1
|
Jiang H, Santos HJ, Nozaki T. Tetraspanin-enriched microdomains play an important role in pathogenesis in the protozoan parasite Entamoeba histolytica. PLoS Pathog 2024; 20:e1012151. [PMID: 39361713 PMCID: PMC11478834 DOI: 10.1371/journal.ppat.1012151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/15/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
Tetraspanins (TSPANs) are a family of highly conserved proteins present in a wide variety of eukaryotes. Although protein-protein interactions of TSPANs have been well established in eukaryotes including parasitic protists, the role they play in parasitism and pathogenesis remains largely unknown. In this study, we characterized three representative members of TSPANs, TSPAN4, TSPAN12, and TSPAN13 from the human intestinal protozoan Entamoeba histolytica. Co-immunoprecipitation assays demonstrated that TSPAN4, TSPAN12 and TSPAN13 are reciprocally pulled down together with several other TSPAN-interacting proteins including TSPAN binding protein of 55kDa (TBP55) and interaptin. Blue native-PAGE analysis showed that these TSPANs form several complexes of 120-250 kDa. Repression of tspan12 and tspan13 gene expression led to decreased secretion of cysteine proteases, while repression of tspan4 led to a four-fold increase in the activity of cysteine proteases in crude extracellular vesicles (EVs) fraction. Meanwhile, strains overexpressing HA-tagged TSPAN12 and TSPAN13 demonstrated reduced adhesion to collagen. Altogether, this study reveals that the TSPANs, especially TSPAN12 and TSPAN13, are engaged with complex protein-protein interactions and are involved in the pathogenicity-related biological functions such as protease secretion and adhesion, offering insights into the potential regulatory mechanisms of tetraspanins in protozoan parasites.
Collapse
Affiliation(s)
- Han Jiang
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Herbert J. Santos
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Benchimol M, de Souza W. Endocytosis in anaerobic parasitic protists. Mem Inst Oswaldo Cruz 2024; 119:e240058. [PMID: 39082582 PMCID: PMC11285859 DOI: 10.1590/0074-02760240058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 08/03/2024] Open
Abstract
The incorporation of different molecules by eukaryotic cells occurs through endocytosis, which is critical to the cell's survival and ability to reproduce. Although this process has been studied in greater detail in mammalian and yeast cells, several groups working with pathogenic protists have made relevant contributions. This review analysed the most relevant data on the endocytic process in anaerobic protists (Entamoeba histolytica, Giardia intestinalis, Trichomonas vaginalis, and Tritrichomonas foetus). Many protozoa can exert endocytic activity across their entire surface and do so with great intensity, as with E. histolytica. The available data on the endocytic pathway and the participation of PI-3 kinase, Rab, and Rho molecular complexes is reviewed from a historical perspective.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade da Grande Rio, Duque de Caxias, RJ, Brasil
| | - Wanderley de Souza
- Universidade Federal do Rio de Janeiro, Centro Nacional de Biologia
Estrutural e Bioimagens, Rio de Janeiro, RJ, Brasil
- Universidade Federal do Rio de Janeiro, Instituto de Biofísica
Carlos Chagas Filho, Laboratório de Ultraestrutura Celular Hertha Meyer, Rio de
Janeiro, RJ, Brasil
| |
Collapse
|
3
|
Guillén N. Pathogenicity and virulence of Entamoeba histolytica, the agent of amoebiasis. Virulence 2023; 14:2158656. [PMID: 36519347 DOI: 10.1080/21505594.2022.2158656] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
The amoeba parasite Entamoeba histolytica is the causative agent of human amebiasis, an enteropathic disease affecting millions of people worldwide. This ancient protozoan is an elementary example of how parasites evolve with humans, e.g. taking advantage of multiple mechanisms to evade immune responses, interacting with microbiota for nutritional and protective needs, utilizing host resources for growth, division, and encystation. These skills of E. histolytica perpetuate the species and incidence of infection. However, in 10% of infected cases, the parasite turns into a pathogen; the host-parasite equilibrium is then disorganized, and the simple lifecycle based on two cell forms, trophozoites and cysts, becomes unbalanced. Trophozoites acquire a virulent phenotype which, when non-controlled, leads to intestinal invasion with the onset of amoebiasis symptoms. Virulent E. histolytica must cross mucus, epithelium, connective tissue and possibly blood. This highly mobile parasite faces various stresses and a powerful host immune response, with oxidative stress being a challenge for its survival. New emerging research avenues and omics technologies target gene regulation to determine human or parasitic factors activated upon infection, their role in virulence activation, and in pathogenesis; this research bears in mind that E. histolytica is a resident of the complex intestinal ecosystem. The goal is to eradicate amoebiasis from the planet, but the parasitic life of E. histolytica is ancient and complex and will likely continue to evolve with humans. Advances in these topics are summarized here.
Collapse
Affiliation(s)
- Nancy Guillén
- Cell Biology and Infection Department, Institut Pasteur and Centre National de la Recherche Scientifique CNRS-ERM9195, Paris, France
| |
Collapse
|
4
|
Samba-Louaka A, Labruyère E, Matondo M, Locard-Paulet M, Olivo-Marin JC, Guillen N. Encystation and Stress Responses under the Control of Ubiquitin-like Proteins in Pathogenic Amoebae. Microorganisms 2023; 11:2670. [PMID: 38004682 PMCID: PMC10673212 DOI: 10.3390/microorganisms11112670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Amoebae found in aquatic and terrestrial environments encompass various pathogenic species, including the parasite Entamoeba histolytica and the free-living Acanthamoeba castellanii. Both microorganisms pose significant threats to public health, capable of inducing life-threatening effects on humans. These amoebae exist in two cellular forms: trophozoites and cysts. The trophozoite stage is the form used for growth and reproduction while the cyst stage is the resistant and disseminating form. Cysts occur after cellular metabolism slowdown due to nutritional deprivation or the appearance of environmental conditions unfavourable to the amoebae's growth and division. The initiation of encystation is accompanied by the activation of stress responses, and scarce data indicate that encystation shares factors and mechanisms identified in stress responses occurring in trophozoites exposed to toxic compounds derived from human immune defence. Although some "omics" analyses have explored how amoebae respond to diverse stresses, these studies remain limited and rarely report post-translational modifications that would provide knowledge on the molecular mechanisms underlying amoebae-specific stress responses. In this review, we discuss ubiquitin-like proteins associated with encystation and cell survival during oxidative damage. We aim to shed light on the signalling pathways involved in amoebic defence mechanisms, with a focus on their potential clinical implications against pathogenic amoebae, addressing the pressing need for effective therapies.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Université de Poitiers, Centre National de la Recherche Scientifique UMR7267, Laboratoire Ecologie et Biologie des Interactions, TSA51106, 86073 Poitiers, France
| | - Elisabeth Labruyère
- Institut Pasteur, Biological Image Analysis Unit, Centre National de la Recherche Scientifique UMR3691, Université Paris Cité, 75015 Paris, France; (E.L.); (J.-C.O.-M.)
| | - Mariette Matondo
- Institut Pasteur, Proteomics Core Facility, Mass Spectrometry for Biology Unit, Centre National de la Recherche Scientifique UAR 2024, Université Paris Cité, 75015 Paris, France;
| | - Marie Locard-Paulet
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique UMR 5089, Université Toulouse III-Paul Sabatier, 31077 Toulouse, France;
- Infrastructure Nationale de Proteomique ProFI—FR2048, 2048 Toulouse, France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur, Biological Image Analysis Unit, Centre National de la Recherche Scientifique UMR3691, Université Paris Cité, 75015 Paris, France; (E.L.); (J.-C.O.-M.)
| | - Nancy Guillen
- Institut Pasteur, Biological Image Analysis Unit, Centre National de la Recherche Scientifique UMR3691, Université Paris Cité, 75015 Paris, France; (E.L.); (J.-C.O.-M.)
- Institut Pasteur, Centre National de la Recherche Scientifique ERL9195, 75015 Paris, France
| |
Collapse
|
5
|
Meindl K, Issler N, Afonso S, Cebrian-Serrano A, Müller K, Sterner C, Othmen H, Tegtmeier I, Witzgall R, Klootwijk E, Davies B, Kleta R, Warth R. A missense mutation in Ehd1 associated with defective spermatogenesis and male infertility. Front Cell Dev Biol 2023; 11:1240558. [PMID: 37900275 PMCID: PMC10600459 DOI: 10.3389/fcell.2023.1240558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Normal function of the C-terminal Eps15 homology domain-containing protein 1 (EHD1) has previously been associated with endocytic vesicle trafficking, shaping of intracellular membranes, and ciliogenesis. We recently identified an autosomal recessive missense mutation c.1192C>T (p.R398W) of EHD1 in patients who had low molecular weight proteinuria (0.7-2.1 g/d) and high-frequency hearing loss. It was already known from Ehd1 knockout mice that inactivation of Ehd1 can lead to male infertility. However, the exact role of the EHD1 protein and its p.R398W mutant during spermatogenesis remained still unclear. Here, we report the testicular phenotype of a knockin mouse model carrying the p.R398W mutation in the EHD1 protein. Male homozygous knockin mice were infertile, whereas the mutation had no effect on female fertility. Testes and epididymes were significantly reduced in size and weight. The testicular epithelium appeared profoundly damaged and had a disorganized architecture. The composition of developing cell types was altered. Malformed acrosomes covered underdeveloped and misshaped sperm heads. In the sperm tail, midpieces were largely missing indicating disturbed assembly of the sperm tail. Defective structures, i.e., nuclei, acrosomes, and sperm tail midpieces, were observed in large vacuoles scattered throughout the epithelium. Interestingly, cilia formation itself did not appear to be affected, as the axoneme and other parts of the sperm tails except the midpieces appeared to be intact. In wildtype mice, EHD1 co-localized with acrosomal granules on round spermatids, suggesting a role of the EHD1 protein during acrosomal development. Wildtype EHD1 also co-localized with the VPS35 component of the retromer complex, whereas the p.R398W mutant did not. The testicular pathologies appeared very early during the first spermatogenic wave in young mice (starting at 14 dpp) and tubular destruction worsened with age. Taken together, EHD1 plays an important and probably multifaceted role in spermatogenesis in mice. Therefore, EHD1 may also be a hitherto underestimated infertility gene in humans.
Collapse
Affiliation(s)
- Katrin Meindl
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| | - Naomi Issler
- Department of Renal Medicine, University College London, London, United Kingdom
- Pediatric Nephrology Unit and Research Lab, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Afonso
- Medical Cell Biology, University Regensburg, Regensburg, Germany
- Institute of Cellular and Molecular Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alberto Cebrian-Serrano
- Wellcome Centre for Human Genetics, University Oxford, Oxford, United Kingdom
- Helmholtz Zentrum München, Institute of Diabetes and Obesity, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Karin Müller
- Leibniz Institute for Zoo- und Wildlife Research, Berlin, Germany
| | | | - Helga Othmen
- Medical Cell Biology, University Regensburg, Regensburg, Germany
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| | - Ralph Witzgall
- Molecular and Cellular Anatomy, University Regensburg, Regensburg, Germany
| | - Enriko Klootwijk
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, University Oxford, Oxford, United Kingdom
- Genetic Modification Service, The Francis Crick Institute, London, United Kingdom
| | - Robert Kleta
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Richard Warth
- Medical Cell Biology, University Regensburg, Regensburg, Germany
| |
Collapse
|
6
|
Santos HJ, Nozaki T. The mitosome of the anaerobic parasitic protist Entamoeba histolytica: A peculiar and minimalist mitochondrion-related organelle. J Eukaryot Microbiol 2022; 69:e12923. [PMID: 35588086 PMCID: PMC9796589 DOI: 10.1111/jeu.12923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The simplest class of mitochondrion-related organelles (MROs) is the mitosome, an organelle present in a few anaerobic protozoan parasites such as Entamoeba histolytica, Giardia intestinalis, and Cryptosporidium parvum. E. histolytica causes amoebiasis in humans, deemed as one of the important, yet neglected tropical infections in the world. Much of the enigma of the E. histolytica mitosome circles around the obvious lack of a majority of known mitochondrial components and functions exhibited in other organisms. The identification of enzymes responsible for sulfate activation (AS, IPP, and APSK) and a number of lineage-specific proteins such as the outer membrane beta-barrel protein (MBOMP30), and transmembrane domain-containing proteins that bind to various organellar proteins (ETMP1, ETMP30, EHI_170120, and EHI_099350) showcased the remarkable divergence of this organelle compared to the other MROs of anaerobic protozoa. Here, we summarize the findings regarding the biology of the mitosomes in E. histolytica, from their discovery up to the present understanding of its roles and interactions. We also include current advances and future perspectives on the biology, biochemistry, and evolution of the mitosomes of E. histolytica.
Collapse
Affiliation(s)
- Herbert J. Santos
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of MedicineThe University of TokyoTokyoJapan
| |
Collapse
|