1
|
Lobel JH, Ingolia NT. Deciphering disordered regions controlling mRNA decay in high-throughput. Nature 2025:10.1038/s41586-025-08919-x. [PMID: 40269159 DOI: 10.1038/s41586-025-08919-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025]
Abstract
Intrinsically disordered regions within proteins drive specific molecular functions despite lacking a defined structure1,2. Although disordered regions are integral to controlling mRNA stability and translation, the mechanisms underlying these regulatory effects remain unclear3. Here we reveal the molecular determinants of this activity using high-throughput functional profiling. Systematic mutagenesis across hundreds of regulatory disordered elements, combined with machine learning, reveals a complex pattern of molecular features important for their activity. The presence and arrangement of aromatic residues strongly predicts the ability of seemingly diverse protein sequences to influence mRNA stability and translation. We further show how many of these regulatory elements exert their effects by engaging core mRNA decay machinery. Our results define molecular features and biochemical pathways that explain how disordered regions control mRNA expression and shed light on broader principles within functional, unstructured proteins.
Collapse
Affiliation(s)
- Joseph H Lobel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- Center for Computational Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Randolph LK, Pauers MM, Martínez JC, Sibener LJ, Zrzavy MA, Sharif NA, Gonzalez TM, Ramachandran KV, Dominguez D, Hengst U. Regulation of synapse density by Pumilio RNA-binding proteins. Cell Rep 2024; 43:114747. [PMID: 39298318 PMCID: PMC11544588 DOI: 10.1016/j.celrep.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The formation, stabilization, and elimination of synapses are tightly regulated during neural development and into adulthood. Pumilio RNA-binding proteins regulate the translation and localization of many synaptic mRNAs and are developmentally downregulated in the brain. We found that simultaneous downregulation of Pumilio 1 and 2 increases both excitatory and inhibitory synapse density in primary hippocampal neurons and promotes synapse maturation. Loss of Pum1 and Pum2 in the mouse brain was associated with an increase in mRNAs involved in mitochondrial function and synaptic translation. These findings reveal a role for developmental Pumilio downregulation as a permissive step in the maturation of synapses and suggest that modulation of Pumilio levels is a cell-intrinsic mechanism by which neurons tune their capacity for synapse stabilization.
Collapse
Affiliation(s)
- Lisa K Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michaela M Pauers
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - José C Martínez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Hematology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie J Sibener
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michael A Zrzavy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nyle A Sharif
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tatiana M Gonzalez
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kapil V Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neuroscience, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel Dominguez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ulrich Hengst
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
3
|
Haugen RJ, Barnier C, Elrod ND, Luo H, Jensen MK, Ji P, Smibert CA, Lipshitz HD, Wagner EJ, Freddolino PL, Goldstrohm AC. Regulation of the Drosophila transcriptome by Pumilio and the CCR4-NOT deadenylase complex. RNA (NEW YORK, N.Y.) 2024; 30:866-890. [PMID: 38627019 PMCID: PMC11182014 DOI: 10.1261/rna.079813.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 05/07/2024]
Abstract
The sequence-specific RNA-binding protein Pumilio (Pum) controls Drosophila development; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we use knockdown and knockout approaches coupled with RNA-seq to measure the impact of Pum on the transcriptome of Drosophila cells in culture. We also use an improved RNA coimmunoprecipitation method to identify Pum-bound mRNAs in Drosophila embryos. Integration of these data sets with the locations of Pum-binding motifs across the transcriptome reveals novel direct Pum target genes involved in neural, muscle, wing, and germ cell development and in cellular proliferation. These genes include components of Wnt, TGF-β, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. We identify the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pum-mediated repression, and observe concordant regulation of Pum:CCR4-NOT target mRNAs. Computational modeling reveals that Pum binding, binding site number, clustering, and sequence context are important determinants of regulation. In contrast, we show that the responses of direct mRNA targets to Pum-mediated repression are not influenced by the content of optimal synonymous codons. Moreover, contrary to a prevailing model, we do not detect a role for CCR4-NOT in the degradation of mRNAs with low codon optimality. Together, the results of this work provide new insights into the Pum regulatory network and mechanisms and the parameters that influence the efficacy of Pum-mediated regulation.
Collapse
Affiliation(s)
- Rebecca J Haugen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Catherine Barnier
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77550, USA
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Madeline K Jensen
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Ping Ji
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada
| | - Eric J Wagner
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - P Lydia Freddolino
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
4
|
Lobel JH, Ingolia NT. Defining the mechanisms and properties of post-transcriptional regulatory disordered regions by high-throughput functional profiling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578453. [PMID: 38370681 PMCID: PMC10871298 DOI: 10.1101/2024.02.01.578453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Disordered regions within RNA binding proteins are required to control mRNA decay and protein synthesis. To understand how these disordered regions modulate gene expression, we surveyed regulatory activity across the entire disordered proteome using a high-throughput functional assay. We identified hundreds of regulatory sequences within intrinsically disordered regions and demonstrate how these elements cooperate with core mRNA decay machinery to promote transcript turnover. Coupling high-throughput functional profiling with mutational scanning revealed diverse molecular features, ranging from defined motifs to overall sequence composition, underlying the regulatory effects of disordered peptides. Machine learning analysis implicated aromatic residues in particular contexts as critical determinants of repressor activity, consistent with their roles in forming protein-protein interactions with downstream effectors. Our results define the molecular principles and biochemical mechanisms that govern post-transcriptional gene regulation by disordered regions and exemplify the encoding of diverse yet specific functions in the absence of well-defined structure.
Collapse
Affiliation(s)
- Joseph H Lobel
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Lead contact
| |
Collapse
|
5
|
Kamada Y, Ando R, Izawa S, Matsuura A. Yeast Tor complex 1 phosphorylates eIF4E-binding protein, Caf20. Genes Cells 2023; 28:789-799. [PMID: 37700444 PMCID: PMC11447835 DOI: 10.1111/gtc.13067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/14/2023]
Abstract
Tor complex 1 (TORC1), a master regulator of cell growth, is an evolutionarily conserved protein kinase within eukaryotic organisms. To control cell growth, TORC1 governs translational processes by phosphorylating its substrate proteins in response to cellular nutritional cues. Mammalian TORC1 (mTORC1) assumes the responsibility of phosphorylating the eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1) to regulate its interaction with eIF4E. The budding yeast Saccharomyces cerevisiae possesses a pair of 4E-BP genes, CAF20 and EAP1. However, the extent to which the TORC1-4E-BP axis regulates translational initiation in yeast remains uncertain. In this study, we demonstrated the influence of TORC1 on the phosphorylation status of Caf20 in vivo, as well as the direct phosphorylation of Caf20 by TORC1 in vitro. Furthermore, we found the TORC1-dependent recruitment of Caf20 to the 80S ribosome. Consequently, our study proposes a plausible involvement of yeast's 4E-BP in the efficacy of translation initiation, an aspect under the control of TORC1.
Collapse
Affiliation(s)
- Yoshiaki Kamada
- National Institute for Basic Biology, Okazaki, Japan
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Ryoko Ando
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Shingo Izawa
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan
| | - Akira Matsuura
- Department of Biology, Graduate School of Science, Chiba University, Chiba, Japan
| |
Collapse
|
6
|
Botta S, de Prisco N, Chemiakine A, Brandt V, Cabaj M, Patel P, Doron‐Mandel E, Treadway CJ, Jovanovic M, Brown NG, Soni RK, Gennarino VA. Dosage sensitivity to Pumilio1 variants in the mouse brain reflects distinct molecular mechanisms. EMBO J 2023; 42:e112721. [PMID: 37070548 PMCID: PMC10233381 DOI: 10.15252/embj.2022112721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 04/19/2023] Open
Abstract
Different mutations in the RNA-binding protein Pumilio1 (PUM1) cause divergent phenotypes whose severity tracks with dosage: a mutation that reduces PUM1 levels by 25% causes late-onset ataxia, whereas haploinsufficiency causes developmental delay and seizures. Yet PUM1 targets are derepressed to equal degrees in both cases, and the more severe mutation does not hinder PUM1's RNA-binding ability. We therefore considered the possibility that the severe mutation might disrupt PUM1 interactions, and identified PUM1 interactors in the murine brain. We find that mild PUM1 loss derepresses PUM1-specific targets, but the severe mutation disrupts interactions with several RNA-binding proteins and the regulation of their targets. In patient-derived cell lines, restoring PUM1 levels restores these interactors and their targets to normal levels. Our results demonstrate that dosage sensitivity does not always signify a linear relationship with protein abundance but can involve distinct mechanisms. We propose that to understand the functions of RNA-binding proteins in a physiological context will require studying their interactions as well as their targets.
Collapse
Affiliation(s)
- Salvatore Botta
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
- Department of Translational Medical ScienceUniversity of Campania Luigi VanvitelliCasertaItaly
| | - Nicola de Prisco
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Alexei Chemiakine
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Vicky Brandt
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Maximilian Cabaj
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
| | - Purvi Patel
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | | | - Colton J Treadway
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Marko Jovanovic
- Department of Biological SciencesColumbia UniversityNew YorkNYUSA
| | - Nicholas G Brown
- Department of Pharmacology and Lineberger Comprehensive Cancer CenterUniversity of North Carolina School of MedicineChapel HillNCUSA
| | - Rajesh K Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer CenterColumbia University Irving Medical CenterNew YorkNYUSA
| | - Vincenzo A Gennarino
- Department of Genetics and DevelopmentColumbia University Irving Medical CenterNew YorkNYUSA
- Departments of NeurologyColumbia University Irving Medical CenterNew YorkNYUSA
- Columbia Stem Cell InitiativeColumbia University Irving Medical CenterNew YorkNYUSA
- Initiative for Columbia Ataxia and TremorColumbia University Irving Medical CenterNew YorkNYUSA
| |
Collapse
|
7
|
Jagadeesan SK, Al-gafari M, Wang J, Takallou S, Allard D, Hajikarimlou M, Kazmirchuk TDD, Moteshareie H, Said KB, Nokhbeh R, Smith M, Samanfar B, Golshani A. DBP7 and YRF1-6 Are Involved in Cell Sensitivity to LiCl by Regulating the Translation of PGM2 mRNA. Int J Mol Sci 2023; 24:ijms24021785. [PMID: 36675300 PMCID: PMC9864399 DOI: 10.3390/ijms24021785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/17/2023] Open
Abstract
Lithium chloride (LiCl) has been widely researched and utilized as a therapeutic option for bipolar disorder (BD). Several pathways, including cell signaling and signal transduction pathways in mammalian cells, are shown to be regulated by LiCl. LiCl can negatively control the expression and activity of PGM2, a phosphoglucomutase that influences sugar metabolism in yeast. In the presence of galactose, when yeast cells are challenged by LiCl, the phosphoglucomutase activity of PGM2p is decreased, causing an increase in the concentration of toxic galactose metabolism intermediates that result in cell sensitivity. Here, we report that the null yeast mutant strains DBP7∆ and YRF1-6∆ exhibit increased LiCl sensitivity on galactose-containing media. Additionally, we demonstrate that DBP7 and YRF1-6 modulate the translational level of PGM2 mRNA, and the observed alteration in translation seems to be associated with the 5'-untranslated region (UTR) of PGM2 mRNA. Furthermore, we observe that DBP7 and YRF1-6 influence, to varying degrees, the translation of other mRNAs that carry different 5'-UTR secondary structures.
Collapse
Affiliation(s)
- Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mustafa Al-gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Danielle Allard
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Kamaledin B. Said
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Department of Pathology and Microbiology, College of Medicine, University of Hail, Hail 55476, Saudi Arabia
| | - Reza Nokhbeh
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Bahram Samanfar
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1A 0C6, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
- Correspondence:
| |
Collapse
|
8
|
Li Y, Zhao Q, Song X, Song J. [Construction of an adenovirus vector expressing engineered splicing factor for regulating alternative splicing of YAP1 in neonatal rat cardiomyocytes]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:1013-1018. [PMID: 35869763 DOI: 10.12122/j.issn.1673-4254.2022.07.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To construct an adenovirus vector expressing artificial splicing factor capable of regulating alternative splicing of Yap1 in cardiomyocytes. METHODS The splicing factors with different sequences were constructed against Exon6 of YAP1 based on the sequence specificity of Pumilio1. The PCR fragment of the artificially synthesized PUF-SR or wild-type PUFSR was cloned into pAd-Track plasmid, and the recombinant plasmids were transformed into E. coli DH5α for plasmid amplification. The amplified plasmids were digested with Pac I and transfected into 293A cells for packaging to obtain the adenovirus vectors. Cultured neonatal rat cardiomyocytes were transfected with the adenoviral vectors, and alternative splicing of YAP1 was detected using quantitative and semi-quantitative PCR; Western blotting was performed to detect the signal of the fusion protein Flag. RESULTS The transfection efficiency of the adenovirus vectors was close to 100% in rat cardiomyocytes, and no fluorescent protein was detected in the cells with plasmid transfection. The results of Western blotting showed that both the negative control and Flag-SR-NLS-PUF targeting the YAPExon6XULIE sequence were capable of detecting the expression of the protein fused to Flag. The results of reverse transcription-PCR and PCR demonstrated that the artificial splicing factor constructed based on the 4th target sequence of YAP1 effectively regulated the splicing of YAP1 Exon6 in the cardiomyocytes (P < 0.05). CONCLUSION We successfully constructed adenovirus vectors capable of regulating YAP1 alternative splicing rat cardiomyocytes.
Collapse
Affiliation(s)
- Y Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China.,Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China
| | - Q Zhao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200082, China
| | - X Song
- Department of Heart Medicine, Changhai Hospital, Naval Medical University, Shanghai 200082, China
| | - J Song
- Department of Anesthesiology, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai 200082, China
| |
Collapse
|
9
|
Rajasekaran S, Khan E, Ching SR, Khan M, Siddiqui J, Gradia DF, Lin C, Bouley SJ, Mercadante D, Manning AL, Gerber AP, Walker J, Miles W. PUMILIO competes with AUF1 to control DICER1 RNA levels and miRNA processing. Nucleic Acids Res 2022; 50:7048-7066. [PMID: 35736218 PMCID: PMC9262620 DOI: 10.1093/nar/gkac499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/27/2022] [Indexed: 12/24/2022] Open
Abstract
DICER1 syndrome is a cancer pre-disposition disorder caused by mutations that disrupt the function of DICER1 in miRNA processing. Studying the molecular, cellular and oncogenic effects of these mutations can reveal novel mechanisms that control cell homeostasis and tumor biology. Here, we conduct the first analysis of pathogenic DICER1 syndrome allele from the DICER1 3'UTR. We find that the DICER1 syndrome allele, rs1252940486, abolishes interaction with the PUMILIO RNA binding protein with the DICER1 3'UTR, resulting in the degradation of the DICER1 mRNA by AUF1. This single mutational event leads to diminished DICER1 mRNA and protein levels, and widespread reprogramming of miRNA networks. The in-depth characterization of the rs1252940486 DICER1 allele, reveals important post-transcriptional regulatory events that control DICER1 levels.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Samuel R Ching
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Misbah Khan
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Jalal K Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Daniela F Gradia
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
- Department of Genetics, Federal University of Parana, Curitiba, Brazil
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
- The Ohio State University Comprehensive Cancer Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210, USA
| | - Stephanie J Bouley
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - Amity L Manning
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, USA
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK
| | - James A Walker
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Wayne O Miles
- To whom correspondence should be addressed. Tel: +1 614 366 2869;
| |
Collapse
|
10
|
Lithium chloride sensitivity connects the activity of PEX11 and RIM20 to the translation of PGM2 and other mRNAs with structured 5’-UTRs. Mol Cell Biochem 2022; 477:2643-2656. [DOI: 10.1007/s11010-022-04466-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
|
11
|
Higuchi Y, Fujii S, Valderrama AL, Irie K, Suda Y, Mizuno T, Irie K. The eIF4E-binding protein Eap1 has similar but independent roles in cell growth and gene expression with the cytoplasmic deadenylase Ccr4. Biosci Biotechnol Biochem 2021; 85:1452-1459. [PMID: 33784392 DOI: 10.1093/bbb/zbab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/24/2021] [Indexed: 11/12/2022]
Abstract
eIF4E-binding proteins (4E-BPs) are translational repressors that compete with eIF4G for binding to eIF4E. Here we investigated the roles of yeast 4E-BPs, Eap1, and Caf20 in cell wall integrity pathway and gene expression. We found that eap1∆ mutation, but not caf20∆ mutation, showed synthetic growth defect with mutation in ROM2 gene encoding Rho1 GEF. The eap1∆ mutation also showed synthetic lethality with mutation in CCR4 gene encoding cytoplasmic deadenylase. Ccr4 functions in the degradation of LRG1 mRNA encoding Rho1 GAP. Eap1-Y109A L114A, which could not bind to eIF4E, did not suppress the synthetic lethality of eap1∆ ccr4∆ mutant, suggesting that 4E-binding of Eap1 is important for its function. We also found that eap1∆ mutant showed the derepression of stress response gene HSP12. 4E-binding of Eap1 was also required for the repression of HSP12 expression. Our results indicate that Eap1 has similar but independent roles in cell growth and gene expression with Ccr4.
Collapse
Affiliation(s)
- Yudai Higuchi
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shiori Fujii
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Arvin Lapiz Valderrama
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Live Cell Super-resolution Imaging Research Team, RIKEN Center for Advanced Photonics, Wako, Saitama, Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Ph.D. Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Enwerem III, Elrod ND, Chang CT, Lin A, Ji P, Bohn JA, Levdansky Y, Wagner EJ, Valkov E, Goldstrohm AC. Human Pumilio proteins directly bind the CCR4-NOT deadenylase complex to regulate the transcriptome. RNA (NEW YORK, N.Y.) 2021; 27:445-464. [PMID: 33397688 PMCID: PMC7962487 DOI: 10.1261/rna.078436.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 05/13/2023]
Abstract
Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.
Collapse
Affiliation(s)
- Isioma I I Enwerem
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ai Lin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Jennifer A Bohn
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, Texas 77550, USA
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Role of PUM RNA-Binding Proteins in Cancer. Cancers (Basel) 2021; 13:cancers13010129. [PMID: 33401540 PMCID: PMC7796173 DOI: 10.3390/cancers13010129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary PUM1 and PUM2 are RNA-binding Pumilio proteins controlling the accessibility of hundreds of mRNAs for translation in a variety of human tissues. As a result, PUMs exemplify one of the mechanisms safeguarding the cellular proteome. PUM expression is disturbed in cancer, resulting in dysregulation of their target mRNAs. These targets encode factors responsible for processes usually affected in cancer, such as proliferation, apoptosis, and the cell cycle. This review describes PUM1 and PUM2 ribonucleoprotein networks and highlights the mechanisms underlying the regulatory role of PUM proteins and, most importantly, the emerging impact of PUM dysregulation in cancer. It also emphasizes the importance of upcoming studies on PUM proteins in the context of cancer, as they may provide new therapeutic targets in the future. Abstract Until recently, post-transcriptional gene regulation (PTGR), in contrast to transcriptional regulation, was not extensively explored in cancer, even though it seems to be highly important. PUM proteins are well described in the PTGR of several organisms and contain the PUF RNA-binding domain that recognizes the UGUANAUA motif, located mostly in the 3′ untranslated region (3′UTR) of target mRNAs. Depending on the protein cofactors recruited by PUM proteins, target mRNAs are directed towards translation, repression, activation, degradation, or specific localization. Abnormal profiles of PUM expression have been shown in several types of cancer, in some of them being different for PUM1 and PUM2. This review summarizes the dysregulation of PUM1 and PUM2 expression in several cancer tissues. It also describes the regulatory mechanisms behind the activity of PUMs, including cooperation with microRNA and non-coding RNA machineries, as well as the alternative polyadenylation pathway. It also emphasizes the importance of future studies to gain a more complete picture of the role of PUM proteins in different types of cancer. Such studies may result in identification of novel targets for future cancer therapies.
Collapse
|
14
|
Hajikarimlou M, Hunt K, Kirby G, Takallou S, Jagadeesan SK, Omidi K, Hooshyar M, Burnside D, Moteshareie H, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Lithium Chloride Sensitivity in Yeast and Regulation of Translation. Int J Mol Sci 2020; 21:ijms21165730. [PMID: 32785068 PMCID: PMC7461102 DOI: 10.3390/ijms21165730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
For decades, lithium chloride (LiCl) has been used as a treatment option for those living with bipolar disorder (BD). As a result, many studies have been conducted to examine its mode of action, toxicity, and downstream cellular responses. We know that LiCl is able to affect cell signaling and signaling transduction pathways through protein kinase C and glycogen synthase kinase-3, which are considered to be important in regulating gene expression at the translational level. However, additional downstream effects require further investigation, especially in translation pathway. In yeast, LiCl treatment affects the expression, and thus the activity, of PGM2, a phosphoglucomutase involved in sugar metabolism. Inhibition of PGM2 leads to the accumulation of intermediate metabolites of galactose metabolism causing cell toxicity. However, it is not fully understood how LiCl affects gene expression in this matter. In this study, we identified three genes, NAM7, PUS2, and RPL27B, which increase yeast LiCl sensitivity when deleted. We further demonstrate that NAM7, PUS2, and RPL27B influence translation and exert their activity through the 5′-Untranslated region (5′-UTR) of PGM2 mRNA in yeast.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Kathryn Hunt
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Grace Kirby
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, SK S4S 0A2, Canada;
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, ON K1Y 4X2, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, ON K1S 5B6, Canada; (M.H.); (K.H.); (G.K.); (S.T.); (S.K.J.); (K.O.); (M.H.); (D.B.); (H.M.); (M.S.); (B.S.)
- Correspondence:
| |
Collapse
|
15
|
Hajikarimlou M, Moteshareie H, Omidi K, Hooshyar M, Shaikho S, Kazmirchuk T, Burnside D, Takallou S, Zare N, Jagadeesan SK, Puchacz N, Babu M, Smith M, Holcik M, Samanfar B, Golshani A. Sensitivity of yeast to lithium chloride connects the activity of YTA6 and YPR096C to translation of structured mRNAs. PLoS One 2020; 15:e0235033. [PMID: 32639961 PMCID: PMC7343135 DOI: 10.1371/journal.pone.0235033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Lithium Chloride (LiCl) toxicity, mode of action and cellular responses have been the subject of active investigations over the past decades. In yeast, LiCl treatment is reported to reduce the activity and alters the expression of PGM2, a gene that encodes a phosphoglucomutase involved in sugar metabolism. Reduced activity of phosphoglucomutase in the presence of galactose causes an accumulation of intermediate metabolites of galactose metabolism leading to a number of phenotypes including growth defect. In the current study, we identify two understudied yeast genes, YTA6 and YPR096C that when deleted, cell sensitivity to LiCl is increased when galactose is used as a carbon source. The 5’-UTR of PGM2 mRNA is structured. Using this region, we show that YTA6 and YPR096C influence the translation of PGM2 mRNA.
Collapse
Affiliation(s)
- Maryam Hajikarimlou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Katayoun Omidi
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohsen Hooshyar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Shaikho
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Tom Kazmirchuk
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Burnside
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sarah Takallou
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Narges Zare
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sasi Kumar Jagadeesan
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Nathalie Puchacz
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mohan Babu
- Department of Biochemistry, Research and Innovation Centre, University of Regina, Regina, Canada
| | - Myron Smith
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada.,Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Department of Biology and Ottawa Institute of Systems Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Najdrová V, Stairs CW, Vinopalová M, Voleman L, Doležal P. The evolution of the Puf superfamily of proteins across the tree of eukaryotes. BMC Biol 2020; 18:77. [PMID: 32605621 PMCID: PMC7325665 DOI: 10.1186/s12915-020-00814-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Eukaryotic gene expression is controlled by a number of RNA-binding proteins (RBP), such as the proteins from the Puf (Pumilio and FBF) superfamily (PufSF). These proteins bind to RNA via multiple Puf repeat domains, each of which specifically recognizes a single RNA base. Recently, three diversified PufSF proteins have been described in model organisms, each of which is responsible for the maturation of ribosomal RNA or the translational regulation of mRNAs; however, less is known about the role of these proteins across eukaryotic diversity. RESULTS Here, we investigated the distribution and function of PufSF RBPs in the tree of eukaryotes. We determined that the following PufSF proteins are universally conserved across eukaryotes and can be broadly classified into three groups: (i) Nop9 orthologues, which participate in the nucleolar processing of immature 18S rRNA; (ii) 'classical' Pufs, which control the translation of mRNA; and (iii) PUM3 orthologues, which are involved in the maturation of 7S rRNA. In nearly all eukaryotes, the rRNA maturation proteins, Nop9 and PUM3, are retained as a single copy, while mRNA effectors ('classical' Pufs) underwent multiple lineage-specific expansions. We propose that the variation in number of 'classical' Pufs relates to the size of the transcriptome and thus the potential mRNA targets. We further distinguished full set of PufSF proteins in divergent metamonad Giardia intestinalis and initiated their cellular and biochemical characterization. CONCLUSIONS Our data suggest that the last eukaryotic common ancestor (LECA) already contained all three types of PufSF proteins and that 'classical' Pufs then underwent lineage-specific expansions.
Collapse
Affiliation(s)
- Vladimíra Najdrová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Courtney W Stairs
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, SE-75123, Uppsala, Sweden
| | - Martina Vinopalová
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic.
| |
Collapse
|
17
|
eIF4E and Interactors from Unicellular Eukaryotes. Int J Mol Sci 2020; 21:ijms21062170. [PMID: 32245232 PMCID: PMC7139794 DOI: 10.3390/ijms21062170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
eIF4E, the mRNA cap-binding protein, is well known as a general initiation factor allowing for mRNA-ribosome interaction and cap-dependent translation in eukaryotic cells. In this review we focus on eIF4E and its interactors in unicellular organisms such as yeasts and protozoan eukaryotes. In a first part, we describe eIF4Es from yeast species such as Saccharomyces cerevisiae, Candida albicans, and Schizosaccharomyces pombe. In the second part, we will address eIF4E and interactors from parasite unicellular species—trypanosomatids and marine microorganisms—dinoflagellates. We propose that different strategies have evolved during evolution to accommodate cap-dependent translation to differing requirements. These evolutive “adjustments” involve various forms of eIF4E that are not encountered in all microorganismic species. In yeasts, eIF4E interactors, particularly p20 and Eap1 are found exclusively in Saccharomycotina species such as S. cerevisiae and C. albicans. For protozoan parasites of the Trypanosomatidae family beside a unique cap4-structure located at the 5′UTR of all mRNAs, different eIF4Es and eIF4Gs are active depending on the life cycle stage of the parasite. Additionally, an eIF4E-interacting protein has been identified in Leishmania major which is important for switching from promastigote to amastigote stages. For dinoflagellates, little is known about the structure and function of the multiple and diverse eIF4Es that have been identified thanks to widespread sequencing in recent years.
Collapse
|
18
|
Arvola RM, Chang CT, Buytendorp JP, Levdansky Y, Valkov E, Freddolino L, Goldstrohm AC. Unique repression domains of Pumilio utilize deadenylation and decapping factors to accelerate destruction of target mRNAs. Nucleic Acids Res 2020; 48:1843-1871. [PMID: 31863588 PMCID: PMC7038932 DOI: 10.1093/nar/gkz1187] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Pumilio is an RNA-binding protein that represses a network of mRNAs to control embryogenesis, stem cell fate, fertility and neurological functions in Drosophila. We sought to identify the mechanism of Pumilio-mediated repression and find that it accelerates degradation of target mRNAs, mediated by three N-terminal Repression Domains (RDs), which are unique to Pumilio orthologs. We show that the repressive activities of the Pumilio RDs depend on specific subunits of the Ccr4-Not (CNOT) deadenylase complex. Depletion of Pop2, Not1, Not2, or Not3 subunits alleviates Pumilio RD-mediated repression of protein expression and mRNA decay, whereas depletion of other CNOT components had little or no effect. Moreover, the catalytic activity of Pop2 deadenylase is important for Pumilio RD activity. Further, we show that the Pumilio RDs directly bind to the CNOT complex. We also report that the decapping enzyme, Dcp2, participates in repression by the N-terminus of Pumilio. These results support a model wherein Pumilio utilizes CNOT deadenylase and decapping complexes to accelerate destruction of target mRNAs. Because the N-terminal RDs are conserved in mammalian Pumilio orthologs, the results of this work broadly enhance our understanding of Pumilio function and roles in diseases including cancer, neurodegeneration and epilepsy.
Collapse
Affiliation(s)
- René M Arvola
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chung-Te Chang
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Joseph P Buytendorp
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yevgen Levdansky
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Shotwell CR, Cleary JD, Berglund JA. The potential of engineered eukaryotic RNA-binding proteins as molecular tools and therapeutics. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 11:e1573. [PMID: 31680457 DOI: 10.1002/wrna.1573] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/21/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Eukaroytic RNA-binding proteins (RBPs) recognize and process RNAs through recognition of their sequence motifs via RNA-binding domains (RBDs). RBPs usually consist of one or more RBDs and can include additional functional domains that modify or cleave RNA. Engineered RBPs have been used to answer basic biology questions, control gene expression, locate viral RNA in vivo, as well as many other tasks. Given the growing number of diseases associated with RNA and RBPs, engineered RBPs also have the potential to serve as therapeutics. This review provides an in depth description of recent advances in engineered RBPs and discusses opportunities and challenges in the field. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Methods > RNA Nanotechnology RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Carl R Shotwell
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida
| | - John D Cleary
- RNA Institute, University at Albany, Albany, New York
| | - J Andrew Berglund
- Department of Biological Sciences and RNA Institute, University at Albany, Albany, New York
| |
Collapse
|
20
|
Dedow LK, Bailey-Serres J. Searching for a Match: Structure, Function and Application of Sequence-Specific RNA-Binding Proteins. PLANT & CELL PHYSIOLOGY 2019; 60:1927-1938. [PMID: 31329953 DOI: 10.1093/pcp/pcz072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 05/21/2023]
Abstract
Plants encode over 1800 RNA-binding proteins (RBPs) that modulate a myriad of steps in gene regulation from chromatin organization to translation, yet only a small number of these proteins and their target transcripts have been functionally characterized. Two classes of eukaryotic RBPs, pentatricopeptide repeat (PPR) and pumilio/fem-3 binding factors (PUF), recognize and bind to specific sequential RNA sequences through protein-RNA interactions. These modular proteins possess helical structural units containing key residues with high affinity for specific nucleotides, whose sequential order determines binding to a specific target RNA sequence. PPR proteins are nucleus-encoded, but largely regulate post-transcriptional gene regulation within plastids and mitochondria, including splicing, translation and RNA editing. Plant PUFs are involved in gene regulatory processes within the cell nucleus and cytoplasm. The modular structures of PPRs and PUFs that determine sequence specificity has facilitated identification of their RNA targets and biological functions. The protein-based RNA-targeting of PPRs and PUFs contrasts to the prokaryotic cluster regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) that target RNAs in prokaryotes. Together the PPR, PUF and CRISPR-Cas systems provide varied opportunities for RNA-targeted engineering applications.
Collapse
|
21
|
Grüner S, Weber R, Peter D, Chung MY, Igreja C, Valkov E, Izaurralde E. Structural motifs in eIF4G and 4E-BPs modulate their binding to eIF4E to regulate translation initiation in yeast. Nucleic Acids Res 2019; 46:6893-6908. [PMID: 30053226 PMCID: PMC6061780 DOI: 10.1093/nar/gky542] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/02/2018] [Indexed: 12/13/2022] Open
Abstract
The interaction of the eukaryotic initiation factor 4G (eIF4G) with the cap-binding protein eIF4E initiates cap-dependent translation and is regulated by the 4E-binding proteins (4E-BPs), which compete with eIF4G to repress translation. Metazoan eIF4G and 4E-BPs interact with eIF4E via canonical and non-canonical motifs that bind to the dorsal and lateral surface of eIF4E in a bipartite recognition mode. However, previous studies pointed to mechanistic differences in how fungi and metazoans regulate protein synthesis. We present crystal structures of the yeast eIF4E bound to two yeast 4E-BPs, p20 and Eap1p, as well as crystal structures of a fungal eIF4E–eIF4G complex. We demonstrate that the core principles of molecular recognition of eIF4E are in fact highly conserved among translational activators and repressors in eukaryotes. Finally, we reveal that highly specialized structural motifs do exist and serve to modulate the affinity of protein-protein interactions that regulate cap-dependent translation initiation in fungi.
Collapse
Affiliation(s)
- Stefan Grüner
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Ramona Weber
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Daniel Peter
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Min-Yi Chung
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Cátia Igreja
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Eugene Valkov
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| | - Elisa Izaurralde
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, D-72076 Tübingen, Germany
| |
Collapse
|
22
|
Nyikó T, Auber A, Bucher E. Functional and molecular characterization of the conserved Arabidopsis PUMILIO protein, APUM9. PLANT MOLECULAR BIOLOGY 2019; 100:199-214. [PMID: 30868544 PMCID: PMC6513901 DOI: 10.1007/s11103-019-00853-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 03/01/2019] [Indexed: 05/08/2023]
Abstract
Here we demonstrate that the APUM9 RNA-binding protein and its co-factors play a role in mRNA destabilization and how this activity might regulate early plant development. APUM9 is a conserved PUF RNA-binding protein (RBP) under complex transcriptional control mediated by a transposable element (TE) that restricts its expression in Arabidopsis. Currently, little is known about the functional and mechanistic details of the plant PUF regulatory system and the biological relevance of the TE-mediated repression of APUM9 in plant development and stress responses. By combining a range of transient assays, we show here, that APUM9 binding to target transcripts can trigger their rapid decay via its conserved C-terminal RNA-binding domain. APUM9 directly interacts with DCP2, the catalytic subunit of the decapping complex and DCP2 overexpression induces rapid decay of APUM9 targeted mRNAs. We show that APUM9 negatively regulates the expression of ABA signaling genes during seed imbibition, and thereby might contribute to the switch from dormant stage to seed germination. By contrast, strong TE-mediated repression of APUM9 is important for normal plant growth in the later developmental stages. Finally, APUM9 overexpression plants show slightly enhanced heat tolerance suggesting that TE-mediated control of APUM9, might have a role not only in embryonic development, but also in plant adaptation to heat stress conditions.
Collapse
Affiliation(s)
- Tünde Nyikó
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Andor Auber
- Agricultural Biotechnology Institute, Szent-Györgyi Albert 4, Gödöllő, 2100, Hungary
| | - Etienne Bucher
- Université d'Angers, UMR1345 Institut de Recherche en Horticulture et Semences (IRHS-INRA), 42 rue Georges Morel, 24, 49071, Beaucouzé, France.
| |
Collapse
|
23
|
Liu X, Yao Z, Jin M, Namkoong S, Yin Z, Lee JH, Klionsky DJ. Dhh1 promotes autophagy-related protein translation during nitrogen starvation. PLoS Biol 2019; 17:e3000219. [PMID: 30973873 PMCID: PMC6459490 DOI: 10.1371/journal.pbio.3000219] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 03/22/2019] [Indexed: 12/22/2022] Open
Abstract
Macroautophagy (hereafter autophagy) is a well-conserved cellular process through which cytoplasmic components are delivered to the vacuole/lysosome for degradation and recycling. Studies have revealed the molecular mechanism of transcriptional regulation of autophagy-related (ATG) genes upon nutrient deprivation. However, little is known about their translational regulation. Here, we found that Dhh1, a DExD/H-box RNA helicase, is required for efficient translation of Atg1 and Atg13, two proteins essential for autophagy induction. Dhh1 directly associates with ATG1 and ATG13 mRNAs under nitrogen-starvation conditions. The structured regions shortly after the start codons of the two ATG mRNAs are necessary for their translational regulation by Dhh1. Both the RNA-binding ability and helicase activity of Dhh1 are indispensable to promote Atg1 translation and autophagy. Moreover, eukaryotic translation initiation factor 4E (EIF4E)-associated protein 1 (Eap1), a target of rapamycin (TOR)-regulated EIF4E binding protein, physically interacts with Dhh1 after nitrogen starvation and facilitates the translation of Atg1 and Atg13. These results suggest a model for how some ATG genes bypass the general translational suppression that occurs during nitrogen starvation to maintain a proper level of autophagy. The precise regulation of autophagy is critical to maintaining proper cell physiology. This study shows that translational regulation involving the RNA helicase Dhh1 plays an important role in controlling the level of the Atg1 kinase, a key factor in autophagy induction.
Collapse
Affiliation(s)
- Xu Liu
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhiyuan Yao
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Meiyan Jin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sim Namkoong
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zhangyuan Yin
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jun Hee Lee
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Daniel J. Klionsky
- Life Sciences Institute, and the Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
24
|
Ergüden B. Dhh1 is a member of the SESA network. Yeast 2019; 36:99-105. [PMID: 30346046 DOI: 10.1002/yea.3363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/10/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
The correct separation of chromosomes during mitosis is necessary to prevent genetic instability and aneuploidy, which are responsible for cancer and other diseases, and it depends on proper centrosome duplication. In a recent study, we found that Smy2 can suppress the essential role of Mps2 in the insertion of yeast centrosome into the nuclear membrane by interacting with Eap1, Scp160, and Asc1 and designated this network as SESA (Smy2, Eap1, Scp160, Asc1). Detailed analysis showed that the SESA network is part of a mechanism which regulates translation of POM34 mRNA. Thus, SESA is a system that suppresses spindle pole body duplication defects by repressing the translation of POM34 mRNA. In this study, we performed a genome-wide screening in order to identify new members of the SESA network and confirmed Dhh1 as a putative member. Dhh1 is a cytoplasmic DEAD-box helicase known to regulate translation. Therefore, we hypothesized that Dhh1 is responsible for the highly selective inhibition of POM34 mRNA by SESA.
Collapse
Affiliation(s)
- Bengü Ergüden
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
25
|
Mayya VK, Duchaine TF. Ciphers and Executioners: How 3'-Untranslated Regions Determine the Fate of Messenger RNAs. Front Genet 2019; 10:6. [PMID: 30740123 PMCID: PMC6357968 DOI: 10.3389/fgene.2019.00006] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/07/2019] [Indexed: 12/29/2022] Open
Abstract
The sequences and structures of 3'-untranslated regions (3'UTRs) of messenger RNAs govern their stability, localization, and expression. 3'UTR regulatory elements are recognized by a wide variety of trans-acting factors that include microRNAs (miRNAs), their associated machinery, and RNA-binding proteins (RBPs). In turn, these factors instigate common mechanistic strategies to execute the regulatory programs encoded by 3'UTRs. Here, we review classes of factors that recognize 3'UTR regulatory elements and the effector machineries they guide toward mRNAs to dictate their expression and fate. We outline illustrative examples of competitive, cooperative, and coordinated interplay such as mRNA localization and localized translation. We further review the recent advances in the study of mRNP granules and phase transition, and their possible significance for the functions of 3'UTRs. Finally, we highlight some of the most recent strategies aimed at deciphering the complexity of the regulatory codes of 3'UTRs, and identify some of the important remaining challenges.
Collapse
Affiliation(s)
| | - Thomas F. Duchaine
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, QC, Canada
| |
Collapse
|
26
|
Viet NTM, Duy DL, Saito K, Irie K, Suda Y, Mizuno T, Irie K. Regulation of
LRG1
expression by RNA‐binding protein Puf5 in the budding yeast cell wall integrity pathway. Genes Cells 2018; 23:988-997. [DOI: 10.1111/gtc.12646] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/19/2018] [Accepted: 09/23/2018] [Indexed: 01/10/2023]
Affiliation(s)
- Nguyen Thi Minh Viet
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Duong Long Duy
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Kazuhiro Saito
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Kaoru Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Yasuyuki Suda
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
- Live Cell Super‐resolution Imaging Research Team RIKEN Center for Advanced Photonics Wako, Saitama Japan
| | - Tomoaki Mizuno
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| | - Kenji Irie
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
27
|
Goldstrohm AC, Hall TMT, McKenney KM. Post-transcriptional Regulatory Functions of Mammalian Pumilio Proteins. Trends Genet 2018; 34:972-990. [PMID: 30316580 DOI: 10.1016/j.tig.2018.09.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/10/2018] [Accepted: 09/19/2018] [Indexed: 01/18/2023]
Abstract
Mammalian Pumilio proteins, PUM1 and PUM2, are members of the PUF family of sequence-specific RNA-binding proteins. In this review, we explore their mechanisms, regulatory networks, biological functions, and relevance to diseases. Pumilio proteins bind an extensive network of mRNAs and repress protein expression by inhibiting translation and promoting mRNA decay. Opposingly, in certain contexts, they can activate protein expression. Pumilio proteins also regulate noncoding (nc)RNAs. The ncRNA, ncRNA activated by DNA damage (NORAD), can in turn modulate Pumilio activity. Genetic analysis provides new insights into Pumilio protein function. They are essential for growth and development. They control diverse processes, including stem cell fate, and neurological functions, such as behavior and memory formation. Novel findings show that their dysfunction contributes to neurodegeneration, epilepsy, movement disorders, intellectual disability, infertility, and cancer.
Collapse
Affiliation(s)
- Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Katherine M McKenney
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
28
|
Abstract
Cells must make careful use of the resources available to them. A key area of cellular regulation involves the biogenesis of ribosomes. Transcriptional regulation of ribosome biogenesis factor genes through alterations in histone acetylation has been well studied. This work identifies a post-transcriptional mechanism of ribosome biogenesis regulation by Puf protein control of mRNA stability. Puf proteins are eukaryotic mRNA binding proteins that play regulatory roles in mRNA degradation and translation via association with specific conserved elements in the 3' untranslated region (UTR) of target mRNAs and with degradation and translation factors. We demonstrate that several ribosome biogenesis factor mRNAs in Saccharomyces cerevisiae containing a canonical Puf4p element in their 3' UTRs are destabilized by Puf2p, Puf4, and Puf5p, yet stabilized by Puf1p and Puf3p. In the absence of all Puf proteins, these ribosome biogenesis mRNAs are destabilized by a secondary mechanism involving the same 3' UTR element. Unlike other targets of Puf4p regulation, the decay of these transcripts is not altered by carbon source. Overexpression of Puf4p results in delayed ribosomal RNA processing and altered ribosomal subunit trafficking. These results represent a novel role for Puf proteins in yeast as regulators of ribosome biogenesis transcript stability.
Collapse
Affiliation(s)
- Anthony D Fischer
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| | - Wendy M Olivas
- a Department of Biology , University of Missouri-St. Louis , St. Louis , MO , USA
| |
Collapse
|
29
|
Park K, Lee YS, Jung D, Kim J. Roles of eIF4E-binding protein Caf20 in Ste12 translation and P-body formation in yeast. J Microbiol 2018; 56:744-747. [PMID: 30136257 DOI: 10.1007/s12275-018-8230-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/20/2022]
Abstract
Translation initiation factor eIF4E forms eIF4E-eIF4G complex at the 5' cap of mRNA. This interaction can be inhibited by the family of 4E-binding proteins (4E-BP). In yeast Saccharomyces cerevisiae, two 4E-BPs, Caf20 and Eap1, compete with eIF4G for binding to eIF4E via the shared conserved interaction motif. In order to investigate the roles of Caf20 in gene-specific translational regulation and the formation of mRNA granules (P-bodies), we introduced substitution mutations, caf20-Y4A or caf20-L9A, in the eIF4E-binding motif for CAF20. Overexpression of the wild-type CAF20 showed an increased protein level of Ste12 transcription factor as well as highly developed P-body formation. However, 4E-binding site mutations of CAF20 led to a reduced number of P-body foci and decreased levels of Ste12 protein. The phenotypes of the caf20 deletion mutation were also analyzed, and we suggest that Caf20 plays a critical role in Ste12 protein expression and in the control of P-body formation.
Collapse
Affiliation(s)
- Kiyoung Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Yu-Seon Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Daehee Jung
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jinmi Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
30
|
Properties of the ternary complex formed by yeast eIF4E, p20 and mRNA. Sci Rep 2018; 8:6707. [PMID: 29712996 PMCID: PMC5928113 DOI: 10.1038/s41598-018-25273-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/17/2018] [Indexed: 11/25/2022] Open
Abstract
Yeast p20 is a small, acidic protein that binds eIF4E, the cap-binding protein. It has been proposed to affect mRNA translation and degradation, however p20′s function as an eIF4E-binding protein (4E-BP) and its physiological significance has not been clearly established. In this paper we present data demonstrating that p20 is capable of binding directly to mRNA due to electrostatic interaction of a stretch of arginine and histidine residues in the protein with negatively charged phosphates in the mRNA backbone. This interaction contributes to formation of a ternary eIF4E/p20/capped mRNA complex that is more stable than complexes composed of capped mRNA bound to eIF4E in the absence of p20. eIF4E/p20 complex was found to have a more pronounced stimulatory effect on capped mRNA translation than purified eIF4E alone. Addition of peptides containing the eIF4E-binding domains present in p20 (motif YTIDELF), in eIF4G (motif YGPTFLL) or Eap1 (motif YSMNELY) completely inhibited eIF4E-dependent capped mRNA translation (in vitro), but had a greatly reduced inhibitory effect when eIF4E/p20 complex was present. We propose that the eIF4E/p20/mRNA complex serves as a stable depository of mRNAs existing in a dynamic equilibrium with other complexes such as eIF4E/eIF4G (required for translation) and eIF4E/Eap1 (required for mRNA degradation).
Collapse
|
31
|
Wharton TH, Nomie KJ, Wharton RP. No significant regulation of bicoid mRNA by Pumilio or Nanos in the early Drosophila embryo. PLoS One 2018; 13:e0194865. [PMID: 29601592 PMCID: PMC5877865 DOI: 10.1371/journal.pone.0194865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/12/2018] [Indexed: 01/23/2023] Open
Abstract
Drosophila Pumilio (Pum) is a founding member of the conserved Puf domain class of RNA-binding translational regulators. Pum binds with high specificity, contacting eight nucleotides, one with each of the repeats in its RNA-binding domain. In general, Pum is thought to block translation in collaboration with Nanos (Nos), which exhibits no binding specificity in isolation but is recruited jointly to regulatory sequences containing a Pum binding site in the 3’-UTRs of target mRNAs. Unlike Pum, which is ubiquitous in the early embryo, Nos is tightly restricted to the posterior, ensuring that repression of its best-characterized target, maternal hunchback (hb) mRNA, takes place exclusively in the posterior. An exceptional case of Nos-independent regulation by Pum has been described—repression of maternal bicoid (bcd) mRNA at the anterior pole of the early embryo, dependent on both Pum and conserved Pum binding sites in the 3’-UTR of the mRNA. We have re-investigated regulation of bcd in the early embryo; our experiments reveal no evidence of a role for Pum or its conserved binding sites in regulation of the perdurance of bcd mRNA or protein. Instead, we find that Pum and Nos control the accumulation of bcd mRNA in testes.
Collapse
Affiliation(s)
- Tammy H. Wharton
- Departments of Molecular Genetics & Cancer Biology and Genetics, Center for RNA Biology Ohio State University Columbus, OH
| | - Krystle J. Nomie
- Department of Lymphoma/Myeloma MD Anderson Cancer Center Holcombe Blvd. Houston, TX
| | - Robin P. Wharton
- Departments of Molecular Genetics & Cancer Biology and Genetics, Center for RNA Biology Ohio State University Columbus, OH
- * E-mail:
| |
Collapse
|
32
|
Lapointe CP, Preston MA, Wilinski D, Saunders HAJ, Campbell ZT, Wickens M. Architecture and dynamics of overlapped RNA regulatory networks. RNA (NEW YORK, N.Y.) 2017; 23:1636-1647. [PMID: 28768715 PMCID: PMC5648032 DOI: 10.1261/rna.062687.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
A single protein can bind and regulate many mRNAs. Multiple proteins with similar specificities often bind and control overlapping sets of mRNAs. Yet little is known about the architecture or dynamics of overlapped networks. We focused on three proteins with similar structures and related RNA-binding specificities-Puf3p, Puf4p, and Puf5p of S. cerevisiae Using RNA Tagging, we identified a "super-network" comprised of four subnetworks: Puf3p, Puf4p, and Puf5p subnetworks, and one controlled by both Puf4p and Puf5p. The architecture of individual subnetworks, and thus the super-network, is determined by competition among particular PUF proteins to bind mRNAs, their affinities for binding elements, and the abundances of the proteins. The super-network responds dramatically: The remaining network can either expand or contract. These strikingly opposite outcomes are determined by an interplay between the relative abundance of the RNAs and proteins, and their affinities for one another. The diverse interplay between overlapping RNA-protein networks provides versatile opportunities for regulation and evolution.
Collapse
Affiliation(s)
- Christopher P Lapointe
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Melanie A Preston
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Daniel Wilinski
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Harriet A J Saunders
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zachary T Campbell
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
33
|
Expression of the RNA-binding protein RBP10 promotes the bloodstream-form differentiation state in Trypanosoma brucei. PLoS Pathog 2017; 13:e1006560. [PMID: 28800584 PMCID: PMC5568443 DOI: 10.1371/journal.ppat.1006560] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/23/2017] [Accepted: 07/29/2017] [Indexed: 01/06/2023] Open
Abstract
In nearly all eukaryotes, cellular differentiation is governed by changes in transcription, and stabilized by chromatin and DNA modification. Gene expression control in the pathogen Trypanosoma brucei, in contrast, relies almost exclusively on post-transcriptional mechanisms, so RNA binding proteins must assume the burden that is usually borne by transcription factors. T. brucei multiply in the blood of mammals as bloodstream forms, and in the midgut of Tsetse flies as procyclic forms. We show here that a single RNA-binding protein, RBP10, promotes the bloodstream-form trypanosome differentiation state. Depletion of RBP10 from bloodstream-form trypanosomes gives cells that can grow only as procyclic forms; conversely, expression of RBP10 in procyclic forms converts them to bloodstream forms. RBP10 binds to procyclic-specific mRNAs containing an UAUUUUUU motif, targeting them for translation repression and destruction. Products of RBP10 target mRNAs include not only the major procyclic surface protein and enzymes of energy metabolism, but also protein kinases and stage-specific RNA-binding proteins: this suggests that alterations in RBP10 trigger a regulatory cascade.
Collapse
|
34
|
PUM1 is a biphasic negative regulator of innate immunity genes by suppressing LGP2. Proc Natl Acad Sci U S A 2017; 114:E6902-E6911. [PMID: 28760986 DOI: 10.1073/pnas.1708713114] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PUM1 is an RNA binding protein shown to regulate the stability and function of mRNAs bearing a specific sequence. We report the following: (i) A key function of PUM1 is that of a repressor of key innate immunity genes by repressing the expression of LGP2. Thus, between 12 and 48 hours after transfection of human cells with siPUM1 RNA there was an initial (phase 1) upsurge of transcripts encoding LGP2, CXCL10, IL6, and PKR. This was followed 24 hours later (phase 2) by a significant accumulation of mRNAs encoding RIG-I, SP100, MDA5, IFIT1, PML, STING, and IFNβ. The genes that were not activated encoded HDAC4 and NF-κB1. (ii) Simultaneous depletion of PUM1 and LGP2, CXCL10, or IL6 revealed that up-regulation of phase 1 and phase 2 genes was the consequence of up-regulation of LGP2. (iii) IFNβ produced 48-72 hours after transfection of siPUM1 was effective in up-regulating LGP2 and phase 2 genes and reducing the replication of HSV-1 in untreated cells. (iv) Because only half of genes up-regulated in phase 1 and 2 encode mRNAs containing PUM1 binding sites, the upsurge in gene expression could not be attributed solely to stabilization of mRNAs in the absence of PUM1. (v) Lastly, depletion of PUM2 does not result in up-regulation of phase 1 or phase 2 genes. The results of the studies presented here indicate that PUM1 is a negative regulator of LGP2, a master regulator of innate immunity genes expressed in a cascade fashion.
Collapse
|
35
|
Weidmann CA, Qiu C, Arvola RM, Lou TF, Killingsworth J, Campbell ZT, Tanaka Hall TM, Goldstrohm AC. Drosophila Nanos acts as a molecular clamp that modulates the RNA-binding and repression activities of Pumilio. eLife 2016; 5. [PMID: 27482653 PMCID: PMC4995099 DOI: 10.7554/elife.17096] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/01/2016] [Indexed: 01/03/2023] Open
Abstract
Collaboration among the multitude of RNA-binding proteins (RBPs) is ubiquitous, yet our understanding of these key regulatory complexes has been limited to single RBPs. We investigated combinatorial translational regulation by Drosophila Pumilio (Pum) and Nanos (Nos), which control development, fertility, and neuronal functions. Our results show how the specificity of one RBP (Pum) is modulated by cooperative RNA recognition with a second RBP (Nos) to synergistically repress mRNAs. Crystal structures of Nos-Pum-RNA complexes reveal that Nos embraces Pum and RNA, contributes sequence-specific contacts, and increases Pum RNA-binding affinity. Nos shifts the recognition sequence and promotes repression complex formation on mRNAs that are not stably bound by Pum alone, explaining the preponderance of sub-optimal Pum sites regulated in vivo. Our results illuminate the molecular mechanism of a regulatory switch controlling crucial gene expression programs, and provide a framework for understanding how the partnering of RBPs evokes changes in binding specificity that underlie regulatory network dynamics. DOI:http://dx.doi.org/10.7554/eLife.17096.001 Molecules of DNA contain the instructions needed to make proteins inside cells. Proteins perform many different roles and each needs to be produced at the right time and in the right amounts to enable the cells to survive. The DNA is first copied to make molecules of ribonucleic acid (RNA), which are then used as templates to make the proteins. One way to control protein production is to regulate the RNA molecules. A family of proteins called RNA-binding proteins can recognise and bind to specific RNA molecules and determine whether a RNA molecule is destroyed, used to produce proteins, or stored for later use. In effect, these RNA-binding proteins act as switches that turn protein production on or off. Nanos and Pumilio are two RNA-binding proteins that are found in many organisms, including humans and other animals. Genetic studies in fruit flies show that these two proteins influence development, the nervous system and the behaviour of stem cells by switching off the production of certain proteins. To investigate how Nanos and Pumilio work together to regulate protein production, Weidmann, Qiu et al. used a variety of techniques to study the activity of these proteins in cells taken from fruit fly embryos. The experiments reveal that Nanos acts like a clamp to hold Pumilio close to specific RNAs, which allows Pumilio to switch off the production of the corresponding proteins. The presence of Nanos allows Pumilio to regulate RNAs that it cannot bind to alone. Therefore, the experiments show that by working together with Nanos, Pumilio is able to regulate a wider variety of RNAs than it would otherwise be able to. These findings provide a molecular understanding for why fruit fly mutants that lack Nanos or Pumilio have severe body defects and reduced fertility. The next challenge is to identify the specific RNAs targeted by Nanos and Pumilio in stem cells, the nervous system and during development. DOI:http://dx.doi.org/10.7554/eLife.17096.002
Collapse
Affiliation(s)
- Chase A Weidmann
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Chen Qiu
- Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States.,National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - René M Arvola
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Jordan Killingsworth
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, United States
| | - Traci M Tanaka Hall
- Epigenetics and Stem Cell Biology Laboratory, National Institutes of Health, Research Triangle Park, United States.,National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, United States
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan, Ann Arbor, United States.,Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, United States
| |
Collapse
|
36
|
The LSD1 Family of Histone Demethylases and the Pumilio Posttranscriptional Repressor Function in a Complex Regulatory Feedback Loop. Mol Cell Biol 2015; 35:4199-211. [PMID: 26438601 DOI: 10.1128/mcb.00755-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 09/20/2015] [Indexed: 01/05/2023] Open
Abstract
The lysine (K)-specific demethylase (LSD1) family of histone demethylases regulates chromatin structure and the transcriptional potential of genes. LSD1 is frequently deregulated in tumors, and depletion of LSD1 family members causes developmental defects. Here, we report that reductions in the expression of the Pumilio (PUM) translational repressor complex enhanced phenotypes due to dLsd1 depletion in Drosophila. We show that the PUM complex is a target of LSD1 regulation in fly and mammalian cells and that its expression is inversely correlated with LSD1 levels in human bladder carcinoma. Unexpectedly, we find that PUM posttranscriptionally regulates LSD1 family protein levels in flies and human cells, indicating the existence of feedback loops between the LSD1 family and the PUM complex. Our results highlight a new posttranscriptional mechanism regulating LSD1 activity and suggest that the feedback loop between the LSD1 family and the PUM complex may be functionally important during development and in human malignancies.
Collapse
|
37
|
Wei H, Wang Z. Engineering RNA-binding proteins with diverse activities. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:597-613. [DOI: 10.1002/wrna.1296] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 07/09/2015] [Accepted: 07/20/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Huanhuan Wei
- Key Laboratory of Computational Biology; MPG-CAS Partner Institute of Computational Biology; Shanghai China
| | - Zefeng Wang
- Key Laboratory of Computational Biology; MPG-CAS Partner Institute of Computational Biology; Shanghai China
- Department of Pharmacology; University of North Carolina at Chapel Hill; Chapel Hill NC USA
| |
Collapse
|
38
|
A conserved mechanism of TOR-dependent RCK-mediated mRNA degradation regulates autophagy. Nat Cell Biol 2015; 17:930-942. [PMID: 26098573 PMCID: PMC4528364 DOI: 10.1038/ncb3189] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 05/14/2015] [Indexed: 12/17/2022]
Abstract
Autophagy is an essential eukaryotic pathway requiring tight regulation to maintain homeostasis and preclude disease. Using yeast and mammalian cells, we report a conserved mechanism of autophagy regulation by RNA helicase RCK family members in association with the decapping enzyme Dcp2. Under nutrient-replete conditions, Dcp2 undergoes TOR-dependent phosphorylation and associates with RCK members to form a complex with autophagy-related (ATG) mRNA transcripts, leading to decapping, degradation and autophagy suppression. Simultaneous with the induction of ATG mRNA synthesis, starvation reverses the process, facilitating ATG mRNA accumulation and autophagy induction. This conserved post-transcriptional mechanism modulates fungal virulence and the mammalian inflammasome, the latter providing mechanistic insight into autoimmunity reported in a patient with a PIK3CD/p110δ gain-of-function mutation. We propose a dynamic model wherein RCK family members, in conjunction with Dcp2, function in controlling ATG mRNA stability to govern autophagy, which in turn modulates vital cellular processes affecting inflammation and microbial pathogenesis.
Collapse
|
39
|
The 4E-BP Caf20p Mediates Both eIF4E-Dependent and Independent Repression of Translation. PLoS Genet 2015; 11:e1005233. [PMID: 25973932 PMCID: PMC4431810 DOI: 10.1371/journal.pgen.1005233] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 04/21/2015] [Indexed: 11/19/2022] Open
Abstract
Translation initiation factor eIF4E mediates mRNA selection for protein synthesis via the mRNA 5'cap. A family of binding proteins, termed the 4E-BPs, interact with eIF4E to hinder ribosome recruitment. Mechanisms underlying mRNA specificity for 4E-BP control remain poorly understood. Saccharomyces cerevisiae 4E-BPs, Caf20p and Eap1p, each regulate an overlapping set of mRNAs. We undertook global approaches to identify protein and RNA partners of both 4E-BPs by immunoprecipitation of tagged proteins combined with mass spectrometry or next-generation sequencing. Unexpectedly, mass spectrometry indicated that the 4E-BPs associate with many ribosomal proteins. 80S ribosome and polysome association was independently confirmed and was not dependent upon interaction with eIF4E, as mutated forms of both Caf20p and Eap1p with disrupted eIF4E-binding motifs retain ribosome interaction. Whole-cell proteomics revealed Caf20p mutations cause both up and down-regulation of proteins and that many changes were independent of the 4E-binding motif. Investigations into Caf20p mRNA targets by immunoprecipitation followed by RNA sequencing revealed a strong association between Caf20p and mRNAs involved in transcription and cell cycle processes, consistent with observed cell cycle phenotypes of mutant strains. A core set of over 500 Caf20p-interacting mRNAs comprised of both eIF4E-dependent (75%) and eIF4E-independent targets (25%), which differ in sequence attributes. eIF4E-independent mRNAs share a 3' UTR motif. Caf20p binds all tested motif-containing 3' UTRs. Caf20p and the 3'UTR combine to influence ERS1 mRNA polysome association consistent with Caf20p contributing to translational control. Finally ERS1 3'UTR confers Caf20-dependent repression of expression to a heterologous reporter gene. Taken together, these data reveal conserved features of eIF4E-dependent Caf20p mRNA targets and uncover a novel eIF4E-independent mode of Caf20p binding to mRNAs that extends the regulatory role of Caf20p in the mRNA-specific repression of protein synthesis beyond its interaction with eIF4E.
Collapse
|
40
|
Abstract
The cap-binding translation initiation factor eIF4E (eukaryotic initiation factor 4E) is central to protein synthesis in eukaryotes. As an integral component of eIF4F, a complex also containing the large bridging factor eIF4G and eIF4A RNA helicase, eIF4E enables the recruitment of the small ribosomal subunit to the 5' end of mRNAs. The interaction between eIF4E and eIF4G via a YXXXXLϕ motif is regulated by small eIF4E-binding proteins, 4E-BPs, which use the same sequence to competitively bind eIF4E thereby inhibiting cap-dependent translation. Additional eIF4E-binding proteins have been identified in the last 10-15 years, characterized by the YXXXXLϕ motif, and by interactions (many of which remain to be detailed) with RNA-binding proteins, or other factors in complexes that recognize the specific mRNAs. In the present article, we focus on the metazoan 4E-T (4E-transporter)/Cup family of eIF4E-binding proteins, and also discuss very recent examples in yeast, fruitflies and humans, some of which predictably inhibit translation, while others may result in mRNA decay or even enhance translation; altogether considerably expanding our understanding of the roles of eIF4E-binding proteins in gene expression regulation.
Collapse
|
41
|
General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells. Mol Cell Biol 2015; 35:2309-20. [PMID: 25918245 DOI: 10.1128/mcb.01346-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/19/2015] [Indexed: 01/08/2023] Open
Abstract
The translation and degradation of mRNAs are two key steps in gene expression that are highly regulated and targeted by many factors, including microRNAs (miRNAs). While it is well established that translation and mRNA degradation are tightly coupled, it is still not entirely clear where in the cell mRNA degradation takes place. In this study, we investigated the possibility of mRNA degradation on the ribosome in Drosophila cells. Using polysome profiles and ribosome affinity purification, we could demonstrate the copurification of various deadenylation and decapping factors with ribosome complexes. Also, AGO1 and GW182, two key factors in the miRNA-mediated mRNA degradation pathway, were associated with ribosome complexes. Their copurification was dependent on intact mRNAs, suggesting the association of these factors with the mRNA rather than the ribosome itself. Furthermore, we isolated decapped mRNA degradation intermediates from ribosome complexes and performed high-throughput sequencing analysis. Interestingly, 93% of the decapped mRNA fragments (approximately 12,000) could be detected at the same relative abundance on ribosome complexes and in cell lysates. In summary, our findings strongly indicate the association of the majority of bulk mRNAs as well as mRNAs targeted by miRNAs with the ribosome during their degradation.
Collapse
|
42
|
Puf4 regulates both splicing and decay of HXL1 mRNA encoding the unfolded protein response transcription factor in Cryptococcus neoformans. EUKARYOTIC CELL 2015; 14:385-95. [PMID: 25681267 DOI: 10.1128/ec.00273-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/30/2015] [Indexed: 11/20/2022]
Abstract
The endoplasmic reticulum (ER) responds to errors in protein folding or processing by induction of the unfolded protein response (UPR). During conditions of ER stress, unconventional splicing of an mRNA encoding the UPR-responsive transcription factor occurs at the ER surface, resulting in activation of the UPR. UPR activation is necessary for adaptation to ER stress and for the pathogenic fungus Cryptococcus neoformans is an absolute requirement for temperature adaptation and virulence. In this study, we have determined that C. neoformans has co-opted a conserved PUF RNA binding protein to regulate the posttranscriptional processing of the HXL1 mRNA encoding the UPR transcription factor. PUF elements were identified in both the 5' and 3' untranslated regions of the HXL1 transcript, and both elements bound Puf4. Deletion of PUF4 resulted in delayed unconventional splicing of HXL1 mRNA and delayed induction of Hxl1 target genes. In addition, the HXL1 transcript was stabilized in the absence of Puf4. The puf4Δ mutant exhibited temperature sensitivity but was as virulent as the wild type, despite a reduction in fungal burden in the brains of infected mice. Our results reveal a novel regulatory role in which a PUF protein influences the unconventional splicing of the mRNA encoding the UPR-responsive transcription factor. These data suggest a unique role for a PUF protein in controlling UPR kinetics via the posttranscriptional regulation of the mRNA encoding the UPR transcription factor Hxl1.
Collapse
|
43
|
Russo J, Olivas WM. Conditional regulation of Puf1p, Puf4p, and Puf5p activity alters YHB1 mRNA stability for a rapid response to toxic nitric oxide stress in yeast. Mol Biol Cell 2015; 26:1015-29. [PMID: 25631823 PMCID: PMC4357503 DOI: 10.1091/mbc.e14-10-1452] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Puf RNA-binding proteins regulate mRNA stability and translation. This work elucidates the role of three yeast Puf proteins in regulating YHB1 mRNA stability in response to cell stress. Without stress, a precise balance of Puf1p, Puf4p, and Puf5p promotes decay of YHB1. Stress conditions inactivate Pufs to stabilize YHB1 and promote cell fitness. Puf proteins regulate mRNA degradation and translation through interactions with 3′ untranslated regions (UTRs). Such regulation provides an efficient method to rapidly alter protein production during cellular stress. YHB1 encodes the only protein to detoxify nitric oxide in yeast. Here we show that YHB1 mRNA is destabilized by Puf1p, Puf4p, and Puf5p through two overlapping Puf recognition elements (PREs) in the YHB1 3′ UTR. Overexpression of any of the three Pufs is sufficient to fully rescue wild-type decay in the absence of other Pufs, and overexpression of Puf4p or Puf5p can enhance the rate of wild-type decay. YHB1 mRNA decay stimulation by Puf proteins is also responsive to cellular stress. YHB1 mRNA is stabilized in galactose and high culture density, indicating inactivation of the Puf proteins. This condition-specific inactivation of Pufs is overcome by Puf overexpression, and Puf4p/Puf5p overexpression during nitric oxide exposure reduces the steady-state level of endogenous YHB1 mRNA, resulting in slow growth. Puf inactivation is not a result of altered expression or localization. Puf1p and Puf4p can bind target mRNA in inactivating conditions; however, Puf5p binding is reduced. This work demonstrates how multiple Puf proteins coordinately regulate YHB1 mRNA to protect cells from nitric oxide stress.
Collapse
Affiliation(s)
- Joseph Russo
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499
| | - Wendy M Olivas
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO 63121-4499
| |
Collapse
|
44
|
Roux ME, Rasmussen MW, Palma K, Lolle S, Regué ÀM, Bethke G, Glazebrook J, Zhang W, Sieburth L, Larsen MR, Mundy J, Petersen M. The mRNA decay factor PAT1 functions in a pathway including MAP kinase 4 and immune receptor SUMM2. EMBO J 2015; 34:593-608. [PMID: 25603932 DOI: 10.15252/embj.201488645] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multi-layered defense responses are activated in plants upon recognition of invading pathogens. Transmembrane receptors recognize conserved pathogen-associated molecular patterns (PAMPs) and activate MAP kinase cascades, which regulate changes in gene expression to produce appropriate immune responses. For example, Arabidopsis MAP kinase 4 (MPK4) regulates the expression of a subset of defense genes via at least one WRKY transcription factor. We report here that MPK4 is found in complexes in vivo with PAT1, a component of the mRNA decapping machinery. PAT1 is also phosphorylated by MPK4 and, upon flagellin PAMP treatment, PAT1 accumulates and localizes to cytoplasmic processing (P) bodies which are sites for mRNA decay. Pat1 mutants exhibit dwarfism and de-repressed immunity dependent on the immune receptor SUMM2. Since mRNA decapping is a critical step in mRNA turnover, linking MPK4 to mRNA decay via PAT1 provides another mechanism by which MPK4 may rapidly instigate immune responses.
Collapse
Affiliation(s)
- Milena Edna Roux
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Signe Lolle
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Àngels Mateu Regué
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Gerit Bethke
- Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
| | - Jane Glazebrook
- Department of Plant Biology, University of Minnesota, St. Paul, MN, USA
| | - Weiping Zhang
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Leslie Sieburth
- Department of Biology, University of Utah, Salt Lake City, UT, USA
| | - Martin R Larsen
- University of Southern Denmark Institute for Biochemistry and Molecular Biology, Odense, Denmark
| | - John Mundy
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Morten Petersen
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Mota S, Vieira N, Barbosa S, Delaveau T, Torchet C, Le Saux A, Garcia M, Pereira A, Lemoine S, Coulpier F, Darzacq X, Benard L, Casal M, Devaux F, Paiva S. Role of the DHH1 gene in the regulation of monocarboxylic acids transporters expression in Saccharomyces cerevisiae. PLoS One 2014; 9:e111589. [PMID: 25365506 PMCID: PMC4218774 DOI: 10.1371/journal.pone.0111589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Previous experiments revealed that DHH1, a RNA helicase involved in the regulation of mRNA stability and translation, complemented the phenotype of a Saccharomyces cerevisiae mutant affected in the expression of genes coding for monocarboxylic-acids transporters, JEN1 and ADY2 (Paiva S, Althoff S, Casal M, Leao C. FEMS Microbiol Lett, 1999, 170:301-306). In wild type cells, JEN1 expression had been shown to be undetectable in the presence of glucose or formic acid, and induced in the presence of lactate. In this work, we show that JEN1 mRNA accumulates in a dhh1 mutant, when formic acid was used as sole carbon source. Dhh1 interacts with the decapping activator Dcp1 and with the deadenylase complex. This led to the hypothesis that JEN1 expression is post-transcriptionally regulated by Dhh1 in formic acid. Analyses of JEN1 mRNAs decay in wild-type and dhh1 mutant strains confirmed this hypothesis. In these conditions, the stabilized JEN1 mRNA was associated to polysomes but no Jen1 protein could be detected, either by measurable lactate carrier activity, Jen1-GFP fluorescence detection or western blots. These results revealed the complexity of the expression regulation of JEN1 in S. cerevisiae and evidenced the importance of DHH1 in this process. Additionally, microarray analyses of dhh1 mutant indicated that Dhh1 plays a large role in metabolic adaptation, suggesting that carbon source changes triggers a complex interplay between transcriptional and post-transcriptional effects.
Collapse
Affiliation(s)
- Sandra Mota
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
- Centre of Health and Environmental Research (CISA), School of Allied Health Sciences, Polytechnic Institute of Porto, Vila Nova de Gaia, Portugal
| | - Neide Vieira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sónia Barbosa
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Thierry Delaveau
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Claire Torchet
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Agnès Le Saux
- CNRS, FRE3630, Laboratoire de l’Expression Génétique Microbienne, Institut de Biologie Physico-Chimique, Paris, France
| | - Mathilde Garcia
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Ana Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Sophie Lemoine
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Fanny Coulpier
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Xavier Darzacq
- École normale supérieure, Institut de Biologie de l’ENS, IBENS, Paris, France
- Inserm, U1024, Paris, France
- CNRS, UMR 8197, Paris, France
| | - Lionel Benard
- CNRS, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie UPMC, UMR8226, Laboratoire de Biologie Moléculaire et Cellulaire des Eucaryotes, Institut de Biologie Physico-Chimique, Paris, France
| | - Margarida Casal
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Frédéric Devaux
- Sorbonne Universités, Université Pierre et Marie Curie, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
- CNRS, UMR7238, Laboratoire de Biologie computationnelle et quantitative, Paris, France
| | - Sandra Paiva
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| |
Collapse
|
46
|
Weidmann CA, Raynard NA, Blewett NH, Van Etten J, Goldstrohm AC. The RNA binding domain of Pumilio antagonizes poly-adenosine binding protein and accelerates deadenylation. RNA (NEW YORK, N.Y.) 2014; 20:1298-319. [PMID: 24942623 PMCID: PMC4105754 DOI: 10.1261/rna.046029.114] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 05/20/2014] [Indexed: 05/24/2023]
Abstract
PUF proteins are potent repressors that serve important roles in stem cell maintenance, neurological processes, and embryonic development. These functions are driven by PUF protein recognition of specific binding sites within the 3' untranslated regions of target mRNAs. In this study, we investigated mechanisms of repression by the founding PUF, Drosophila Pumilio, and its human orthologs. Here, we evaluated a previously proposed model wherein the Pumilio RNA binding domain (RBD) binds Argonaute, which in turn blocks the translational activity of the eukaryotic elongation factor 1A. Surprisingly, we found that Argonautes are not necessary for repression elicited by Drosophila and human PUFs in vivo. A second model proposed that the RBD of Pumilio represses by recruiting deadenylases to shorten the mRNA's polyadenosine tail. Indeed, the RBD binds to the Pop2 deadenylase and accelerates deadenylation; however, this activity is not crucial for regulation. Rather, we determined that the poly(A) is necessary for repression by the RBD. Our results reveal that poly(A)-dependent repression by the RBD requires the poly(A) binding protein, pAbp. Furthermore, we show that repression by the human PUM2 RBD requires the pAbp ortholog, PABPC1. Pumilio associates with pAbp but does not disrupt binding of pAbp to the mRNA. Taken together, our data support a model wherein the Pumilio RBD antagonizes the ability of pAbp to promote translation. Thus, the conserved function of the PUF RBD is to bind specific mRNAs, antagonize pAbp function, and promote deadenylation.
Collapse
Affiliation(s)
- Chase A Weidmann
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Genetics Training Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nathan A Raynard
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Genetics Training Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Nathan H Blewett
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Jamie Van Etten
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Aaron C Goldstrohm
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Genetics Training Program, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
47
|
Freire ER, Vashisht AA, Malvezzi AM, Zuberek J, Langousis G, Saada EA, Nascimento JDF, Stepinski J, Darzynkiewicz E, Hill K, De Melo Neto OP, Wohlschlegel JA, Sturm NR, Campbell DA. eIF4F-like complexes formed by cap-binding homolog TbEIF4E5 with TbEIF4G1 or TbEIF4G2 are implicated in post-transcriptional regulation in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2014; 20:1272-86. [PMID: 24962368 PMCID: PMC4105752 DOI: 10.1261/rna.045534.114] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/12/2014] [Indexed: 05/19/2023]
Abstract
Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.
Collapse
Affiliation(s)
- Eden R Freire
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Ajay A Vashisht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Amaranta M Malvezzi
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Gerasimos Langousis
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Edwin A Saada
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Janaína De F Nascimento
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland Centre of New Technologies, University of Warsaw, 02-089 Warsaw, Poland
| | - Kent Hill
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Osvaldo P De Melo Neto
- Department of Microbiology, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Pernambuco 50670-420, Brazil
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nancy R Sturm
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - David A Campbell
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
48
|
Vindry C, Vo Ngoc L, Kruys V, Gueydan C. RNA-binding protein-mediated post-transcriptional controls of gene expression: integration of molecular mechanisms at the 3' end of mRNAs? Biochem Pharmacol 2014; 89:431-40. [PMID: 24735612 DOI: 10.1016/j.bcp.2014.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 04/02/2014] [Accepted: 04/03/2014] [Indexed: 01/17/2023]
Abstract
Initially identified as an occasional and peculiar mode of gene regulation in eukaryotes, RNA-binding protein-mediated post-transcriptional control of gene expression has emerged, over the last two decades, as a major contributor in the control of gene expression. A large variety of RNA-binding proteins (RBPs) allows the recognition of very diverse messenger RNA sequences and participates in the regulation of basically all cellular processes. Nevertheless, the rapid outcome of post-transcriptional regulations on the level of gene expression has favored the expansion of this type of regulation in cellular processes prone to rapid and frequent modulations such as the control of the inflammatory response. At the molecular level, the 3'untranslated region (3'UTR) of mRNA is a favored site of RBP recruitment. RBPs binding to these regions control gene expression through two major modes of regulation, namely mRNA decay and modulation of translational activity. Recent progresses suggest that these two mechanisms are often interdependent and might result one from the other. Therefore, different RBPs binding distinct RNA subsets could share similar modes of action at the molecular level. RBPs are frequent targets of post-translational modifications, thereby disclosing numerous possibilities for pharmacological interventions. However, redundancies of the transduction pathways controlling these modifications have limited the perspectives to define RBPs as new therapeutic targets. Through the analysis of several examples of RBPs binding to 3'untranslated region of mRNA, we present here recent progress and perspectives regarding this rapidly evolving field of molecular biology.
Collapse
Affiliation(s)
- Caroline Vindry
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Long Vo Ngoc
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène, Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, 12 rue des Profs. Jeener et Brachet, Gosselies 6041, Belgium.
| |
Collapse
|
49
|
Manipulation of RNA Using Engineered Proteins with Customized Specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:199-225. [DOI: 10.1007/978-1-4939-1221-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Wang Y, Wang Z, Tanaka Hall TM. Engineered proteins with Pumilio/fem-3 mRNA binding factor scaffold to manipulate RNA metabolism. FEBS J 2013; 280:3755-67. [PMID: 23731364 DOI: 10.1111/febs.12367] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 05/29/2013] [Accepted: 05/30/2013] [Indexed: 01/13/2023]
Abstract
Pumilio/fem-3 mRNA binding factor proteins are characterized by a sequence-specific RNA-binding domain. This unique single-stranded RNA recognition module, whose sequence specificity can be reprogrammed, has been fused with functional modules to engineer protein factors with various functions. We summarize the advances made with respect to developing RNA regulatory tools, as well as opportunities for the future.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | |
Collapse
|