1
|
Galardi JW, Bela VN, Jeffery N, He X, Glasser E, Loerch S, Jenkins JL, Pulvino MJ, Boutz PL, Kielkopf CL. A UHM - ULM interface with unusual structural features contributes to U2AF2 and SF3B1 association for pre-mRNA splicing. J Biol Chem 2022; 298:102224. [PMID: 35780835 PMCID: PMC9364107 DOI: 10.1016/j.jbc.2022.102224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022] Open
Abstract
During spliceosome assembly, the 3′ splice site is recognized by sequential U2AF2 complexes, first with Splicing Factor 1 (SF1) and second by the SF3B1 subunit of the U2 small nuclear ribonuclear protein particle. The U2AF2–SF1 interface is well characterized, comprising a U2AF homology motif (UHM) of U2AF2 bound to a U2AF ligand motif (ULM) of SF1. However, the structure of the U2AF2–SF3B1 interface and its importance for pre-mRNA splicing are unknown. To address this knowledge gap, we determined the crystal structure of the U2AF2 UHM bound to a SF3B1 ULM site at 1.8-Å resolution. We discovered a distinctive trajectory of the SF3B1 ULM across the U2AF2 UHM surface, which differs from prior UHM/ULM structures and is expected to modulate the orientations of the full-length proteins. We established that the binding affinity of the U2AF2 UHM for the cocrystallized SF3B1 ULM rivals that of a nearly full-length U2AF2 protein for an N-terminal SF3B1 region. An additional SF3B6 subunit had no detectable effect on the U2AF2–SF3B1 binding affinities. We further showed that key residues at the U2AF2 UHM–SF3B1 ULM interface contribute to coimmunoprecipitation of the splicing factors. Moreover, disrupting the U2AF2–SF3B1 interface changed splicing of representative human transcripts. From analysis of genome-wide data, we found that many of the splice sites coregulated by U2AF2 and SF3B1 differ from those coregulated by U2AF2 and SF1. Taken together, these findings support distinct structural and functional roles for the U2AF2—SF1 and U2AF2—SF3B1 complexes during the pre-mRNA splicing process.
Collapse
Affiliation(s)
- Justin W Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Victoria N Bela
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Nazish Jeffery
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xueyang He
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sarah Loerch
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Paul L Boutz
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.
| |
Collapse
|
2
|
Sette C, Paronetto MP. Somatic Mutations in Core Spliceosome Components Promote Tumorigenesis and Generate an Exploitable Vulnerability in Human Cancer. Cancers (Basel) 2022; 14:cancers14071827. [PMID: 35406598 PMCID: PMC8997811 DOI: 10.3390/cancers14071827] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary High throughput exome sequencing approaches have disclosed recurrent cancer-associated mutations in spliceosomal components, which drive aberrant pre-mRNA processing events and support the tumor phenotype. At the same time, mutations in spliceosome genes and aberrant splicing regulation establish a selective vulnerability of cancer cells to splicing-targeting approaches, which could be exploited therapeutically. It is conceivable that a better understanding of the mechanisms and roles of abnormal splicing in tumor metabolism will facilitate the development of a novel generation of tumor-targeting drugs. In this review, we describe recent advances in the elucidation of the biological impact and biochemical effects of somatic mutations in core spliceosome components on splicing choices and their associated targetable vulnerabilities. Abstract Alternative pre-mRNA processing enables the production of distinct mRNA and protein isoforms from a single gene, thus greatly expanding the coding potential of eukaryotic genomes and fine-tuning gene expression programs. Splicing is carried out by the spliceosome, a complex molecular machinery which assembles step-wise on mRNA precursors in the nucleus of eukaryotic cells. In the last decade, exome sequencing technologies have allowed the identification of point mutations in genes encoding splicing factors as a recurrent hallmark of human cancers, with higher incidence in hematological malignancies. These mutations lead to production of splicing factors that reduce the fidelity of the splicing process and yield splicing variants that are often advantageous for cancer cells. However, at the same time, these mutations increase the sensitivity of transformed cells to splicing inhibitors, thus offering a therapeutic opportunity for novel targeted strategies. Herein, we review the recent literature documenting cancer-associated mutations in components of the early spliceosome complex and discuss novel therapeutic strategies based on small-molecule spliceosome inhibitors that exhibit strong anti-tumor effects, particularly against cancer cells harboring mutations in spliceosomal components.
Collapse
Affiliation(s)
- Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy;
- GSTEP-Organoids Core Facility, Fondazione Policlinico Agostino Gemelli IRCCS, 00168 Rome, Italy
| | - Maria Paola Paronetto
- Department of Movement, Human and Health Sciences, University of Rome “Foro Italico”, Piazza Lauro De Bosis, 6, 00135 Rome, Italy
- Laboratory of Molecular and Cellular Neurobiology, Fondazione Santa Lucia, IRCCS, Via del Fosso di Fiorano 64, 00143 Rome, Italy
- Correspondence:
| |
Collapse
|
3
|
Borao S, Ayté J, Hümmer S. Evolution of the Early Spliceosomal Complex-From Constitutive to Regulated Splicing. Int J Mol Sci 2021; 22:ijms222212444. [PMID: 34830325 PMCID: PMC8624252 DOI: 10.3390/ijms222212444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Pre-mRNA splicing is a major process in the regulated expression of genes in eukaryotes, and alternative splicing is used to generate different proteins from the same coding gene. Splicing is a catalytic process that removes introns and ligates exons to create the RNA sequence that codifies the final protein. While this is achieved in an autocatalytic process in ancestral group II introns in prokaryotes, the spliceosome has evolved during eukaryogenesis to assist in this process and to finally provide the opportunity for intron-specific splicing. In the early stage of splicing, the RNA 5' and 3' splice sites must be brought within proximity to correctly assemble the active spliceosome and perform the excision and ligation reactions. The assembly of this first complex, termed E-complex, is currently the least understood process. We focused in this review on the formation of the E-complex and compared its composition and function in three different organisms. We highlight the common ancestral mechanisms in S. cerevisiae, S. pombe, and mammals and conclude with a unifying model for intron definition in constitutive and regulated co-transcriptional splicing.
Collapse
Affiliation(s)
- Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Correspondence: (J.A.); (S.H.)
| | - Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain;
- Translational Molecular Pathology, Vall d’Hebron Research Institute (VHIR), CIBERONC, 08035 Barcelona, Spain
- Correspondence: (J.A.); (S.H.)
| |
Collapse
|
4
|
Hümmer S, Borao S, Guerra-Moreno A, Cozzuto L, Hidalgo E, Ayté J. Cross talk between the upstream exon-intron junction and Prp2 facilitates splicing of non-consensus introns. Cell Rep 2021; 37:109893. [PMID: 34706246 DOI: 10.1016/j.celrep.2021.109893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
Splicing of mRNA precursors is essential in the regulation of gene expression. U2AF65 recognizes the poly-pyrimidine tract and helps in the recognition of the branch point. Inactivation of fission yeast U2AF65 (Prp2) blocks splicing of most, but not all, pre-mRNAs, for reasons that are not understood. Here, we have determined genome-wide the splicing efficiency of fission yeast cells as they progress into synchronous meiosis in the presence or absence of functional Prp2. Our data indicate that in addition to the splicing elements at the 3' end of any intron, the nucleotides immediately upstream the intron will determine whether Prp2 is required or dispensable for splicing. By changing those nucleotides in any given intron, we regulate its Prp2 dependency. Our results suggest a model in which Prp2 is required for the coordinated recognition of both intronic ends, placing Prp2 as a key regulatory element in the determination of the exon-intron boundaries.
Collapse
Affiliation(s)
- Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
5
|
Vandermeulen C, O’Grady T, Wayet J, Galvan B, Maseko S, Cherkaoui M, Desbuleux A, Coppin G, Olivet J, Ben Ameur L, Kataoka K, Ogawa S, Hermine O, Marcais A, Thiry M, Mortreux F, Calderwood MA, Van Weyenbergh J, Peloponese JM, Charloteaux B, Van den Broeke A, Hill DE, Vidal M, Dequiedt F, Twizere JC. The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape. PLoS Pathog 2021; 17:e1009919. [PMID: 34543356 PMCID: PMC8483338 DOI: 10.1371/journal.ppat.1009919] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/30/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome. Tax and HBZ are two viral regulatory proteins encoded by the human T-cell leukemia virus type 1 (HTLV-1) via sense and antisense transcripts, respectively. Both proteins are known to drive oncogenic processes that culminate in a T-cell neoplasm, known as Adult T cell leukemia/lymphoma (ATLL). We measured the effects of Tax and HBZ on host gene expression pathway by analyzing the interactome with cellular transcriptional and post-transcriptional regulators, and the transcriptome and mRNA splicing of cell lines expressing either Tax or HBZ. We compared our results with data obtained from independent cohorts of Japanese and Afro-Caribbean patients, and identified common splicing changes that might represent clinically useful biomarkers for ATLL. Finally, we provide evidence that the viral protein Tax can reprogram initial steps of the T-cell transcriptome diversification by hijacking the U2AF complex, a key cellular regulator of pre-mRNA splicing.
Collapse
Affiliation(s)
- Charlotte Vandermeulen
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Tina O’Grady
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Jerome Wayet
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
| | - Bartimee Galvan
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
| | - Sibusiso Maseko
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Majid Cherkaoui
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
| | - Alice Desbuleux
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Georges Coppin
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Julien Olivet
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Lamya Ben Ameur
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Keisuke Kataoka
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Olivier Hermine
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Ambroise Marcais
- Service Hématologie Adultes, Assistance Publique-Hôpitaux de Paris, Hôpital Necker Enfants Malades, Université de Paris, Laboratoire d’onco-hématologie, Institut Necker-Enfants Malades, INSERM U1151, Université de Paris, Paris, France
| | - Marc Thiry
- Unit of Cell and Tissue Biology, GIGA Institute, University of Liege, Liege, Belgium
| | - Franck Mortreux
- Laboratory of Biology and Modeling of the Cell, CNRS UMR 5239, INSERM U1210, University of Lyon, Lyon, France
| | - Michael A. Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, Catholic University of Leuven, Leuven, Belgium
| | | | - Benoit Charloteaux
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Human Genetics, CHU of Liege, University of Liege, Liege, Belgium
| | - Anne Van den Broeke
- Unit of Animal Genomics, GIGA, Université de Liège (ULiège), Liège, Belgium
- Laboratory of Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), Brussels, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - David E. Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Franck Dequiedt
- Laboratory of Gene Expression and Cancer, GIGA Institute, University of Liege, Liege, Belgium
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| | - Jean-Claude Twizere
- Laboratory of Viral Interactomes, GIGA Institute, University of Liege, Liege, Belgium
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
- * E-mail: (AVdB); (DEH); (MV); (FD); (J-CT)
| |
Collapse
|
6
|
Fukumura K, Yoshimoto R, Sperotto L, Kang HS, Hirose T, Inoue K, Sattler M, Mayeda A. SPF45/RBM17-dependent, but not U2AF-dependent, splicing in a distinct subset of human short introns. Nat Commun 2021; 12:4910. [PMID: 34389706 PMCID: PMC8363638 DOI: 10.1038/s41467-021-24879-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 07/06/2021] [Indexed: 11/11/2022] Open
Abstract
Human pre-mRNA introns vary in size from under fifty to over a million nucleotides. We searched for essential factors involved in the splicing of human short introns by screening siRNAs against 154 human nuclear proteins. The splicing activity was assayed with a model HNRNPH1 pre-mRNA containing short 56-nucleotide intron. We identify a known alternative splicing regulator SPF45 (RBM17) as a constitutive splicing factor that is required to splice out this 56-nt intron. Whole-transcriptome sequencing of SPF45-deficient cells reveals that SPF45 is essential in the efficient splicing of many short introns. To initiate the spliceosome assembly on a short intron with the truncated poly-pyrimidine tract, the U2AF-homology motif (UHM) of SPF45 competes out that of U2AF65 (U2AF2) for binding to the UHM-ligand motif (ULM) of the U2 snRNP protein SF3b155 (SF3B1). We propose that splicing in a distinct subset of human short introns depends on SPF45 but not U2AF heterodimer. The length distribution of human pre-mRNA introns is very extensive. The authors demonstrate that splicing in a subset of short introns is dependent on SPF45 (RBM17), which replaces authentic U2AF-heterodimer on the truncated poly-pyrimidine tracts and interacts with the U2 snRNP protein SF3b155.
Collapse
Affiliation(s)
- Kazuhiro Fukumura
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| | - Rei Yoshimoto
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.,Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Luca Sperotto
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Hyun-Seo Kang
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kunio Inoue
- Department of Biology, Graduate School of Science, Kobe University, Kobe, Hyogo, Japan
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.,Bavarian NMR Center (BNMRZ), Chemistry Department, Technical University of Munich, Garching, Germany
| | - Akila Mayeda
- Division of Gene Expression Mechanism, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi, Japan.
| |
Collapse
|
7
|
The upstream 5' splice site remains associated to the transcription machinery during intron synthesis. Nat Commun 2021; 12:4545. [PMID: 34315864 PMCID: PMC8316553 DOI: 10.1038/s41467-021-24774-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
In the earliest step of spliceosome assembly, the two splice sites flanking an intron are brought into proximity by U1 snRNP and U2AF along with other proteins. The mechanism that facilitates this intron looping is poorly understood. Using a CRISPR interference-based approach to halt RNA polymerase II transcription in the middle of introns in human cells, we discovered that the nascent 5′ splice site base pairs with a U1 snRNA that is tethered to RNA polymerase II during intron synthesis. This association functionally corresponds with splicing outcome, involves bona fide 5′ splice sites and cryptic intronic sites, and occurs transcriptome-wide. Overall, our findings reveal that the upstream 5′ splice sites remain attached to the transcriptional machinery during intron synthesis and are thus brought into proximity of the 3′ splice sites; potentially mediating the rapid splicing of long introns. We know that most splicing reactions take place co-transcriptionally, but how the transcription machinery facilitate splicing of introns is unknown. Here the authors show that the 5′ splice site remains associated with the transcription machinery during intron synthesis through U1 snRNP, providing a basis for the rapid splicing reaction of introns.
Collapse
|
8
|
Maji D, Glasser E, Henderson S, Galardi J, Pulvino MJ, Jenkins JL, Kielkopf CL. Representative cancer-associated U2AF2 mutations alter RNA interactions and splicing. J Biol Chem 2020; 295:17148-17157. [PMID: 33020180 PMCID: PMC7863893 DOI: 10.1074/jbc.ra120.015339] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
High-throughput sequencing of hematologic malignancies and other cancers has revealed recurrent mis-sense mutations of genes encoding pre-mRNA splicing factors. The essential splicing factor U2AF2 recognizes a polypyrimidine-tract splice-site signal and initiates spliceosome assembly. Here, we investigate representative, acquired U2AF2 mutations, namely N196K or G301D amino acid substitutions associated with leukemia or solid tumors, respectively. We determined crystal structures of the wild-type (WT) compared with N196K- or G301D-substituted U2AF2 proteins, each bound to a prototypical AdML polypyrimidine tract, at 1.5, 1.4, or 1.7 Å resolutions. The N196K residue appears to stabilize the open conformation of U2AF2 with an inter-RNA recognition motif hydrogen bond, in agreement with an increased apparent RNA-binding affinity of the N196K-substituted protein. The G301D residue remains in a similar position as the WT residue, where unfavorable proximity to the RNA phosphodiester could explain the decreased RNA-binding affinity of the G301D-substituted protein. We found that expression of the G301D-substituted U2AF2 protein reduces splicing of a minigene transcript carrying prototypical splice sites. We further show that expression of either N196K- or G301D-substituted U2AF2 can subtly alter splicing of representative endogenous transcripts, despite the presence of endogenous, WT U2AF2 such as would be present in cancer cells. Altogether, our results demonstrate that acquired U2AF2 mutations such as N196K and G301D are capable of dysregulating gene expression for neoplastic transformation.
Collapse
Affiliation(s)
- Debanjana Maji
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Eliezra Glasser
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Steven Henderson
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Justin Galardi
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Mary J Pulvino
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Jermaine L Jenkins
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Clara L Kielkopf
- Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
9
|
Moonlighting in Mitosis: Analysis of the Mitotic Functions of Transcription and Splicing Factors. Cells 2020; 9:cells9061554. [PMID: 32604778 PMCID: PMC7348712 DOI: 10.3390/cells9061554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Moonlighting proteins can perform one or more additional functions besides their primary role. It has been posited that a protein can acquire a moonlighting function through a gradual evolutionary process, which is favored when the primary and secondary functions are exerted in different cellular compartments. Transcription factors (TFs) and splicing factors (SFs) control processes that occur in interphase nuclei and are strongly reduced during cell division, and are therefore in a favorable situation to evolve moonlighting mitotic functions. However, recently published moonlighting protein databases, which comprise almost 400 proteins, do not include TFs and SFs with secondary mitotic functions. We searched the literature and found several TFs and SFs with bona fide moonlighting mitotic functions, namely they localize to specific mitotic structure(s), interact with proteins enriched in the same structure(s), and are required for proper morphology and functioning of the structure(s). In addition, we describe TFs and SFs that localize to mitotic structures but cannot be classified as moonlighting proteins due to insufficient data on their biochemical interactions and mitotic roles. Nevertheless, we hypothesize that most TFs and SFs with specific mitotic localizations have either minor or redundant moonlighting functions, or are evolving towards the acquisition of these functions.
Collapse
|
10
|
Chang JW, Yeh HS, Park M, Erber L, Sun J, Cheng S, Bui AM, Fahmi NA, Nasti R, Kuang R, Chen Y, Zhang W, Yong J. mTOR-regulated U2af1 tandem exon splicing specifies transcriptome features for translational control. Nucleic Acids Res 2019; 47:10373-10387. [PMID: 31504847 PMCID: PMC6821156 DOI: 10.1093/nar/gkz761] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/23/2019] [Accepted: 08/23/2019] [Indexed: 01/13/2023] Open
Abstract
U2 auxiliary factor 1 (U2AF1) functions in 3′-splice site selection during pre-mRNA processing. Alternative usage of duplicated tandem exons in U2AF1 produces two isoforms, U2AF1a and U2AF1b, but their functional differences are unappreciated due to their homology. Through integrative approaches of genome editing, customized-transcriptome profiling and crosslinking-mediated interactome analyses, we discovered that the expression of U2AF1 isoforms is controlled by mTOR and they exhibit a distinctive molecular profile for the splice site and protein interactomes. Mechanistic dissection of mutually exclusive alternative splicing events revealed that U2AF1 isoforms’ inherent differential preferences of nucleotide sequences and their stoichiometry determine the 3′-splice site. Importantly, U2AF1a-driven transcriptomes feature alternative splicing events in the 5′-untranslated region (5′-UTR) that are favorable for translation. These findings unveil distinct roles of duplicated tandem exon-derived U2AF1 isoforms in the regulation of the transcriptome and suggest U2AF1a-driven 5′-UTR alternative splicing as a molecular mechanism of mTOR-regulated translational control.
Collapse
Affiliation(s)
- Jae-Woong Chang
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Hsin-Sung Yeh
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Meeyeon Park
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Luke Erber
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Jiao Sun
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Sze Cheng
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Alexander M Bui
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Naima Ahmed Fahmi
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Ryan Nasti
- Department of Genetics, Cell and Developmental Biology, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Rui Kuang
- Department of Computer Science and Engineering, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Department of Computer Science, University of Central Florida, Orlando, FL 32816, USA
| | - Jeongsik Yong
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Loerch S, Leach JR, Horner SW, Maji D, Jenkins JL, Pulvino MJ, Kielkopf CL. The pre-mRNA splicing and transcription factor Tat-SF1 is a functional partner of the spliceosome SF3b1 subunit via a U2AF homology motif interface. J Biol Chem 2018; 294:2892-2902. [PMID: 30567737 DOI: 10.1074/jbc.ra118.006764] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/10/2018] [Indexed: 01/09/2023] Open
Abstract
The transcription elongation and pre-mRNA splicing factor Tat-SF1 associates with the U2 small nuclear ribonucleoprotein (snRNP) of the spliceosome. However, the direct binding partner and underlying interactions mediating the Tat-SF1-U2 snRNP association remain unknown. Here, we identified SF3b1 as a Tat-SF1-interacting subunit of the U2 snRNP. Our 1.1 Å resolution crystal structure revealed that Tat-SF1 contains a U2AF homology motif (UHM) protein-protein interaction module. We demonstrated that Tat-SF1 preferentially and directly binds the SF3b1 subunit compared with other U2AF ligand motif (ULM)-containing splicing factors, and further established that SF3b1 association depends on the integrity of the Tat-SF1 UHM. We next compared the Tat-SF1-binding affinities for each of the five known SF3b1 ULMs and then determined the structures of representative high- and low-affinity SF3b1 ULM complexes with the Tat-SF1 UHM at 1.9 Å and 2.1 Å resolutions, respectively. These structures revealed a canonical UHM-ULM interface, comprising a Tat-SF1 binding pocket for a ULM tryptophan (SF3b1 Trp338) and electrostatic interactions with a basic ULM tail. Importantly, we found that SF3b1 regulates Tat-SF1 levels and that these two factors influence expression of overlapping representative transcripts, consistent with a functional partnership of Tat-SF1 and SF3b1. Altogether, these results define a new molecular interface of the Tat-SF1-U2 snRNP complex for gene regulation.
Collapse
Affiliation(s)
- Sarah Loerch
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Justin R Leach
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Steven W Horner
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Debanjana Maji
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Jermaine L Jenkins
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Mary J Pulvino
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Clara L Kielkopf
- From the Center for RNA Biology, Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
12
|
Herdt O, Neumann A, Timmermann B, Heyd F. The cancer-associated U2AF35 470A>G (Q157R) mutation creates an in-frame alternative 5' splice site that impacts splicing regulation in Q157R patients. RNA (NEW YORK, N.Y.) 2017; 23:1796-1806. [PMID: 28893951 PMCID: PMC5689001 DOI: 10.1261/rna.061432.117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Recent work has identified cancer-associated U2AF35 missense mutations in two zinc-finger (ZnF) domains, but little is known about Q157R/P substitutions within the second ZnF. Surprisingly, we find that the c.470A>G mutation not only leads to the Q157R substitution, but also creates an alternative 5' splice site (ss) resulting in the deletion of four amino acids (Q157Rdel). Q157P, Q157R, and Q157Rdel control alternative splicing of distinct groups of exons in cell culture and in human patients, suggesting that missplicing of different targets may contribute to cellular aberrations. Our data emphasize the importance to explore missense mutations beyond altered protein sequence.
Collapse
Affiliation(s)
- Olga Herdt
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Alexander Neumann
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck-Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Florian Heyd
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of RNA Biochemistry, 14195 Berlin, Germany
| |
Collapse
|
13
|
Ohno K, Takeda JI, Masuda A. Rules and tools to predict the splicing effects of exonic and intronic mutations. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [DOI: 10.1002/wrna.1451] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Jun-ichi Takeda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| | - Akio Masuda
- Division of Neurogenetics, Center for Neurological Diseases and Cancer; Nagoya University Graduate School of Medicine; Nagoya Japan
| |
Collapse
|
14
|
Recognition of the 3' splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc Natl Acad Sci U S A 2016; 113:E7169-E7175. [PMID: 27799531 DOI: 10.1073/pnas.1605873113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3' splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3' splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein-RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3' splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants.
Collapse
|
15
|
Kralovicova J, Vorechovsky I. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons. Nucleic Acids Res 2016; 45:417-434. [PMID: 27566151 PMCID: PMC5224494 DOI: 10.1093/nar/gkw733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/30/2022] Open
Abstract
The auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF) facilitates branch point (BP) recognition and formation of lariat introns. The gene for the 35-kD subunit of U2AF gives rise to two protein isoforms (termed U2AF35a and U2AF35b) that are encoded by alternatively spliced exons 3 and Ab, respectively. The splicing recognition sequences of exon 3 are less favorable than exon Ab, yet U2AF35a expression is higher than U2AF35b across tissues. We show that U2AF35b repression is facilitated by weak, closely spaced BPs next to a long polypyrimidine tract of exon Ab. Each BP lacked canonical uridines at position -2 relative to the BP adenines, with efficient U2 base-pairing interactions predicted only for shifted registers reminiscent of programmed ribosomal frameshifting. The BP cluster was compensated by interactions involving unpaired cytosines in an upstream, EvoFold-predicted stem loop (termed ESL) that binds FUBP1/2. Exon Ab inclusion correlated with predicted free energies of mutant ESLs, suggesting that the ESL operates as a conserved rheostat between long inverted repeats upstream of each exon. The isoform-specific U2AF35 expression was U2AF65-dependent, required interactions between the U2AF-homology motif (UHM) and the α6 helix of U2AF35, and was fine-tuned by exon Ab/3 variants. Finally, we identify tandem homologous exons regulated by U2AF and show that their preferential responses to U2AF65-related proteins and SRSF3 are associated with unpaired pre-mRNA segments upstream of U2AF-repressed 3′ss. These results provide new insights into tissue-specific subfunctionalization of duplicated exons in vertebrate evolution and expand the repertoire of exon repression mechanisms that control alternative splicing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
16
|
Abstract
Pre-mRNA splicing is a key post-transcriptional regulation process in which introns are excised and exons are ligated together. A novel class of structured intron was recently discovered in fish. Simple expansions of complementary AC and GT dimers at opposite boundaries of an intron were found to form a bridging structure, thereby enforcing correct splice site pairing across the intron. In some fish introns, the RNA structures are strong enough to bypass the need of regulatory protein factors for splicing. Here, we discuss the prevalence and potential functions of highly structured introns. In humans, structured introns usually arise through the co-occurrence of C and G-rich repeats at intron boundaries. We explore the potentially instructive example of the HLA receptor genes. In HLA pre-mRNA, structured introns flank the exons that encode the highly polymorphic β sheet cleft, making the processing of the transcript robust to variants that disrupt splicing factor binding. While selective forces that have shaped HLA receptor are fairly atypical, numerous other highly polymorphic genes that encode receptors contain structured introns. Finally, we discuss how the elevated mutation rate associated with the simple repeats that often compose structured intron can make structured introns themselves rapidly evolving elements.
Collapse
Affiliation(s)
- Chien-Ling Lin
- a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA
| | - Allison J Taggart
- a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA
| | - William G Fairbrother
- a Molecular Biology, Cell Biology and Biochemistry, Brown University , Providence , RI , USA.,b Center for Computational Molecular Biology, Brown University , Providence , RI , USA.,c Hassenfeld Child Health Innovation Institute of Brown University , Providence , RI , USA
| |
Collapse
|
17
|
An extended U2AF(65)-RNA-binding domain recognizes the 3' splice site signal. Nat Commun 2016; 7:10950. [PMID: 26952537 PMCID: PMC4786784 DOI: 10.1038/ncomms10950] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
How the essential pre-mRNA splicing factor U2AF65 recognizes the polypyrimidine (Py) signals of the major class of 3′ splice sites in human gene transcripts remains incompletely understood. We determined four structures of an extended U2AF65–RNA-binding domain bound to Py-tract oligonucleotides at resolutions between 2.0 and 1.5 Å. These structures together with RNA binding and splicing assays reveal unforeseen roles for U2AF65 inter-domain residues in recognizing a contiguous, nine-nucleotide Py tract. The U2AF65 linker residues between the dual RNA recognition motifs (RRMs) recognize the central nucleotide, whereas the N- and C-terminal RRM extensions recognize the 3′ terminus and third nucleotide. Single-molecule FRET experiments suggest that conformational selection and induced fit of the U2AF65 RRMs are complementary mechanisms for Py-tract association. Altogether, these results advance the mechanistic understanding of molecular recognition for a major class of splice site signals. The pre-mRNA splicing factor U2AF65 recognizes 3′ splice sites in human gene transcripts, but the details are not fully understood. Here, the authors report U2AF65 structures and single molecule FRET that reveal mechanistic insights into splice site recognition.
Collapse
|
18
|
Alsafadi S, Houy A, Battistella A, Popova T, Wassef M, Henry E, Tirode F, Constantinou A, Piperno-Neumann S, Roman-Roman S, Dutertre M, Stern MH. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat Commun 2016; 7:10615. [PMID: 26842708 DOI: 10.1038/ncomms10615] [Citation(s) in RCA: 295] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/05/2016] [Indexed: 12/20/2022] Open
Abstract
Hotspot mutations in the spliceosome gene SF3B1 are reported in ∼20% of uveal melanomas. SF3B1 is involved in 3'-splice site (3'ss) recognition during RNA splicing; however, the molecular mechanisms of its mutation have remained unclear. Here we show, using RNA-Seq analyses of uveal melanoma, that the SF3B1(R625/K666) mutation results in deregulated splicing at a subset of junctions, mostly by the use of alternative 3'ss. Modelling the differential junctions in SF3B1(WT) and SF3B1(R625/K666) cell lines demonstrates that the deregulated splice pattern strictly depends on SF3B1 status and on the 3'ss-sequence context. SF3B1(WT) knockdown or overexpression do not reproduce the SF3B1(R625/K666) splice pattern, qualifying SF3B1(R625/K666) as change-of-function mutants. Mutagenesis of predicted branchpoints reveals that the SF3B1(R625/K666)-promoted splice pattern is a direct result of alternative branchpoint usage. Altogether, this study provides a better understanding of the mechanisms underlying splicing alterations induced by mutant SF3B1 in cancer, and reveals a role for alternative branchpoints in disease.
Collapse
Affiliation(s)
- Samar Alsafadi
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Alexandre Houy
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Aude Battistella
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Tatiana Popova
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Michel Wassef
- Depatment of Developmental Biology and Genetics, CNRS UMR 3215/INSERM U934, Institut Curie, PSL Research University, Paris 75248, France
| | - Emilie Henry
- Translational Research Department, Institut Curie, PSL Research University, Paris 75248, France
| | - Franck Tirode
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| | - Angelos Constantinou
- Department of Molecular Bases of Human Diseases, CNRS UPR 1142, IGH-Institute of Human Genetics, Montpellier 34090, France
| | | | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL Research University, Paris 75248, France
| | - Martin Dutertre
- Department of Genotoxic stress and Cancer, CNRS UMR 3348, Institut Curie, PSL Research University, Orsay 91400, France
| | - Marc-Henri Stern
- Department of Genetics and Biology of Cancers, INSERM U830, Institut Curie, PSL Research University, Paris 75248, France
| |
Collapse
|
19
|
Abstract
The U2AF heterodimer is generally accepted to play a vital role in defining functional 3' splice sites in pre-mRNA splicing. Given prevalent mutations in U2AF, particularly in the U2AF1 gene (which encodes for the U2AF35 subunit) in blood disorders and other human cancers, there are renewed interests in these classic splicing factors to further understand their regulatory functions in RNA metabolism in both physiological and disease settings. We recently reported that U2AF has a maximal capacity to directly bind ˜88% of functional 3' splice sites in the human genome and that numerous U2AF binding events also occur in various exonic and intronic locations, thus providing additional mechanisms for the regulation of alternative splicing besides their traditional role in titrating weak splice sites in the cell. These findings, coupled with the existence of multiple related proteins to both U2AF65 and U2AF35, beg a series of questions on the universal role of U2AF in functional 3' splice site definition, their binding specificities in vivo, potential mechanisms to bypass their requirement for certain intron removal events, contribution of splicing-independent functions of U2AF to important cellular functions, and the mechanism for U2AF mutations to invoke specific diseases in humans.
Collapse
Affiliation(s)
- Tongbin Wu
- a Department of Medicine ; University of California, San Diego ; La Jolla , CA USA
| | | |
Collapse
|
20
|
Whisenant TC, Peralta ER, Aarreberg LD, Gao NJ, Head SR, Ordoukhanian P, Williamson JR, Salomon DR. The Activation-Induced Assembly of an RNA/Protein Interactome Centered on the Splicing Factor U2AF2 Regulates Gene Expression in Human CD4 T Cells. PLoS One 2015; 10:e0144409. [PMID: 26641092 PMCID: PMC4671683 DOI: 10.1371/journal.pone.0144409] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/16/2015] [Indexed: 12/22/2022] Open
Abstract
Activation of CD4 T cells is a reaction to challenges such as microbial pathogens, cancer and toxins that defines adaptive immune responses. The roles of T cell receptor crosslinking, intracellular signaling, and transcription factor activation are well described, but the importance of post-transcriptional regulation by RNA-binding proteins (RBPs) has not been considered in depth. We describe a new model expanding and activating primary human CD4 T cells and applied this to characterizing activation-induced assembly of splicing factors centered on U2AF2. We immunoprecipitated U2AF2 to identify what mRNA transcripts were bound as a function of activation by TCR crosslinking and costimulation. In parallel, mass spectrometry revealed the proteins incorporated into the U2AF2-centered RNA/protein interactome. Molecules that retained interaction with the U2AF2 complex after RNAse treatment were designated as "central" interactome members (CIMs). Mass spectrometry also identified a second class of activation-induced proteins, "peripheral" interactome members (PIMs), that bound to the same transcripts but were not in physical association with U2AF2 or its partners. siRNA knockdown of two CIMs and two PIMs caused changes in activation marker expression, cytokine secretion, and gene expression that were unique to each protein and mapped to pathways associated with key aspects of T cell activation. While knocking down the PIM, SYNCRIP, impacts a limited but immunologically important set of U2AF2-bound transcripts, knockdown of U2AF1 significantly impairs assembly of the majority of protein and mRNA components in the activation-induced interactome. These results demonstrated that CIMs and PIMs, either directly or indirectly through RNA, assembled into activation-induced U2AF2 complexes and play roles in post-transcriptional regulation of genes related to cytokine secretion. These data suggest an additional layer of regulation mediated by the activation-induced assembly of RNA splicing interactomes that is important for understanding T cell activation.
Collapse
Affiliation(s)
- Thomas C. Whisenant
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Eigen R. Peralta
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Lauren D. Aarreberg
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nina J. Gao
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Steven R. Head
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Phillip Ordoukhanian
- NGS and Microarray Core Facility, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jamie R. Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Daniel R. Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res 2015; 43:3747-63. [PMID: 25779042 PMCID: PMC4402522 DOI: 10.1093/nar/gkv194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcin Knut
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Nicholas C P Cross
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
22
|
Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y, Zhou J, Qiu J, Jiang L, Li H, Chen G, Sun H, Zhang Y, Denise A, Zhang DE, Fu XD. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 2014; 21:997-1005. [PMID: 25326705 PMCID: PMC4429597 DOI: 10.1038/nsmb.2906] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/25/2014] [Indexed: 12/24/2022]
Abstract
The U2AF heterodimer has been well studied for its role in defining functional 3' splice sites in pre-mRNA splicing, but many fundamental questions still remain unaddressed regarding the function of U2AF in mammalian genomes. Through genome-wide analysis of U2AF-RNA interactions, we report that U2AF has the capacity to directly define ~88% of functional 3' splice sites in the human genome, but numerous U2AF binding events also occur in intronic locations. Mechanistic dissection reveals that upstream intronic binding events interfere with the immediate downstream 3' splice site associated either with the alternative exon, to cause exon skipping, or with the competing constitutive exon, to induce exon inclusion. We further demonstrate partial functional impairment with leukemia-associated mutations in U2AF35, but not U2AF65, in regulated splicing. These findings reveal the genomic function and regulatory mechanism of U2AF in both normal and disease states.
Collapse
Affiliation(s)
- Changwei Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Tongbin Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Li Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Geng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alain Denise
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Dong-Er Zhang
- UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Xiang-Dong Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
23
|
Shao C, Yang B, Wu T, Huang J, Tang P, Zhou Y, Zhou J, Qiu J, Jiang L, Li H, Chen G, Sun H, Zhang Y, Denise A, Zhang DE, Fu XD. Mechanisms for U2AF to define 3' splice sites and regulate alternative splicing in the human genome. Nat Struct Mol Biol 2014. [PMID: 25326705 DOI: 10.1038/nsmb2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The U2AF heterodimer has been well studied for its role in defining functional 3' splice sites in pre-mRNA splicing, but many fundamental questions still remain unaddressed regarding the function of U2AF in mammalian genomes. Through genome-wide analysis of U2AF-RNA interactions, we report that U2AF has the capacity to directly define ~88% of functional 3' splice sites in the human genome, but numerous U2AF binding events also occur in intronic locations. Mechanistic dissection reveals that upstream intronic binding events interfere with the immediate downstream 3' splice site associated either with the alternative exon, to cause exon skipping, or with the competing constitutive exon, to induce exon inclusion. We further demonstrate partial functional impairment with leukemia-associated mutations in U2AF35, but not U2AF65, in regulated splicing. These findings reveal the genomic function and regulatory mechanism of U2AF in both normal and disease states.
Collapse
Affiliation(s)
- Changwei Shao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Tongbin Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jie Huang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Peng Tang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Jie Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Li Jiang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hairi Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| | - Geng Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Hui Sun
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Alain Denise
- Laboratoire de Recherche en Informatique, Institut de Génétique et Microbiologie I, Université Paris-Sud and Centre National de la Recherche Scientifique, Orsay, France
| | - Dong-Er Zhang
- UC San Diego Moores Cancer Center, University of California, San Diego, La Jolla, California, USA
| | - Xiang-Dong Fu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
24
|
U2AF1 mutations alter sequence specificity of pre-mRNA binding and splicing. Leukemia 2014; 29:909-17. [PMID: 25311244 PMCID: PMC4391984 DOI: 10.1038/leu.2014.303] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 09/24/2014] [Accepted: 10/07/2014] [Indexed: 01/04/2023]
Abstract
We previously identified missense mutations in the U2AF1 splicing factor affecting codons S34 (S34F and S34Y) or Q157 (Q157R and Q157P) in 11% of patients with de novo myelodysplastic syndromes (MDS). Although the role of U2AF1 as an accessory factor in the U2 snRNP is well established, it is not yet clear how mutations affect splicing or contribute to MDS pathophysiology. We analyzed splice junctions in RNA-seq data generated from transfected CD34+ hematopoietic cells and found significant differences in the abundance of known and novel junctions in samples expressing mutant U2AF1 (S34F). For selected transcripts, splicing alterations detected by RNA-seq were confirmed by analysis of primary de novo MDS patient samples. These effects were not due to impaired U2AF1 (S34F) localization as it co-localized normally with U2AF2 within nuclear speckles. We further found evidence in the RNA-seq data for decreased affinity of U2AF1 (S34F) for uridine (relative to cytidine) at the e-3 position immediately upstream of the splice acceptor site and corroborated this finding using affinity binding assays. These data suggest that the S34F mutation alters U2AF1 function in the context of specific RNA sequences, leading to aberrant alternative splicing of target genes, some of which may be relevant for MDS pathogenesis.
Collapse
|
25
|
Grodecká L, Lockerová P, Ravčuková B, Buratti E, Baralle FE, Dušek L, Freiberger T. Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. PLoS One 2014; 9:e89570. [PMID: 24586880 PMCID: PMC3931810 DOI: 10.1371/journal.pone.0089570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Mutations in the first nucleotide of exons (E+1) mostly affect pre-mRNA splicing when found in AG-dependent 3′ splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3′ splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E+1 variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting.
Collapse
Affiliation(s)
- Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Lockerová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Barbora Ravčuková
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
26
|
Yoshida K, Ogawa S. Splicing factor mutations and cancer. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:445-59. [PMID: 24523246 DOI: 10.1002/wrna.1222] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 12/11/2022]
Abstract
Recent advances in high-throughput sequencing technologies have unexpectedly revealed that somatic mutations of splicing factor genes frequently occurred in several types of hematological malignancies, including myelodysplastic syndromes, other myeloid neoplasms, and chronic lymphocytic leukemia. Splicing factor mutations have also been reported in solid cancers such as breast and pancreatic cancers, uveal melanomas, and lung adenocarcinomas. These mutations were heterozygous and mainly affected U2AF1 (U2AF35), SRSF2 (SC35), SF3B1 (SF3B155 or SAP155), and ZRSR2 (URP), which are engaged in the initial steps of RNA splicing, including 3' splice-site recognition, and occur in a large mutually exclusive pattern, suggesting a common impact of these mutations on RNA splicing. In this study, splicing factor mutations in various types of cancers, their functional/biological effects, and their potential as therapeutic targets have been reviewed.
Collapse
Affiliation(s)
- Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
27
|
Characterization and in vivo functional analysis of the Schizosaccharomyces pombe ICLN gene. Mol Cell Biol 2013; 34:595-605. [PMID: 24298023 DOI: 10.1128/mcb.01407-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the early steps of snRNP biogenesis, the survival motor neuron (SMN) complex acts together with the methylosome, an entity formed by the pICln protein, WD45, and the PRMT5 methyltransferase. To expand our understanding of the functional relationship between pICln and SMN in vivo, we performed a genetic analysis of an uncharacterized Schizosaccharomyces pombe pICln homolog. Although not essential, the S. pombe ICln (SpICln) protein is important for optimal yeast cell growth. The human ICLN gene complements the Δicln slow-growth phenotype, demonstrating that the identified SpICln sequence is the bona fide human homolog. Consistent with the role of human pICln inferred from in vitro experiments, we found that the SpICln protein is required for optimal production of the spliceosomal snRNPs and for efficient splicing in vivo. Genetic interaction approaches further demonstrate that modulation of ICln activity is unable to compensate for growth defects of SMN-deficient cells. Using a genome-wide approach and reverse transcription (RT)-PCR validation tests, we also show that splicing is differentially altered in Δicln cells. Our data are consistent with the notion that splice site selection and spliceosome kinetics are highly dependent on the concentration of core spliceosomal components.
Collapse
|
28
|
Barman-Aksözen J, Béguin C, Dogar AM, Schneider-Yin X, Minder EI. Iron availability modulates aberrant splicing of ferrochelatase through the iron- and 2-oxoglutarate dependent dioxygenase Jmjd6 and U2AF(65.). Blood Cells Mol Dis 2013; 51:151-61. [PMID: 23787363 DOI: 10.1016/j.bcmd.2013.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 03/20/2013] [Accepted: 05/12/2013] [Indexed: 10/26/2022]
Abstract
Erythropoietic protoporphyria (EPP) results from partial deficiency of ferrochelatase (FECH). Genetically, EPP patients differ from asymptomatic mutation carriers at the unmutated FECH allele, the expression of which is modulated by single nucleotide polymorphism IVS3-48C/T. The IVS3-48C genotype, which is present among patients, leads to correct splicing of 60% of the pre-mRNA and to alternative splicing of 40%, the latter mRNA-product being destroyed by nonsense-mediated decay. An IVS3-48T genotype generates 80% correct and 20% aberrant products. Our study demonstrated that under iron deficient conditions, the aberrant splice product was increased to 56% and 50% of total FECH mRNA in erythroleukemic K562 and lymphoblastoid cell lines, respectively, both being homozygous for IVS3-48T. Concomitantly, FECH protein was decreased. Iron deficiency had less effect on the FECH splice ratio in an IVS3-48C/C lymphoblastoid cell line. Effects similar to iron deficiency were generated by siRNA knockdown of either splicing factor U2AF(65) or Fe(II)- and 2-oxoglutarate-dependent dioxygenase Jumonji domain-containing protein 6 (Jmjd6), which interacts with U2AF(65) by lysyl-hydroxylation. Based on these results, we propose that the availability of iron, a co-factor of Jmjd6, modulates U2AF(65)-lysyl-hydroxylation. This in turn, influences the relative amounts of correct and aberrant FECH mRNA splice products and thus, regulates the FECH enzyme activity.
Collapse
|
29
|
Gupta SK, Carmi S, Waldman Ben-Asher H, Tkacz ID, Naboishchikov I, Michaeli S. Basal splicing factors regulate the stability of mature mRNAs in trypanosomes. J Biol Chem 2013; 288:4991-5006. [PMID: 23283975 DOI: 10.1074/jbc.m112.416578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Gene expression in trypanosomes is mainly regulated post-transcriptionally. Genes are transcribed as polycistronic mRNAs that are dissected by the concerted action of trans-splicing and polyadenylation. In trans-splicing, a common exon, the spliced leader, is added to all mRNAs from a small RNA. In this study, we examined by microarray analysis the transcriptome following RNAi silencing of the basal splicing factors U2AF65, SF1, and U2AF35. The transcriptome data revealed correlations between the affected genes and their splicing and polyadenylation signaling properties, suggesting that differential binding of these factors to pre-mRNA regulates trans-splicing and hence expression of specific genes. Surprisingly, all these factors were shown to affect not only splicing but also mRNA stability. Affinity purification of SF1 and U2AF35 complexes supported their role in mRNA stability. U2AF35 but not SF1 was shown to bind to ribosomes. To examine the role of splicing factors in mRNA stability, mutations were introduced into the polypyrimidine tract located in the 3' UTR of a mini-gene, and the results demonstrate that U2AF65 binds to such a site and controls the mRNA stability. We propose that transcripts carrying splicing signals in their 3' UTR bind the splicing factors and control their stability.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | |
Collapse
|
30
|
Gu B, Eick D, Bensaude O. CTD serine-2 plays a critical role in splicing and termination factor recruitment to RNA polymerase II in vivo. Nucleic Acids Res 2012; 41:1591-603. [PMID: 23275552 PMCID: PMC3561981 DOI: 10.1093/nar/gks1327] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Co-transcriptional pre-mRNA processing relies on reversible phosphorylation of the carboxyl-terminal domain (CTD) of Rpb1, the largest subunit of RNA polymerase II (RNAP II). In this study, we replaced in live cells the endogenous Rpb1 by S2A Rpb1, where the second serines (Ser2) in the CTD heptapeptide repeats were switched to alanines, to prevent phosphorylation. Although slower, S2A RNAP II was able to transcribe. However, it failed to recruit splicing components such as U2AF65 and U2 snRNA to transcription sites, although the recruitment of U1 snRNA was not affected. As a consequence, co-transcriptional splicing was impaired. Interestingly, the magnitude of the S2A RNAP II splicing defect was promoter dependent. In addition, S2A RNAP II showed an impaired recruitment of the cleavage factor PCF11 to pre-mRNA and a defect in 3'-end RNA cleavage. These results suggest that CTD Ser2 plays critical roles in co-transcriptional pre-mRNA maturation in vivo: It likely recruits U2AF65 to ensure an efficient co-transcriptional splicing and facilitates the recruitment of pre-mRNA 3'-end processing factors to enhance 3'-end cleavage.
Collapse
Affiliation(s)
- Bo Gu
- Ecole Normale Supérieure, IBENS, 46, rue d'Ulm, Paris 75005, France
| | | | | |
Collapse
|
31
|
Nelson LD, Bender C, Mannsperger H, Buergy D, Kambakamba P, Mudduluru G, Korf U, Hughes D, Van Dyke MW, Allgayer H. Triplex DNA-binding proteins are associated with clinical outcomes revealed by proteomic measurements in patients with colorectal cancer. Mol Cancer 2012; 11:38. [PMID: 22682314 PMCID: PMC3537547 DOI: 10.1186/1476-4598-11-38] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/26/2012] [Indexed: 11/25/2022] Open
Abstract
Background Tri- and tetra-nucleotide repeats in mammalian genomes can induce formation of alternative non-B DNA structures such as triplexes and guanine (G)-quadruplexes. These structures can induce mutagenesis, chromosomal translocations and genomic instability. We wanted to determine if proteins that bind triplex DNA structures are quantitatively or qualitatively different between colorectal tumor and adjacent normal tissue and if this binding activity correlates with patient clinical characteristics. Methods Extracts from 63 human colorectal tumor and adjacent normal tissues were examined by gel shifts (EMSA) for triplex DNA-binding proteins, which were correlated with clinicopathological tumor characteristics using the Mann-Whitney U, Spearman’s rho, Kaplan-Meier and Mantel-Cox log-rank tests. Biotinylated triplex DNA and streptavidin agarose affinity binding were used to purify triplex-binding proteins in RKO cells. Western blotting and reverse-phase protein array were used to measure protein expression in tissue extracts. Results Increased triplex DNA-binding activity in tumor extracts correlated significantly with lymphatic disease, metastasis, and reduced overall survival. We identified three multifunctional splicing factors with biotinylated triplex DNA affinity: U2AF65 in cytoplasmic extracts, and PSF and p54nrb in nuclear extracts. Super-shift EMSA with anti-U2AF65 antibodies produced a shifted band of the major EMSA H3 complex, identifying U2AF65 as the protein present in the major EMSA band. U2AF65 expression correlated significantly with EMSA H3 values in all extracts and was higher in extracts from Stage III/IV vs. Stage I/II colon tumors (p = 0.024). EMSA H3 values and U2AF65 expression also correlated significantly with GSK3 beta, beta-catenin, and NF- B p65 expression, whereas p54nrb and PSF expression correlated with c-Myc, cyclin D1, and CDK4. EMSA values and expression of all three splicing factors correlated with ErbB1, mTOR, PTEN, and Stat5. Western blots confirmed that full-length and truncated beta-catenin expression correlated with U2AF65 expression in tumor extracts. Conclusions Increased triplex DNA-binding activity in vitro correlates with lymph node disease, metastasis, and reduced overall survival in colorectal cancer, and increased U2AF65 expression is associated with total and truncated beta-catenin expression in high-stage colorectal tumors.
Collapse
Affiliation(s)
- Laura D Nelson
- Dept. of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 2011; 44:53-7. [PMID: 22158538 PMCID: PMC3247063 DOI: 10.1038/ng.1031] [Citation(s) in RCA: 478] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 11/09/2011] [Indexed: 12/14/2022]
Abstract
Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders that often progress to chemotherapy-resistant secondary acute myeloid leukemia (sAML). We used whole-genome sequencing to perform an unbiased comprehensive screen to discover the somatic mutations in a sample from an individual with sAML and genotyped the loci containing these mutations in the matched MDS sample. Here we show that a missense mutation affecting the serine at codon 34 (Ser34) in U2AF1 was recurrently present in 13 out of 150 (8.7%) subjects with de novo MDS, and we found suggestive evidence of an increased risk of progression to sAML associated with this mutation. U2AF1 is a U2 auxiliary factor protein that recognizes the AG splice acceptor dinucleotide at the 3' end of introns, and the alterations in U2AF1 are located in highly conserved zinc fingers of this protein. Mutant U2AF1 promotes enhanced splicing and exon skipping in reporter assays in vitro. This previously unidentified, recurrent mutation in U2AF1 implicates altered pre-mRNA splicing as a potential mechanism for MDS pathogenesis.
Collapse
|
33
|
Fu Y, Masuda A, Ito M, Shinmi J, Ohno K. AG-dependent 3'-splice sites are predisposed to aberrant splicing due to a mutation at the first nucleotide of an exon. Nucleic Acids Res 2011; 39:4396-404. [PMID: 21288883 PMCID: PMC3105431 DOI: 10.1093/nar/gkr026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
In pre-mRNA splicing, a conserved AG/G at the 3′-splice site is recognized by U2AF35. A disease-causing mutation abrogating the G nucleotide at the first position of an exon (E+1) causes exon skipping in GH1, FECH and EYA1, but not in LPL or HEXA. Knockdown of U2AF35 enhanced exon skipping in GH1 and FECH. RNA-EMSA revealed that wild-type FECH requires U2AF35 but wild-type LPL does not. A series of artificial mutations in the polypyrimidine tracts of GH1, FECH, EYA1, LPL and HEXA disclosed that a stretch of at least 10–15 pyrimidines is required to ensure normal splicing in the presence of a mutation at E+1. Analysis of nine other disease-causing mutations at E+1 detected five splicing mutations. Our studies suggest that a mutation at the AG-dependent 3′-splice site that requires U2AF35 for spliceosome assembly causes exon skipping, whereas one at the AG-independent 3′-splice site that does not require U2AF35 gives rise to normal splicing. The AG-dependence of the 3′-splice site that we analyzed in disease-causing mutations at E+1 potentially helps identify yet unrecognized splicing mutations at E+1.
Collapse
Affiliation(s)
- Yuan Fu
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | |
Collapse
|
34
|
Cotranscriptional exon skipping in the genotoxic stress response. Nat Struct Mol Biol 2010; 17:1358-66. [PMID: 20972445 DOI: 10.1038/nsmb.1912] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 08/19/2010] [Indexed: 12/14/2022]
Abstract
Pre-mRNA splicing is functionally coupled to transcription, and genotoxic stresses can enhance alternative exon inclusion by affecting elongating RNA polymerase II. We report here that various genotoxic stress inducers, including camptothecin (CPT), inhibit the interaction between Ewing's sarcoma proto-oncoprotein (EWS), an RNA polymerase II-associated factor, and YB-1, a spliceosome-associated factor. This results in the cotranscriptional skipping of several exons of the MDM2 gene, which encodes the main p53 ubiquitin ligase. This reversible exon skipping participates in the regulation of MDM2 expression that may contribute to the accumulation of p53 during stress exposure and its rapid shut-off when stress is removed. Finally, a splicing-sensitive microarray identified numerous exons that are skipped in response to CPT and EWS-YB-1 depletion. These data demonstrate genotoxic stress-induced alteration of the communication between the transcriptional and splicing machineries, which results in widespread exon skipping and plays a central role in the genotoxic stress response.
Collapse
|
35
|
de Almeida SF, García-Sacristán A, Custódio N, Carmo-Fonseca M. A link between nuclear RNA surveillance, the human exosome and RNA polymerase II transcriptional termination. Nucleic Acids Res 2010; 38:8015-26. [PMID: 20699273 PMCID: PMC3001075 DOI: 10.1093/nar/gkq703] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In eukaryotes, the production of mature messenger RNA that exits the nucleus to be translated into protein in the cytoplasm requires precise and extensive modification of the nascent transcript. Any failure that compromises the integrity of an mRNA may cause its retention in the nucleus and trigger its degradation. Multiple studies indicate that mRNAs with processing defects accumulate in nuclear foci or ‘dots’ located near the site of transcription, but how exactly are defective RNAs recognized and tethered is still unknown. Here, we present evidence suggesting that unprocessed β-globin transcripts render RNA polymerase II (Pol II) incompetent for termination and that this quality control process requires the integrity of the nuclear exosome. Our results show that unprocessed pre-mRNAs remain tethered to the DNA template in association with Pol II, in an Rrp6-dependent manner. This reveals an unprecedented link between nuclear RNA surveillance, the exosome and Pol II transcriptional termination.
Collapse
Affiliation(s)
- Sérgio F de Almeida
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
36
|
Allele-specific recognition of the 3' splice site of INS intron 1. Hum Genet 2010; 128:383-400. [PMID: 20628762 PMCID: PMC2939332 DOI: 10.1007/s00439-010-0860-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 06/30/2010] [Indexed: 10/27/2022]
Abstract
Genetic predisposition to type 1 diabetes (T1D) has been associated with a chromosome 11 locus centered on the proinsulin gene (INS) and with differential steady-state levels of INS RNA from T1D-predisposing and -protective haplotypes. Here, we show that the haplotype-specific expression is determined by INS variants that control the splicing efficiency of intron 1. The adenine allele at IVS1-6 (rs689), which rapidly expanded in modern humans, renders the 3' splice site of this intron more dependent on the auxiliary factor of U2 small nuclear ribonucleoprotein (U2AF). This interaction required both zinc fingers of the 35-kD U2AF subunit (U2AF35) and was associated with repression of a competing 3' splice site in INS exon 2. Systematic mutagenesis of reporter constructs showed that intron 1 removal was facilitated by conserved guanosine-rich enhancers and identified additional splicing regulatory motifs in exon 2. Sequencing of intron 1 in primates revealed that relaxation of its 3' splice site in Hominidae coevolved with the introduction of a short upstream open reading frame, providing a more efficient coupled splicing and translation control. Depletion of SR proteins 9G8 and transformer-2 by RNA interference was associated with exon 2 skipping whereas depletion of SRp20 with increased representation of transcripts containing a cryptic 3' splice site in the last exon. Together, these findings reveal critical interactions underlying the allele-dependent INS expression and INS-mediated risk of T1D and suggest that the increased requirement for U2AF35 in higher primates may hinder thymic presentation of autoantigens encoded by transcripts with weak 3' splice sites.
Collapse
|
37
|
Mollet IG, Ben-Dov C, Felício-Silva D, Grosso AR, Eleutério P, Alves R, Staller R, Silva TS, Carmo-Fonseca M. Unconstrained mining of transcript data reveals increased alternative splicing complexity in the human transcriptome. Nucleic Acids Res 2010; 38:4740-54. [PMID: 20385588 PMCID: PMC2919708 DOI: 10.1093/nar/gkq197] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mining massive amounts of transcript data for alternative splicing information is paramount to help understand how the maturation of RNA regulates gene expression. We developed an algorithm to cluster transcript data to annotated genes to detect unannotated splice variants. A higher number of alternatively spliced genes and isoforms were found compared to other alternative splicing databases. Comparison of human and mouse data revealed a marked increase, in human, of splice variants incorporating novel exons and retained introns. Previously unannotated exons were validated by tiling array expression data and shown to correspond preferentially to novel first exons. Retained introns were validated by tiling array and deep sequencing data. The majority of retained introns were shorter than 500 nt and had weak polypyrimidine tracts. A subset of retained introns matching small RNAs and displaying a high GC content suggests a possible coordination between splicing regulation and production of noncoding RNAs. Conservation of unannotated exons and retained introns was higher in horse, dog and cow than in rodents, and 64% of exon sequences were only found in primates. This analysis highlights previously bypassed alternative splice variants, which may be crucial to deciphering more complex pathways of gene regulation in human.
Collapse
Affiliation(s)
- I G Mollet
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
de Chiara C, Menon RP, Strom M, Gibson TJ, Pastore A. Phosphorylation of S776 and 14-3-3 binding modulate ataxin-1 interaction with splicing factors. PLoS One 2009; 4:e8372. [PMID: 20037628 PMCID: PMC2791216 DOI: 10.1371/journal.pone.0008372] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 11/16/2009] [Indexed: 12/02/2022] Open
Abstract
Ataxin-1 (Atx1), a member of the polyglutamine (polyQ) expanded protein family, is responsible for spinocerebellar ataxia type 1. Requirements for developing the disease are polyQ expansion, nuclear localization and phosphorylation of S776. Using a combination of bioinformatics, cell and structural biology approaches, we have identified a UHM ligand motif (ULM), present in proteins associated with splicing, in the C-terminus of Atx1 and shown that Atx1 interacts with and influences the function of the splicing factor U2AF65 via this motif. ULM comprises S776 of Atx1 and overlaps with a nuclear localization signal and a 14-3-3 binding motif. We demonstrate that phosphorylation of S776 provides the molecular switch which discriminates between 14-3-3 and components of the spliceosome. We also show that an S776D Atx1 mutant previously designed to mimic phosphorylation is unsuitable for this aim because of the different chemical properties of the two groups. Our results indicate that Atx1 is part of a complex network of interactions with splicing factors and suggest that development of the pathology is the consequence of a competition of aggregation with native interactions. Studies of the interactions formed by non-expanded Atx1 thus provide valuable hints for understanding both the function of the non-pathologic protein and the causes of the disease.
Collapse
Affiliation(s)
- Cesira de Chiara
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Rajesh P. Menon
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Molly Strom
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Annalisa Pastore
- National Institute for Medical Research, Medical Research Council, London, United Kingdom
- * E-mail:
| |
Collapse
|
39
|
Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 2009; 10:741-54. [PMID: 19773805 DOI: 10.1038/nrm2777] [Citation(s) in RCA: 934] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alternative splicing of mRNA precursors provides an important means of genetic control and is a crucial step in the expression of most genes. Alternative splicing markedly affects human development, and its misregulation underlies many human diseases. Although the mechanisms of alternative splicing have been studied extensively, until the past few years we had not begun to realize fully the diversity and complexity of alternative splicing regulation by an intricate protein-RNA network. Great progress has been made by studying individual transcripts and through genome-wide approaches, which together provide a better picture of the mechanistic regulation of alternative pre-mRNA splicing.
Collapse
|
40
|
Gonçalves V, Matos P, Jordan P. Antagonistic SR proteins regulate alternative splicing of tumor-related Rac1b downstream of the PI3-kinase and Wnt pathways. Hum Mol Genet 2009; 18:3696-707. [DOI: 10.1093/hmg/ddp317] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
41
|
Grosso AR, Gomes AQ, Barbosa-Morais NL, Caldeira S, Thorne NP, Grech G, von Lindern M, Carmo-Fonseca M. Tissue-specific splicing factor gene expression signatures. Nucleic Acids Res 2008; 36:4823-32. [PMID: 18653532 PMCID: PMC2528195 DOI: 10.1093/nar/gkn463] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 06/29/2008] [Accepted: 07/03/2008] [Indexed: 12/25/2022] Open
Abstract
The alternative splicing code that controls and coordinates the transcriptome in complex multicellular organisms remains poorly understood. It has long been argued that regulation of alternative splicing relies on combinatorial interactions between multiple proteins, and that tissue-specific splicing decisions most likely result from differences in the concentration and/or activity of these proteins. However, large-scale data to systematically address this issue have just recently started to become available. Here we show that splicing factor gene expression signatures can be identified that reflect cell type and tissue-specific patterns of alternative splicing. We used a computational approach to analyze microarray-based gene expression profiles of splicing factors from mouse, chimpanzee and human tissues. Our results show that brain and testis, the two tissues with highest levels of alternative splicing events, have the largest number of splicing factor genes that are most highly differentially expressed. We further identified SR protein kinases and small nuclear ribonucleoprotein particle (snRNP) proteins among the splicing factor genes that are most highly differentially expressed in a particular tissue. These results indicate the power of generating signature-based predictions as an initial computational approach into a global view of tissue-specific alternative splicing regulation.
Collapse
Affiliation(s)
- Ana Rita Grosso
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Anita Q. Gomes
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Nuno L. Barbosa-Morais
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Sandra Caldeira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Natalie P. Thorne
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Godfrey Grech
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Marieke von Lindern
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal, Department of Oncology, University of Cambridge, CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK and Department of Hematology, Erasmus Medical Center, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
42
|
Marengo MS, Wassarman DA. A DNA damage signal activates and derepresses exon inclusion in Drosophila TAF1 alternative splicing. RNA (NEW YORK, N.Y.) 2008; 14:1681-1695. [PMID: 18596254 PMCID: PMC2491473 DOI: 10.1261/rna.1048808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 05/06/2008] [Indexed: 05/26/2023]
Abstract
Signal-dependent alternative splicing is important for regulating gene expression in eukaryotes, yet our understanding of how signals impact splicing mechanisms is limited. A model to address this issue is alternative splicing of Drosophila TAF1 pre-mRNA in response to camptothecin (CPT)-induced DNA damage signals. CPT treatment of Drosophila S2 cells causes increased inclusion of TAF1 alternative cassette exons 12a and 13a through an ATR signaling pathway. To evaluate the role of TAF1 pre-mRNA sequences in the alternative splicing mechanism, we developed a TAF1 minigene (miniTAF1) and an S2 cell splicing assay that recapitulated key aspects of CPT-induced alternative splicing of endogenous TAF1. Analysis of miniTAF1 indicated that splice site strength underlies independent and distinct mechanisms that control exon 12a and 13a inclusion. Mutation of the exon 13a weak 5' splice site or weak 3' splice site to a consensus sequence was sufficient for constitutive exon 13a inclusion. In contrast, mutation of the exon 12a strong 5' splice site or moderate 3' splice site to a consensus sequence was only sufficient for constitutive exon 12a inclusion in the presence of CPT-induced signals. Analogous studies of the exon 13 3' splice site suggest that exon 12a inclusion involves signal-dependent pairing between constitutive and alternative splice sites. Finally, intronic elements identified by evolutionary conservation were necessary for full repression of exon 12a inclusion or full activation of exon 13a inclusion and may be targets of CPT-induced signals. In summary, this work defines the role of sequence elements in the regulation of TAF1 alternative splicing in response to a DNA damage signal.
Collapse
Affiliation(s)
- Matthew S Marengo
- University of Wisconsin School of Medicine and Public Health, Department of Pharmacology, Molecular and Cellular Pharmacology Program, Madison, WI 53706, USA
| | | |
Collapse
|
43
|
Murray JI, Voelker RB, Henscheid KL, Warf MB, Berglund JA. Identification of motifs that function in the splicing of non-canonical introns. Genome Biol 2008; 9:R97. [PMID: 18549497 PMCID: PMC2481429 DOI: 10.1186/gb-2008-9-6-r97] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2007] [Revised: 12/27/2007] [Accepted: 06/12/2008] [Indexed: 01/22/2023] Open
Abstract
The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests a novel mechanism for intron recognition that compensates for a weakened canonical pre-mRNA splicing motif. Background While the current model of pre-mRNA splicing is based on the recognition of four canonical intronic motifs (5' splice site, branchpoint sequence, polypyrimidine (PY) tract and 3' splice site), it is becoming increasingly clear that splicing is regulated by both canonical and non-canonical splicing signals located in the RNA sequence of introns and exons that act to recruit the spliceosome and associated splicing factors. The diversity of human intronic sequences suggests the existence of novel recognition pathways for non-canonical introns. This study addresses the recognition and splicing of human introns that lack a canonical PY tract. The PY tract is a uridine-rich region at the 3' end of introns that acts as a binding site for U2AF65, a key factor in splicing machinery recruitment. Results Human introns were classified computationally into low- and high-scoring PY tracts by scoring the likely U2AF65 binding site strength. Biochemical studies confirmed that low-scoring PY tracts are weak U2AF65 binding sites while high-scoring PY tracts are strong U2AF65 binding sites. A large population of human introns contains weak PY tracts. Computational analysis revealed many families of motifs, including C-rich and G-rich motifs, that are enriched upstream of weak PY tracts. In vivo splicing studies show that C-rich and G-rich motifs function as intronic splicing enhancers in a combinatorial manner to compensate for weak PY tracts. Conclusion The enrichment of specific intronic splicing enhancers upstream of weak PY tracts suggests that a novel mechanism for intron recognition exists, which compensates for a weakened canonical pre-mRNA splicing motif.
Collapse
Affiliation(s)
- Jill I Murray
- Department of Chemistry, Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| | | | | | | | | |
Collapse
|
44
|
Izquierdo JM. Fas splicing regulation during early apoptosis is linked to caspase-mediated cleavage of U2AF65. Mol Biol Cell 2008; 19:3299-307. [PMID: 18508922 DOI: 10.1091/mbc.e07-11-1125] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
U2 small nuclear ribonucleoprotein (snRNP) auxiliary factor 65 kDa (U2AF65) is an essential splicing factor in the recognition of the pre-mRNA 3' splice sites during the assembly of the splicing commitment complex. We report here that U2AF65 is proteolyzed during apoptosis. This cleavage is group I or III caspase dependent in a noncanonical single site localized around the aspartic acid(128) residue and leads to the separation of the N- and C-terminal parts of U2AF65. The U2AF65 N-terminal fragment mainly accumulates in the nucleus within nuclear bodies (nucleoli-like pattern) and to a much lesser extent in the cytoplasm, whereas the C-terminal fragment is found in the cytoplasm, even in localization studies on apoptosis induction. From a functional viewpoint, the N-terminal fragment promotes Fas exon 6 skipping from a reporter minigene, by acting as a dominant-negative version of U2AF65, whereas the C-terminal fragment has no significant effect. The dominant-negative behavior of the U2AF65 N-terminal fragment can be reverted by U2AF35 overexpression. Interestingly, U2AF65 proteolysis in Jurkat cells on induction of early apoptosis correlates with the down-regulation of endogenous Fas exon 6 inclusion. Thus, these results support a functional link among apoptosis induction, U2AF65 cleavage, and the regulation of Fas alternative splicing.
Collapse
Affiliation(s)
- José M Izquierdo
- Departamento de Biología Molecular, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Consejo Superior de Investigaciones Científicas, DP 28049, Madrid, Spain.
| |
Collapse
|
45
|
Abstract
Splicing factors SF1 and U2AF associate cooperatively with pre-mRNA and play a crucial role in 3' splice site recognition during early steps of spliceosome assembly. Formation of the active spliceosome subsequently displaces SF1 in a remodeling process that stabilizes the association of U2 snRNP with pre-mRNA. Fluorescence microscopy shows SF1 and U2AF distributed throughout the nucleoplasm, where transcription occurs, with additional concentration in nuclear speckles, where splicing factors accumulate when not engaged in splicing. Fluorescence recovery after photobleaching analysis in live cells shows that the mobilities of SF1 and the two subunits of U2AF (U2AF(65) and U2AF(35)) are correlated with the abilities of these proteins to interact with each other. Direct binding of SF1 to U2AF(65) was demonstrated by fluorescence resonance energy transfer in both the nucleoplasm and nuclear speckles. This interaction persisted after transcription inhibition, suggesting that SF1 associates with U2AF in a splicing-independent manner. We propose that SF1 and U2AF form extraspliceosomal complexes before and after taking part in the assembly of catalytic spliceosomes.
Collapse
|
46
|
Tisserant A, König H. Signal-regulated Pre-mRNA occupancy by the general splicing factor U2AF. PLoS One 2008; 3:e1418. [PMID: 18183298 PMCID: PMC2169300 DOI: 10.1371/journal.pone.0001418] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/12/2007] [Indexed: 11/25/2022] Open
Abstract
Alternative splicing of transcripts in a signal-dependent manner has emerged as an important concept to ensure appropriate expression of splice variants under different conditions. Binding of the general splicing factor U2AF to splice sites preceding alternatively spliced exons has been suggested to be an important step for splice site recognition. For splicing to proceed, U2AF has to be replaced by other factors. We show here that U2AF interacts with the signal-dependent splice regulator Sam68 and that forced expression of Sam68 results in enhanced binding of the U2AF65 subunit to an alternatively spliced pre-mRNA sequence in vivo. Conversely, the rapid signal-induced and phosphorylation-dependent interference with Sam68 binding to RNA was accompanied by reduced pre-mRNA occupancy of U2AF in vivo. Our data suggest that Sam68 can affect splice site occupancy by U2AF in signal-dependent splicing. We propose that the induced release of U2AF from pre-mRNA provides a regulatory step to control alternative splicing.
Collapse
Affiliation(s)
- Anne Tisserant
- Forschungszentrum Karlsruhe GmbH, Institut für Toxikologie und Genetik, Karlsruhe, Germany
| | - Harald König
- Forschungszentrum Karlsruhe GmbH, Institut für Toxikologie und Genetik, Karlsruhe, Germany
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
47
|
A stochastic view of spliceosome assembly and recycling in the nucleus. PLoS Comput Biol 2007; 3:2019-31. [PMID: 17967051 PMCID: PMC2041977 DOI: 10.1371/journal.pcbi.0030201] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 09/04/2007] [Indexed: 12/16/2022] Open
Abstract
How splicing factors are recruited to nascent transcripts in the nucleus in order to assemble spliceosomes on newly synthesised pre-mRNAs is unknown. To address this question, we compared the intranuclear trafficking kinetics of small nuclear ribonucleoprotein particles (snRNP) and non-snRNP proteins in the presence and absence of splicing activity. Photobleaching experiments clearly show that spliceosomal proteins move continuously throughout the entire nucleus independently of ongoing transcription or splicing. Using quantitative experimental data, a mathematical model was applied for spliceosome assembly and recycling in the nucleus. The model assumes that splicing proteins move by Brownian diffusion and interact stochastically with binding sites located at different subnuclear compartments. Inhibition of splicing, which reduces the number of pre-mRNA binding sites available for spliceosome assembly, was modeled as a decrease in the on-rate binding constant in the nucleoplasm. Simulation of microscopy experiments before and after splicing inhibition yielded results consistent with the experimental observations. Taken together, our data argue against the view that spliceosomal components are stored in nuclear speckles until a signal triggers their recruitment to nascent transcripts. Rather, the results suggest that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with pre-mRNAs. Understanding the genomic program of an organism requires knowledge of how the information encoded in DNA is processed to generate messenger RNAs that can be translated into proteins. The initial products of gene transcription are extensively modified in the cell nucleus, and a major processing reaction consists of splicing of specific sequences from the middle of the primary transcripts. Splicing is catalyzed by the spliceosome, a large complex composed of five small RNAs and over 100 different proteins. Spliceosomes form anew on primary transcripts and disassemble after splicing, but what triggers the recruitment of individual spliceosomal components to selected gene products is unclear. Here, we have combined imaging and computational approaches to address this question. We obtained quantitative experimental data on the mobility and subnuclear distribution of splicing proteins before and after splicing inhibition, and we applied mathematical models to analyze and interpret the results. We conclude that spliceosomal components do not require a signal in order to be recruited to nascent transcripts. Our results favor the view that splicing proteins are constantly diffusing throughout the entire nucleus and collide randomly and transiently with primary gene products.
Collapse
|
48
|
Zhang Z, Krainer AR. Splicing remodels messenger ribonucleoprotein architecture via eIF4A3-dependent and -independent recruitment of exon junction complex components. Proc Natl Acad Sci U S A 2007; 104:11574-9. [PMID: 17606899 PMCID: PMC1913901 DOI: 10.1073/pnas.0704946104] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pre-mRNA splicing not only removes introns and joins exons to generate spliced mRNA but also results in remodeling of the spliced messenger ribonucleoprotein, influencing various downstream events. This remodeling includes the loading of an exon-exon junction complex (EJC). It is unclear how the spliceosome recruits the EJC onto the mRNA and whether EJC formation or EJC components are required for pre-mRNA splicing. Here we immunodepleted the EJC core component eIF4A3 from HeLa cell nuclear extract and found that eIF4A3 is dispensable for pre-mRNA splicing in vitro. However, eIF4A3 is required for the splicing-dependent loading of the Y14/Magoh heterodimer onto mRNA, and this activity of human eIF4A3 is also present in the Drosophila ortholog. Surprisingly, the loading of six other EJC components was not affected by eIF4A3 depletion, suggesting that their binding to mRNA involves different or redundant pathways. Finally, we found that the assembly of the EJC onto mRNA occurs at the late stages of the splicing reaction and requires the second-step splicing and mRNA-release factor HRH1/hPrp22. The EJC-dependent and -independent recruitment of RNA-binding proteins onto mRNA suggests a role for the EJC in messenger ribonucleoprotein remodeling involving interactions with other proteins already bound to the pre-mRNA, which has implications for nonsense-mediated mRNA decay and other mRNA transactions.
Collapse
Affiliation(s)
- Zuo Zhang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Adrian R. Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
- *To whom correspondence should be addressed at:
Cold Spring Harbor Laboratory, P.O. Box 100, Cold Spring Harbor, NY 11724. E-mail:
| |
Collapse
|
49
|
Allemand E, Hastings ML, Murray MV, Myers MP, Krainer AR. Alternative splicing regulation by interaction of phosphatase PP2Cgamma with nucleic acid-binding protein YB-1. Nat Struct Mol Biol 2007; 14:630-8. [PMID: 17572683 DOI: 10.1038/nsmb1257] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 05/02/2007] [Indexed: 01/29/2023]
Abstract
Kinases and phosphatases participate in precursor messenger RNA (pre-mRNA) splicing regulation, but their precise roles and the identities of their cofactors and substrates remain poorly understood. The human Ser/Thr phosphatase PP2Cgamma promotes spliceosome assembly. We show that PP2Cgamma's distinctive acidic domain is essential for its activity in splicing and interacts with YB-1, a spliceosome-associated factor. Moreover, PP2Cgamma is a phosphoprotein in vivo, and its acidic domain is phosphorylated under splicing conditions in vitro. PP2Cgamma phosphorylation enhances its interaction with YB-1 and is reversed by the phosphatase in cis. PP2Cgamma knockdown leaves constitutive splicing unaffected but inhibits cell proliferation and affects alternative splicing of CD44, a YB-1 target. This effect on splicing regulation is mediated by PP2Cgamma's acidic domain, which is essential to promote inclusion of CD44 exons v4 and v5 in vivo. We propose that PP2Cgamma modulates alternative splicing of specific pre-mRNAs coregulated by YB-1.
Collapse
Affiliation(s)
- Eric Allemand
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | |
Collapse
|