1
|
Pandey P, Wackowski K, Dubey AP, Read LK. DRBD18 acts as a transcript-specific RNA editing auxiliary factor in Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2025; 31:245-257. [PMID: 39658097 PMCID: PMC11789491 DOI: 10.1261/rna.080295.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 11/16/2024] [Indexed: 12/12/2024]
Abstract
Uridine insertion/deletion (U-indel) RNA editing of mitochondrial transcripts is a posttranscriptional modification in kinetoplastid organisms, resulting in the generation of mature mRNAs from cryptic precursors. This RNA editing process involves a multiprotein complex holoenzyme and multiple accessory factors. Recent investigations have highlighted the pivotal involvement of accessory RNA-binding proteins (RBPs) in modulating RNA editing in Trypanosoma brucei, often in a transcript-specific manner. DRBD18 is a multifunctional RBP that reportedly impacts the stability, processing, export, and translation of nuclear-encoded mRNAs. However, mass spectrometry studies report DRBD18-RESC interactions, prompting us to investigate its role in mitochondrial U-indel RNA editing. In this study, we demonstrate the specific and RNase-sensitive interaction of DRBD18 with multiple RESC factors. Depletion of DRBD18 through RNA interference in procyclic form T. brucei leads to a significant reduction in the levels of edited A6 and COIII mitochondrial transcripts, whereas its overexpression causes a notable increase in the abundance of these edited mRNAs. RNA immunoprecipitation/qRT-PCR analysis indicates a direct role for DRBD18 in A6 and COIII mRNA editing. We also examined the impact of arginine methylation of DRBD18 in the editing process, revealing that the hypomethylated form of DRBD18, rather than the arginine-methylated version, is essential for promoting these editing events. In conclusion, our findings demonstrate that DRBD18 directly affects the editing of A6 and COIII mRNAs, with its function being modulated by its arginine methylation status, marking the first report of a mitochondrial function for this protein and identifying it as a newly characterized RNA editing auxiliary factor.
Collapse
Affiliation(s)
- Parul Pandey
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Katherine Wackowski
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Ashutosh P Dubey
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York 14203, USA
| |
Collapse
|
2
|
Dubey AP, Tylec BL, Yi S, Tedeschi FA, Smith JT, Read LK. KRBP72 facilitates ATPase-dependent editing progression through a structural roadblock in mitochondrial A6 mRNA. Nucleic Acids Res 2025; 53:gkae1153. [PMID: 39673519 PMCID: PMC11754742 DOI: 10.1093/nar/gkae1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/28/2024] [Accepted: 11/08/2024] [Indexed: 12/16/2024] Open
Abstract
Uridine insertion/deletion editing of mitochondrial messenger RNAs (mRNAs) in kinetoplastids entails the coordinated action of three complexes. RNA Editing Catalytic Complexes (RECCs) catalyze the enzymatic reactions, while the RNA Editing Substrate Binding Complex (RESC) and RNA Editing Helicase 2 Complex (REH2C) coordinate interactions between RECCs, mRNAs and hundreds of guide RNAs that direct edited sequences. Additionally, numerous auxiliary factors are required for productive editing of specific mRNAs. Here, we elucidate the role of KRBP72, an editing auxiliary factor of the ABC adenosine triphosphatase (ATPase) family that exhibits RNA-binding activity. In procyclic form Trypanosoma brucei, KRBP72 knockdown leads to a pause in editing at the base of a predicted stem loop structure in adenosine triphosphate synthase subunit 6 (A6) mRNA. Enhanced cross-linking and affinity purification revealed KRBP72 binding sites both within and upstream of this stem loop. KRBP72 ATPase activity is essential for its A6 mRNA editing function; however, its RNA-binding activity is dispensable. KRBP72 interacts with most RESC proteins in an RNase-sensitive manner. By contrast, RESC12A associates with KRBP72 in an RNase-insensitive fashion, and RESC12A promotes KRBP72's interaction with RNA. Hence, KRBP72 ATPase activity facilitates progression of editing through a challenging secondary structure, highlighting this protein's crucial role in A6 mRNA editing.
Collapse
Affiliation(s)
- Ashutosh P Dubey
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| | - Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| | - Soon Yi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| | - Frank A Tedeschi
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
- Department of Biochemistry, School of Medicine, Case Western Reserve University, 2109 Adelbert Rd., Cleveland, OH 44106, USA
| | - Joseph T Smith
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, 955 Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
3
|
Carnes J, McDermott SM, Stuart K. RNA editing catalytic complexes edit multiple mRNA sites non-processively in Trypanosoma brucei. Mol Biochem Parasitol 2023; 256:111596. [PMID: 37742784 PMCID: PMC11913371 DOI: 10.1016/j.molbiopara.2023.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
RNA editing generates mature mitochondrial mRNAs in T. brucei by extensive uridine insertion and deletion at numerous editing sites (ESs) as specified by guide RNAs (gRNAs). The editing is performed by three RNA Editing Catalytic Complexes (RECCs) which each have a different endonuclease in addition to 12 proteins in common resulting in RECC1 that is specific for deletion ESs and RECC2 and RECC3 that are specific for insertion ESs. Thus, different RECCs are required for editing of mRNA sequence regions where single gRNAs specify a combination of insertion and deletion ESs. We investigated how the three different RECCs might edit combinations of insertion and deletion ESs that are specified by single gRNAs by testing whether their endonuclease compositions are stable or dynamic during editing. We analyzed in vivo BirA* proximity labeling and found that the endonucleases remain associated with their set of common RECC proteins during editing when expressed at normal physiological levels. We also found that overexpression of endonuclease components resulted in minor effects on RECCs but did not affect growth. Thus, the protein stoichiometries that exist within each RECC can be altered by perturbations of RECC expression levels. These results indicate that editing of consecutive insertion and deletion ESs occurs by successive engagement and disengagement of RECCs, i.e., is non-processive, which is likely the case for consecutive pairs of insertion or deletion ESs. This clarifies the nature of the complex patterns of partially edited mRNAs that occur in vivo.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Suzanne M McDermott
- Seattle Children's Research Institute, Seattle, WA 98109, USA; Departments of Pediatrics and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Kenneth Stuart
- Seattle Children's Research Institute, Seattle, WA 98109, USA; Departments of Pediatrics and Global Health, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Dubey AP, Tylec BL, Mishra A, Sortino K, Chen R, Sun Y, Read LK. KREH1 RNA helicase activity promotes utilization of initiator gRNAs across multiple mRNAs in trypanosome RNA editing. Nucleic Acids Res 2023; 51:5791-5809. [PMID: 37140035 PMCID: PMC10287954 DOI: 10.1093/nar/gkad292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Mitochondrial U-indel RNA editing in kinetoplastid protozoa is directed by trans-acting gRNAs and mediated by a holoenzyme with associated factors. Here, we examine the function of the holoenzyme-associated KREH1 RNA helicase in U-indel editing. We show that KREH1 knockout (KO) impairs editing of a small subset of mRNAs. Overexpression of helicase-dead mutants results in expanded impairment of editing across multiple transcripts, suggesting the existence of enzymes that can compensate for KREH1 in KO cells. In depth analysis of editing defects using quantitative RT-PCR and high-throughput sequencing reveals compromised editing initiation and progression in both KREH1-KO and mutant-expressing cells. In addition, these cells exhibit a distinct defect in the earliest stages of editing in which the initiator gRNA is bypassed, and a small number of editing events takes place just outside this region. Wild type KREH1 and a helicase-dead KREH1 mutant interact similarly with RNA and holoenzyme, and overexpression of both similarly disorders holoenzyme homeostasis. Thus, our data support a model in which KREH1 RNA helicase activity facilitates remodeling of initiator gRNA-mRNA duplexes to permit accurate utilization of initiating gRNAs on multiple transcripts.
Collapse
Affiliation(s)
- Ashutosh P Dubey
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Brianna L Tylec
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Amartya Mishra
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Katherine Sortino
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Runpu Chen
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Yijun Sun
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Laurie K Read
- Dept. of Microbiology and Immunology, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
5
|
Toh JY, Nkouawa A, Dong G, Kolev NG, Tschudi C. Two cold shock domain containing proteins trigger the development of infectious Trypanosoma brucei. PLoS Pathog 2023; 19:e1011438. [PMID: 37276216 PMCID: PMC10270622 DOI: 10.1371/journal.ppat.1011438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Cold shock proteins are members of a family of DNA- and RNA-binding proteins with one or more evolutionarily conserved cold shock domain (CSD). These proteins have a wide variety of biological functions, including DNA-damage repair, mRNA stability, and regulation of transcription, splicing and translation. We previously identified two CSD containing proteins, CSD1 and CSD2, in the protozoan parasite Trypanosoma brucei to be required for RBP6-driven metacyclic production, albeit at different steps of the developmental program. During metacyclogenesis T. brucei undergoes major morphological and metabolic changes that culminate in the establishment of quiescent metacyclic parasites and the acquisition of mammalian infectivity. To investigate the specific role of CSD1 and CSD2 in this process, we ectopically expressed CSD1 or CSD2 in non-infectious procyclic parasites and discovered that each protein is sufficient to produce infectious metacyclic parasites in 24 hours. Domain truncation assays determined that the N-terminal domain, but not the C-terminal domain, of CSD1 and CSD2 was required for metacyclic development. Furthermore, conserved amino acid residues in the CSD of CSD1 and CSD2, known to be important for binding nucleic acids, were found to be necessary for metacyclic production. Using single-end enhanced crosslinking and immunoprecipitation (seCLIP) we identified the specific binding motif of CSD1 and CSD2 as "ANACAU" and the bound mRNAs were enriched for biological processes, including lipid metabolism, microtubule-based movement and nucleocytoplasmic transport that are likely involved in the transition to bloodstream form-like cells.
Collapse
Affiliation(s)
- Justin Y Toh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Agathe Nkouawa
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Gang Dong
- Max Perutz Labs, Vienna Biocenter, Center for Medical Biochemistry, Medical University of Vienna, Vienna, Austria
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| |
Collapse
|
6
|
Smith Jr. JT, Doleželová E, Tylec B, Bard JE, Chen R, Sun Y, Zíková A, Read LK. Developmental regulation of edited CYb and COIII mitochondrial mRNAs is achieved by distinct mechanisms in Trypanosoma brucei. Nucleic Acids Res 2020; 48:8704-8723. [PMID: 32738044 PMCID: PMC7470970 DOI: 10.1093/nar/gkaa641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma brucei is a parasitic protozoan that undergoes a complex life cycle involving insect and mammalian hosts that present dramatically different nutritional environments. Mitochondrial metabolism and gene expression are highly regulated to accommodate these environmental changes, including regulation of mRNAs that require extensive uridine insertion/deletion (U-indel) editing for their maturation. Here, we use high throughput sequencing and a method for promoting life cycle changes in vitro to assess the mechanisms and timing of developmentally regulated edited mRNA expression. We show that edited CYb mRNA is downregulated in mammalian bloodstream forms (BSF) at the level of editing initiation and/or edited mRNA stability. In contrast, edited COIII mRNAs are depleted in BSF by inhibition of editing progression. We identify cell line-specific differences in the mechanisms abrogating COIII mRNA editing, including the possible utilization of terminator gRNAs that preclude the 3' to 5' progression of editing. By examining the developmental timing of altered mitochondrial mRNA levels, we also reveal transcript-specific developmental checkpoints in epimastigote (EMF), metacyclic (MCF), and BSF. These studies represent the first analysis of the mechanisms governing edited mRNA levels during T. brucei development and the first to interrogate U-indel editing in EMF and MCF life cycle stages.
Collapse
Affiliation(s)
- Joseph T Smith Jr.
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Eva Doleželová
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Brianna Tylec
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Jonathan E Bard
- Genomics and Bioinformatics Core, University at Buffalo, Buffalo, NY 14203, USA
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre Czech Academy of Science, České Budejovice, Czech Republic
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo – Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| |
Collapse
|
7
|
Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, Larson TR, Plevin MJ, Cruz AK, Walrad PB. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res 2020; 48:5511-5526. [PMID: 32365184 PMCID: PMC7261171 DOI: 10.1093/nar/gkaa211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.
Collapse
Affiliation(s)
- Tiago R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Adam A Dowle
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Ewan Parry
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Karen Hogg
- Imaging and Cytometry Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Foteini Kolokousi
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Michael J Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Angela K Cruz
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
8
|
Mehta V, Moshiri H, Srikanth A, Kala S, Lukeš J, Salavati R. Sulfonated inhibitors of the RNA editing ligases validate the essential role of the MRP1/2 proteins in kinetoplastid RNA editing. RNA (NEW YORK, N.Y.) 2020; 26:827-835. [PMID: 32276989 PMCID: PMC7297121 DOI: 10.1261/rna.075598.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 04/06/2020] [Indexed: 05/21/2023]
Abstract
The RNA editing core complex (RECC) catalyzes mitochondrial U-insertion/deletion mRNA editing in trypanosomatid flagellates. Some naphthalene-based sulfonated compounds, such as C35 and MrB, competitively inhibit the auto-adenylylation activity of an essential RECC enzyme, kinetoplastid RNA editing ligase 1 (KREL1), required for the final step in editing. Previous studies revealed the ability of these compounds to interfere with the interaction between the editosome and its RNA substrates, consequently affecting all catalytic activities that comprise RNA editing. This observation implicates a critical function for the affected RNA binding proteins in RNA editing. In this study, using the inhibitory compounds, we analyzed the composition and editing activities of functional editosomes and identified the mitochondrial RNA binding proteins 1 and 2 (MRP1/2) as their preferred targets. While the MRP1/2 heterotetramer complex is known to bind guide RNA and promote annealing to its cognate pre-edited mRNA, its role in RNA editing remained enigmatic. We show that the compounds affect the association between the RECC and MRP1/2 heterotetramer. Furthermore, RECC purified post-treatment with these compounds exhibit compromised in vitro RNA editing activity that, remarkably, recovers upon the addition of recombinant MRP1/2 proteins. This work provides experimental evidence that the MRP1/2 heterotetramer is required for in vitro RNA editing activity and substantiates the hypothesized role of these proteins in presenting the RNA duplex to the catalytic complex in the initial steps of RNA editing.
Collapse
Affiliation(s)
- Vaibhav Mehta
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Akshaya Srikanth
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Reza Salavati
- Department of Biochemistry, McGill University, Montreal, H3G1Y6 Quebec, Canada
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, H9X 3V9 Quebec, Canada
| |
Collapse
|
9
|
Aphasizheva I, Alfonzo J, Carnes J, Cestari I, Cruz-Reyes J, Göringer HU, Hajduk S, Lukeš J, Madison-Antenucci S, Maslov DA, McDermott SM, Ochsenreiter T, Read LK, Salavati R, Schnaufer A, Schneider A, Simpson L, Stuart K, Yurchenko V, Zhou ZH, Zíková A, Zhang L, Zimmer S, Aphasizhev R. Lexis and Grammar of Mitochondrial RNA Processing in Trypanosomes. Trends Parasitol 2020; 36:337-355. [PMID: 32191849 PMCID: PMC7083771 DOI: 10.1016/j.pt.2020.01.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/19/2020] [Accepted: 01/22/2020] [Indexed: 12/15/2022]
Abstract
Trypanosoma brucei spp. cause African human and animal trypanosomiasis, a burden on health and economy in Africa. These hemoflagellates are distinguished by a kinetoplast nucleoid containing mitochondrial DNAs of two kinds: maxicircles encoding ribosomal RNAs (rRNAs) and proteins and minicircles bearing guide RNAs (gRNAs) for mRNA editing. All RNAs are produced by a phage-type RNA polymerase as 3' extended precursors, which undergo exonucleolytic trimming. Most pre-mRNAs proceed through 3' adenylation, uridine insertion/deletion editing, and 3' A/U-tailing. The rRNAs and gRNAs are 3' uridylated. Historically, RNA editing has attracted major research effort, and recently essential pre- and postediting processing events have been discovered. Here, we classify the key players that transform primary transcripts into mature molecules and regulate their function and turnover.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA.
| | - Juan Alfonzo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Carnes
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Igor Cestari
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - H Ulrich Göringer
- Department of Molecular Genetics, Darmstadt University of Technology, 64287 Darmstadt, Germany
| | - Stephen Hajduk
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Susan Madison-Antenucci
- Parasitology Laboratory, Wadsworth Center, New York State Department of Health, Albany, NY 12201, USA
| | - Dmitri A Maslov
- Department of Molecular, Cell, and Systems Biology, University of California - Riverside, Riverside, CA 92521, USA
| | - Suzanne M McDermott
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, 21,111 Lakeshore Road, Ste-Anne-de-Bellevue, H9X3V9, Québec, Canada
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Bern CH-3012, Switzerland
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA 98109, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow, Russia
| | - Z Hong Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA90095, USA
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Liye Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Sara Zimmer
- University of Minnesota Medical School, Duluth campus, Duluth, MN 55812, USA
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University Medical Campus, Boston, MA 02118, USA
| |
Collapse
|
10
|
Tylec BL, Simpson RM, Kirby LE, Chen R, Sun Y, Koslowsky DJ, Read LK. Intrinsic and regulated properties of minimally edited trypanosome mRNAs. Nucleic Acids Res 2019; 47:3640-3657. [PMID: 30698753 PMCID: PMC6468165 DOI: 10.1093/nar/gkz012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/02/2019] [Accepted: 01/08/2019] [Indexed: 12/17/2022] Open
Abstract
Most mitochondrial mRNAs in kinetoplastids require extensive uridine insertion/deletion editing to generate translatable open reading frames. Editing is specified by trans-acting gRNAs and involves a complex machinery including basal and accessory factors. Here, we utilize high-throughput sequencing to analyze editing progression in two minimally edited mRNAs that provide a simplified system due their requiring only two gRNAs each for complete editing. We show that CYb and MURF2 mRNAs exhibit barriers to editing progression that differ from those previously identified for pan-edited mRNAs, primarily at initial gRNA usage and gRNA exchange. We demonstrate that mis-edited junctions arise through multiple pathways including mis-alignment of cognate gRNA, incorrect and sometimes promiscuous gRNA utilization and inefficient gRNA anchoring. We then examined the roles of accessory factors RBP16 and MRP1/2 in maintaining edited CYb and MURF2 populations. RBP16 is essential for initiation of CYb and MURF2 editing, as well as MURF2 editing progression. In contrast, MRP1/2 stabilizes both edited mRNA populations, while further promoting progression of MURF2 mRNA editing. We also analyzed the effects of RNA Editing Substrate Binding Complex components, TbRGG2 and GAP1, and show that both proteins modestly impact progression of editing on minimally edited mRNAs, suggesting a novel function for GAP1.
Collapse
Affiliation(s)
- Brianna L Tylec
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| | - Rachel M Simpson
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| | - Laura E Kirby
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Runpu Chen
- Department of Computer Science and Engineering, University at Buffalo, Buffalo, NY 14260
| | - Yijun Sun
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| | - Donna J Koslowsky
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Laurie K Read
- Department of Microbiology and Immunology, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY 14203
| |
Collapse
|
11
|
Dixit S, Lukeš J. Combinatorial interplay of RNA-binding proteins tunes levels of mitochondrial mRNA in trypanosomes. RNA (NEW YORK, N.Y.) 2018; 24:1594-1606. [PMID: 30120147 PMCID: PMC6191715 DOI: 10.1261/rna.066233.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/10/2018] [Indexed: 05/11/2023]
Abstract
MRP1/2 is a heteromeric protein complex that functions in the trypanosomatid mitochondrion as part of the RNA editing machinery, which facilitates multiple targeted insertions and deletions of uridines. MRP1/2 was shown to interact with MRB8170, which initiates RNA editing by marking pre-edited mRNAs, while TbRGG2 is required for its efficient progression on pan-edited mRNAs. Both MRP1/2 and TbRGG2 are capable of modulating RNA-RNA interactions in vitro. As determined by using iCLIP and RIP-qPCR, RNAs bound to MRP1/2 are characterized and compared with those associated with MRB8170 and TbRGG2. We provide evidence that MRP1 and MRB8170 have correlated binding and similar RNA crosslinking peak profiles over minimally and never-edited mRNAs. Our results suggest that MRP1 assists MRB8170 in RNA editing on minimally edited mRNAs.
Collapse
Affiliation(s)
- Sameer Dixit
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Sciences, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
12
|
Cruz-Reyes J, Mooers BHM, Doharey PK, Meehan J, Gulati S. Dynamic RNA holo-editosomes with subcomplex variants: Insights into the control of trypanosome editing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1502. [PMID: 30101566 DOI: 10.1002/wrna.1502] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/14/2022]
Abstract
RNA editing causes massive remodeling of the mitochondrial mRNA transcriptome in trypanosomes and related kinetoplastid protozoa. This type of editing involves the specific insertion or deletion of uridylates (U) directed by small noncoding guide RNAs (gRNAs). Because U-insertion exceeds U-deletion by a factor of 10, editing increases the nascent mRNA size by up to 55%. In Trypanosoma brucei, the editing apparatus uses ~40 proteins and >1,200 gRNAs to create the functional open reading frame in 12 mRNAs. Thousands of sites are specifically recognized in the pre-edited mRNAs and a myriad of partially edited transcript intermediates accumulates in mitochondria. The control of editing is poorly understood, but past work suggests that it occurs during substrate recognition, the initiation and progression of editing, and during the life-cycle in different hosts. The growing understanding of the editing proteins offers clues about editing control. Most editing proteins reside in the "RNA-free" RNA editing core complex (RECC) and in the accessory RNA editing substrate complex (RESC) that contains gRNA. Two accessory RNA helicases are known, including one in the RNA editing helicase 2 complex (REH2C). Both the RESC and the REH2C associate with mRNA, providing a rationale for the assembly of mRNA or its mRNPs, RESC, and the RECC enzyme. Identified variants of the canonical editing complexes further complicate the model of RNA editing. We examine specific examples of complex variants, differential effects of editing proteins on the mRNAs within and between T. brucei life stages, and possible control points in RNA holo-editosomes. This article is categorized under: RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Jorge Cruz-Reyes
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Blaine H M Mooers
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Pawan K Doharey
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Joshua Meehan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Shelly Gulati
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
13
|
Gene Loss and Error-Prone RNA Editing in the Mitochondrion of Perkinsela, an Endosymbiotic Kinetoplastid. mBio 2015; 6:e01498-15. [PMID: 26628723 PMCID: PMC4669381 DOI: 10.1128/mbio.01498-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Perkinsela is an enigmatic early-branching kinetoplastid protist that lives as an obligate endosymbiont inside Paramoeba (Amoebozoa). We have sequenced the highly reduced mitochondrial genome of Perkinsela, which possesses only six protein-coding genes (cox1, cox2, cox3, cob, atp6, and rps12), despite the fact that the organelle itself contains more DNA than is present in either the host or endosymbiont nuclear genomes. An in silico analysis of two Perkinsela strains showed that mitochondrial RNA editing and processing machineries typical of kinetoplastid flagellates are generally conserved, and all mitochondrial transcripts undergo U-insertion/deletion editing. Canonical kinetoplastid mitochondrial ribosomes are also present. We have developed software tools for accurate and exhaustive mapping of transcriptome sequencing (RNA-seq) reads with extensive U-insertions/deletions, which allows detailed investigation of RNA editing via deep sequencing. With these methods, we show that up to 50% of reads for a given edited region contain errors of the editing system or, less likely, correspond to alternatively edited transcripts. Uridine insertion/deletion-type RNA editing, which occurs in the mitochondrion of kinetoplastid protists, has been well-studied in the model parasite genera Trypanosoma, Leishmania, and Crithidia. Perkinsela provides a unique opportunity to broaden our knowledge of RNA editing machinery from an evolutionary perspective, as it represents the earliest kinetoplastid branch and is an obligatory endosymbiont with extensive reductive trends. Interestingly, up to 50% of mitochondrial transcripts in Perkinsela contain errors. Our study was complemented by use of newly developed software designed for accurate mapping of extensively edited RNA-seq reads obtained by deep sequencing.
Collapse
|
14
|
Aphasizheva I, Aphasizhev R. U-Insertion/Deletion mRNA-Editing Holoenzyme: Definition in Sight. Trends Parasitol 2015; 32:144-156. [PMID: 26572691 DOI: 10.1016/j.pt.2015.10.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 11/16/2022]
Abstract
RNA editing is a process that alters DNA-encoded sequences and is distinct from splicing, 5' capping, and 3' additions. In 30 years since editing was discovered in mitochondria of trypanosomes, several functionally and evolutionarily unrelated mechanisms have been described in eukaryotes, archaea, and viruses. Editing events are predominantly post-transcriptional and include nucleoside insertions and deletions, and base substitutions and modifications. Here, we review the mechanism of uridine insertion/deletion mRNA editing in kinetoplastid protists typified by Trypanosoma brucei. This type of editing corrects frameshifts, introduces translation punctuation signals, and often adds hundreds of uridines to create protein-coding sequences. We focus on protein complexes responsible for editing reactions and their interactions with other elements of the mitochondrial gene expression pathway.
Collapse
Affiliation(s)
- Inna Aphasizheva
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA.
| | - Ruslan Aphasizhev
- Department of Molecular and Cell Biology, Boston University School of Dental Medicine, Boston, MA 02118, USA; Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
An arginine-glycine-rich RNA binding protein impacts the abundance of specific mRNAs in the mitochondria of Trypanosoma brucei. EUKARYOTIC CELL 2014; 14:149-57. [PMID: 25480938 DOI: 10.1128/ec.00232-14] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In kinetoplastid parasites, regulation of mitochondrial gene expression occurs posttranscriptionally via RNA stability and RNA editing. In addition to the 20S editosome that contains the enzymes required for RNA editing, a dynamic complex called the mitochondrial RNA binding 1 (MRB1) complex is also essential for editing. Trypanosoma brucei RGG3 (TbRGG3) was originally identified through its interaction with the guide RNA-associated proteins 1 and 2 (GAP1/2), components of the MRB1 complex. Both the arginine-glycine-rich character of TbRGG3, which suggests a function in RNA binding, and its interaction with MRB1 implicate TbRGG3 in mitochondrial gene regulation. Here, we report an in vitro and in vivo characterization of TbRGG3 function in T. brucei mitochondria. We show that in vitro TbRGG3 binds RNA with broad sequence specificity and has the capacity to modulate RNA-RNA interactions. In vivo, inducible RNA interference (RNAi) studies demonstrate that TbRGG3 is essential for proliferation of insect vector stage T. brucei. TbRGG3 ablation does not cause a defect in RNA editing but, rather, specifically affects the abundance of two preedited transcripts as well as their edited counterparts. Protein-protein interaction studies show that TbRGG3 associates with GAP1/2 apart from the remainder of the MRB1 complex, as well as with several non-MRB1 proteins that are required for mitochondrial RNA editing and/or stability. Together, these studies demonstrate that TbRGG3 is an essential mitochondrial gene regulatory factor that impacts the stabilities of specific RNAs.
Collapse
|
16
|
Dynamics of mitochondrial RNA-binding protein complex in Trypanosoma brucei and its petite mutant under optimized immobilization conditions. EUKARYOTIC CELL 2014; 13:1232-40. [PMID: 25063375 DOI: 10.1128/ec.00149-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
There are a variety of complex metabolic processes ongoing simultaneously in the single, large mitochondrion of Trypanosoma brucei. Understanding the organellar environment and dynamics of mitochondrial proteins requires quantitative measurement in vivo. In this study, we have validated a method for immobilizing both procyclic stage (PS) and bloodstream stage (BS) T. brucei brucei with a high level of cell viability over several hours and verified its suitability for undertaking fluorescence recovery after photobleaching (FRAP), with mitochondrion-targeted yellow fluorescent protein (YFP). Next, we used this method for comparative analysis of the translational diffusion of mitochondrial RNA-binding protein 1 (MRP1) in the BS and in T. b. evansi. The latter flagellate is like petite mutant Saccharomyces cerevisiae because it lacks organelle-encoded nucleic acids. FRAP measurement of YFP-tagged MRP1 in both cell lines illuminated from a new perspective how the absence or presence of RNA affects proteins involved in mitochondrial RNA metabolism. This work represents the first attempt to examine this process in live trypanosomes.
Collapse
|
17
|
Ammerman ML, Tomasello DL, Faktorová D, Kafková L, Hashimi H, Lukeš J, Read LK. A core MRB1 complex component is indispensable for RNA editing in insect and human infective stages of Trypanosoma brucei. PLoS One 2013; 8:e78015. [PMID: 24250748 PMCID: PMC3820961 DOI: 10.1371/journal.pone.0078015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/11/2013] [Indexed: 11/18/2022] Open
Abstract
Uridine insertion/deletion RNA editing is a unique and vital process in kinetoplastids, required for creation of translatable open reading frames in most mitochondrially-encoded RNAs. Emerging as a key player in this process is the mitochondrial RNA binding 1 (MRB1) complex. MRB1 comprises an RNA-independent core complex of at least six proteins, including the GAP1/2 guide RNA (gRNA) binding proteins. The core interacts in an RNA-enhanced or -dependent manner with imprecisely defined TbRGG2 subcomplexes, Armadillo protein MRB10130, and additional factors that comprise the dynamic MRB1 complex. Towards understanding MRB1 complex function in RNA editing, we present here functional characterization of the pentein domain-containing MRB1 core protein, MRB11870. Inducible RNAi studies demonstrate that MRB11870 is essential for proliferation of both insect vector and human infective stage T. brucei. MRB11870 ablation causes a massive defect in RNA editing, affecting both pan-edited and minimally edited mRNAs, but does not substantially affect mitochondrial RNA stability or processing of precursor transcripts. The editing defect in MRB1-depleted cells occurs at the initiation stage of editing, as pre-edited mRNAs accumulate. However, the gRNAs that direct editing remain abundant in the knockdown cells. To examine the contribution of MRB11870 to MRB1 macromolecular interactions, we tagged core complexes and analyzed their composition and associated proteins in the presence and absence of MRB11870. These studies demonstrated that MRB11870 is essential for association of GAP1/2 with the core, as well as for interaction of the core with other proteins and subcomplexes. Together, these data support a model in which the MRB1 core mediates functional interaction of gRNAs with the editing machinery, having GAP1/2 as its gRNA binding constituents. MRB11870 is a critical component of the core, essential for its structure and function.
Collapse
Affiliation(s)
- Michelle L. Ammerman
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Danielle L. Tomasello
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences and Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kala S, Moshiri H, Mehta V, Yip CW, Salavati R. The oligonucleotide binding (OB)-fold domain of KREPA4 is essential for stable incorporation into editosomes. PLoS One 2012; 7:e46864. [PMID: 23056494 PMCID: PMC3464273 DOI: 10.1371/journal.pone.0046864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 09/06/2012] [Indexed: 12/28/2022] Open
Abstract
Most mitochondrial mRNAs in trypanosomatid parasites require uridine insertion/deletion RNA editing, a process mediated by guide RNA (gRNA) and catalyzed by multi-protein complexes called editosomes. The six oligonucleotide/oligosaccharide binding (OB)-fold proteins (KREPA1-A6), are a part of the common core of editosomes. They form a network of interactions among themselves as well as with the insertion and deletion sub-complexes and are essential for the stability of the editosomes. KREPA4 and KREPA6 proteins bind gRNA in vitro and are known to interact directly in yeast two-hybrid analysis. In this study, using several approaches we show a minimal interaction surface of the KREPA4 protein that is required for this interaction. By screening a series of N- and C-terminally truncated KREPA4 fragments, we show that a predicted α-helix of KREPA4 OB-fold is required for its interaction with KREPA6. An antibody against the KREPA4 α-helix or mutations of this region can eliminate association with KREPA6; while a peptide fragment corresponding to the α-helix can independently interact with KREPA6, thereby supporting the identification of KREPA4-KREPA6 interface. We also show that the predicted OB-fold of KREPA4; independent of its interaction with gRNA, is responsible for the stable integration of KREPA4 in the editosomes, and editing complexes co-purified with the tagged OB-fold can catalyze RNA editing. Therefore, we conclude that while KREPA4 interacts with KREPA6 through the α-helix region of its OB-fold, the entire OB-fold is required for its integration in the functional editosome, through additional protein-protein interactions.
Collapse
Affiliation(s)
- Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Houtan Moshiri
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Vaibhav Mehta
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Chun Wai Yip
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Reza Salavati
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
- McGill Centre for Bioinformatics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Kafková L, Ammerman ML, Faktorová D, Fisk JC, Zimmer SL, Sobotka R, Read LK, Lukeš J, Hashimi H. Functional characterization of two paralogs that are novel RNA binding proteins influencing mitochondrial transcripts of Trypanosoma brucei. RNA (NEW YORK, N.Y.) 2012; 18:1846-61. [PMID: 22898985 PMCID: PMC3446708 DOI: 10.1261/rna.033852.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 07/11/2012] [Indexed: 05/20/2023]
Abstract
A majority of Trypanosoma brucei proteins have unknown functions, a consequence of its independent evolutionary history within the order Kinetoplastida that allowed for the emergence of several unique biological properties. Among these is RNA editing, needed for expression of mitochondrial-encoded genes. The recently discovered mitochondrial RNA binding complex 1 (MRB1) is composed of proteins with several functions in processing organellar RNA. We characterize two MRB1 subunits, referred to herein as MRB8170 and MRB4160, which are paralogs arisen from a large chromosome duplication occurring only in T. brucei. As with many other MRB1 proteins, both have no recognizable domains, motifs, or orthologs outside the order. We show that they are both novel RNA binding proteins, possibly representing a new class of these proteins. They associate with a similar subset of MRB1 subunits but not directly with each other. We generated cell lines that either individually or simultaneously target the mRNAs encoding both proteins using RNAi. Their dual silencing results in a differential effect on moderately and pan-edited RNAs, suggesting a possible functional separation of the two proteins. Cell growth persists upon RNAi silencing of each protein individually in contrast to the dual knockdown. Yet, their apparent redundancy in terms of cell viability is at odds with the finding that only one of these knockdowns results in the general degradation of pan-edited RNAs. While MRB8170 and MRB4160 share a considerable degree of conservation, our results suggest that their recent sequence divergence has led to them influencing mitochondrial mRNAs to differing degrees.
Collapse
Affiliation(s)
- Lucie Kafková
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Drahomíra Faktorová
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Sara L. Zimmer
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Roman Sobotka
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Institute of Microbiology, Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | - Julius Lukeš
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Biology Center, Institute of Parasitology, Czech Academy of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05 České Budějovice (Budweis), Czech Republic
- Corresponding authorE-mail
| |
Collapse
|
20
|
Multifunctional G-rich and RRM-containing domains of TbRGG2 perform separate yet essential functions in trypanosome RNA editing. EUKARYOTIC CELL 2012; 11:1119-31. [PMID: 22798390 DOI: 10.1128/ec.00175-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Efficient editing of Trypanosoma brucei mitochondrial RNAs involves the actions of multiple accessory factors. T. brucei RGG2 (TbRGG2) is an essential protein crucial for initiation and 3'-to-5' progression of editing. TbRGG2 comprises an N-terminal G-rich region containing GWG and RG repeats and a C-terminal RNA recognition motif (RRM)-containing domain. Here, we perform in vitro and in vivo separation-of-function studies to interrogate the mechanism of TbRGG2 action in RNA editing. TbRGG2 preferentially binds preedited mRNA in vitro with high affinity attributable to its G-rich region. RNA-annealing and -melting activities are separable, carried out primarily by the G-rich and RRM domains, respectively. In vivo, the G-rich domain partially complements TbRGG2 knockdown, but the RRM domain is also required. Notably, TbRGG2's RNA-melting activity is dispensable for RNA editing in vivo. Interactions between TbRGG2 and MRB1 complex proteins are mediated by both G-rich and RRM-containing domains, depending on the binding partner. Overall, our results are consistent with a model in which the high-affinity RNA binding and RNA-annealing activities of the G-rich domain are essential for RNA editing in vivo. The RRM domain may have key functions involving interactions with the MRB1 complex and/or regulation of the activities of the G-rich domain.
Collapse
|
21
|
Ammerman ML, Downey KM, Hashimi H, Fisk JC, Tomasello DL, Faktorová D, Kafková L, King T, Lukeš J, Read LK. Architecture of the trypanosome RNA editing accessory complex, MRB1. Nucleic Acids Res 2012; 40:5637-50. [PMID: 22396527 PMCID: PMC3384329 DOI: 10.1093/nar/gks211] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/01/2012] [Accepted: 02/16/2012] [Indexed: 12/23/2022] Open
Abstract
Trypanosoma brucei undergoes an essential process of mitochondrial uridine insertion and deletion RNA editing catalyzed by a 20S editosome. The multiprotein mitochondrial RNA-binding complex 1 (MRB1) is emerging as an equally essential component of the trypanosome RNA editing machinery, with additional functions in gRNA and mRNA stabilization. The distinct and overlapping protein compositions of reported MRB1 complexes and diverse MRB1 functions suggest that the complex is composed of subcomplexes with RNA-dependent and independent interactions. To determine the architecture of the MRB1 complex, we performed a comprehensive yeast two-hybrid analysis of 31 reported MRB1 proteins. We also used in vivo analyses of tagged MRB1 components to confirm direct and RNA-mediated interactions. Here, we show that MRB1 contains a core complex comprised of six proteins and maintained by numerous direct interactions. The MRB1 core associates with multiple subcomplexes and proteins through RNA-enhanced or RNA-dependent interactions. These findings provide a framework for interpretation of previous functional studies and suggest that MRB1 is a dynamic complex that coordinates various aspects of mitochondrial gene regulation.
Collapse
Affiliation(s)
- Michelle L. Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Kurtis M. Downey
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Hassan Hashimi
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - John C. Fisk
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Danielle L. Tomasello
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Lucie Kafková
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Tony King
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Julius Lukeš
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| | - Laurie K. Read
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, NY 14214, USA, Biology Centre, Institute of Parasitology and Faculty of Science, University of South Bohemia, 37005 České Budějovice (Budweis), Czech Republic
| |
Collapse
|
22
|
Editosome accessory factors KREPB9 and KREPB10 in Trypanosoma brucei. EUKARYOTIC CELL 2012; 11:832-43. [PMID: 22562468 DOI: 10.1128/ec.00046-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Multiprotein complexes, called editosomes, catalyze the uridine insertion and deletion RNA editing that forms translatable mitochondrial mRNAs in kinetoplastid parasites. We have identified here two new U1-like zinc finger proteins that associate with editosomes and have shown that they are related to KREPB6, KREPB7, and KREPB8, and thus we have named them Kinetoplastid RNA Editing Proteins, KREPB9 and KREPB10. They are conserved and syntenic in trypanosomatids although KREPB10 is absent in Trypanosoma vivax and both are absent in Leishmania. Tandem affinity purification (TAP)-tagged KREPB9 and KREPB10 incorporate into ~20S editosomes and/or subcomplexes thereof and preferentially associate with deletion subcomplexes, as do KREPB6, KREPB7, and KREPB8. KREPB10 also associates with editosomes that are isolated via a chimeric endonuclease, KREN1 in KREPB8 RNA interference (RNAi) cells, or MEAT1. The purified complexes have precleaved editing activities and endonuclease cleavage activity that appears to leave a 5' OH on the 3' product. RNAi knockdowns did not affect growth but resulted in relative reductions of both edited and unedited mitochondrial mRNAs. The similarity of KREPB9 and KREPB10 to KREPB6, KREPB7, and KREPB8 suggests they may be accessory factors that affect editing endonuclease activity and as a consequence may affect mitochondrial mRNA stability. KREPB9 and KREPB10, along with KREPB6, KREPB7, and KREPB8, may enable the endonucleases to discriminate among and accurately cleave hundreds of different editing sites and may be involved in the control of differential editing during the life cycle of T. brucei.
Collapse
|
23
|
Salavati R, Moshiri H, Kala S, Shateri Najafabadi H. Inhibitors of RNA editing as potential chemotherapeutics against trypanosomatid pathogens. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2011; 2:36-46. [PMID: 24533263 DOI: 10.1016/j.ijpddr.2011.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/17/2011] [Accepted: 10/21/2011] [Indexed: 01/14/2023]
Abstract
The related trypanosomatid pathogens, Trypanosoma brucei spp., Trypanosoma cruzi and Leishmania spp. cause devastating diseases in humans and animals and continue to pose a major challenge in drug development. Mitochondrial RNA editing, catalyzed by multi-protein complexes known as editosomes, has provided an opportunity for development of efficient and specific chemotherapeutic targets against trypanosomatid pathogens. This review will discuss both methods for discovery of RNA editing inhibitors, as well as inhibitors against the T. brucei editosome that were recently discovered through creative virtual and high throughput screening methods. In addition, the use of these inhibitors as agents that can block or perturb one or more steps of the RNA editing process will be discussed. These inhibitors can potentially be used to study the dynamic processing and assembly of the editosome proteins. A thorough understanding of the mechanisms and specificities of these new inhibitors is needed in order to contribute to both the functional studies of an essential gene expression mechanism and to the possibility of future drug development against the trypanosomatid pathogens.
Collapse
Affiliation(s)
- Reza Salavati
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6 ; Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 ; McGill Centre for Bioinformatics, McGill University, Bellini Building, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G0B1
| | - Houtan Moshiri
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada H3G1Y6 ; Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9
| | - Smriti Kala
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9
| | - Hamed Shateri Najafabadi
- Institute of Parasitology, McGill University, 21111 Lakeshore Road, Ste. Anne de Bellevue, Quebec, Canada H9X3V9 ; McGill Centre for Bioinformatics, McGill University, Bellini Building, 3649 Promenade Sir William Osler, Montreal, Quebec, Canada H3G0B1
| |
Collapse
|
24
|
A trypanosomal pentatricopeptide repeat protein stabilizes the mitochondrial mRNAs of cytochrome oxidase subunits 1 and 2. EUKARYOTIC CELL 2011; 11:79-87. [PMID: 22058141 DOI: 10.1128/ec.05213-11] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The pentatricopeptide repeat (PPR) protein family consists of organellar proteins predicted to bind to specific RNA sequences. Plants have hundreds of distinct PPR proteins, whereas other eukaryotes generally have many fewer. The genome of the parasitic protozoon Trypanosoma brucei is predicted to encode more than 30 different PPR proteins, which is an extraordinarily high number for a nonplant organism. Here we report the characterization T. brucei PPR9 (TbPPR9). Epitope tagging shows that the protein is exclusively mitochondrially localized. Interestingly, while in induced RNA interference cell lines TbPPR9 is efficiently downregulated, the level of its mRNA is not affected. Ablation of TbPPR9 selectively abolishes oxidative but not mitochondrial substrate-level phosphorylation. The molecular basis of this phenotype is the fact that TbPPR9 is required for the stability of the cytochrome oxidase subunit 1 (COX1) and COX2 mRNAs. This is supported by the observation that ablation of TbPPR9 destabilizes the COX complex but not the cytochrome bc1 or the ATP synthase complex. Moreover, it was shown by blue native gel electrophoresis that TbPPR9 is present in a large complex of unknown composition.
Collapse
|
25
|
Aphasizhev R, Aphasizheva I. Uridine insertion/deletion editing in trypanosomes: a playground for RNA-guided information transfer. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:669-85. [PMID: 21823228 PMCID: PMC3154072 DOI: 10.1002/wrna.82] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
RNA editing is a collective term referring to enzymatic processes that change RNA sequence apart from splicing, 5' capping or 3' extension. In this article, we focus on uridine insertion/deletion mRNA editing found exclusively in mitochondria of kinetoplastid protists. This type of editing corrects frameshifts, introduces start and stops codons, and often adds much of the coding sequence to create an open reading frame. The mitochondrial genome of trypanosomatids, the most extensively studied clade within the order Kinetoplastida, is composed of ∼50 maxicircles with limited coding capacity and thousands of minicircles. To produce functional mRNAs, a multitude of nuclear-encoded factors mediate interactions of maxicircle-encoded pre-mRNAs with a vast repertoire of minicircle-encoded guide RNAs. Editing reactions of mRNA cleavage, U-insertions or U-deletions, and ligation are catalyzed by the RNA editing core complex (RECC, the 20S editosome) while each step of this enzymatic cascade is directed by guide RNAs. These 50-60 nucleotide (nt) molecules are 3' uridylated by RET1 TUTase and stabilized via association with the gRNA binding complex (GRBC). Remarkably, the information transfer between maxicircle and minicircle transcriptomes does not rely on template-dependent polymerization of nucleic acids. Instead, intrinsic substrate specificities of key enzymes are largely responsible for the fidelity of editing. Conversely, the efficiency of editing is enhanced by assembling enzymes and RNA binding proteins into stable multiprotein complexes. WIREs RNA 2011 2 669-685 DOI: 10.1002/wrna.82 For further resources related to this article, please visit the WIREs website.
Collapse
MESH Headings
- Endonucleases/chemistry
- Endonucleases/genetics
- Endonucleases/metabolism
- Models, Biological
- Models, Molecular
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing/genetics
- RNA Editing/physiology
- RNA Helicases/chemistry
- RNA Helicases/genetics
- RNA Helicases/metabolism
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Trypanosoma/genetics
- Trypanosoma/metabolism
- Uridine/chemistry
Collapse
Affiliation(s)
- Ruslan Aphasizhev
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, USA.
| | | |
Collapse
|
26
|
Ammerman ML, Hashimi H, Novotná L, Cicová Z, McEvoy SM, Lukes J, Read LK. MRB3010 is a core component of the MRB1 complex that facilitates an early step of the kinetoplastid RNA editing process. RNA (NEW YORK, N.Y.) 2011; 17:865-77. [PMID: 21451155 PMCID: PMC3078736 DOI: 10.1261/rna.2446311] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 02/17/2011] [Indexed: 05/20/2023]
Abstract
Gene expression in the mitochondria of the kinetoplastid parasite Trypanosoma brucei is regulated primarily post-transcriptionally at the stages of RNA processing, editing, and turnover. The mitochondrial RNA-binding complex 1 (MRB1) is a recently identified multiprotein complex containing components with distinct functions during different aspects of RNA metabolism, such as guide RNA (gRNA) and mRNA turnover, precursor transcript processing, and RNA editing. In this study we examined the function of the MRB1 protein, Tb927.5.3010, which we term MRB3010. We show that MRB3010 is essential for growth of both procyclic form and bloodstream form life-cycle stages of T. brucei. Down-regulation of MRB3010 by RNAi leads to a dramatic inhibition of RNA editing, yet its depletion does not impact total gRNA levels. Rather, it appears to affect the editing process at an early stage, as indicated by the accumulation of pre-edited and small partially edited RNAs. MRB3010 is present in large (>20S) complexes and exhibits both RNA-dependent and RNA-independent interactions with other MRB1 complex proteins. Comparison of proteins isolated with MRB3010 tagged at its endogenous locus to those reported from other MRB1 complex purifications strongly suggests the presence of an MRB1 "core" complex containing five to six proteins, including MRB3010. Together, these data further our understanding of the function and composition of the imprecisely defined MRB1 complex.
Collapse
Affiliation(s)
- Michelle L Ammerman
- Department of Microbiology and Immunology, School of Medicine, State University of New York at Buffalo, Buffalo, New York 14214, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Carnes J, Soares CZ, Wickham C, Stuart K. Endonuclease associations with three distinct editosomes in Trypanosoma brucei. J Biol Chem 2011; 286:19320-30. [PMID: 21474442 DOI: 10.1074/jbc.m111.228965] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Three distinct editosomes, typified by mutually exclusive KREN1, KREN2, or KREN3 endonucleases, are essential for mitochondrial RNA editing in Trypanosoma brucei. The three editosomes differ in substrate endoribonucleolytic cleavage specificity, which may reflect the vast number of editing sites that need insertion or deletion of uridine nucleotides (Us). Each editosome requires the single RNase III domain in each endonuclease for catalysis. Studies reported here show that the editing endonucleases do not form homodimeric domains, and may therefore function as intermolecular heterodimers, perhaps with KREPB4 and/or KREPB5. Editosomes isolated via TAP tag fused to KREPB6, KREPB7, or KREPB8 have a common set of 12 proteins. In addition, KREN3 is only found in KREPB6 editosomes, KREN2 is only found in KREPB7 editosomes, and KREN1 is only found in KREPB8 editosomes. These are the same associations previously found in editosomes isolated via the TAP-tagged endonucleases KREN1, KREN2, or KREN3. Furthermore, TAP-tagged KREPB6, KREPB7, and KREPB8 complexes isolated from cells in which expression of their respective endonuclease were knocked down were disrupted and lacked the heterotrimeric insertion subcomplex (KRET2, KREPA1, and KREL2). These results and published data suggest that KREPB6, KREPB7, and KREPB8 associate with the deletion subcomplex, whereas the KREN1, KREN2, and KREN3 endonucleases associate with the insertion subcomplex.
Collapse
Affiliation(s)
- Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
28
|
Ammerman ML, Presnyak V, Fisk JC, Foda BM, Read LK. TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA (NEW YORK, N.Y.) 2010; 16:2239-51. [PMID: 20855539 PMCID: PMC2957062 DOI: 10.1261/rna.2285510] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 08/09/2010] [Indexed: 05/20/2023]
Abstract
TbRGG2 is an essential kinetoplastid RNA editing accessory factor that acts specifically on pan-edited RNAs. To understand the mechanism of TbRGG2 action, we undertook an in-depth analysis of edited RNA populations in TbRGG2 knockdown cells and an in vitro examination of the biochemical activities of the protein. We demonstrate that TbRGG2 down-regulation more severely impacts editing at the 5' ends of pan-edited RNAs than at their 3' ends. The initiation of editing is reduced to some extent in TbRGG2 knockdown cells. In addition, TbRGG2 plays a post-initiation role as editing becomes stalled in TbRGG2-depleted cells, resulting in an overall decrease in the 3' to 5' progression of editing. Detailed analyses of edited RNAs from wild-type and TbRGG2-depleted cells reveal that TbRGG2 facilitates progression of editing past intrinsic pause sites that often correspond to the 3' ends of cognate guide RNAs (gRNAs). In addition, noncanonically edited junction regions are either absent or significantly shortened in TbRGG2-depleted cells, consistent with impaired gRNA transitions. Sequence analysis further suggests that TbRGG2 facilitates complete utilization of certain gRNAs. In vitro RNA annealing and in vivo RNA unwinding assays demonstrate that TbRGG2 can modulate RNA-RNA interactions. Collectively, these data are consistent with a model in which TbRGG2 facilitates initiation and 3' to 5' progression of editing through its ability to affect gRNA utilization, both during the transition between specific gRNAs and during usage of certain gRNAs.
Collapse
Affiliation(s)
- Michelle L Ammerman
- Department of Microbiology and Immunology, University at Buffalo School of Medicine, Buffalo, New York 14214, USA
| | | | | | | | | |
Collapse
|
29
|
Kala S, Salavati R. OB-fold domain of KREPA4 mediates high-affinity interaction with guide RNA and possesses annealing activity. RNA (NEW YORK, N.Y.) 2010; 16:1951-67. [PMID: 20713467 PMCID: PMC2941104 DOI: 10.1261/rna.2124610] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 07/19/2010] [Indexed: 05/29/2023]
Abstract
KREPA4, also called MP24, is an essential mitochondrial guide RNA (gRNA)-binding protein with a preference for the 3' oligo(U) tail in trypanosomes. Structural prediction and compositional analysis of KREPA4 have identified a conserved OB (oligonucleotide/oligosaccharide-binding)-fold at the C-terminal end and two low compositional complexity regions (LCRs) at its N terminus. Concurrent with these predictions, one or both of these regions in KREPA4 protein may be involved in gRNA binding. To test this possibility, deletion mutants of KREPA4 were made and the effects on the gRNA-binding affinities were measured by quantitative electrophoretic mobility shift assays. The gRNA-binding specificities of these mutants were evaluated by competition experiments using gRNAs with U-tail deletions or stem-loop modifications and uridylated nonguide RNAs or heterologous RNA. Our results identified the predicted OB-fold as the functional domain of KREPA4 that mediates a high-affinity interaction with the gRNA oligo(U) tail. An additional contribution toward RNA-binding function was localized to LCRs that further stabilize the binding through sequence-specific interactions with the guide secondary structure. In this study we also found that the predicted OB-fold has an RNA annealing activity, representing the first report of such activity for a core component of the RNA editing complex.
Collapse
MESH Headings
- Amino Acid Sequence
- Base Sequence
- Binding, Competitive
- Kinetics
- Models, Biological
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Folding
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/metabolism
- RNA Editing
- RNA Precursors/chemistry
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA, Guide, Kinetoplastida/chemistry
- RNA, Guide, Kinetoplastida/genetics
- RNA, Guide, Kinetoplastida/metabolism
- RNA, Protozoan/chemistry
- RNA, Protozoan/genetics
- RNA, Protozoan/metabolism
- RNA-Binding Proteins/chemistry
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/metabolism
Collapse
Affiliation(s)
- Smriti Kala
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | |
Collapse
|
30
|
Guo X, Ernst NL, Carnes J, Stuart KD. The zinc-fingers of KREPA3 are essential for the complete editing of mitochondrial mRNAs in Trypanosoma brucei. PLoS One 2010; 5:e8913. [PMID: 20111718 PMCID: PMC2811742 DOI: 10.1371/journal.pone.0008913] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 12/30/2009] [Indexed: 01/16/2023] Open
Abstract
Most mitochondrial mRNAs in trypanosomes undergo uridine insertion/deletion editing that is catalyzed by ∼20S editosomes. The editosome component KREPA3 is essential for editosome structural integrity and its two zinc finger (ZF) motifs are essential for editing in vivo but not in vitro. KREPA3 function was further explored by examining the consequence of mutation of its N- and C- terminal ZFs (ZF1 and ZF2, respectively). Exclusively expressed myc-tagged KREPA3 with ZF2 mutation resulted in lower KREPA3 abundance and a relative increase in KREPA2 and KREL1 proteins. Detailed analysis of edited RNA products revealed the accumulation of partially edited mRNAs with less insertion editing compared to the partially edited mRNAs found in the cells with wild type KREPA3 expression. Mutation of ZF1 in TAP-tagged KREPA3 also resulted in accumulation of partially edited mRNAs that were shorter and only edited in the 3′-terminal editing region. Mutation of both ZFs essentially eliminated partially edited mRNA. The mutations did not affect gRNA abundance. These data indicate that both ZFs are essential for the progression of editing and perhaps its accuracy, which suggests that KREPA3 plays roles in the editing process via its ZFs interaction with editosome proteins and/or RNA substrates.
Collapse
Affiliation(s)
- Xuemin Guo
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Nancy Lewis Ernst
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jason Carnes
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kenneth D. Stuart
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Schnaufer A, Wu M, Park YJ, Nakai T, Deng J, Proff R, Hol WGJ, Stuart KD. A protein-protein interaction map of trypanosome ~20S editosomes. J Biol Chem 2009; 285:5282-95. [PMID: 20018860 DOI: 10.1074/jbc.m109.059378] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Mitochondrial mRNA editing in trypanosomatid parasites involves several multiprotein assemblies, including three very similar complexes that contain the key enzymatic editing activities and sediment at ~20S on glycerol gradients. These ~20S editosomes have a common set of 12 proteins, including enzymes for uridylyl (U) removal and addition, 2 RNA ligases, 2 proteins with RNase III-like domains, and 6 proteins with predicted oligonucleotide binding (OB) folds. In addition, each of the 3 distinct ~20S editosomes contains a different RNase III-type endonuclease, 1 of 3 related proteins and, in one case, an additional exonuclease. Here we present a protein-protein interaction map that was obtained through a combination of yeast two-hybrid analysis and subcomplex reconstitution with recombinant protein. This map interlinks ten of the proteins and in several cases localizes the protein region mediating the interaction, which often includes the predicted OB-fold domain. The results indicate that the OB-fold proteins form an extensive protein-protein interaction network that connects the two trimeric subcomplexes that catalyze U removal or addition and RNA ligation. One of these proteins, KREPA6, interacts with the OB-fold zinc finger protein in each subcomplex that interconnects their two catalytic proteins. Another OB-fold protein, KREPA3, appears to link to the putative endonuclease subcomplex. These results reveal a physical organization that underlies the coordination of the various catalytic and substrate binding activities within the ~20S editosomes during the editing process.
Collapse
Affiliation(s)
- Achim Schnaufer
- Seattle Biomedical Research Institute, Seattle, Washington 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|