1
|
Novel function of SART1 in HNF4α transcriptional regulation contributes to its antiviral role during HBV infection. J Hepatol 2021; 75:1072-1082. [PMID: 34242702 DOI: 10.1016/j.jhep.2021.06.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 06/19/2021] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS Our understanding of the interactions between HBV and its host cells is still quite limited. Spliceosome associated factor 1 (SART1) has recently been found to restrict HCV. Thus, we aimed to dissect its role in HBV infection. METHODS SART1 was knocked down by RNA interference and over-expressed by lentiviral or adeno-associated virus (AAV) vectors in HBV-infected cell cultures and in vivo in HBV-infected mice. Luciferase reporter assays were used to determine viral or host factor promoter activities, and chromatin immunoprecipitation (ChIP) was used to investigate protein-DNA interactions. RESULTS In HBV-infected cell cultures, downregulation of SART1 did not affect covalently closed circular HBV DNA but resulted in markedly enhanced HBV RNA, antigen expression and progeny virus production. On the other hand, HBV transcription and replication were significantly inhibited by overexpression of SART1. Similar results were observed in AAV-HBV-infected mice persistently replicating HBV. Inhibition of Janus kinases had no effect on SART1-mediated inhibition of HBV replication. HBV promoter assays revealed that SART1 reduced HBV core promoter activity. By screening known HBV transcription factors, we found that SART1 specifically suppressed the expression of hepatocyte nuclear factor 4α (HNF4α). Luciferase reporter and ChIP assays demonstrated a direct downregulation of HNF4α expression by association of SART1 with the HNF4α proximal P1 promoter element. CONCLUSIONS We identify SART1 as a novel host factor suppressing HBV cccDNA transcription. Besides its effect on interferon-stimulated genes, SART1 exerts an anti-HBV activity by suppressing HNF4α expression, which is essential for transcription of HBV cccDNA. LAY SUMMARY Hepatitis B virus (HBV) infects hepatocytes and persists in the form of covalently closed circular DNA (cccDNA), which remains a major obstacle to successful antiviral treatment. In this study, using various HBV models, we demonstrate that the protein SART1 restricts HBV cccDNA transcription by suppressing a key transcription factor, HNF4α.
Collapse
|
2
|
Essential factors involved in the precise targeting and insertion of telomere-specific non-LTR retrotransposon, SART1Bm. Sci Rep 2020; 10:8963. [PMID: 32488018 PMCID: PMC7265360 DOI: 10.1038/s41598-020-65925-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/04/2020] [Indexed: 11/09/2022] Open
Abstract
Telomere length maintenance is essential for most eukaryotes to ensure genome stability and integrity. A non-long terminal repeat (LTR) retrotransposon, SART1Bm, targets telomeric repeats (TTAGG)n of the silkworm Bombyx mori and is presumably involved in telomere length maintenance. However, how many telomeric repeats are required for its retrotransposition and how reverse transcription is initiated at the target site are not well understood. Here, using an ex vivo and trans-in vivo recombinant baculovirus retrotransposition system, we demonstrated that SART1Bm requires at least three (TTAGG) telomeric repeats and a longer poly(A) tail for its accurate retrotransposition. We found that SART1Bm retrotransposed only in the third (TTAGG) tract of three repeats and that the A residue of the (TTAGG) unit was essential for its retrotransposition. Interestingly, SART1Bm also retrotransposed into telomeric repeats of other species, such as human (TTAGGG)n repeats, albeit with low retrotransposition efficiency. We further showed that the reverse transcription of SART1Bm occurred inaccurately at the internal site of the 3' untranslated region (UTR) when using a short poly(A) tail but at the accurate site when using a longer poly(A) tail. These findings promote our understanding of the general mechanisms of site-specific retrotransposition and aid the development of a site-specific gene knock-in tool.
Collapse
|
3
|
Khadgi BB, Govindaraju A, Christensen SM. Completion of LINE integration involves an open '4-way' branched DNA intermediate. Nucleic Acids Res 2019; 47:8708-8719. [PMID: 31392993 PMCID: PMC6895275 DOI: 10.1093/nar/gkz673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Long Interspersed Elements (LINEs), also known as non-LTR retrotransposons, encode a multifunctional protein that reverse transcribes its mRNA into DNA at the site of insertion by target primed reverse transcription. The second half of the integration reaction remains very poorly understood. Second-strand DNA cleavage and second-strand DNA synthesis were investigated in vitro using purified components from a site-specific restriction-like endonuclease (RLE) bearing LINE. DNA structure was shown to be a critical component of second-strand DNA cleavage. A hitherto unknown and unexplored integration intermediate, an open ‘4-way’ DNA junction, was recognized by the element protein and cleaved in a Holliday junction resolvase-like reaction. Cleavage of the 4-way junction resulted in a natural primer-template pairing used for second-strand DNA synthesis. A new model for RLE LINE integration is presented.
Collapse
Affiliation(s)
- Brijesh B Khadgi
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Aruna Govindaraju
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shawn M Christensen
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
4
|
Both the Exact Target Site Sequence and a Long Poly(A) Tail Are Required for Precise Insertion of the 18S Ribosomal DNA-Specific Non-Long Terminal Repeat Retrotransposon R7Ag. Mol Cell Biol 2016; 36:1494-508. [PMID: 26976636 DOI: 10.1128/mcb.00970-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 03/02/2016] [Indexed: 11/20/2022] Open
Abstract
Ribosomal elements (R elements) are site-specific non-long terminal repeat (LTR) retrotransposons that target ribosomal DNA (rDNA). To elucidate how R elements specifically access their target sites, we isolated and characterized the 18S rDNA-specific R element R7Ag from Anopheles gambiae Using an in vivo and ex vivo recombinant baculovirus retrotransposition system, we found that the exact host 18S rDNA sequence at the target site is essential for the precise insertion of R7Ag. In addition, a long poly(A) tail is necessary for the accurate initiation of R7Ag reverse transcription, a novel mechanism found in non-LTR elements. We further compared the subcellular localizations of proteins in R7Ag as well as R1Bm, another R element that targets 28S rDNA. Although the open reading frame 1 proteins (ORF1ps) of both R7Ag and R1Bm localized predominantly in the cytoplasm, ORF2 proteins (ORF2ps) colocalized in the nucleus with the nucleolar marker fibrillarin. The ORF1ps and ORF2ps of both R elements colocalized largely in the nuclear periphery and to a lesser extent within the nucleus. These results suggest that R7Ag and R1Bm proteins may access nucleolar rDNA targets in an ORF2p-dependent manner.
Collapse
|
5
|
Abstract
Although most of non-long terminal repeat (non-LTR) retrotransposons are incorporated in the host genome almost randomly, some non-LTR retrotransposons are incorporated into specific sequences within a target site. On the basis of structural and phylogenetic features, non-LTR retrotransposons are classified into two large groups, restriction enzyme-like endonuclease (RLE)-encoding elements and apurinic/apyrimidinic endonuclease (APE)-encoding elements. All clades of RLE-encoding non-LTR retrotransposons include site-specific elements. However, only two of more than 20 APE-encoding clades, Tx1 and R1, contain site-specific non-LTR elements. Site-specific non-LTR retrotransposons usually target within multi-copy RNA genes, such as rRNA gene (rDNA) clusters, or repetitive genomic sequences, such as telomeric repeats; this behavior may be a symbiotic strategy to reduce the damage to the host genome. Site- and sequence-specificity are variable even among closely related non-LTR elements and appeared to have changed during evolution. In the APE-encoding elements, the primary determinant of the sequence- specific integration is APE itself, which nicks one strand of the target DNA during the initiation of target primed reverse transcription (TPRT). However, other factors, such as interaction between mRNA and the target DNA, and access to the target region in the nuclei also affect the sequence-specificity. In contrast, in the RLE-encoding elements, DNA-binding motifs appear to affect their sequence-specificity, rather than the RLE domain itself. Highly specific integration properties of these site-specific non-LTR elements make them ideal alternative tools for sequence-specific gene delivery, particularly for therapeutic purposes in human diseases.
Collapse
|
6
|
Lin W, Zhu C, Hong J, Zhao L, Jilg N, Fusco DN, Schaefer EA, Brisac C, Liu X, Peng LF, Xu Q, Chung RT. The spliceosome factor SART1 exerts its anti-HCV action through mRNA splicing. J Hepatol 2015; 62:1024-1032. [PMID: 25481564 PMCID: PMC4404186 DOI: 10.1016/j.jhep.2014.11.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 10/29/2014] [Accepted: 11/24/2014] [Indexed: 01/25/2023]
Abstract
BACKGROUND &/AIMS The broadly used antiviral cytokine interferon-α (IFNα)'s mechanisms of action against HCV infection are not well understood. We previously identified SART1, a host protein involved in RNA splicing and pre-mRNA processing, as a regulator of IFN's antiviral effects. We hypothesized that SART1 regulates antiviral IFN effector genes (IEGs) through mRNA processing and splicing. METHODS We performed siRNA knockdown in HuH7.5.1 cells and mRNA-sequencing with or without IFN treatment. Selected gene mRNA variants and their proteins, together with HCV replication, were monitored by qRT-PCR and Western blot in HCV OR6 replicon cells and the JFH1 HCV infectious model. RESULTS We identified 419 genes with a greater than 2-fold expression difference between Neg siRNA and SART1 siRNA treated cells in the presence or absence of IFN. Bioinformatic analysis identified at least 10 functional pathways. SART1 knockdown reduced classical IFN stimulating genes (ISG) mRNA transcription including MX1 and OAS3. However, SART1 did not affect JAK-STAT pathway gene mRNA expression and IFN stimulated response element (ISRE) signaling. We identified alternative mRNA splicing events for several genes, including EIF4G3, GORASP2, ZFAND6, and RAB6A that contribute to their antiviral effects. EIF4G3 and GORASP2 were also confirmed to have anti-HCV effect. CONCLUSIONS The spliceosome factor SART1 is not IFN-inducible but is an IEG. SART1 exerts its anti-HCV action through direct transcriptional regulation for some ISGs and alternative splicing for others, including EIF4G3, GORASP2. SART1 does not have an effect on IFN receptor or canonical signal transduction components. Thus, SART1 regulates ISGs using a novel, non-classical mechanism.
Collapse
Affiliation(s)
- Wenyu Lin
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Chuanlong Zhu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Infectious Disease, Anhui Provincial Hospital, Anhui Medical University, Hefei, Anhui 230001, China
| | - Jian Hong
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lei Zhao
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Infectious Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Nikolaus Jilg
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dahlene N Fusco
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Esperance A Schaefer
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Cynthia Brisac
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xiao Liu
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Lee F Peng
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qikai Xu
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raymond T Chung
- Liver Center and Gastrointestinal Division, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
7
|
Yamaguchi K, Kajikawa M, Okada N. Integrated mechanism for the generation of the 5' junctions of LINE inserts. Nucleic Acids Res 2014; 42:13269-79. [PMID: 25378331 PMCID: PMC4245944 DOI: 10.1093/nar/gku1067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To elucidate the molecular mechanism of the integration of long interspersed elements (LINEs), we characterized the 5′ ends of more than 200 LINE de novo retrotransposition events into chicken DT40 or human HeLa cells. Human L1 inserts produced 15-bp target-site duplications (TSDs) and zebrafish ZfL2-1 inserts produced 5-bp TSDs in DT40 cells, suggesting that TSD length depends on the LINE species. Further analysis of 5′ junctions revealed that the 5′-end-joining pathways of LINEs can be divided into two fundamental types—annealing or direct. We also found that the generation of 5′ inversions depends on host and LINE species. These results led us to propose a new model for 5′-end joining, the type of which is determined by the extent of exposure of 3′ overhangs generated after the second-strand cleavage and by the involvement of host factors.
Collapse
Affiliation(s)
- Katsumi Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-15 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-15 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-15 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan Foundation for Advancement of International Science, Tsukuba 305-0821, Japan
| |
Collapse
|
8
|
Hayashi Y, Kajikawa M, Matsumoto T, Okada N. Mechanism by which a LINE protein recognizes its 3' tail RNA. Nucleic Acids Res 2014; 42:10605-17. [PMID: 25143533 PMCID: PMC4176376 DOI: 10.1093/nar/gku753] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
LINEs mobilize their own copies via retrotransposition. LINEs can be divided into two types. One is a stringent type, which constitutes a majority of LINEs. The other is a relaxed type. To elucidate the molecular mechanism of retrotransposition, we used here two different zebrafish LINEs belonging to the stringent type. By using retrotransposition assays, we demonstrated that proteins (ORF2) encoded by an individual LINE recognize the cognate 3′ tail sequence of the LINE RNA strictly. By conducting in vitro binding assays with a variety of ORF2 proteins, we demonstrated that the region between the endonuclease and reverse transcriptase domains in ORF2 is the site at which the proteins bind the stem-loop structure of the 3′ tail RNA, showing that the strict recognition of the stem-loop structure by the cognate ORF2 protein is an important step in retrotransposition. This recognition can be bipartite, involving the general recognition of the stem by cTBR (conserved tail-binding region) of ORF2 and the specific recognition of the loop by vTBR (variable tail-binding region). This is the first report that clearly characterized the RNA-binding region in ORF2, providing the generality for the recognition mechanism of the RNA tail by the ORF2 protein encoded by LINEs.
Collapse
Affiliation(s)
- Yoshinori Hayashi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Takuma Matsumoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan Foundation for Advancement of International Science, Tsukuba 305-0821, Japan
| |
Collapse
|
9
|
Metcalfe CJ, Casane D. Modular organization and reticulate evolution of the ORF1 of Jockey superfamily transposable elements. Mob DNA 2014; 5:19. [PMID: 25093042 PMCID: PMC4120745 DOI: 10.1186/1759-8753-5-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/30/2014] [Indexed: 02/03/2023] Open
Abstract
Background Long interspersed nuclear elements (LINES) are the most common transposable element (TE) in almost all metazoan genomes examined. In most LINE superfamilies there are two open reading frames (ORFs), and both are required for transposition. The ORF2 is well characterized, while the structure and function of the ORF1 is less well understood. ORF1s have been classified into five types based on structural organization and the domains identified. Here we perform a large scale analysis of ORF1 domains of 448 elements from the Jockey superfamily using multiple alignments and Hidden Markov Model (HMM)-HMM comparisons. Results Three major lineages, Chicken repeat 1 (CR1), LINE2 (L2) and Jockey, were identified. All Jockey lineage elements have the same type of ORF1. In contrast, in the L2 and CR1 lineage elements, all five ORF1 types are found, with no one type of ORF1 predominating. A plant homeodomain (PHD) is much more prevalent than previously suspected. ORF1 type variations involving the PHD domain were found in many subgroups of the L2 and CR1 lineages. A Jockey lineage-like ORF1 with a PHD domain was found in both lineages. A phylogenetic analysis of this ORF1 suggests that it has been horizontally transferred. Likewise, an esterase containing ORF1 type was only found in two exclusively vertebrate L2 and CR1 groups, indicating that it may have been acquired in a vertebrate common ancestor and then transferred between the lineages. Conclusions The ORF1 of the CR1 and L2 lineages is very structurally diverse. The presence of a PHD domain in many ORF1s of the L2 and CR1 lineages is suggestive of domain shuffling. There is also evidence of possible horizontal transfer of entire ORF1s between lineages. In conclusion, while the structure of the ORF2 appears to be highly constrained and its evolution tree-like, the structure of the ORF1 within the CR1 and L2 lineages is much more variable and its evolution reticulate.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- Universidade de São Paulo, Instituto de Biociências, Rua do Matão 277, Cidade Universitária, São Paulo 05508-090 SP, Brazil
| | - Didier Casane
- Laboratoire Evolution, Génomes et Spéciation, UPR9034 CNRS, 1 avenue de la terrasse, 91198 Gif-sur-Yvette, France ; Université Paris Diderot, Sorbonne Paris Cité, 5 rue Thomas-Mann, 75205 Paris, France
| |
Collapse
|
10
|
Luke GA, Roulston C, Odon V, de Felipe P, Sukhodub A, Ryan MD. Lost in translation: The biogenesis of non-LTR retrotransposon proteins. Mob Genet Elements 2013; 3:e27525. [PMID: 24475367 PMCID: PMC3894237 DOI: 10.4161/mge.27525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/11/2013] [Accepted: 12/13/2013] [Indexed: 12/18/2022] Open
Abstract
“Young” APE-type non-LTR retrotransposons (non-LTRs) typically encode two open reading frames (ORFs 1 and 2). The shorter ORF1 translation product (ORF1p) comprises an RNA binding activity, thought to bind to non-LTR transcript RNA, protect against nuclease degradation and specify nuclear import of the ribonuclear protein complex (RNP). ORF2 encodes a multifunctional protein (ORF2p) comprising apurinic/apyrimidinic endonuclease (APE) and reverse-transcriptase (RT) activities, responsible for genome replication and re-integration into chromosomal DNA. However, some clades of APE-type non-LTRs only encode a single ORF—corresponding to the multifunctional ORF2p outlined above (and for simplicity referred-to as ORF2 below). The absence of an ORF1 correlates with the acquisition of a 2A oligopeptide translational recoding element (some 18–30 amino acids) into the N-terminal region of ORF2p. In the case of non-LTRs encoding two ORFs, the presence of ORF1 would necessarily downregulate the translation of ORF2. We argue that in the absence of an ORF1, 2A could provide the corresponding translational downregulation of ORF2. While multiple molecules of ORF1p are required to decorate the non-LTR transcript RNA in the cytoplasm, conceivably only a single molecule of ORF2p is required for target-primed reverse transcription/integration in the nucleus. Why would the translation of ORF2 need to be controlled by such mechanisms? An “excess” of ORF2p could result in disadvantageous levels of genome instability by, for example, enhancing short, interspersed, element (SINE) retrotransposition and the generation of processed pseudogenes. If so, the acquisition of mechanisms—such as 2A—to control ORF2p biogenesis would be advantageous.
Collapse
Affiliation(s)
- Garry A Luke
- Biomedical Sciences Research Complex; Fife, Scotland UK
| | | | - Valerie Odon
- Biomedical Sciences Research Complex; Fife, Scotland UK
| | | | | | - Martin D Ryan
- Biomedical Sciences Research Complex; Fife, Scotland UK
| |
Collapse
|
11
|
Kajikawa M, Sugano T, Sakurai R, Okada N. Low dependency of retrotransposition on the ORF1 protein of the zebrafish LINE, ZfL2-1. Gene 2012; 499:41-7. [PMID: 22405944 DOI: 10.1016/j.gene.2012.02.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/20/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
The zebrafish long interspersed element (LINE), ZfL2-1, which belongs to the L2 clade, contains two open reading frames, ORF1 and ORF2. ORF1 encodes a protein containing a coiled-coil motif and an esterase domain, whereas ORF2 encodes a protein containing an endonuclease and a reverse transcriptase domain. To elucidate the functional significance of ORF1 in retrotransposition, we constructed many variants of ZfL2-1 and examined their retrotransposition ability. We concluded: 1) the ORF1 protein is not essential for ZfL2-1 retrotransposition in cultured cells; 2) the translation of ORF1 is required for the translation of ORF2; and 3) ORF2 translation probably occurs via suppression of the ORF1 stop codon, the efficiency of which is influenced by the context of the sequence juxtaposed to the 3' side of the stop codon. These results offer a new perspective on the evolution of the L2 clade LINEs.
Collapse
Affiliation(s)
- Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-15 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226–8501, Japan.
| | | | | | | |
Collapse
|
12
|
Kajikawa M, Yamaguchi K, Okada N. A new mechanism to ensure integration during LINE retrotransposition: a suggestion from analyses of the 5' extra nucleotides. Gene 2012; 505:345-51. [PMID: 22405943 DOI: 10.1016/j.gene.2012.02.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 10/28/2022]
Abstract
Long interspersed elements (LINEs) are transposable elements that exist in the chromosomal DNA of most eukaryotes; as such, they have a large impact on the genome evolution of their hosts. LINEs mobilize by a mechanism called retrotransposition in which the LINE RNA is reverse-transcribed into DNA and then integrated into the host chromosome. The integration of the 3' end of the LINE element simultaneously occurs with the initiation of reverse transcription; this process is called target-primed reverse transcription and is one of the important characteristics of LINEs. However, the molecular mechanism of the integration of the 5' end is not well understood. Here, we show that, in cultured cells, the integrants of the zebrafish ZfL2-2 LINE produce extra nucleotides at their 5' ends, and the extra nucleotides originate from their flanking sequences. We also found that, in cultured cells, some integrants of the human L1 LINE and, in their native hosts, some endogenous elements of two other LINEs also contain 5' extra nucleotides of similar origin, suggesting that the mechanism for generation of the 5' extra nucleotides is universal among various LINEs. From these data, we propose a general mechanism for 5' integration in LINE retrotransposition.
Collapse
Affiliation(s)
- Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-15 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| | | | | |
Collapse
|
13
|
Self-interaction, nucleic acid binding, and nucleic acid chaperone activities are unexpectedly retained in the unique ORF1p of zebrafish LINE. Mol Cell Biol 2011; 32:458-69. [PMID: 22106409 DOI: 10.1128/mcb.06162-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long interspersed elements (LINEs) are mobile elements that comprise a large proportion of many eukaryotic genomes. Although some LINE-encoded open reading frame 1 proteins (ORF1ps) were suggested to be required for LINE mobilization through binding to their RNA, their general role is not known. The ZfL2-1 ORF1p, which belongs to the esterase-type ORF1p, is especially interesting because it has no known RNA-binding domain. Here we demonstrate that ZfL2-1 ORF1p has all the canonical activities associated with known ORF1ps, including self-interaction, nucleic acid binding, and nucleic acid chaperone activities. In particular, we showed that its chaperone activity is reversible, suggesting that the chaperone activities of many other ORF1ps are also reversible. From this discovery, we propose that LINE ORF1ps play a general role in LINE integration by forming a complex with LINE RNA and rearranging its conformation.
Collapse
|
14
|
Osanai-Futahashi M, Fujiwara H. Coevolution of telomeric repeats and telomeric repeat-specific non-LTR retrotransposons in insects. Mol Biol Evol 2011; 28:2983-6. [PMID: 21642634 DOI: 10.1093/molbev/msr135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the telomeres of the silkworm Bombyx mori, telomeric repeat-specific non-long terminal repeat (LTR) retrotransposon SARTBm1 is accumulated in the TTAGG telomeric repeats. Here, we identify novel telomeric repeat-specific non-LTR retrotransposons, SARTTc family, from the red flour beetle Tribolium castaneum in the unconventional TCAGG telomeric repeats. To compare the sequence specificity of SARTBm1 and SARTTc1, we developed a comparable ex vivo retrotransposition assay. Both SARTBm1 and SARTTc1 preferred the telomeric sequence of their hosts, suggesting that the target specificity of these retrotransposons coevolved with their host's telomeric repeats. Swapping experiment indicated that the endonuclease domain is involved in recognizing the target sequence. Moreover, SARTBm1 proteins could retrotranspose 3'untranslated region (UTR) sequence of SARTTc1 as well as their own 3'UTR, whereas SARTTc1 proteins could only retrotranspose their own 3'UTRs. These results provide insights to the mechanism and divergence of sequence specificity and 3'UTR recognition in non-LTR retrotransposons.
Collapse
Affiliation(s)
- Mizuko Osanai-Futahashi
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba, Japan
| | | |
Collapse
|
15
|
Kapelinskaya TV, Kagramanova AS, Korolev AL, Mukha DV. First open reading frame protein (ORF1p) of the Blattella germanica R1 retroposon and phylogenetically close GAG-like proteins of insects and fungi contain RRM domains. RUSS J GENET+ 2011. [DOI: 10.1134/s1022795410121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Unique functions of repetitive transcriptomes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:115-88. [PMID: 21035099 DOI: 10.1016/b978-0-12-381047-2.00003-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Repetitive sequences occupy a huge fraction of essentially every eukaryotic genome. Repetitive sequences cover more than 50% of mammalian genomic DNAs, whereas gene exons and protein-coding sequences occupy only ~3% and 1%, respectively. Numerous genomic repeats include genes themselves. They generally encode "selfish" proteins necessary for the proliferation of transposable elements (TEs) in the host genome. The major part of evolutionary "older" TEs accumulated mutations over time and fails to encode functional proteins. However, repeats have important functions also on the RNA level. Repetitive transcripts may serve as multifunctional RNAs by participating in the antisense regulation of gene activity and by competing with the host-encoded transcripts for cellular factors. In addition, genomic repeats include regulatory sequences like promoters, enhancers, splice sites, polyadenylation signals, and insulators, which actively reshape cellular transcriptomes. TE expression is tightly controlled by the host cells, and some mechanisms of this regulation were recently decoded. Finally, capacity of TEs to proliferate in the host genome led to the development of multiple biotechnological applications.
Collapse
|
17
|
Suzuki J, Yamaguchi K, Kajikawa M, Ichiyanagi K, Adachi N, Koyama H, Takeda S, Okada N. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 2009; 5:e1000461. [PMID: 19390601 PMCID: PMC2666801 DOI: 10.1371/journal.pgen.1000461] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Accepted: 03/26/2009] [Indexed: 11/24/2022] Open
Abstract
Long interspersed elements (LINEs) are transposable elements that proliferate within eukaryotic genomes, having a large impact on eukaryotic genome evolution. LINEs mobilize via a process called retrotransposition. Although the role of the LINE-encoded protein(s) in retrotransposition has been extensively investigated, the participation of host-encoded factors in retrotransposition remains unclear. To address this issue, we examined retrotransposition frequencies of two structurally different LINEs—zebrafish ZfL2-2 and human L1—in knockout chicken DT40 cell lines deficient in genes involved in the non-homologous end-joining (NHEJ) repair of DNA and in human HeLa cells treated with a drug that inhibits NHEJ. Deficiencies of NHEJ proteins decreased retrotransposition frequencies of both LINEs in these cells, suggesting that NHEJ is involved in LINE retrotransposition. More precise characterization of ZfL2-2 insertions in DT40 cells permitted us to consider the possibility of dual roles for NHEJ in LINE retrotransposition, namely to ensure efficient integration of LINEs and to restrict their full-length formation. Long interspersed elements (LINEs) are transposable elements that mobilize and amplify their own copies within eukaryotic genomes. Although LINEs had been considered as “junk” DNA, recent studies have suggested that the LINE-induced alterations of host chromosomes are a major driving force for eukaryotic genome evolution. LINEs mobilize via a mechanism called retrotransposition, in which transcribed LINE RNA is reverse transcribed into DNA that is then integrated into the host chromosome. Although the role of LINE-encoded proteins in retrotransposition has been revealed, the participation of host-encoded proteins has not been well investigated. Here, using knockout chicken DT40 cell lines, we present genetic evidence that the host-encoded proteins involved in repair of DNA double-strand breaks participate in LINE retrotransposition. More precise characterization of LINE insertions in DT40 cells suggested dual roles for these host DNA repair proteins in LINE retrotransposition; one function is required for efficient integration of LINEs and the other restricts their full-length formation.
Collapse
Affiliation(s)
- Jun Suzuki
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Katsumi Yamaguchi
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
| | - Masaki Kajikawa
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
- * E-mail: (MK); (NO)
| | - Kenji Ichiyanagi
- Division of Human Genetics, Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Noritaka Adachi
- International Graduate School of Arts and Sciences, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Hideki Koyama
- International Graduate School of Arts and Sciences, Yokohama City University, Kanazawa-ku, Yokohama, Kanagawa, Japan
| | - Shunichi Takeda
- Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe Yoshida, Kyoto, Kyoto, Japan
| | - Norihiro Okada
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama, Kanagawa, Japan
- * E-mail: (MK); (NO)
| |
Collapse
|
18
|
Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM. LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 2008; 419:1-6. [PMID: 18534786 PMCID: PMC2491492 DOI: 10.1016/j.gene.2008.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
Abstract
Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.
Collapse
Affiliation(s)
| | | | - Prescott L. Deininger
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| | - Astrid M. Roy-Engel
- Tulane Cancer Center SL-66, Dept. of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112
| |
Collapse
|
19
|
Maxwell PH, Belote JM, Levis RW. Developmental and tissue-specific accumulation pattern for the Drosophila melanogaster TART ORF1 protein. Gene X 2008; 415:32-9. [PMID: 18406546 DOI: 10.1016/j.gene.2008.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/05/2008] [Accepted: 02/06/2008] [Indexed: 11/28/2022] Open
Abstract
The TART, HeT-A, and TAHRE families of Drosophila non-LTR retrotransposons specifically retrotranspose to telomeres to maintain telomeric DNA. Recent evidence indicates that an RNA interference mechanism is likely to regulate TART, HeT-A, and TAHRE retrotransposition, but the developmental and tissue-specific expression of telomeric retrotransposon proteins has not previously been investigated. We have generated antisera against TART ORF1 protein (ORF1p) and used these antisera to examine the pattern of TART ORF1p expression in Drosophila melanogaster. We detected TART ORF1p throughout most of development and observed particularly high levels of protein in late larval and pupal stages. In late-stage larvae, ORF1p accumulates in brain and imaginal discs tissues, rather than in terminally differentiated larval tissues. Accumulation of ORF1p in imaginal discs is intriguing, since TART antisense RNA has previously been detected in imaginal discs, and we discuss the implications of these findings for TART regulation.
Collapse
Affiliation(s)
- Patrick H Maxwell
- Laboratory of Developmental Genetics, Wadsworth Center and Department of Biomedical Sciences, University at Albany School of Public Health, P.O. Box 22002, Albany, NY 12201-2002, United States.
| | | | | |
Collapse
|
20
|
Maita N, Aoyagi H, Osanai M, Shirakawa M, Fujiwara H. Characterization of the sequence specificity of the R1Bm endonuclease domain by structural and biochemical studies. Nucleic Acids Res 2007; 35:3918-27. [PMID: 17537809 PMCID: PMC1919474 DOI: 10.1093/nar/gkm397] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 04/25/2007] [Accepted: 05/01/2007] [Indexed: 11/30/2022] Open
Abstract
R1Bm is a long interspersed element (LINE) inserted into a specific sequence within 28S rDNA of the silkworm genome. Of two open reading frames (ORFs) of R1Bm, ORF2 encodes a reverse transcriptase (RT) and an endonuclease (EN) domain which digests specifically both top and bottom strand of the target sequence in 28S rDNA. To elucidate the sequence specificity of EN domain of R1Bm (R1Bm EN), we examined the cleavage tendency for the target sequences, and found that 5'-A(G/C)(A/T)!(A/G)T-3' is the consensus sequence (! = cleavage site). We also determined the crystal structure of R1Bm EN at 2.0 A resolution. Its structure was basically similar to AP endonuclease family, but had a special beta-hairpin at the edge of the DNA binding surface, which is a common feature among EN of LINEs. Point-mutations on the DNA binding surface of R1Bm EN significantly decreased the cleavage activities, but did not affect the sequence recognition in most residues. However, two mutants Y98A and N180A had altered cleavage patterns, suggesting an important role of these residues (Y98 and N180) for the sequence recognition of R1Bm EN. In addition, Y98A mutant showed another cleavage pattern, that implies de novo design of novel sequence-specific EN.
Collapse
Affiliation(s)
- Nobuo Maita
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Hideyuki Aoyagi
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Mizuko Osanai
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Masahiro Shirakawa
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| | - Haruhiko Fujiwara
- Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 812-8582, Japan, Graduate School of Integrated Science, Yokohama City University, Yokohama 230-0045, Japan, Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Bioscience Building 501, Kashiwa, Chiba 277-8562, Japan, Graduate School of Engineering Kyoto University, Kyoto 615-8510, Japan and CREST, Japan Science and Technology Corporation, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Kawashima T, Osanai M, Futahashi R, Kojima T, Fujiwara H. A novel target-specific gene delivery system combining baculovirus and sequence-specific long interspersed nuclear elements. Virus Res 2007; 127:49-60. [PMID: 17498830 DOI: 10.1016/j.virusres.2007.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 03/16/2007] [Accepted: 03/17/2007] [Indexed: 11/26/2022]
Abstract
Transposable elements are valuable for somatic and germ-line transformation. However, long interspersed nuclear elements (LINEs) have not been used because of poor information on the transposition mechanism. We have developed a novel gene delivery system combining baculovirus AcNPV and two silkworm LINEs, SART1 and R1, which integrate into specific sequences of telomeric repeats and 28S ribosomal DNA, respectively. When two LINEs containing the enhanced green fluorescent protein gene recombined into AcNPV were infected into fifth instar larvae of the silkworm, we observed target-specific retrotransposition of LINEs at 72h post-infection, using polymerase chain reaction amplification and sequencing. Telomere- and 28S rDNA-specific transposition occurred in all nine tissues tested, including the ovary and testis. This is the first demonstration of site-specific gene delivery in living larvae. Insertion efficiencies were dependent on the virus titer for injection and the host strains of Bombyx mori. Using this system, we successfully detected the intergeneration transmission of retrotransposed sequences. In addition, AcNPV-mediated SART1 also transposed into telomere of another lepidopteran, Orgyia recens, suggesting that this system is useful for a wide variety of AcNPV-infectious insects. Site-specific gene delivery by virus-mediated LINE will be a potential gene therapy tool to avoid harmful unexpected insertions.
Collapse
Affiliation(s)
- Tomoko Kawashima
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Bldg. 501, Kashiwa, Chiba 277-8562, Japan.
| | | | | | | | | |
Collapse
|
22
|
Honda H, Ichiyanagi K, Suzuki J, Ono T, Koyama H, Kajikawa M, Okada N. A new system for analyzing LINE retrotransposition in the chicken DT40 cell line widely used for reverse genetics. Gene 2007; 395:116-24. [PMID: 17434692 DOI: 10.1016/j.gene.2007.02.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Revised: 02/14/2007] [Accepted: 02/19/2007] [Indexed: 11/15/2022]
Abstract
Long interspersed elements (LINEs) are autonomous transposable elements that proliferate via retrotransposition, which involves reverse transcription of LINE RNAs. It is anticipated that LINE retrotransposition requires both LINE-encoded proteins and host-encoded proteins. However, identification of the host factors, their roles, and the steps at which they act on retrotransposition are poorly understood because of the lack of an appropriate genetic system to study LINE retrotransposition in a series of mutant hosts. To construct such a genetic system, we applied the retrotransposition-indicative cassette method to DT40 cells, a chicken cell line for which a variety of isogenic mutants have been established by gene targeting. Because DT40 cells are non-adherent, we utilized a selective soft agarose medium to allow the formation of colonies of cells that had undergone LINE retrotransposition. Colony formation was completely dependent on the activities of the LINE-encoded proteins and on the presence of the essential 3' region of the LINE RNA. Moreover, the selected colonies indeed carried retrotransposed LINE copies in their chromosomes, with integration features similar to those of genomic (native) LINE copies. This method thus allows the authentic selection of LINE-retrotransposed cells and the approximate recapitulation of retrotransposition events that occur in nature. Therefore, the DT40 cell system established here provides a powerful tool for the elucidation of LINE retrotransposition pathways, the host factors involved, and their roles.
Collapse
Affiliation(s)
- Hiroshi Honda
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-21 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | | | | | | | | | | | | |
Collapse
|