our understanding of their direct roles in disease have been severely hindered by their genetic recalcitrance. Here, we demonstrate a path to overcome these barriers in Fusobacterium by using native DNA methylation as a host mimicry strategy to bypass R-M system cleavage of transformed plasmid DNA. We report the identification, characterization, and successful use of Fusobacterium nucleatum type II and III DNA methyltransferase (MTase) enzymes to produce a multifold increase in gene knockout efficiency in the strain Fusobacterium nucleatum subsp. nucleatum 23726, as well as the first system for efficient gene knockouts and complementations in F. nucleatum subsp. nucleatum 25586. We show plasmid protection can be accomplished in vitro with purified enzymes, as well as in vivo in an Escherichia coli host that constitutively expresses F. nucleatum subsp. nucleatum MTase enzymes. In summary, this proof-of-concept study characterizes specific MTases that are critical for bypassing R-M systems and has enhanced our understanding of enzyme combinations that could be used to genetically modify clinical isolates of Fusobacterium that have thus far been inaccessible to molecular characterization. IMPORTANCE Fusobacterium nucleatum is an oral opportunistic pathogen associated with diseases that include cancer and preterm birth. Our understanding of how this bacterium modulates human disease has been hindered by a lack of genetic systems. Here, we show that F. nucleatum DNA methyltransferase-modified plasmid DNA overcomes the transformation barrier and has allowed the development of a genetic system in a previously inaccessible strain. We present a strategy that could potentially be expanded to enable the genetic modification of highly recalcitrant strains, thereby fostering investigational studies to uncover novel host-pathogen interactions in Fusobacterium.
Collapse
|
28
|
Alturki NA, Mashraqi MM, Jalal K, Khan K, Basharat Z, Alzamami A. Therapeutic Target Identification and Inhibitor Screening against Riboflavin Synthase of Colorectal Cancer Associated Fusobacterium nucleatum. Cancers (Basel) 2022; 14:6260. [PMID: 36551744 PMCID: PMC9777469 DOI: 10.3390/cancers14246260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Colorectal cancer (CRC) ranks third among all cancers in terms of prevalence. There is growing evidence that gut microbiota has a role in the development of colorectal cancer. Fusobacterium nucleatum is overrepresented in the gastrointestinal tract and tumor microenvironment of patients with CRC. This suggests the role of F. nucleatum as a potential risk factor in the development of CRC. Hence, we aimed to explore whole genomes of F. nucleatum strains related to CRC to predict potential therapeutic markers through a pan-genome integrated subtractive genomics approach. In the current study, we identified 538 proteins as essential for F. nucleatum survival, 209 non-homologous to a human host, and 12 as drug targets. Eventually, riboflavin synthase (RiS) was selected as a therapeutic target for further processing. Three different inhibitor libraries of lead-like natural products, i.e., cyanobactins (n = 237), streptomycins (n = 607), and marine bacterial secondary metabolites (n = 1226) were screened against it. After the structure-based study, three compounds, i.e., CMNPD3609 (−7.63) > Malyngamide V (−7.03) > ZINC06804365 (−7.01) were prioritized as potential inhibitors of F. nucleatum. Additionally, the stability and flexibility of these compounds bound to RiS were determined via a molecular dynamics simulation of 50 ns. Results revealed the stability of these compounds within the binding pocket, after 5 ns. ADMET profiling showed compounds as drug-like, non-permeable to the blood brain barrier, non-toxic, and HIA permeable. Pan-genomics mediated drug target identification and the virtual screening of inhibitors is the preliminary step towards inhibition of this pathogenic oncobacterium and we suggest mouse model experiments to validate our findings.
Collapse
Affiliation(s)
- Norah A. Alturki
- Clinical Laboratory Science Department, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ahmad Alzamami
- Clinical Laboratory Science Department, College of Applied Medical Sciences, Shaqra University, Al-Quwayiyah 11961, Saudi Arabia
| |
Collapse
|
29
|
Ou S, Wang H, Tao Y, Luo K, Ye J, Ran S, Guan Z, Wang Y, Hu H, Huang R. Fusobacterium nucleatum and colorectal cancer: From phenomenon to mechanism. Front Cell Infect Microbiol 2022; 12:1020583. [PMID: 36523635 PMCID: PMC9745098 DOI: 10.3389/fcimb.2022.1020583] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Colorectal cancer(CRC) is the third most frequent malignant tumor. The gut microbiome acts as a vital component of CRC etiology. Fusobacterium nucleatum(Fn) is a key member of colorectal cancer-associated bacteria. But we lack a systematic and in-depth understanding on its role in CRC evolution. In this article, We reviewed the abundance changes and distribution of Fn in CRC occurrence and development, potential effect of Fn in the initiation of CRC, the source of intratumoral Fn and the cause of its tropism to CRC. In addition, We described the mechanism by which Fn promotes the malignant biological behavior of CRC, affects CRC response to therapy, and shapes the tumor immune microenvironment in great detail. Based on the relationship between Fn and CRC, we proposed strategies for CRC prevention and treatment, and discussed the feasibility and limitations of specific cases, to gain insights into further basic and clinical research in the future.
Collapse
Affiliation(s)
- Suwen Ou
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hufei Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yangbao Tao
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Kangjia Luo
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,Department of Gastrointestinal Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, Zhejiang, China
| | - Jinhua Ye
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Songlin Ran
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zilong Guan
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yuliuming Wang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hanqing Hu
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Rui Huang
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China,*Correspondence: Rui Huang,
| |
Collapse
|
30
|
Prospect of bacteria for tumor diagnosis and treatment. Life Sci 2022; 312:121215. [PMID: 36414093 DOI: 10.1016/j.lfs.2022.121215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022]
Abstract
In recent decades, the comprehensive cancer treatments including surgery, chemotherapy, and radiotherapy have improved the overall survival rate and quality of life of many cancer patients. However, we are still facing many difficult problems in the cancer treatment, such as unpredictable side effects, high recurrence rate, and poor curative effect. Therefore, the better intervention strategies are needed in this field. In recent years, the role and importance of microbiota in a variety of diseases were focused on as a hot research topic, and the role of some intracellular bacteria of cancer cells in carcinogenesis has recently been discovered. The impact of bacteria on cancer is not limited to their contribution to tumorigenesis, but the overall susceptibility of bacteria to subsequent tumor progression, the development of concurrent infections, and the response to anti-cancer therapy have also been found to be affected. Concerns about the contribution of bacteria in the anti-cancer response have inspired researchers to develop bacteria-based anti-cancer treatments. In this paper, we reviewed the main roles of bacteria in the occurrence and development of tumors, and summarized the mechanism of bacteria in the occurrence, development, and clinical anti-tumor treatment of tumors, providing new insights for the in-depth study of the role of bacteria in tumor diagnosis and treatment. This review aims to provide a new perspective for the development of new technologies based on bacteria to enhance anti-tumor immunotherapy.
Collapse
|
31
|
Ham H, Park T. Combining p-values from various statistical methods for microbiome data. Front Microbiol 2022; 13:990870. [PMID: 36439799 PMCID: PMC9686280 DOI: 10.3389/fmicb.2022.990870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/11/2022] [Indexed: 08/30/2023] Open
Abstract
MOTIVATION In the field of microbiome analysis, there exist various statistical methods that have been developed for identifying differentially expressed features, that account for the overdispersion and the high sparsity of microbiome data. However, due to the differences in statistical models or test formulations, it is quite often to have inconsistent significance results across statistical methods, that makes it difficult to determine the importance of microbiome taxa. Thus, it is practically important to have the integration of the result from all statistical methods to determine the importance of microbiome taxa. A standard meta-analysis is a powerful tool for integrative analysis and it provides a summary measure by combining p-values from various statistical methods. While there are many meta-analyses available, it is not easy to choose the best meta-analysis that is the most suitable for microbiome data. RESULTS In this study, we investigated which meta-analysis method most adequately represents the importance of microbiome taxa. We considered Fisher's method, minimum value of p method, Simes method, Stouffer's method, Kost method, and Cauchy combination test. Through simulation studies, we showed that Cauchy combination test provides the best combined value of p in the sense that it performed the best among the examined methods while controlling the type 1 error rates. Furthermore, it produced high rank similarity with the true ranks. Through the real data application of colorectal cancer microbiome data, we demonstrated that the most highly ranked microbiome taxa by Cauchy combination test have been reported to be associated with colorectal cancer.
Collapse
Affiliation(s)
- Hyeonjung Ham
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
| | - Taesung Park
- Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea
- Departement of Statistics, Seoul National University, Seoul, South Korea
| |
Collapse
|
32
|
Tran HNH, Thu TNH, Nguyen PH, Vo CN, Doan KV, Nguyen Ngoc Minh C, Nguyen NT, Ta VND, Vu KA, Hua TD, Nguyen TNT, Van TT, Pham Duc T, Duong BL, Nguyen PM, Hoang VC, Pham DT, Thwaites GE, Hall LJ, Slade DJ, Baker S, Tran VH, Chung The H. Tumour microbiomes and Fusobacterium genomics in Vietnamese colorectal cancer patients. NPJ Biofilms Microbiomes 2022; 8:87. [PMID: 36307484 PMCID: PMC9616903 DOI: 10.1038/s41522-022-00351-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022] Open
Abstract
Perturbations in the gut microbiome have been associated with colorectal cancer (CRC), with the colonic overabundance of Fusobacterium nucleatum shown as the most consistent marker. Despite its significance in the promotion of CRC, genomic studies of Fusobacterium is limited. We enrolled 43 Vietnamese CRC patients and 25 participants with non-cancerous colorectal polyps to study the colonic microbiomes and genomic diversity of Fusobacterium in this population, using a combination of 16S rRNA gene profiling, anaerobic microbiology, and whole genome analysis. Oral bacteria, including F. nucleatum and Leptotrichia, were significantly more abundant in the tumour microbiomes. We obtained 53 Fusobacterium genomes, representing 26 strains, from the saliva, tumour and non-tumour tissues of six CRC patients. Isolates from the gut belonged to diverse F. nucleatum subspecies (nucleatum, animalis, vincentii, polymorphum) and a potential new subspecies of Fusobacterium periodonticum. The Fusobacterium population within each individual was distinct and in some cases diverse, with minimal intra-clonal variation. Phylogenetic analyses showed that within four individuals, tumour-associated Fusobacterium were clonal to those isolated from non-tumour tissues. Genes encoding major virulence factors (Fap2 and RadD) showed evidence of horizontal gene transfer. Our work provides a framework to understand the genomic diversity of Fusobacterium within the CRC patients, which can be exploited for the development of CRC diagnostic and therapeutic options targeting this oncobacterium.
Collapse
Affiliation(s)
- Hoang N H Tran
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | - Chi Nguyen Vo
- Binh Dan Hospital, Ho Chi Minh City, Vietnam
- Tan Tao University, Long An, Vietnam
| | - Khanh Van Doan
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | | - Tan Trinh Van
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Trung Pham Duc
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | | | | | | | - Duy Thanh Pham
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Lindsay J Hall
- Quadram Institute Biosciences, Norwich Research Park, Norwich, United Kingdom
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Intestinal Microbiome, School of Life Sciences, ZIEL - Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Daniel J Slade
- Department of Biochemistry, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Stephen Baker
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Diseases (CITIID), University of Cambridge, Cambridge, United Kingdom
| | | | - Hao Chung The
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| |
Collapse
|
33
|
Sanders BE, Qiao G, Hirschman J, Meyerson M. Fusobacterium and Colorectal Cancer: Important Association or Random Coincidence? Cancer Res 2022; 82:3671-3672. [PMID: 36245243 PMCID: PMC9830490 DOI: 10.1158/0008-5472.can-22-0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/15/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
The role of the microbiome in human cancer has become an area of intensive research and controversy. Many reports have highlighted the physical association of Fusobacterium with colorectal cancer. This association has provided diagnostic and therapeutic promise but has also given rise to several controversies regarding the influence of Fusobacterium species on human colorectal cancer. Here, we discuss two areas of controversy surrounding this emerging pathogen: the influence of Fusobacterium on colorectal cancer proliferation and the effect of Fusobacterium on the immune microenvironment of colorectal cancer.
Collapse
Affiliation(s)
- Blake E. Sanders
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Guanxi Qiao
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Jodi Hirschman
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
34
|
Reis Ferreira M, Pasto A, Ng T, Patel V, Guerrero Urbano T, Sears C, Wade WG. The microbiota and radiotherapy for head and neck cancer: What should clinical oncologists know? Cancer Treat Rev 2022; 109:102442. [PMID: 35932549 DOI: 10.1016/j.ctrv.2022.102442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
Abstract
Radiotherapy is a linchpin in head and neck squamous cell carcinoma (HN-SCC) treatment. Modulating tumour and/or normal tissue biology offers opportunities to further develop HN-SCC radiotherapy. The microbiota, which can exhibit homeostatic properties and be a modulator of immunity, has recently received considerable interest from the Oncology community. Microbiota research in head and neck oncology has also flourished. However, available data are difficult to interpret for clinical and radiation oncologists. In this review, we focus on how microbiota research can contribute to the improvement of radiotherapy for HN-SCC, focusing on how current and future research can be translated back to the clinic. We include in-depth discussions about the microbiota, its multiple habitats and relevance to human physiology, mechanistic interactions with HN-SCC, available evidence on microbiota and HNC oncogenesis, efficacy and toxicity of treatment. We discuss clinically-relevant areas such as the role of the microbiota as a predictive and prognostic biomarker, as well as the potential of leveraging the microbiota and its interactions with immunity to improve treatment results. Importantly, we draw parallels with other cancers where research is more mature. We map out future directions of research and explain clinical implications in detail.
Collapse
Affiliation(s)
- Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK.
| | | | - Tony Ng
- King's College London, London, UK
| | - Vinod Patel
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | | | - Cynthia Sears
- Johns Hopkins University School of Medicine and the Bloomberg School of Public Health, Baltimore, USA
| | | |
Collapse
|
35
|
Tang Q, Peng X, Xu B, Zhou X, Chen J, Cheng L. Current Status and Future Directions of Bacteria-Based Immunotherapy. Front Immunol 2022; 13:911783. [PMID: 35757741 PMCID: PMC9226492 DOI: 10.3389/fimmu.2022.911783] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
With the in-depth understanding of the anti-cancer immunity, immunotherapy has become a promising cancer treatment after surgery, radiotherapy, and chemotherapy. As natural immunogenicity substances, some bacteria can preferentially colonize and proliferate inside tumor tissues to interact with the host and exert anti-tumor effect. However, further research is hampered by the infection-associated toxicity and their unpredictable behaviors in vivo. Due to modern advances in genetic engineering, synthetic biology, and material science, modifying bacteria to minimize the toxicity and constructing a bacteria-based immunotherapy platform has become a hotspot in recent research. This review will cover the inherent advantages of unedited bacteria, highlight how bacteria can be engineered to provide greater tumor-targeting properties, enhanced immune-modulation effect, and improved safety. Successful applications of engineered bacteria in cancer immunotherapy or as part of the combination therapy are discussed as well as the bacteria based immunotherapy in different cancer types. In the end, we highlight the future directions and potential opportunities of this emerging field.
Collapse
Affiliation(s)
- Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|