1
|
Buckley RM, Bilgen N, Harris AC, Savolainen P, Tepeli C, Erdoğan M, Serres Armero A, Dreger DL, van Steenbeek FG, Hytönen MK, Parker HG, Hale J, Lohi H, Çınar Kul B, Boyko AR, Ostrander EA. Analysis of canine gene constraint identifies new variants for orofacial clefts and stature. Genome Res 2025; 35:1080-1093. [PMID: 40127928 PMCID: PMC12047267 DOI: 10.1101/gr.280092.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
Dog breeding promotes within-group homogeneity through conformation to strict breed standards, while simultaneously driving between-group heterogeneity. There are over 350 recognized dog breeds that provide the foundation for investigating the genetic basis of phenotypic diversity. Typically, breed standard phenotypes such as stature, pelage, and craniofacial structure are analyzed through genetic association studies. However, such analyses are limited to assayed phenotypes only, leaving difficult-to-measure phenotypic subtleties easily overlooked. We investigated coding variation from over 2000 dogs, leading to discoveries of variants related to craniofacial morphology and stature. Breed-enriched variants were prioritized according to gene constraint, which was calculated using a mutation model derived from trinucleotide substitution probabilities. Among the newly found variants is a splice-acceptor variant in PDGFRA associated with bifid nose, a characteristic trait of Çatalburun dogs, implicating the gene's role in midline closure. Two additional LCORL variants, both associated with canine body size are also discovered: a frameshift that causes a premature stop in large breeds (>25 kg) and an intronic substitution found in small breeds (<10 kg), thus highlighting the importance of allelic heterogeneity in selection for breed traits. Most variants prioritized in this analysis are not associated with genomic signatures for breed differentiation, as these regions are enriched for constrained genes intolerant to nonsynonymous variation. This indicates trait selection in dogs is likely a balancing act between preserving essential gene functions and maximizing regulatory variation to drive phenotypic extremes.
Collapse
Affiliation(s)
- Reuben M Buckley
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nüket Bilgen
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Ankara, Ankara 06110, Türkiye
| | - Alexander C Harris
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, SE-100 44 Stockholm, Sweden
| | - Cafer Tepeli
- Department of Animal Science, Faculty of Veterinary Medicine, University of Selcuk, Konya 42100, Türkiye
| | - Metin Erdoğan
- Department of Veterinary Biology and Genetics, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Türkiye
| | - Aitor Serres Armero
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dayna L Dreger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Heidi G Parker
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jessica Hale
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, 00014 Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, 00014 Helsinki, Finland
- Folkhälsan Research Center, 00290 Helsinki, Finland
| | - Bengi Çınar Kul
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Ankara, Ankara 06110, Türkiye
| | - Adam R Boyko
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
- Embark Veterinary, Inc., Boston, Massachusetts 02210, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
2
|
Stewart DC, Brisson BK, Yen WK, Liu Y, Wang C, Ruthel G, Gullberg D, Mauck RL, Maden M, Han L, Volk SW. Type III Collagen Regulates Matrix Architecture and Mechanosensing during Wound Healing. J Invest Dermatol 2025; 145:919-938.e14. [PMID: 39236902 DOI: 10.1016/j.jid.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024]
Abstract
Postnatal cutaneous wound healing is characterized by development of a collagen-rich scar lacking the architecture and functional integrity of unwounded tissue. Directing cell behaviors to efficiently heal wounds while minimizing scar formation remains a major wound management goal. In this study, we demonstrate type III collagen (COL3) as a critical regulator of re-epithelialization and scar formation during healing of COL3-enriched, regenerative (Acomys), scar-permissive (CD-1 Mus and wild-type Col3B6/B6 mice) and COL3-deficient, scar-promoting (Col3F/F, a murine conditional knockdown model) cutaneous wound models. We define a scar-permissive fibrillar collagen architecture signature characterized by elongated and anisotropically aligned collagen fibers that is dose-dependently suppressed by COL3. Furthermore, loss of COL3 alters how cells interpret their microenvironment-their mechanoperception-such that COL3-deficient cells display mechanically active phenotypes in the absence of increased microenvironmental stiffness through the upregulation and engagement of the profibrotic integrin α11. Further understanding COL3's role in regulating matrix architecture and mechanoresponses may inform clinical strategies that harness proregenerative mechanisms.
Collapse
Affiliation(s)
- Daniel C Stewart
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Becky K Brisson
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - William K Yen
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Donald Gullberg
- The Department of Biomedicine, University of Bergen, Bergen, Norway; Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Robert L Mauck
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA; McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Malcolm Maden
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, Pennsylvania, USA
| | - Susan W Volk
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
3
|
Zeinert I, Schmidt L, Baar T, Gatto G, De Giuseppe A, Korb-Pap A, Pap T, Mahabir E, Zaucke F, Brachvogel B, Krüger M, Krieg T, Eckes B. Matrix-mediated activation of murine fibroblast-like synoviocytes. Exp Cell Res 2025; 445:114408. [PMID: 39765309 DOI: 10.1016/j.yexcr.2025.114408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/14/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Fibroblast-like synoviocytes (FLS) are key cells promoting cartilage damage and bone loss in rheumatoid arthritis (RA). They are activated to assume an invasive and migratory phenotype. While mechanisms of FLS activation are unknown, evidence suggests that pre-damaged extracellular matrix (ECM) of the cartilage can trigger FLS activation. Integrin α11β1 might be involved in the activation, as it is increased in RA patients and hTNFtg mice, an RA mouse model. We treated murine chondrocytes with TNFα to produce a damaged, RA-like matrix. Comparison to healthy chondrocyte matrix revealed decreased ECM proteins, e.g. collagens and proteoglycans, increased matrix-degrading proteins and elevated levels of inflammatory cytokines. FLS responded to the damaged chondrocyte matrix with a matrix-remodeling and pro-inflammatory phenotype characterized by a gene signature involved in matrix degradation and increased production of CLL11 and CCL19. Damaged chondrocyte matrix stimulated increased Itga11 expression in FLS, correlating with the increased α11β1 amounts in RA patients. FLS deficient in integrin α11β1 released lower amounts of inflammation-associated cytokines. Our results demonstrate differences in healthy and RA-like chondrocyte ECM and distinctly different responses of wt FLS to damaged versus healthy ECM.
Collapse
Affiliation(s)
- Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| | - Luisa Schmidt
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Till Baar
- Institute for Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Giulio Gatto
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Anna De Giuseppe
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Adelheid Korb-Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Thomas Pap
- Institute of Musculoskeletal Medicine, University Hospital Muenster, Muenster, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne (CMMC), University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Frank Zaucke
- Rolf M. Schwiete Research Unit for Osteoarthritis, Department of Trauma Surgery and Orthopedics, Goethe University Frankfurt, University Hospital, Frankfurt am Main, Germany
| | - Bent Brachvogel
- Center for Biochemistry, University of Cologne, Faculty of Medicine, Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
4
|
Kumazoe M, Tachibana H. MicroRNA mediates the effects of food factors. Biosci Biotechnol Biochem 2025; 89:174-178. [PMID: 39462142 DOI: 10.1093/bbb/zbae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
Food factors elicit physiological effects by interfering with the central dogma system, including DNA methylation, replication, transcription, and translation. MicroRNAs (miRNAs) are noncoding short RNAs that are ∼20 nucleotides long and play a crucial role in the regulation of mRNA levels and translation processes. Importantly, miRNAs can be delivered to different locations in nanovesicles. However, little is known about their roles as mediators of the effects of food factors. This review introduces recent findings on the role of miRNAs in the beneficial effects of food factors, including green tea polyphenols and soybean isoflavones, and discusses the importance of miRNAs as mediators of the beneficial effects of food.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Musiime M, Erusappan PM, Cukierman E, Chang J, Molven A, Hansen U, Zeltz C, Gullberg D. Fibroblast integrin α11β1 is a collagen assembly receptor in mechanoregulated fibrillar adhesions. Matrix Biol 2024; 134:144-161. [PMID: 39406317 DOI: 10.1016/j.matbio.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 11/25/2024]
Abstract
Solid epithelial cancers with significant desmoplasia are characterized by an excessive deposition of collagen-based matrix, which often supports tumor progression. However, the mechanism of how collagen receptors mediate collagen fibrillogenesis still remains mostly unclear. We show that the collagen-binding integrin α11β1 can co-localize with tensin-1 and deposited collagen I in human pancreatic ductal adenocarcinoma (PDAC) stroma. In addition to the canonical fibrillar adhesion integrin α5β1 expressed by human PDAC cancer-associated fibroblasts (CAFs), tensin-1-positive fibrillar adhesions contained α11β1 but lacked α1β1 and α2β1. CAFs lacking α5β1 expression displayed mechanoregulated and tensin-1 dependent α11β1 fibrillar adhesions, suggesting independent roles of the two integrins with regards to fibrillar adhesions-based de novo fibrillogenesis. Further, we demonstrate that cell surface-associated collagen I assembly necessitated α11β1, but not α5β1 expression. In summary, α11β1 integrin is a novel component of fibrillar adhesions, which is strategically positioned to mediate de novo collagen fibrillogenesis at the cell surface under pro-fibrotic conditions.
Collapse
Affiliation(s)
- Moses Musiime
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Pugazendhi Murugan Erusappan
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway; Institute for Experimental Medical Research, Oslo university Hospital and university of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Edna Cukierman
- Cancer Signaling & Microenvironment Program, M&C Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, 19111, USA
| | - Joan Chang
- Wellcome Centre for Cell-Matrix Research, Faculty of Biology, Medicine & Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, UK
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, NO-5020 Bergen, Norway; Department of Pathology and Section for Cancer Genomics, Haukeland University Hospital, NO-5020 Bergen, Norway
| | - Uwe Hansen
- Institute for Musculoskeletal Medicine, University Hospital of Münster, Münster, Germany
| | - Cédric Zeltz
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway.
| | - Donald Gullberg
- University of Bergen, Department of Biomedicine and Centre for Cancer Biomarkers, Jonas Lies vei 91, 5009 Bergen, Norway.
| |
Collapse
|
6
|
Kronenberg D, Brand M, Everding J, Wendler L, Kieselhorst E, Timmen M, Hülskamp MD, Stange R. Integrin α2β1 deficiency enhances osteogenesis via BMP-2 signaling for accelerated fracture repair. Bone 2024; 190:117318. [PMID: 39500403 DOI: 10.1016/j.bone.2024.117318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/11/2024]
Abstract
Previous studies have shown that the absence of the collagen-binding integrin α2β1 confers protection against osteoporosis, primarily by enhancing osteoblast-mediated matrix formation, with a particular increase in collagen type I production. This study aimed to elucidate the mechanism underlying this increased matrix production. Our findings demonstrate that osteoblasts lacking integrin α2 secrete a pro-osteogenic factor that activates both TGF-β and BMP signaling pathways. Among these, BMP-2 was identified as the key signaling protein responsible for this effect, as its expression was significantly upregulated during osteoblast differentiation. Moreover, integrin α2 deficiency led to earlier and elevated BMP-2 secretion at the cell surface during osteogenesis, which promoted accelerated osteoblast differentiation. This phenomenon likely contributes to enhanced matrix production in aging animals, providing a protective effect against osteoporosis. To explore the broader implications of this phenotype, we utilized a fracture healing model. In integrin α2-deficient 12 weeks old female mice, elevated serum levels of BMP-2 were detected during the early stages of fracture repair. This upregulation of BMP signaling within the fracture callus accelerated the healing process, resulting in faster formation and mineralization of the cartilaginous callus. Additionally, the elevated BMP-2 levels facilitated earlier differentiation of chondrocytic cells, evidenced by the premature appearance of collagen type II- and type X-positive cells during endochondral ossification. Despite the accelerated healing, the overall biomechanical integrity of the repaired fractures remained uncompromised. Thus, the modulation of integrin α2β1 presents a promising therapeutic target for enhancing fracture repair by regulating BMP-2 signaling in a physiologically relevant manner.
Collapse
Affiliation(s)
- Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Melanie Brand
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Jens Everding
- Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Louisa Wendler
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Eric Kieselhorst
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany
| | - Michael D Hülskamp
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany; Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Muenster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute for Musculoskeletal Medicine, University of Muenster, Muenster, Germany.
| |
Collapse
|
7
|
Grenier C, Lin IH, Peters D, Pozzi A, Lennon R, Naylor RW. Integrin alpha1 beta1 promotes interstitial fibrosis in a mouse model of polycystic kidney disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.619080. [PMID: 39484448 PMCID: PMC11526950 DOI: 10.1101/2024.10.18.619080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Fibrosis is the cause of end-stage kidney failure in patients with Autosomal Dominant Polycystic Kidney Disease (ADPKD). The molecular and cellular mechanisms involved in fibrosis are complex and anti-fibrotic therapies have so far failed to make an impact on patient welfare. Using unbiased proteomics analysis on the Pkd1 nl/nl mouse, we found that expression of the integrin α1 subunit is increased in this model of ADPKD. In human ADPKD tissue and two single cell RNA kidney disease datasets, ITGA1 was also upregulated. To investigate the functional role of this integrin subunit in ADPKD, we generated a Pkd1 nl/nl Itga1 -/- mouse. We observed a significant reduction in kidney volume and kidney dysfunction in mice lacking the integrin α1 subunit. Kidneys from Pkd1 nl/nl Itga1 -/- mice had smaller cysts and reduced interstitial expansion and tubular atrophy. Picrosirius red staining identified a restriction in collagen staining in the interstitium and the myofibroblast marker α smooth muscle actin was also downregulated. Myofibroblast cell proliferation was reduced in Pkd1 nl/nl Itga1 -/- mice and primary fibroblast cultures demonstrated an abrogated fibrogenic phenotype in integrin α1-depleted fibroblasts. These results highlight a previously unrecognised role for the integrin α1 subunit in kidney fibrosis.
Collapse
Affiliation(s)
- C Grenier
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - I-H Lin
- Bioinformatics Core Facility, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Djm Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - A Pozzi
- Department of Medicine, Division of Nephrology and Hypertension
- Department of Veterans Affairs, Nashville, Tennessee, USA
| | - R Lennon
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - R W Naylor
- Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
8
|
Gong W, Liu J, Mu Q, Chahaer T, Liu J, Ding W, Bou T, Wu Z, Zhao Y. Melatonin promotes proliferation of Inner Mongolia cashmere goat hair follicle papilla cells through Wnt10b. Genomics 2024; 116:110844. [PMID: 38608737 DOI: 10.1016/j.ygeno.2024.110844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The study demonstrated that melatonin (MT) can induce the development of secondary hair follicles in Inner Mongolian cashmere goats through the Wnt10b gene, leading to secondary dehairing. However, the mechanisms underlying the expression and molecular function of Wnt10b in dermal papilla cells (DPC) remain unknown. This research aimed to investigate the impact of MT on DPC and the regulation of Wnt10b expression, function, and molecular mechanisms in DPC. The findings revealed that MT promotes DPC proliferation and enhances DPC activity. Co-culturing DPC with overexpressed Wnt10b and MT showed a significant growth promotion. Subsequent RNA sequencing (RNA-seq) of overexpressed Wnt10b and control groups unveiled the regulatory role of Wnt10b in DPC. Numerous genes and pathways, including developmental pathways such as Wnt and MAPK, as well as processes like hair follicle morphogenesis and hair cycle, were identified. These results suggest that Wnt10b promotes the growth of secondary hair follicles in Inner Mongolian cashmere goats by regulating crucial factors and pathways in DPC proliferation.
Collapse
Affiliation(s)
- Wendian Gong
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Junyang Liu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Qing Mu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Tergel Chahaer
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China
| | - Jiasen Liu
- Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Wenqi Ding
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Tugeqin Bou
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Equine Research Center, College of Animal Science, Hohhot, China
| | - Zixian Wu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China; Department of Inner Mongolia Academy of Agricultural Animal & Husbandry Sciences, Hohhot, China
| | - Yanhong Zhao
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China; Laboratory of Animal Genetic, Breeding and Reproduction, Hohhot, China.
| |
Collapse
|
9
|
Kumazoe M, Miyamoto E, Oka C, Kondo M, Yoshitomi R, Onda H, Shimada Y, Fujimura Y, Tachibana H. miR-12135 ameliorates liver fibrosis accompanied with the downregulation of integrin subunit alpha 11. iScience 2024; 27:108730. [PMID: 38235326 PMCID: PMC10792239 DOI: 10.1016/j.isci.2023.108730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 07/26/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Cirrhosis is becoming one of the most common diseases worldwide. Abnormal upregulation of transforming growth factor β (TGF-β) signaling plays a pivotal role in the excess activation of hepatic stellate cells. However, an efficient countermeasure against abnormal hepatic stellate cell activation is yet to be established because TGF-β signaling is involved in several biological processes. Herein, we demonstrated the antifibrotic effect of miR-12135, a microRNA with unknown function upregulated by isoflavone. Comprehensive transcriptome assay demonstrated that miR-12135 suppressed Integrin Subunit Alpha 11 (ITGA11) and that ITGA11 expression is correlated with alpha smooth muscle actin expression in patients with cirrhosis. miR-12135 suppressed the expression level of ITGA11 and liver fibrosis. Importantly, ITGA11 is overexpressed in activated hepatic stellate cells, whereas ITGA11 knockout mice are viable and fertile. In conclusions, the miR-12135/ITGA11 axis can be an ideal therapeutic target to suppress fibrosis by precisely targeting abnormally upregulated TGF-β signaling in hepatic stellate cells.
Collapse
Affiliation(s)
- Motofumi Kumazoe
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Emi Miyamoto
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Chihiro Oka
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Miyuki Kondo
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Ren Yoshitomi
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hiroaki Onda
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yu Shimada
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Yoshinori Fujimura
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Hirofumi Tachibana
- Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Sawant M, Wang F, Koester J, Niehoff A, Nava MM, Lundgren-Akerlund E, Gullberg D, Leitinger B, Wickström S, Eckes B, Krieg T. Ablation of integrin-mediated cell-collagen communication alleviates fibrosis. Ann Rheum Dis 2023; 82:1474-1486. [PMID: 37479494 DOI: 10.1136/ard-2023-224129] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/06/2023] [Indexed: 07/23/2023]
Abstract
OBJECTIVES Activation of fibroblasts is a hallmark of fibrotic processes. Besides cytokines and growth factors, fibroblasts are regulated by the extracellular matrix environment through receptors such as integrins, which transduce biochemical and mechanical signals enabling cells to mount appropriate responses according to biological demands. The aim of this work was to investigate the in vivo role of collagen-fibroblast interactions for regulating fibroblast functions and fibrosis. METHODS Triple knockout (tKO) mice with a combined ablation of integrins α1β1, α2β1 and α11β1 were created to address the significance of integrin-mediated cell-collagen communication. Properties of primary dermal fibroblasts lacking collagen-binding integrins were delineated in vitro. Response of the tKO mice skin to bleomycin induced fibrotic challenge was assessed. RESULTS Triple integrin-deficient mice develop normally, are transiently smaller and reveal mild alterations in mechanoresilience of the skin. Fibroblasts from these mice in culture show defects in cytoskeletal architecture, traction stress generation, matrix production and organisation. Ablation of the three integrins leads to increased levels of discoidin domain receptor 2, an alternative receptor recognising collagens in vivo and in vitro. However, this overexpression fails to compensate adhesion and spreading defects on collagen substrates in vitro. Mice lacking collagen-binding integrins show a severely attenuated fibrotic response with impaired mechanotransduction, reduced collagen production and matrix organisation. CONCLUSIONS The data provide evidence for a crucial role of collagen-binding integrins in fibroblast force generation and differentiation in vitro and for matrix deposition and tissue remodelling in vivo. Targeting fibroblast-collagen interactions might represent a promising therapeutic approach to regulate connective tissue deposition in fibrotic diseases.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Fang Wang
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Janis Koester
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Anja Niehoff
- Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB), University of Cologne, Medical Faculty, Cologne, Germany
| | - Michele M Nava
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | | | | | - Sara Wickström
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wihuri Research Institute, Biomedicum Helsinki, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, Helsinki, Finland
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
11
|
Bieber K, Bezdek S, Gupta Y, Vorobyev A, Sezin T, Gross N, Prüssmann J, Sayegh JP, Becker M, Mousavi S, Hdnah A, Künzel S, Ibrahim SM, Ludwig RJ, Gullberg D, Sadik CD. Forward genetics and functional analysis highlight Itga11 as a modulator of murine psoriasiform dermatitis. J Pathol 2023; 261:184-197. [PMID: 37565309 DOI: 10.1002/path.6162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 08/12/2023]
Abstract
Psoriasis is a chronic inflammatory skin condition. Repeated epicutaneous application of Aldara® (imiquimod) cream results in psoriasiform dermatitis in mice. The Aldara®-induced psoriasiform dermatitis (AIPD) mouse model has been used to examine the pathogenesis of psoriasis. Here, we used a forward genetics approach in which we compared AIPD that developed in 13 different inbred mouse strains to identify genes and pathways that modulated disease severity. Among our primary results, we found that the severity of AIPD differed substantially between different strains of inbred mice and that these variations were associated with polymorphisms in Itga11. The Itga11 gene encodes the integrin α11 subunit that heterodimerizes with the integrin β1 subunit to form integrin α11β1. Less information is available about the function of ITGA11 in skin inflammation; however, a role in the regulation of cutaneous wound healing, specifically the development of dermal fibrosis, has been described. Experiments performed with Itga11 gene-deleted (Itga11-/- ) mice revealed that the integrin α11 subunit contributes substantially to the clinical phenotype as well as the histopathological and molecular findings associated with skin inflammation characteristic of AIPD. Although the skin transcriptomes of Itga11-/- and WT mice do not differ from one another under physiological conditions, distinct transcriptomes emerge in these strains in response to the induction of AIPD. Most of the differentially expressed genes contributed to extracellular matrix organization, immune system, and metabolism of lipids pathways. Consistent with these findings, we detected a reduced number of fibroblasts and inflammatory cells, including macrophages, T cells, and tissue-resident memory T cells in skin samples from Itga11-/- mice in response to AIPD induction. Collectively, our results reveal that Itga11 plays a critical role in promoting skin inflammation in AIPD and thus might be targeted for the development of novel therapeutics for psoriasiform skin conditions. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Katja Bieber
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Siegfried Bezdek
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Tanya Sezin
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Jasper Prüssmann
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Jean-Paul Sayegh
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Mareike Becker
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sadegh Mousavi
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Ashref Hdnah
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| | - Sven Künzel
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Saleh M Ibrahim
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- College of Medicine, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ralf J Ludwig
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | | | - Christian D Sadik
- Center for Research on Inflammation of the Skin, University of Lübeck, Lübeck, Germany
- Department of Dermatology, Allergy, and Venereology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
12
|
Pang X, He X, Qiu Z, Zhang H, Xie R, Liu Z, Gu Y, Zhao N, Xiang Q, Cui Y. Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Ther 2023; 8:1. [PMID: 36588107 PMCID: PMC9805914 DOI: 10.1038/s41392-022-01259-6] [Citation(s) in RCA: 408] [Impact Index Per Article: 204.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 01/03/2023] Open
Abstract
Integrins are considered the main cell-adhesion transmembrane receptors that play multifaceted roles as extracellular matrix (ECM)-cytoskeletal linkers and transducers in biochemical and mechanical signals between cells and their environment in a wide range of states in health and diseases. Integrin functions are dependable on a delicate balance between active and inactive status via multiple mechanisms, including protein-protein interactions, conformational changes, and trafficking. Due to their exposure on the cell surface and sensitivity to the molecular blockade, integrins have been investigated as pharmacological targets for nearly 40 years, but given the complexity of integrins and sometimes opposite characteristics, targeting integrin therapeutics has been a challenge. To date, only seven drugs targeting integrins have been successfully marketed, including abciximab, eptifibatide, tirofiban, natalizumab, vedolizumab, lifitegrast, and carotegrast. Currently, there are approximately 90 kinds of integrin-based therapeutic drugs or imaging agents in clinical studies, including small molecules, antibodies, synthetic mimic peptides, antibody-drug conjugates (ADCs), chimeric antigen receptor (CAR) T-cell therapy, imaging agents, etc. A serious lesson from past integrin drug discovery and research efforts is that successes rely on both a deep understanding of integrin-regulatory mechanisms and unmet clinical needs. Herein, we provide a systematic and complete review of all integrin family members and integrin-mediated downstream signal transduction to highlight ongoing efforts to develop new therapies/diagnoses from bench to clinic. In addition, we further discuss the trend of drug development, how to improve the success rate of clinical trials targeting integrin therapies, and the key points for clinical research, basic research, and translational research.
Collapse
Affiliation(s)
- Xiaocong Pang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Xu He
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiwei Qiu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Hanxu Zhang
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Ran Xie
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Zhiyan Liu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Yanlun Gu
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Nan Zhao
- grid.411472.50000 0004 1764 1621Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034 Beijing, China ,grid.411472.50000 0004 1764 1621Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191 Beijing, China
| | - Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| | - Yimin Cui
- Department of Pharmacy, Peking University First Hospital, Xishiku Street, Xicheng District, 100034, Beijing, China. .,Institute of Clinical Pharmacology, Peking University First Hospital, Xueyuan Road 38, Haidian District, 100191, Beijing, China.
| |
Collapse
|
13
|
Xi Y, LaCanna R, Ma HY, N'Diaye EN, Gierke S, Caplazi P, Sagolla M, Huang Z, Lucio L, Arlantico A, Jeet S, Brightbill H, Emson C, Wong A, Morshead KB, DePianto DJ, Roose-Girma M, Yu C, Tam L, Jia G, Ramalingam TR, Marsters S, Ashkenazi A, Kim SH, Kelly R, Wu S, Wolters PJ, Feldstein AE, Vander Heiden JA, Ding N. A WISP1 antibody inhibits MRTF signaling to prevent the progression of established liver fibrosis. Cell Metab 2022; 34:1377-1393.e8. [PMID: 35987202 DOI: 10.1016/j.cmet.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.
Collapse
Affiliation(s)
- Ying Xi
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Laura Lucio
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Katrina B Morshead
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Daryle J DePianto
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Guiquan Jia
- Department of Biomarker Discovery, Genentech, South San Francisco, CA, USA
| | | | - Scot Marsters
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Si Hyun Kim
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ryan Kelly
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Shuang Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
14
|
Martínez-Nieto GA, Teppo HR, Petrelius N, Izzi V, Devarajan R, Petäistö T, Liu H, Kim KS, Karppinen SM, Ruotsalainen H, Koivunen J, Mäki JM, Walker GC, Pihlajaniemi T, Gullberg D, Heljasvaara R. Upregulated integrin α11 in the stroma of cutaneous squamous cell carcinoma promotes skin carcinogenesis. Front Oncol 2022; 12:981009. [PMID: 36003785 PMCID: PMC9393502 DOI: 10.3389/fonc.2022.981009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Integrin α11β1 is a collagen-binding integrin that is needed to induce and maintain the myofibroblast phenotype in fibrotic tissues and during wound healing. The expression of the α11 is upregulated in cancer-associated fibroblasts (CAFs) in various human neoplasms. We investigated α11 expression in human cutaneous squamous cell carcinoma (cSCC) and in benign and premalignant human skin lesions and monitored its effects on cSCC development by subjecting α11-knockout (Itga11−/−) mice to the DMBA/TPA skin carcinogenesis protocol. α11-deficient mice showed significantly decreased tumor cell proliferation, leading to delayed tumor development and reduced tumor burden. Integrin α11 expression was significantly upregulated in the desmoplastic tumor stroma of human and mouse cSCCs, and the highest α11 expression was detected in high-grade tumors. Our results point to a reduced ability of α11-deficient stromal cells to differentiate into matrix-producing and tumor-promoting CAFs and suggest that this is one causative mechanism underlying the observed decreased tumor growth. An unexpected finding in our study was that, despite reduced CAF activation, the α11-deficient skin tumors were characterized by the presence of thick and regularly aligned collagen bundles. This finding was attributed to a higher expression of TGFβ1 and collagen crosslinking lysyl oxidases in the Itga11-/- tumor stroma. In summary, our data suggest that α11β1 operates in a complex interactive tumor environment to regulate ECM synthesis and collagen organization and thus foster cSCC growth. Further studies with advanced experimental models are still needed to define the exact roles and molecular mechanisms of stromal α11β1 in skin tumorigenesis.
Collapse
Affiliation(s)
- Guillermo A. Martínez-Nieto
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hanna-Riikka Teppo
- Cancer Research and Translational Medicine Research Unit, University of Oulu, Oulu, Finland
- Medical Research Center, Oulu University Hospital and University of Oulu, Oulu, Finland
- Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Noora Petrelius
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Valerio Izzi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Research Unit of Biomedicine, University of Oulu, Oulu, Finland
- Finnish Cancer Institute, Helsinki, Finland
| | - Raman Devarajan
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tiina Petäistö
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hengshuo Liu
- Matrix Biology Group, Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Kris S. Kim
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Sanna-Maria Karppinen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heli Ruotsalainen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Jarkko Koivunen
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Joni M. Mäki
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | | | - Taina Pihlajaniemi
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Donald Gullberg
- Matrix Biology Group, Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Ritva Heljasvaara
- ECM-Hypoxia Research Unit, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Matrix Biology Group, Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
- *Correspondence: Ritva Heljasvaara,
| |
Collapse
|
15
|
Romaine A, Melleby AO, Alam J, Lobert VH, Lu N, Lockwood FE, Hasic A, Lunde IG, Sjaastad I, Stenmark H, Herum KM, Gullberg D, Christensen G. Integrin α11β1 and syndecan-4 dual receptor ablation attenuates cardiac hypertrophy in the pressure overloaded heart. Am J Physiol Heart Circ Physiol 2022; 322:H1057-H1071. [PMID: 35522553 DOI: 10.1152/ajpheart.00635.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pathological myocardial hypertrophy in response to an increase in left ventricular (LV) afterload may ultimately lead to heart failure. Cell surface receptors bridge the interface between the cell and the ECM in cardiac myocytes and cardiac fibroblasts, and have been suggested to be important mediators of pathological myocardial hypertrophy. We identify for the first time that integrin α11 (α11) is preferentially upregulated amongst integrin beta 1 heterodimer-forming α subunits in response to increased afterload induced by aortic banding (AB) in wild type mice (WT). Mice were anesthetized in a chamber with 4% isoflurane and 95% oxygen before being intubated and ventilated with 2.5% isoflurane and 97% oxygen. For pre- and post-operative analgesia, animals were administered 0.02 mL buprenorphine (0.3 mg/mL) subcutaneously. Surprisingly, mice lacking α11 develop myocardial hypertrophy following AB comparable to WT. In the mice lacking α11, we further show a compensatory increase in the expression of another mechanoreceptor, syndecan-4, following AB compared to WT AB mice, indicating that syndecan-4 compensated for lack of α11. Intriguingly, mice lacking mechanoreceptors α11 and syndecan-4 show ablated myocardial hypertrophy following AB compared to WT mice. Expression of the main cardiac collagen isoforms col1a2 and col3a1 was significantly reduced in AB mice lacking mechanoreceptors α11 and syndecan-4 compared to WT AB.
Collapse
Affiliation(s)
- Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway.,Section of Physiology, Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Ning Lu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Francesca E Lockwood
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Almira Hasic
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ida G Lunde
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Harald Stenmark
- Institute for Cancer Research, Oslo University Hospital, Norway
| | - Kate M Herum
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway and Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
16
|
Zhou S, Ding R, Zhuang Z, Zeng H, Wen S, Ruan D, Wu J, Qiu Y, Zheng E, Cai G, Yang J, Wu Z, Yang M. Genome-Wide Association Analysis Reveals Genetic Loci and Candidate Genes for Chest, Abdominal, and Waist Circumferences in Two Duroc Pig Populations. Front Vet Sci 2022; 8:807003. [PMID: 35224076 PMCID: PMC8865076 DOI: 10.3389/fvets.2021.807003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/15/2021] [Indexed: 12/16/2022] Open
Abstract
Chest circumference (CC), abdominal circumference (AC), and waist circumference (WC) are regarded as important indicators for improving economic traits because they can reflect the growth and physiological status in pigs. However, the genetic architecture of CC, AC, and WC is still elusive. Here, we performed single-trait and multi-trait genome-wide association studies (GWASs) for CC, AC, and WC in 2,206 American origin Duroc (AOD) and 2,082 Canadian origin Duroc (COD) pigs. As a result, one novel quantitative trait locus (QTL) on Sus scrofa chromosome (SSC) one was associated with CC and AC in COD pigs, which spans 6.92 Mb (from 170.06 to 176.98 Mb). Moreover, multi-trait GWAS identified 21 significant SNPs associated with the three conformation traits, indicating the multi-trait GWAS is a powerful statistical approach that uncovers pleiotropic locus. Finally, the three candidate genes (ITGA11, TLE3, and GALC) were selected that may play a role in the conformation traits. Further bioinformatics analysis indicated that the candidate genes for the three conformation traits mainly participated in sphingolipid metabolism and lysosome pathways. For all we know, this study was the first GWAS for WC in pigs. In general, our findings further reveal the genetic architecture of CC, AC, and WC, which may offer a useful reference for improving the conformation traits in pigs.
Collapse
Affiliation(s)
- Shenping Zhou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Rongrong Ding
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Zhanwei Zhuang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Haiyu Zeng
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Shuxian Wen
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Donglin Ruan
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Jie Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Yibin Qiu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Enqin Zheng
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Gengyuan Cai
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
| | - Jie Yang
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
| | - Zhenfang Wu
- College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China
- Guangdong Wens Breeding Swine Technology Co., Ltd., Yunfu, China
- *Correspondence: Zhenfang Wu
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Ming Yang
| |
Collapse
|
17
|
Wang J, Qiu H, Xu Y, Gao Y, Tan P, Zhao R, Liu Z, Tang Y, Zhu X, Bao C, Wang H, Lin H, Zhang X. The biological effect of recombinant humanized collagen on damaged skin induced by UV-photoaging: An in vivo study. Bioact Mater 2021; 11:154-165. [PMID: 34938920 PMCID: PMC8665261 DOI: 10.1016/j.bioactmat.2021.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/30/2021] [Accepted: 10/03/2021] [Indexed: 01/04/2023] Open
Abstract
The application of medical devices to repair skin damage is clinically accepted and natural polymer enjoys an important role in this field, such as collagen or hyaluronic acid, etc. However, the biosafety and efficacy of these implants are still challenged. In this study, a skin damage animal model was prepared by UV-photoaging and recombinant humanized type III collagen (rhCol III) was applied as a bioactive material to implant in vivo to study its biological effect, comparing with saline and uncrosslinked hyaluronic acid (HA). Animal skin conditions were non-invasively and dynamically monitored during the 8 weeks experiment. Histological observation, specific gene expression and other molecular biological methods were applied by the end of the animal experiment. The results indicated that rhCol III could alleviate the skin photoaging caused by UV radiation, including reduce the thickening of epidermis and dermis, increase the secretion of Collagen I (Col I) and Collagen III (Col III) and remodel of extracellular matrix (ECM). Although the cell-material interaction and mechanism need more investigation, the effect of rhCol III on damaged skin was discussed from influence on cells, reconstruction of ECM, and stimulus of small biological molecules based on current results. In conclusion, our findings provided rigorous biosafety information of rhCol III and approved its potential in skin repair and regeneration. Although enormous efforts still need to be made to achieve successful translation from bench to clinic, the recombinant humanized collagen showed superiorities from both safety and efficacy aspects. Investigated the biological effect of recombinant humanized collagen type III (rhCol III) in vivo. Provided the safety and efficacy evidence for rhCol III in skin damage repair. Preliminary mechanism discussion on the biological effect of rhCol III.
Collapse
Affiliation(s)
- Jing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - He Qiu
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yang Xu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yongli Gao
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peijie Tan
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rui Zhao
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Zhanhong Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yajun Tang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| | - Chongyun Bao
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
- Corresponding author.
| | - Hang Wang
- West China School / Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
- Corresponding author.
| | - Hai Lin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
- Corresponding author. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
18
|
Chen L, Li Z, Zheng Y, Zhou F, Zhao J, Zhai Q, Zhang Z, Liu T, Chen Y, Qi S. 3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization. Bioact Mater 2021; 10:236-246. [PMID: 34901542 PMCID: PMC8636711 DOI: 10.1016/j.bioactmat.2021.09.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/21/2021] [Accepted: 09/04/2021] [Indexed: 12/19/2022] Open
Abstract
Scar contraction frequently happens in patients with deep burn injuries. Hitherto, porcine dermal extracellular matrix (dECM) has supplied microenvironments that assist in wound healing but fail to inhibit scar contraction. To overcome this drawback, we integrate dECM into three-dimensional (3D)-printed dermal analogues (PDA) to prevent scar contraction. We have developed thermally gelled, non-rheologically modified dECM powder (dECMp) inks and successfully transformed them into PDA that was endowed with a micron-scale spatial structure. The optimal crosslinked PDA exhibited desired structure, good mechanical properties as well as excellent biocompatibility. Moreover, in vivo experiments demonstrated that PDA could significantly reduced scar contraction and improved cosmetic upshots of split thickness skin grafts (STSG) than the commercially available dermal templates and STSG along. The PDA has also induced an early, intense neovascularization, and evoked a type-2-like immune response. PDA's superior beneficial effects may attribute to their desired porous structure, the well-balanced physicochemical properties, and the preserved dermis-specific ECM cues, which collectively modulated the expression of genes such as Wnt11, ATF3, and IL1β, and influenced the crucial endogenous signalling pathways. The findings of this study suggest that PDA is a clinical translatable material that possess high potential in reducing scar contraction. Current dermal analogues have supplied microenvironments that assist in wound healing but cannot inhibit scar contraction. dECMp ink was formulated and transformed into PDA endowed with a micron-scale designed spatial structure. The PDAs were neatly superior to split thickness skin grafts and commercial dermal templates in hindering scar contraction. The transcriptome data may reveal how at the molecular level the IS and skin wounds respond to biomaterial stimuli.
Collapse
Affiliation(s)
- Lei Chen
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Zhiyong Li
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongtai Zheng
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Fei Zhou
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Jingling Zhao
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Qiyi Zhai
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| | - Zhaoqiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, No. 366, South of Jiangnan Boulevard, Guangzhou, 510280, China
| | - Tianrun Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yongming Chen
- School of Materials Science and Engineering, Centre of Functional Biomaterials, Key Laboratory of Polymeric Composite Materials and Functional Materials of Ministry of Education, GD Research Centre for Functional Biomaterials Engineering and Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaohai Qi
- Department of Burns, Laboratory of General Surgery, The First Affiliated Hospital, SunYat-Sen University, Guangzhou, 510080, China
| |
Collapse
|
19
|
Hunter EJ, Hamaia SW, Gullberg D, Malcor JD, Farndale RW. Selectivity of the collagen-binding integrin inhibitors, TC-I-15 and obtustatin. Toxicol Appl Pharmacol 2021; 428:115669. [PMID: 34363821 PMCID: PMC8444087 DOI: 10.1016/j.taap.2021.115669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/22/2022]
Abstract
Integrins are a family of 24 adhesion receptors which are both widely-expressed and important in many pathophysiological cellular processes, from embryonic development to cancer metastasis. Hence, integrin inhibitors are valuable research tools which may have promising therapeutic uses. Here, we focus on the four collagen-binding integrins α1β1, α2β1, α10β1 and α11β1. TC-I-15 is a small molecule inhibitor of α2β1 that inhibits platelet adhesion to collagen and thrombus deposition, and obtustatin is an α1β1-specific disintegrin that inhibits angiogenesis. Both inhibitors were applied in cellular adhesion studies, using synthetic collagen peptide coatings with selective affinity for the different collagen-binding integrins and testing the adhesion of C2C12 cells transfected with each. Obtustatin was found to be specific for α1β1, as described, whereas TC-I-15 is shown to be non-specific, since it inhibits both α1β1 and α11β1 as well as α2β1. TC-I-15 was 100-fold more potent against α2β1 binding to a lower-affinity collagen peptide, suggestive of a competitive mechanism. These results caution against the use of integrin inhibitors in a therapeutic or research setting without testing for cross-reactivity.
Collapse
Affiliation(s)
- Emma J Hunter
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Samir W Hamaia
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Jean-Daniel Malcor
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK
| | - Richard W Farndale
- Department of Biochemistry, University of Cambridge, Downing Site, Cambridge CB2 1QW, UK.
| |
Collapse
|
20
|
Álvarez S, Leiva-Sabadini C, Schuh CMAP, Aguayo S. Bacterial adhesion to collagens: implications for biofilm formation and disease progression in the oral cavity. Crit Rev Microbiol 2021; 48:83-95. [PMID: 34270375 DOI: 10.1080/1040841x.2021.1944054] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Collagen is the most abundant structural protein in the body and the main component of the extracellular matrix of most tissues, including dentine and periodontal tissues. Despite the well-characterized role of collagen and specifically type-I collagen, as a ligand for host cells, its role as a substrate for bacterial adhesion and biofilm formation is less explored. Therefore, the purpose of this review is to discuss recent findings regarding the adhesion of oral bacteria to collagen surfaces and its role in the progression and severity of oral and systemic diseases. Initial oral colonizers such as streptococci have evolved collagen-binding proteins (cbp) that are important for the colonization of dentine and periodontal tissues. Also, periodontal pathogens such as Porphyromonas gingivalis and Tannerella forsythia utilise cbps for tissue sensing and subsequent invasion. The implications of bacteria-collagen coupling in the context of collagen biomaterials and regenerative dentistry approaches are also addressed. Furthermore, the importance of interdisciplinary techniques such as atomic force microscopy for the nanocharacterization of bacteria-collagen interactions is also considered. Overall, understanding the process of oral bacterial adhesion onto collagen is important for developing future therapeutic approaches against oral and systemic diseases, by modulating the early stages of biofilm formation.
Collapse
Affiliation(s)
- Simón Álvarez
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile.,Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Camila Leiva-Sabadini
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Christina M A P Schuh
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Sebastian Aguayo
- Dentistry School, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Koivunen J, Tu H, Kemppainen A, Anbazhagan P, Finnilä MA, Saarakkala S, Käpylä J, Lu N, Heikkinen A, Juffer AH, Heino J, Gullberg D, Pihlajaniemi T. Integrin α11β1 is a receptor for collagen XIII. Cell Tissue Res 2021; 383:1135-1153. [PMID: 33306155 PMCID: PMC7960628 DOI: 10.1007/s00441-020-03300-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/14/2020] [Indexed: 12/28/2022]
Abstract
Collagen XIII is a conserved transmembrane collagen mainly expressed in mesenchymal tissues. Previously, we have shown that collagen XIII modulates tissue development and homeostasis. Integrins are a family of receptors that mediate signals from the environment into the cells and vice versa. Integrin α11β1 is a collagen receptor known to recognize the GFOGER (O=hydroxyproline) sequence in collagens. Interestingly, collagen XIII and integrin α11β1 both have a role in the regulation of bone homeostasis. To study whether α11β1 is a receptor for collagen XIII, we utilized C2C12 cells transfected to express α11β1 as their only collagen receptor. The interaction between collagen XIII and integrin α11β1 was also confirmed by surface plasmon resonance and pull-down assays. We discovered that integrin α11β1 mediates cell adhesion to two collagenous motifs, namely GPKGER and GF(S)QGEK, that were shown to act as the recognition sites for the integrin α11-I domain. Furthermore, we studied the in vivo significance of the α11β1-collagen XIII interaction by crossbreeding α11 null mice (Itga11-/-) with mice overexpressing Col13a1 (Col13a1oe). When we evaluated the bone morphology by microcomputed tomography, Col13a1oe mice had a drastic bone overgrowth followed by severe osteoporosis, whereas the double mutant mouse line showed a much milder bone phenotype. To conclude, our data identifies integrin α11β1 as a new collagen XIII receptor and demonstrates that this ligand-receptor pair has a role in the maintenance of bone homeostasis.
Collapse
Affiliation(s)
- Jarkko Koivunen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland
| | - Hongmin Tu
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Antti Kemppainen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland
| | - Padmanabhan Anbazhagan
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Mikko A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Jarmo Käpylä
- Department of Biochemistry and MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Anne Heikkinen
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland
| | - André H Juffer
- Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5000, FIN-90014, Oulu, Finland
| | - Jyrki Heino
- Department of Biochemistry and MediCity Research Laboratory, University of Turku, Tykistökatu 6A, 20520, Turku, Finland
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Taina Pihlajaniemi
- Oulu Center for Cell-Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. Box 5400, FIN-90014, Oulu, Finland.
| |
Collapse
|
22
|
Imhof T, Balic A, Heilig J, Chiquet-Ehrismann R, Chiquet M, Niehoff A, Brachvogel B, Thesleff I, Koch M. Pivotal Role of Tenascin-W (-N) in Postnatal Incisor Growth and Periodontal Ligament Remodeling. Front Immunol 2021; 11:608223. [PMID: 33552067 PMCID: PMC7862723 DOI: 10.3389/fimmu.2020.608223] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
The continuously growing mouse incisor provides a fascinating model for studying stem cell regulation and organ renewal. In the incisor, epithelial and mesenchymal stem cells assure lifelong tooth growth. The epithelial stem cells reside in a niche known as the cervical loop. Mesenchymal stem cells are located in the nearby apical neurovascular bundle and in the neural plexus. So far, little is known about extracellular cues that are controlling incisor stem cell renewal and guidance. The extracellular matrix protein tenascin-W, also known as tenascin-N (TNN), is expressed in the mesenchyme of the pulp and of the periodontal ligament of the incisor, and is closely associated with collagen 3 fibers. Here, we report for the first time the phenotype of tenascin-W/TNN deficient mice, which in a C57BL/6N background exhibit a reduced body weight and lifespan. We found major defects in the alveolar bone and periodontal ligament of the growing rodent incisors, whereas molars were not affected. The alveolar bone around the incisor was replaced by a dense scar-like connective tissue, enriched with newly formed nerve fibers likely leading to periodontal pain, less food intake and reduced body weight. Using soft food to reduce mechanical load on the incisor partially rescued the phenotype. In situ hybridization and Gli1 reporter mouse experiments revealed decreased hedgehog signaling in the incisor mesenchymal stem cell compartment, which coordinates the development of mesenchymal stem cell niche. These results indicate that TNN deficiency in mice affects periodontal remodeling and increases nerve fiber branching. Through periodontal pain the food intake is reduced and the incisor renewal and the neurovascular sonic hedgehog secretion rate are reduced. In conclusion, tenascin-W/TNN seems to have a primary function in rapid periodontal tissue remodeling and a secondary function in mechanosensation.
Collapse
Affiliation(s)
- Thomas Imhof
- Faculty of Medicine and University Hospital Cologne, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anamaria Balic
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Juliane Heilig
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Res. Foundation, Basel, Switzerland
| | - Matthias Chiquet
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anja Niehoff
- Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Biomechanics and Orthopaedics, German Sport University Cologne, Cologne, Germany
| | - Bent Brachvogel
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Irma Thesleff
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Manuel Koch
- Faculty of Medicine and University Hospital Cologne, Institute for Dental Research and Oral Musculoskeletal Biology, University of Cologne, Cologne, Germany
- Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
23
|
Patel NJ, Nassal DM, Gratz D, Hund TJ. Emerging therapeutic targets for cardiac arrhythmias: role of STAT3 in regulating cardiac fibroblast function. Expert Opin Ther Targets 2020; 25:63-73. [PMID: 33170045 DOI: 10.1080/14728222.2021.1849145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction : Cardiac fibrosis contributes to the development of cardiovascular disease (CVD) and arrhythmia. Cardiac fibroblasts (CFs) are collagen-producing cells that regulate extracellular matrix (ECM) homeostasis. A complex signaling network has been defined linking environmental stress to changes in CF function and fibrosis. Signal Transducer and Activator of Transcription 3 (STAT3) has emerged as a critical integrator of pro-fibrotic signals in CFs downstream of several established signaling networks. Areas covered : This article provides an overview of STAT3 function in CFs and its involvement in coordinating a vast web of intracellular pro-fibrotic signaling molecules and transcription factors. We highlight recent work elucidating a critical role for the fibroblast cytoskeleton in maintaining spatial and temporal control of STAT3-related signaling . Finally, we discuss potential opportunities and obstacles for therapeutic targeting of STAT3 to modulate cardiac fibrosis and arrhythmias. Relevant publications on the topic were identified through Pubmed. Expert opinion : Therapeutic targeting of STAT3 for CVD and arrhythmias presents unique challenges and opportunities. Thus, it is critical to consider the multimodal and dynamic nature of STAT3 signaling. Going forward, it will be beneficial to consider ways to maintain balanced STAT3 function, rather than large-scale perturbations in STAT3 function.
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, OH, USA.,Department of Biomedical Engineering, College of Engineering, the Ohio State University , Columbus, OH, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, OH, USA
| |
Collapse
|
24
|
Smith CE, Hu Y, Strauss M, Hu JCC, Simmer JP. The spatial distribution of focal stacks within the inner enamel layer of mandibular mouse incisors. J Anat 2020; 238:970-985. [PMID: 33145767 PMCID: PMC7930765 DOI: 10.1111/joa.13352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 01/08/2023] Open
Abstract
Focal stacks are an alternative spatial arrangement of enamel rods within the inner enamel of mandibular mouse incisors where short rows comprised of 2–45 enamel rods are nestled at the side of much longer rows, both sharing the same rod tilt directed mesially or laterally. The significance of focal stacks to enamel function is unknown, but their high frequency in transverse sections (30% of all rows) suggests that they serve some purpose beyond representing an oddity of enamel development. In this study, we characterized the spatial distribution of focal stacks in random transverse sections relative to different regions of the inner enamel and to different locations across enamel thickness. The curving dentinoenamel junction (DEJ) in transverse sections complicated spatial distribution analyses, and a technique was developed to “unbend” the curving DEJ allowing for more linear quantitative analyses to be carried out. The data indicated that on average there were 36 ± 7 focal stacks located variably within the inner enamel in any given transverse section. Consistent with area distributions, focal stacks were four times more frequent in the lateral region (53%) and twice as frequent in the mesial region (33%) compared to the central region (14%). Focal stacks were equally split by tilt (52% mesial vs. 48% lateral, not significant), but those having a mesial tilt were more frequently encountered in the lateral and central regions (2:1) and those having a lateral tilt were more numerous in the mesial region (1:3). Focal stacks having a mesial tilt were longer on average compared to those having a lateral tilt (7.5 ± 5.6 vs. 5.9 ± 4.0 rods per row, p < 0.01). There was no relationship between the length of a focal stack and its location within the inner enamel. All results were consistent with the notion that focal stacks travel from the DEJ to the outer enamel the same as the longer and decussating companion rows to which they are paired. The spatial distribution of focal stacks within the inner enamel was not spatially random but best fit a null model based on a heterogenous Poisson point process dependent on regional location within the transverse plane of the enamel layer.
Collapse
Affiliation(s)
- Charles E Smith
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada
| | - Yuanyuan Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Mike Strauss
- Department of Anatomy & Cell Biology, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, Canada.,Facility for Electron Microscopy Research, McGill University, Montreal, QC, Canada
| | - Jan C-C Hu
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - James P Simmer
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Etich J, Rehberg M, Eckes B, Sengle G, Semler O, Zaucke F. Signaling pathways affected by mutations causing osteogenesis imperfecta. Cell Signal 2020; 76:109789. [PMID: 32980496 DOI: 10.1016/j.cellsig.2020.109789] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous connective tissue disorder characterized by bone fragility and skeletal deformity. To maintain skeletal strength and integrity, bone undergoes constant remodeling of its extracellular matrix (ECM) tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. There are at least 20 recognized OI-forms caused by mutations in the two collagen type I-encoding genes or genes implicated in collagen folding, posttranslational modifications or secretion of collagen, osteoblast differentiation and function, or bone mineralization. The underlying disease mechanisms of non-classical forms of OI that are not caused by collagen type I mutations are not yet completely understood, but an altered ECM structure as well as disturbed intracellular homeostasis seem to be the main defects. The ECM orchestrates local cell behavior in part by regulating bioavailability of signaling molecules through sequestration, release and activation during the constant bone remodeling process. Here, we provide an overview of signaling pathways that are associated with known OI-causing genes and discuss the impact of these genes on signal transduction. These pathways include WNT-, RANK/RANKL-, TGFβ-, MAPK- and integrin-mediated signaling as well as the unfolded protein response.
Collapse
Affiliation(s)
- Julia Etich
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany.
| | - Mirko Rehberg
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Beate Eckes
- Translational Matrix Biology, Faculty of Medicine, University of Cologne, Cologne 50931, Germany
| | - Gerhard Sengle
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Biochemistry, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne 50931, Germany; Cologne Center for Musculoskeletal Biomechanics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Oliver Semler
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne 50931, Germany; Center for Rare Diseases, University Hospital Cologne, University of Cologne, Cologne 50931, Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis, Orthopedic University Hospital Friedrichsheim gGmbH, Frankfurt/Main, 60528, Germany
| |
Collapse
|
26
|
Bourgot I, Primac I, Louis T, Noël A, Maquoi E. Reciprocal Interplay Between Fibrillar Collagens and Collagen-Binding Integrins: Implications in Cancer Progression and Metastasis. Front Oncol 2020; 10:1488. [PMID: 33014790 PMCID: PMC7461916 DOI: 10.3389/fonc.2020.01488] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cancers are complex ecosystems composed of malignant cells embedded in an intricate microenvironment made of different non-transformed cell types and extracellular matrix (ECM) components. The tumor microenvironment is governed by constantly evolving cell-cell and cell-ECM interactions, which are now recognized as key actors in the genesis, progression and treatment of cancer lesions. The ECM is composed of a multitude of fibrous proteins, matricellular-associated proteins, and proteoglycans. This complex structure plays critical roles in cancer progression: it functions as the scaffold for tissues organization and provides biochemical and biomechanical signals that regulate key cancer hallmarks including cell growth, survival, migration, differentiation, angiogenesis, and immune response. Cells sense the biochemical and mechanical properties of the ECM through specialized transmembrane receptors that include integrins, discoidin domain receptors, and syndecans. Advanced stages of several carcinomas are characterized by a desmoplastic reaction characterized by an extensive deposition of fibrillar collagens in the microenvironment. This compact network of fibrillar collagens promotes cancer progression and metastasis, and is associated with low survival rates for cancer patients. In this review, we highlight how fibrillar collagens and their corresponding integrin receptors are modulated during cancer progression. We describe how the deposition and alignment of collagen fibers influence the tumor microenvironment and how fibrillar collagen-binding integrins expressed by cancer and stromal cells critically contribute in cancer hallmarks.
Collapse
Affiliation(s)
| | | | | | | | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
27
|
Alam J, Musiime M, Romaine A, Sawant M, Melleby AO, Lu N, Eckes B, Christensen G, Gullberg D. Generation of a novel mouse strain with fibroblast-specific expression of Cre recombinase. Matrix Biol Plus 2020; 8:100045. [PMID: 33543038 PMCID: PMC7852330 DOI: 10.1016/j.mbplus.2020.100045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/06/2023] Open
Abstract
Cell-specific expression of genes offers the possibility to use their promoters to drive expression of Cre-recombinase, thereby allowing for detailed expression analysis using reporter gene systems, cell lineage tracing, conditional gene deletion, and cell ablation. In this context, current data suggest that the integrin α11 subunit has the potential to serve as a fibroblast biomarker in tissue regeneration and pathology, in particular in wound healing and in tissue- and tumor fibrosis. The mesenchyme-restricted expression pattern of integrin α11 thus prompted us to generate a novel ITGA11-driver Cre mouse strain using a ϕC31 integrase-mediated knock-in approach. In this transgenic mouse, the Cre recombinase is driven by regulatory promoter elements within the 3 kb segment of the human ITGA11 gene. β-Galactosidase staining of embryonic tissues obtained from a transgenic ITGA11-Cre mouse line crossed with Rosa 26R reporter mice (ITGA11-Cre;R26R) revealed ITGA11-driven Cre expression and activity in mesenchymal cells in a variety of mesenchymal tissues in a pattern reminiscent of endogenous α11 protein expression in mouse embryos. Interestingly, X-gal staining of mouse embryonic fibroblasts (MEFs) isolated from the ITGA11-Cre;R26R mice indicated heterogeneity in the MEF population. ITGA11-driven Cre activity was shown in approximately 60% of the MEFs, suggesting that the expression of integrin α11 could be exploited for isolation of different fibroblast populations. ITGA11-driven Cre expression was found to be low in adult mouse tissues but was induced in granulation tissue of excisional wounds and in fibrotic hearts following aortic banding. We predict that the ITGA11-Cre transgenic mouse strain described in this report will be a useful tool in matrix research for the deletion of genes in subsets of fibroblasts in the developing mouse and for determining the function of subsets of pro-fibrotic fibroblasts in tissue fibrosis and in different subsets of cancer-associated fibroblasts in the tumor microenvironment. A mouse strain with Cre-recombinase driven by the human integrin α11 promoter has been generated. Cre-recombinase expression in this strain has been characterized using the Rosa26R reporter mouse. ITGA11-Cre is restricted to fibroblast subsets in mouse embryos, skin wounds and fibrotic hearts. This Cre-driver strain will be a useful tool to study role fibroblasts in fibrosis and tumors.
Collapse
Affiliation(s)
- Jahedul Alam
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Moses Musiime
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Andreas Romaine
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Mugdha Sawant
- Translational Matrix Biology, University of Cologne Medical Faculty, Cologne, Germany
| | - Arne Olav Melleby
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne Medical Faculty, Cologne, Germany
| | - Geir Christensen
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital, Oslo, Norway
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
- Corresponding author Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
28
|
Lerche M, Elosegui-Artola A, Kechagia JZ, Guzmán C, Georgiadou M, Andreu I, Gullberg D, Roca-Cusachs P, Peuhu E, Ivaska J. Integrin Binding Dynamics Modulate Ligand-Specific Mechanosensing in Mammary Gland Fibroblasts. iScience 2020; 23:100907. [PMID: 32106057 PMCID: PMC7044518 DOI: 10.1016/j.isci.2020.100907] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/19/2019] [Accepted: 02/07/2020] [Indexed: 02/07/2023] Open
Abstract
The link between integrin activity regulation and cellular mechanosensing of tissue rigidity, especially on different extracellular matrix ligands, remains poorly understood. Here, we find that primary mouse mammary gland stromal fibroblasts (MSFs) are able to spread efficiently, generate high forces, and display nuclear YAP on soft collagen-coated substrates, resembling the soft mammary gland tissue. We describe that loss of the integrin inhibitor, SHARPIN, impedes MSF spreading specifically on soft type I collagen but not on fibronectin. Through quantitative experiments and computational modeling, we find that SHARPIN-deficient MSFs display faster force-induced unbinding of adhesions from collagen-coated beads. Faster unbinding, in turn, impairs force transmission in these cells, particularly, at the stiffness optimum observed for wild-type cells. Mechanistically, we link the impaired mechanotransduction of SHARPIN-deficient cells on collagen to reduced levels of collagen-binding integrin α11β1. Thus integrin activity regulation and α11β1 play a role in collagen-specific mechanosensing in MSFs.
Collapse
Affiliation(s)
- Martina Lerche
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | | | - Jenny Z Kechagia
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona 08028, Spain
| | - Camilo Guzmán
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Maria Georgiadou
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Ion Andreu
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona 08028, Spain
| | | | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia, University of Barcelona, Barcelona 08028, Spain; University of Barcelona, Barcelona 08028, Spain
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Institute of Biomedicine and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland.
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland; Department of Biochemistry, University of Turku, FI-20520 Turku, Finland.
| |
Collapse
|
29
|
Denes BJ, Ait-Lounis A, Wehrle-Haller B, Kiliaridis S. Core Matrisome Protein Signature During Periodontal Ligament Maturation From Pre-occlusal Eruption to Occlusal Function. Front Physiol 2020; 11:174. [PMID: 32194440 PMCID: PMC7066325 DOI: 10.3389/fphys.2020.00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The pre-occlusal eruption brings the molars into functional occlusion and initiates tensional strains during mastication. We hypothesized that upon establishment of occlusal contact, the periodontal ligament (PDL) undergoes cell and extracellular matrix maturation to adapt to this mechanical function. The PDL of 12 Wistar male rats were laser microdissected to observe the proteomic changes between stages of pre-occlusal eruption, initial occlusal contact and 1-week after occlusion. The proteome was screened by mass spectrometry and confirmed by immunofluorescence. The PDL underwent maturation upon establishment of occlusion. Downregulation of alpha-fetoprotein stem cell marker and protein synthesis markers indicate cell differentiation. Upregulated proteins were components of the extracellular matrix (ECM) and were characterized with the matrisome project database. In particular, periostin, a major protein of the PDL, was induced following occlusal contact and localized around collagen α-1 (III) bundles. This co-localization coincided with organization of collagen fibers in direction of the occlusal forces. Establishment of occlusion coincides with cellular differentiation and the maturation of the PDL. Co-localization of periostin and collagen with subsequent fiber organization may help counteract tensional forces and reinforce the ECM structure. This may be a key mechanism of the PDL to adapt to occlusal forces and maintain structural integrity.
Collapse
Affiliation(s)
- Balazs Jozsef Denes
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| | - Aouatef Ait-Lounis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Stavros Kiliaridis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
30
|
Erusappan P, Alam J, Lu N, Zeltz C, Gullberg D. Integrin α11 cytoplasmic tail is required for FAK activation to initiate 3D cell invasion and ERK-mediated cell proliferation. Sci Rep 2019; 9:15283. [PMID: 31653900 PMCID: PMC6814791 DOI: 10.1038/s41598-019-51689-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/10/2019] [Indexed: 12/31/2022] Open
Abstract
Integrin α11β1 is a collagen-binding integrin, which is receiving increasing attention in the context of wound healing and fibrosis. Although α11β1 integrin displays similar collagen specificity to α2β1 integrin, both integrins have distinct in vivo functions. In this context, the contribution of α11 subunit cytoplasmic tail interactions to diverse molecular signals and biological functions is largely unknown. In the current study, we have deleted the α11 cytoplasmic tail and studied the effect of this deletion on α11 integrin function. Compared to wild-type cells, C2C12 cells expressing tail-less α11 attached normally to collagen I, but formed fewer focal contacts. α11-tail-less cells furthermore displayed a reduced capacity to invade and reorganize a 3D collagen matrix and to proliferate. Analysis of cell signaling showed that FAK and ERK phosphorylation was reduced in cells expressing tail-less α11. Inhibition of ERK and FAK activation decreased α11-mediated cell proliferation, whereas α11-mediated cell invasion was FAK-dependent and occurred independently of ERK signaling. In summary, our data demonstrate that the integrin α11 cytoplasmic tail plays a central role in α11 integrin-specific functions, including FAK-dependent ERK activation to promote cell proliferation.
Collapse
Affiliation(s)
- Pugazendhi Erusappan
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Kirkeveien 166, 0450, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Ning Lu
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Cédric Zeltz
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Princess Margaret Cancer Center, University Health Network, 101 College Street, Toronto, ON, M5G 1L7, Canada
| | - Donald Gullberg
- Department of Biomedicine and Center of Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.
| |
Collapse
|
31
|
Role of prolyl hydroxylation in the molecular interactions of collagens. Essays Biochem 2019; 63:325-335. [PMID: 31350381 PMCID: PMC6744578 DOI: 10.1042/ebc20180053] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/25/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022]
Abstract
Co- and post-translational hydroxylation of proline residues is critical for the stability of the triple helical collagen structure. In this review, we summarise the biology of collagen prolyl 4-hydroxylases and collagen prolyl 3-hydroxylases, the enzymes responsible for proline hydroxylation. Furthermore, we describe the potential roles of hydroxyproline residues in the complex interplay between collagens and other proteins, especially integrin and discoidin domain receptor type cell adhesion receptors. Qualitative and quantitative regulation of collagen hydroxylation may have remarkable effects on the properties of the extracellular matrix and consequently on the cell behaviour.
Collapse
|
32
|
Zeltz C, Primac I, Erusappan P, Alam J, Noel A, Gullberg D. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins. Semin Cancer Biol 2019; 62:166-181. [PMID: 31415910 DOI: 10.1016/j.semcancer.2019.08.004] [Citation(s) in RCA: 192] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment (TME) is a complex meshwork of extracellular matrix (ECM) macromolecules filled with a collection of cells including cancer-associated fibroblasts (CAFs), blood vessel associated smooth muscle cells, pericytes, endothelial cells, mesenchymal stem cells and a variety of immune cells. In tumors the homeostasis governing ECM synthesis and turnover is disturbed resulting in abnormal blood vessel formation and excessive fibrillar collagen accumulations of varying stiffness and organization. The disturbed ECM homeostasis opens up for new types of paracrine, cell-cell and cell-ECM interactions with large consequences for tumor growth, angiogenesis, metastasis, immune suppression and resistance to treatments. As a main producer of ECM and paracrine signals the CAF is a central cell type in these events. Whereas the paracrine signaling has been extensively studied in the context of tumor-stroma interactions, the nature of the numerous integrin-mediated cell-ECM interactions occurring in the TME remains understudied. In this review we will discuss and dissect the role of known and potential CAF interactions in the TME, during both tumorigenesis and chemoresistance-induced events, with a special focus on the "interaction landscape" in desmoplastic breast, lung and pancreatic cancers. As an example of the multifaceted mode of action of the stromal collagen receptor integrin α11β1, we will summarize our current understanding on the role of this CAF-expressed integrin in these three tumor types.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Princess Margaret Cancer Center, University Health Network, Toronto, Canada
| | - Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Pugazendhi Erusappan
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway; Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jahedul Alam
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Agnes Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liege (ULiège), Liege, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway.
| |
Collapse
|
33
|
Primac I, Maquoi E, Blacher S, Heljasvaara R, Van Deun J, Smeland HY, Canale A, Louis T, Stuhr L, Sounni NE, Cataldo D, Pihlajaniemi T, Pequeux C, De Wever O, Gullberg D, Noel A. Stromal integrin α11 regulates PDGFR-β signaling and promotes breast cancer progression. J Clin Invest 2019; 129:4609-4628. [PMID: 31287804 DOI: 10.1172/jci125890] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are key actors in modulating the progression of many solid tumors such as breast cancer (BC). Herein, we identify an integrin α11/PDGFRβ+ CAF subset displaying tumor-promoting features in BC. In the preclinical MMTV-PyMT mouse model, integrin α11-deficiency led to a drastic reduction of tumor progression and metastasis. A clear association between integrin α11 and PDGFRβ was found at both transcriptional and histological levels in BC specimens. High stromal integrin α11/PDGFRβ expression was associated with high grades and poorer clinical outcome in human BC patients. Functional assays using five CAF subpopulations (one murine, four human) revealed that integrin α11 promotes CAF invasion and CAF-induced tumor cell invasion upon PDGF-BB stimulation. Mechanistically, integrin α11 pro-invasive activity relies on its ability to interact with PDGFRβ in a ligand-dependent manner and to promote its downstream JNK activation, leading to the production of tenascin C, a pro-invasive matricellular protein. Pharmacological inhibition of PDGFRβ and JNK impaired tumor cell invasion induced by integrin α11-positive CAFs. Collectively, our study uncovers an integrin α11-positive subset of pro-tumoral CAFs that exploits PDGFRβ/JNK signalling axis to promote tumor invasiveness in BC.
Collapse
Affiliation(s)
- Irina Primac
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Erik Maquoi
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ritva Heljasvaara
- Oulu Centre for Cell-Extracellular Matrix Research and Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.,Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Jan Van Deun
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Hilde Yh Smeland
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Annalisa Canale
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Thomas Louis
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Linda Stuhr
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Nor Eddine Sounni
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Didier Cataldo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Taina Pihlajaniemi
- Oulu Centre for Cell-Extracellular Matrix Research and Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Christel Pequeux
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers (CCBIO), Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Agnès Noel
- Laboratory of Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| |
Collapse
|
34
|
Smeland HYH, Lu N, Karlsen TV, Salvesen G, Reed RK, Stuhr L. Stromal integrin α11-deficiency reduces interstitial fluid pressure and perturbs collagen structure in triple-negative breast xenograft tumors. BMC Cancer 2019; 19:234. [PMID: 30876468 PMCID: PMC6419843 DOI: 10.1186/s12885-019-5449-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 03/10/2019] [Indexed: 12/16/2022] Open
Abstract
Background Cancer progression is influenced by a pro-tumorigenic microenvironment. The aberrant tumor stroma with increased collagen deposition, contractile fibroblasts and dysfunctional vessels has a major impact on the interstitial fluid pressure (PIF) in most solid tumors. An increased tumor PIF is a barrier to the transport of interstitial fluid into and within the tumor. Therefore, understanding the mechanisms that regulate pressure homeostasis can lead to new insight into breast tumor progression, invasion and response to therapy. The collagen binding integrin α11β1 is upregulated during myofibroblast differentiation and expressed on fibroblasts in the tumor stroma. As a collagen organizer and a probable link between contractile fibroblasts and the complex collagen network in tumors, integrin α11β1 could be a potential regulator of tumor PIF. Methods We investigated the effect of stromal integrin α11-deficiency on pressure homeostasis, collagen organization and tumor growth using orthotopic and ectopic triple-negative breast cancer xenografts (MDA-MB-231 and MDA-MB-468) in wild type and integrin α11-deficient mice. PIF was measured by the wick-in-needle technique, collagen by Picrosirius Red staining and electron microscopy, and uptake of radioactively labeled 5FU by microdialysis. Further, PIF in heterospheroids composed of MDA-MB-231 cells and wild type or integrin α11-deficient fibroblasts was measured by micropuncture. Results Stromal integrin α11-deficiency decreased PIF in both the orthotopic breast cancer models. A concomitant perturbed collagen structure was seen, with fewer aligned and thinner fibrils. Integrin α11-deficiency also impeded MDA-MB-231 breast tumor growth, but no effect was observed on drug uptake. No effects were seen in the ectopic model. By investigating the isolated effect of integrin α11-positive fibroblasts on MDA-MB-231 cells in vitro, we provide evidence that PIF regulation was mediated by integrin α11-positive fibroblasts. Conclusion We hereby show the importance of integrin α11β1 in pressure homeostasis in triple-negative breast tumors, indicating a new role for integrin α11β1 in the tumor microenvironment. Our data suggest that integrin α11β1 has a pro-tumorigenic effect on triple-negative breast cancer growth in vivo. The significance of the local microenvironment is shown by the different effects of integrin α11β1 in the orthotopic and ectopic models, underlining the importance of choosing an appropriate preclinical model. Electronic supplementary material The online version of this article (10.1186/s12885-019-5449-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hilde Ytre-Hauge Smeland
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway. .,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.
| | - Ning Lu
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Tine V Karlsen
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Gerd Salvesen
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| | - Linda Stuhr
- Department of Biomedicine, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway.,Centre of Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, P.O. Box 7804, 5020, Bergen, Norway
| |
Collapse
|
35
|
Lidén Å, Karlsen TV, Guss B, Reed RK, Rubin K. Integrin α V β 3 can substitute for collagen-binding β 1 -integrins in vivo to maintain a homeostatic interstitial fluid pressure. Exp Physiol 2019. [PMID: 29524327 PMCID: PMC5947675 DOI: 10.1113/ep086902] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New Findings What is the central question of this study? Collagen‐binding β1‐integrins function physiologically in cellular control of dermal interstitial fluid pressure (PIF) in vivo and thereby participate in control of extravascular fluid volume. During anaphylaxis, simulated by injection of compound 48/80, integrin αVβ3 takes over this physiological function. Here we addressed the question whether integrin αVβ3 can replace collagen‐binding β1‐integrin to maintain a long‐term homeostatic PIF. What is the main finding and its importance? Mice lacking the collagen‐binding integrin α11β1 show a complex dermal phenotype with regard to the interstitial physiology apparent in the control of PIF. Notably dermal PIF is not lowered with compound 48/80 in these animals. Our present data imply that integrin αVβ3 is the likely candidate that has taken over the role of collagen‐binding β1‐integrins for maintaining a steady‐state homeostatic PIF. A better understanding of molecular processes involved in control of PIF is instrumental for establishing novel treatment regimens for control of oedema formation in anaphylaxis and septic shock.
Abstract Accumulated data indicate that cell‐mediated contraction of reconstituted collagenous gels in vitro can serve as a model for cell‐mediated control of interstitial fluid pressure (PIF) in vivo. A central role for collagen‐binding β1‐integrins in both processes has been established. Furthermore, integrin αVβ3 takes over the role of collagen‐binding β1‐integrins in mediating contraction after perturbations of collagen‐binding β1‐integrins in vitro. Integrin αVβ3 is also instrumental for normalization of dermal PIF that has been lowered due to mast cell degranulation with compound 48/80 (C48/80) in vivo. Here we demonstrate a role of integrin αVβ3 in maintaining a long term homeostatic dermal PIF in mice lacking the collagen‐binding integrin α11β1 (α11−/− mice). Measurements of PIF were performed after circulatory arrest. Furthermore, cell‐mediated integrin αVβ3‐directed contraction of collagenous gels in vitro depends on free access to a collagen site known to bind several extracellular matrix (ECM) proteins that form substrates for αVβ3‐directed cell attachment, such as fibronectin and fibrin. A streptococcal collagen‐binding protein, CNE, specifically binds to and blocks this site on the collagen triple helix. Here we show that whereas CNE perturbed αVβ3‐directed and platelet‐derived growth factor BB‐induced normalization of dermal PIF after C48/80, it did not affect αVβ3‐dependent maintenance of a homeostatic dermal PIF. These data imply that dynamic modification of the ECM structure is needed during acute patho‐physiological modulations of PIF but not for long‐term maintenance of a homeostatic PIF. Our data thus show that collagen‐binding β1‐integrins, integrin αVβ3 and ECM structure are potential targets for novel therapy aimed at modulating oedema formation and hypovolemic shock during anaphylaxis.
Collapse
Affiliation(s)
- Åsa Lidén
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Tine Veronika Karlsen
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway
| | - Bengt Guss
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Box 7036, SE-750 07, Uppsala, Sweden
| | - Rolf K Reed
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009, Bergen, Norway.,Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Kristofer Rubin
- Department of Laboratory Medicine, Translational Cancer Research, Medicon Village, Lund University, SE-223 63, Lund, Sweden.,Department of Medical Biochemistry and Microbiology, Science for Life laboratories, Uppsala University, BMC Box 582, SE 751 23, Uppsala, Sweden
| |
Collapse
|
36
|
Beyeler J, Katsaros C, Chiquet M. Impaired Contracture of 3D Collagen Constructs by Fibronectin-Deficient Murine Fibroblasts. Front Physiol 2019; 10:166. [PMID: 30890950 PMCID: PMC6413635 DOI: 10.3389/fphys.2019.00166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
Fibronectin (FN) is an extracellular matrix glycoprotein that is abundantly expressed by fibroblasts in contracting wounds, where it mediates cell adhesion, migration and proliferation. FN also efficiently binds to collagen. Therefore, we and others hypothesized that FN and its cellular receptor integrin α5β1 might be involved in collagen matrix contracture by acting as linkers. However, there are conflicting reports on this issue. Moreover, several publications suggest an important role of collagen-binding integrin receptors α2β1 and α11β1 in collagen matrix contracture. Therefore, the aim of the present study was to determine the contributions of FN-integrin α5β1 interactions relative to those of collagen receptors α2β1 and α11β1 in this process. To assess the role of cellular FN directly, we employed FN-deficient mouse fibroblasts, subjected them to a collagen gel contracture assay in vitro, and compared them to their wildtype counterparts. Exogenous FN was removed from serum-containing medium. For dissecting the role of major collagen receptors, we used two FN-deficient mouse fibroblast lines that both possess integrin α5β1 but differ in their collagen-binding integrins. Embryo-derived FN-null fibroblasts, which express α11- but no α2-integrin, barely spread and tended to cluster on collagen gels. Moreover, FN-null fibroblasts required exogenously added FN to assemble α5β1-integrin in fibrillar adhesion contacts, and to contract collagen matrices. In contrast, postnatal kidney fibroblasts were found to express α2- but barely α11-integrin. When FN expression was suppressed in these cells by shRNA transfection, they were able to spread on and partially contract collagen gels in the absence of exogenous FN. Also in this case, however, collagen contracture was stimulated by adding FN to the medium. Antibody to integrin α5β1 or RGD peptide completely abolished collagen contracture by FN-deficient fibroblasts stimulated by FN addition. We conclude that although collagen-binding integrins (especially α2β1) can mediate contracture of fibrillar collagen gels by murine fibroblasts to some extent, full activity is causally linked to the presence of pericellular FN and its receptor integrin α5β1.
Collapse
Affiliation(s)
- Joël Beyeler
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Christos Katsaros
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Matthias Chiquet
- Laboratory for Oral Molecular Biology, Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
37
|
Shen B, Vardy K, Hughes P, Tasdogan A, Zhao Z, Yue R, Crane GM, Morrison SJ. Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass. eLife 2019; 8:42274. [PMID: 30632962 PMCID: PMC6349404 DOI: 10.7554/elife.42274] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/05/2019] [Indexed: 12/13/2022] Open
Abstract
We previously discovered a new osteogenic growth factor that is required to maintain adult skeletal bone mass, Osteolectin/Clec11a. Osteolectin acts on Leptin Receptor+ (LepR+) skeletal stem cells and other osteogenic progenitors in bone marrow to promote their differentiation into osteoblasts. Here we identify a receptor for Osteolectin, integrin α11, which is expressed by LepR+ cells and osteoblasts. α11β1 integrin binds Osteolectin with nanomolar affinity and is required for the osteogenic response to Osteolectin. Deletion of Itga11 (which encodes α11) from mouse and human bone marrow stromal cells impaired osteogenic differentiation and blocked their response to Osteolectin. Like Osteolectin deficient mice, Lepr-cre; Itga11fl/fl mice appeared grossly normal but exhibited reduced osteogenesis and accelerated bone loss during adulthood. Osteolectin binding to α11β1 promoted Wnt pathway activation, which was necessary for the osteogenic response to Osteolectin. This reveals a new mechanism for maintenance of adult bone mass: Wnt pathway activation by Osteolectin/α11β1 signaling. Throughout our lives, our bones undergo constant remodeling. Cells called osteoclasts break down old bone and cells called osteoblasts lay down new. Normally, the two cell types work in balance but if the rate of breakdown outpaces new bone formation the skeleton can become weak. This weakness leads to a condition called osteoporosis, in which people suffer from fragile bones. Osteoporosis is hard to reverse, in part because our ability to encourage new bone to form is limited. In 2016, researchers discovered a protein called osteolectin, which promotes new bone formation during adulthood by helping skeletal stem cells transform into bone cells. But so far, it has been unclear how osteolectin achieves this. To investigate this further, Shen et al. – including some researchers involved in the 2016 study – marked osteolectin with a molecular tag and tested what it bound on the surface of mouse and human bone marrow cells. The experiments revealed that osteolectin binds to a specific receptor protein called α11 integrin, which can only be found on skeletal stem cells and the osteoblasts they give rise to. Once osteolectin binds to the receptor, it activates a signaling pathway that induces the stem cells to develop into osteoblasts. Mice that lacked either osteolectin or α11 integrin produced less bone and lost bone tissue faster as adults. Osteolectin could potentially be useful in the treatment of osteoporosis or broken bones. Since only skeletal stem cells and osteoblasts cells produce α11 integrin, osteolectin would specifically target these cells without affecting cells that do not form bones. A next step will be to assess how well osteolectin compares to existing treatments for fragile bones.
Collapse
Affiliation(s)
- Bo Shen
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kristy Vardy
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Payton Hughes
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Alpaslan Tasdogan
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Zhiyu Zhao
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Rui Yue
- Institute of Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Genevieve M Crane
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sean J Morrison
- Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, United States.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
38
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
39
|
Mouton AJ, DeLeon-Pennell KY, Rivera Gonzalez OJ, Flynn ER, Freeman TC, Saucerman JJ, Garrett MR, Ma Y, Harmancey R, Lindsey ML. Mapping macrophage polarization over the myocardial infarction time continuum. Basic Res Cardiol 2018; 113:26. [PMID: 29868933 PMCID: PMC5986831 DOI: 10.1007/s00395-018-0686-x] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 12/24/2022]
Abstract
In response to myocardial infarction (MI), cardiac macrophages regulate inflammation and scar formation. We hypothesized that macrophages undergo polarization state changes over the MI time course and assessed macrophage polarization transcriptomic signatures over the first week of MI. C57BL/6 J male mice (3–6 months old) were subjected to permanent coronary artery ligation to induce MI, and macrophages were isolated from the infarct region at days 1, 3, and 7 post-MI. Day 0, no MI resident cardiac macrophages served as the negative MI control. Whole transcriptome analysis was performed using RNA-sequencing on n = 4 pooled sets for each time. Day 1 macrophages displayed a unique pro-inflammatory, extracellular matrix (ECM)-degrading signature. By flow cytometry, day 0 macrophages were largely F4/80highLy6Clow resident macrophages, whereas day 1 macrophages were largely F4/80lowLy6Chigh infiltrating monocytes. Day 3 macrophages exhibited increased proliferation and phagocytosis, and expression of genes related to mitochondrial function and oxidative phosphorylation, indicative of metabolic reprogramming. Day 7 macrophages displayed a pro-reparative signature enriched for genes involved in ECM remodeling and scar formation. By triple in situ hybridization, day 7 infarct macrophages in vivo expressed collagen I and periostin mRNA. Our results indicate macrophages show distinct gene expression profiles over the first week of MI, with metabolic reprogramming important for polarization. In addition to serving as indirect mediators of ECM remodeling, macrophages are a direct source of ECM components. Our study is the first to report the detailed changes in the macrophage transcriptome over the first week of MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Kristine Y DeLeon-Pennell
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA.,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216, USA
| | - Osvaldo J Rivera Gonzalez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, Scotland, UK
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Yonggang Ma
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Romain Harmancey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA
| | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St., Jackson, MS, 39216-4505, USA. .,Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
40
|
Sipilä KH, Drushinin K, Rappu P, Jokinen J, Salminen TA, Salo AM, Käpylä J, Myllyharju J, Heino J. Proline hydroxylation in collagen supports integrin binding by two distinct mechanisms. J Biol Chem 2018; 293:7645-7658. [PMID: 29615493 DOI: 10.1074/jbc.ra118.002200] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/23/2018] [Indexed: 11/06/2022] Open
Abstract
Collagens are the most abundant extracellular matrix proteins in vertebrates and have a characteristic triple-helix structure. Hydroxylation of proline residues is critical for helix stability, and diminished prolyl hydroxylase activity causes wide-spread defects in connective tissues. Still, the role of proline hydroxylation in the binding of collagen receptors such as integrins is unclear. Here, we isolated skin collagen from genetically modified mice having reduced prolyl 4-hydroxylase activity. At room temperature, the reduced proline hydroxylation did not affect interactions with the recombinant integrin α2I domain, but at 37 °C, collagen hydroxylation correlated with the avidity of α2I domain binding. Of note, LC-MS/MS analysis of isolated skin collagens revealed no major changes in the hydroxyproline content of the main integrin-binding sites. Thus, the disrupted α2I domain binding at physiological temperatures was most likely due to structural destabilization of the collagenous helix. Integrin α2I binding to the triple-helical GFPGER motif was slightly weaker than to GFOGER (O = hydroxyproline). This phenomenon was more prominent when α1 integrin was tested. Integrin α1β1 expressed on CHO cells and recombinant α1I domain showed remarkably slower binding velocity and weaker avidity to GFPGER when compared with GFOGER. Structural modeling revealed the critical interaction between Arg-218 in α1I and the hydroxyproline residue in the integrin-binding motif. The role of Arg-218 was further validated by testing a variant R218D α1I domain in solid-phase binding assays. Thus, our results show that the lack of proline hydroxylation in collagen can affect integrin binding by a direct mechanism and via structural destabilization of the triple helix.
Collapse
Affiliation(s)
- Kalle H Sipilä
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kati Drushinin
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland, and
| | - Pekka Rappu
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Johanna Jokinen
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Tiina A Salminen
- the Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| | - Antti M Salo
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland, and
| | - Jarmo Käpylä
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Johanna Myllyharju
- the Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, FI-90014 Oulu, Finland, and
| | - Jyrki Heino
- From the Department of Biochemistry, University of Turku, FI-20014 Turku, Finland,
| |
Collapse
|
41
|
Schulz JN, Plomann M, Sengle G, Gullberg D, Krieg T, Eckes B. New developments on skin fibrosis - Essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biol 2018; 68-69:522-532. [PMID: 29408278 DOI: 10.1016/j.matbio.2018.01.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Many different diseases are associated with fibrosis of the skin. The clinical symptoms can vary considerably with a broad range from isolated small areas to the involvement of the entire integument. Fibrosis is triggered by a multitude of different stimuli leading to activation of the immune and vascular system that then initiate fibroblast activation and formation of matrix depositing and remodeling myofibroblasts. Ultimately, myofibroblasts deposit excessive amounts of extracellular matrix with a pathological architecture and alterations in growth factor binding and biomechanical properties, which culminates in skin hardening and loss of mobility. Treatment depends certainly on the specific type and cause of the disease, for the autoimmune driven localized and systemic scleroderma therapeutic options are still limited, but recent research has pointed out diverse molecular targets and mechanisms that can be exploited for the development of novel antifibrotic therapy.
Collapse
Affiliation(s)
| | - Markus Plomann
- Center for Biochemistry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, University of Cologne, Medical Faculty, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Donald Gullberg
- Department of Biomedicine, Centre for Cancer Biomarkers (CCBIO), University of Bergen, Bergen, Norway
| | - Thomas Krieg
- Department of Dermatology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany; Cluster of Excellence in Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Beate Eckes
- Department of Dermatology, University of Cologne, Cologne, Germany; Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.
| |
Collapse
|
42
|
Romaine A, Sørensen IW, Zeltz C, Lu N, Erusappan PM, Melleby AO, Zhang L, Bendiksen B, Robinson EL, Aronsen JM, Herum KM, Danielsen HE, Sjaastad I, Christensen G, Gullberg D. Overexpression of integrin α11 induces cardiac fibrosis in mice. Acta Physiol (Oxf) 2018; 222. [PMID: 28771943 DOI: 10.1111/apha.12932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/25/2017] [Accepted: 07/29/2017] [Indexed: 01/09/2023]
Abstract
AIM To understand the role of the collagen-binding integrin α11 in vivo, we have used a classical approach of creating a mouse strain overexpressing integrin α11. A transgenic mouse strain overexpressing α11 in muscle tissues was analysed in the current study with special reference to the heart tissue. METHODS We generated and phenotyped integrin α11 transgenic (TG) mice by echocardiography, magnetic resonance imaging and histology. Wild-type (WT) mice were subjected to aortic banding (AB) and the expression of integrin α11 was measured in flow cytometry-sorted cardiomyocytes and non-myocytes. RESULTS TG mice developed left ventricular concentric hypertrophy by 6 months, with increased collagen deposition and reactivation of mRNA encoding foetal genes associated with cardiovascular pathological remodelling compared to WT mice. Masson's trichrome staining revealed interstitial fibrosis, confirmed additionally by magnetic resonance imaging and was found to be most prominent in the cardiac septum of TG but not WT mice. TG hearts expressed increased levels of transforming growth factor-β2 and transforming growth factor-β3 and upregulated smooth muscle actin. Macrophage infiltration coincided with increased NF-κB signalling in TG but not WT hearts. Integrin α11 expression was increased in both cardiomyocytes and non-myocyte cells from WT AB hearts compared to sham-operated animals. CONCLUSION We report for the first time that overexpression of integrin α11 induces cardiac fibrosis and left ventricular hypertrophy. This is a result of changes in intracellular hypertrophic signalling and secretion of soluble factors that increase collagen production in the heart.
Collapse
Affiliation(s)
- A. Romaine
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - I. W. Sørensen
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - C. Zeltz
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - N. Lu
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - P. M. Erusappan
- Department of Biomedicine; University of Bergen; Bergen Norway
| | - A. O. Melleby
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - L. Zhang
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - B. Bendiksen
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - E. L. Robinson
- Laboratory of Experimental Cardiology; Department of Cardiovascular Sciences; KU Leuven; Leuven Belgium
| | - J. M. Aronsen
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
- Bjørknes College; Oslo Norway
| | - K. M. Herum
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - H. E. Danielsen
- Institute for Cancer Genetics and Informatics; Oslo University Hospital; Oslo Norway
- Center for Cancer Biomedicine; University of Oslo; Oslo Norway
- Department of Informatics; University of Oslo; Oslo Norway
- Nuffield Division of Clinical Laboratory Sciences; University of Oxford; Oxford UK
| | - I. Sjaastad
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - G. Christensen
- Institute for Experimental Medical Research; Oslo University Hospital and University of Oslo; Oslo Norway
| | - D. Gullberg
- Department of Biomedicine; University of Bergen; Bergen Norway
| |
Collapse
|
43
|
Gong AX, Zhang JH, Li J, Wu J, Wang L, Miao DS. Comparison of gene expression profiles between dental pulp and periodontal ligament tissues in humans. Int J Mol Med 2017; 40:647-660. [PMID: 28713908 PMCID: PMC5547970 DOI: 10.3892/ijmm.2017.3065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/16/2017] [Indexed: 01/09/2023] Open
Abstract
There are anatomical and functional differences between human dental pulp (DP) and periodontal ligament (PDL). However, the molecular biological differences and function of these tissues are poorly understood. In the present study, we employed a cDNA microarray array to screen for differentially expressed genes (DEGs) between human DP and PDL tissues, and used the online software WebGestalt to perform the functional analysis of the DEGs. In addition, the STRING database and KEGG pathway analysis were applied for interaction network and pathway analysis of the DEGs. DP and PDL samples were obtained from permanent premolars (n=16) extracted for orthodontic purposes. The results of the microarray assay were confirmed by RT-qPCR. The DEGs were found to be significantly associated with the extracellular matrix and focal adhesion. A total of 10 genes were selected to confirm the results. The mRNA levels of integrin alpha 4 (ITGA4), integrin alpha 8 (ITGA8), neurexin 1 (NRXN1) and contactin 1 (CNTN1) were significantly higher in the DP than in the PDL tissues. However, the levels of collagen type XI alpha 1 (COL11A1), aggrecan (ACAN), collagen type VI alpha 1 (COL6A1), chondroadherin (CHAD), laminin gamma 2 (LAMC2) and laminin alpha 3 (LAMA3) were higher in the PDL than in the DP samples. The gene expression profiles provide novel insight into the characterization of DP and PDL tissues, and contribute to our understanding of the potential molecular mechanisms of dental tissue mineralization and regeneration.
Collapse
Affiliation(s)
- Ai-Xiu Gong
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing-Han Zhang
- Department of Neonatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jing Li
- Department of Stomatology, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, P.R. China
| | - Jun Wu
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Department of Orthodontics, School of Stomatology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Deng-Shun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
44
|
Abstract
Investigation of cell function is often hampered by the complexity of the tissue context. This problem is circumvented by isolating cells from tissues and analyzing their behavior in culture. Most cell types are cultured as monolayers on planar, rigid Petri dishes, an environment that does not reflect the spatial, three-dimensional cellular environment in vivo. Culture in three-dimensional collagen lattices has been devised to optimize in vitro culture conditions and to provide a more physiologic "in vivo-like" environment. Collagen lattices can easily be manipulated to suit diverse cell types and to provide variable mechanical forces. Cells can be imaged in such surroundings, and gene expression as well as protein production and activity can be monitored.
Collapse
|
45
|
Civitarese RA, Kapus A, McCulloch CA, Connelly KA. Role of integrins in mediating cardiac fibroblast–cardiomyocyte cross talk: a dynamic relationship in cardiac biology and pathophysiology. Basic Res Cardiol 2016; 112:6. [DOI: 10.1007/s00395-016-0598-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/14/2016] [Indexed: 12/16/2022]
|
46
|
Civitarese RA, Talior-Volodarsky I, Desjardins JF, Kabir G, Switzer J, Mitchell M, Kapus A, McCulloch CA, Gullberg D, Connelly KA. The α11 integrin mediates fibroblast–extracellular matrix–cardiomyocyte interactions in health and disease. Am J Physiol Heart Circ Physiol 2016; 311:H96-H106. [DOI: 10.1152/ajpheart.00918.2015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/05/2016] [Indexed: 11/22/2022]
Abstract
Excessive cardiac interstitial fibrosis impairs normal cardiac function. We have shown that the α11β1 (α11) integrin mediates fibrotic responses to glycated collagen in rat myocardium by a pathway involving transforming growth factor-β. Little is known of the role of the α11 integrin in the developing mammalian heart. Therefore, we examined the impact of deletion of the α11 integrin in wild-type mice and in mice treated with streptozotocin (STZ) to elucidate the role of the α11 integrin in normal cardiac homeostasis and in the pathogenesis of diabetes-related fibrosis. As anticipated, cardiac fibrosis was reduced in α11 integrin knockout mice (α11−/−; C57BL/6 background) treated with STZ compared with STZ-treated wild-type mice ( P < 0.05). Unexpectedly, diastolic function was impaired in both vehicle and STZ-treated α11−/− mice, as shown by the decreased minimum rate of pressure change and prolonged time constant of relaxation in association with increased end-diastolic pressure (all P < 0.05 compared with wild-type mice). Accordingly, we examined the phenotype of untreated α11−/− mice, which demonstrated a reduced cardiomyocyte cross-sectional cell area and myofibril thickness (all P < 0.05 compared with wild-type mice) and impaired myofibril arrangement. Immunostaining for desmin and connexin 43 showed abnormal intermediate filament organization at intercalated disks and impaired gap-junction development. Overall, deletion of the α11 integrin attenuates cardiac fibrosis in the mammalian mouse heart and reduces ECM formation as a result of diabetes. Furthermore, α11 integrin deletion impairs cardiac function and alters cardiomyocyte morphology. These findings shed further light on the poorly understood interaction between the fibroblast–cardiomyocyte and the ECM.
Collapse
Affiliation(s)
- Robert A. Civitarese
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | - Jean-Francois Desjardins
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Golam Kabir
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Jennifer Switzer
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Melissa Mitchell
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | - Andras Kapus
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| | | | - Donald Gullberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Kim A. Connelly
- Keenan Research Center for Biomedical Science, St. Michael's Hospital and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Contribution of collagen adhesion receptors to tissue fibrosis. Cell Tissue Res 2016; 365:521-38. [DOI: 10.1007/s00441-016-2440-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/01/2016] [Indexed: 02/07/2023]
|
48
|
Reigstad I, Smeland HYH, Skogstrand T, Sortland K, Schmid MC, Reed RK, Stuhr L. Stromal Integrin α11β1 Affects RM11 Prostate and 4T1 Breast Xenograft Tumors Differently. PLoS One 2016; 11:e0151663. [PMID: 26990302 PMCID: PMC4798484 DOI: 10.1371/journal.pone.0151663] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/02/2016] [Indexed: 11/18/2022] Open
Abstract
PURPOSE It has been implied that the collagen binding integrin α11β1 plays a role in carcinogenesis. As still relatively little is known about how the stromal integrin α11β1 affects different aspects of tumor development, we wanted to examine the direct effects on primary tumor growth, fibrosis, tumor interstitial fluid pressure (PIF) and metastasis in murine 4T1 mammary and RM11 prostate tumors, using an in vivo SCID integrin α11-deficient mouse model. METHODS Tumor growth was measured using a caliper, PIF by the wick-in-needle technique, activated fibroblasts by α-SMA immunofluorescence staining and fibrosis by transmission electron microscopy and picrosirius-red staining. Metastases were evaluated using hematoxylin and eosin stained sections. RESULTS RM11 tumor growth was significantly reduced in the SCID integrin α11-deficient (α11-KO) compared to in SCID integrin α11 wild type (WT) mice, whereas there was no similar effect in the 4T1 tumor model. The 4T1 model demonstrated an alteration in collagen fibril diameter in the integrin α11-KO mice compared to WT, which was not found in the RM11 model. There were no significant differences in the amount of activated fibroblasts, total collagen content, collagen organization or PIF in the tumors in integrin α11-deficient mice compared to WT mice. There was also no difference in lung metastases between the two groups. CONCLUSION Deficiency of stromal integrin α11β1 showed different effects on tumor growth and collagen fibril diameter depending on tumor type, but no effect on tumor PIF or development of lung metastasis.
Collapse
Affiliation(s)
- Inga Reigstad
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Matrix biology group, Haukeland University Hospital, Bergen, Norway
- * E-mail:
| | - Hilde Y. H. Smeland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Trude Skogstrand
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Matrix biology group, Haukeland University Hospital, Bergen, Norway
| | - Kristina Sortland
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Matrix biology group, Haukeland University Hospital, Bergen, Norway
| | - Marei Caroline Schmid
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Rolf K. Reed
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Center of Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Linda Stuhr
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
49
|
Rinella L, Marano F, Berta L, Bosco O, Fraccalvieri M, Fortunati N, Frairia R, Catalano MG. Extracorporeal shock waves modulate myofibroblast differentiation of adipose-derived stem cells. Wound Repair Regen 2016; 24:275-86. [DOI: 10.1111/wrr.12410] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/20/2016] [Indexed: 01/05/2023]
Affiliation(s)
| | | | | | - Ornella Bosco
- Department of Medical Sciences; University of Turin; Italy
| | | | | | | | | |
Collapse
|
50
|
Zeltz C, Gullberg D. The integrin-collagen connection--a glue for tissue repair? J Cell Sci 2016; 129:653-64. [PMID: 26857815 DOI: 10.1242/jcs.180992] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The α1β1, α2β1, α10β1 and α11β1 integrins constitute a subset of the integrin family with affinity for GFOGER-like sequences in collagens. Integrins α1β1 and α2β1 were originally identified on a subset of activated T-cells, and have since been found to be expressed on a number of cell types including platelets (α2β1), vascular cells (α1β1, α2β1), epithelial cells (α1β1, α2β1) and fibroblasts (α1β1, α2β1). Integrin α10β1 shows a distribution that is restricted to mesenchymal stem cells and chondrocytes, whereas integrin α11β1 appears restricted to mesenchymal stem cells and subsets of fibroblasts. The bulk of the current literature suggests that collagen-binding integrins only have a limited role in adult connective tissue homeostasis, partly due to a limited availability of cell-binding sites in the mature fibrillar collagen matrices. However, some recent data suggest that, instead, they are more crucial for dynamic connective tissue remodeling events--such as wound healing--where they might act specifically to remodel and restore the tissue architecture. This Commentary discusses the recent development in the field of collagen-binding integrins, their roles in physiological and pathological settings with special emphasis on wound healing, fibrosis and tumor-stroma interactions, and include a discussion of the most recently identified newcomers to this subfamily--integrins α10β1 and α11β1.
Collapse
Affiliation(s)
- Cédric Zeltz
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| | - Donald Gullberg
- Department of Biomedicine and Centre for Cancer Biomarkers, University of Bergen, Jonas Lies vei 91, Bergen N-5009, Norway
| |
Collapse
|