1
|
Roberts BM, Geddis AV, Matheny RW. The dose-response effects of flurbiprofen, indomethacin, ibuprofen, and naproxen on primary skeletal muscle cells. J Int Soc Sports Nutr 2024; 21:2302046. [PMID: 38198469 PMCID: PMC10783825 DOI: 10.1080/15502783.2024.2302046] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Non-steroidal anti-inflammatory drugs (NSAIDs) like ibuprofen, flurbiprofen, naproxen sodium, and indomethacin are commonly employed for their pain-relieving and inflammation-reducing qualities. NSAIDs work by blocking COX-1 and/or COX-2, enzymes which play roles in inflammation, fever, and pain. The main difference among NSAIDs lies in their affinity to these enzymes, which in turn, influences prostaglandin secretion, and skeletal muscle growth and regeneration. The current study investigated the effects of NSAIDs on human skeletal muscle cells, focusing on myoblast proliferation, differentiation, and muscle protein synthesis signaling. METHODS Using human primary muscle cells, we examined the dose-response impact of flurbiprofen (25-200 µM), indomethacin (25-200 µM), ibuprofen (25-200 µM), and naproxen sodium (25-200 µM), on myoblast viability, myotube area, fusion, and prostaglandin production. RESULTS We found that supraphysiological concentrations of indomethacin inhibited myoblast proliferation (-74 ± 2% with 200 µM; -53 ± 3% with 100 µM; both p < 0.05) compared to control cells and impaired protein synthesis signaling pathways in myotubes, but only attenuated myotube fusion at the highest concentrations (-18 ± 2% with 200 µM, p < 0.05) compared to control myotubes. On the other hand, ibuprofen had no such effects. Naproxen sodium only increased cell proliferation at low concentrations (+36 ± 2% with 25 µM, p < 0.05), and flurbiprofen exhibited divergent impacts depending on the concentration whereby low concentrations improved cell proliferation (+17 ± 1% with 25 µM, p < 0.05) but high concentrations inhibited cell proliferation (-32 ± 1% with 200 µM, p < 0.05). CONCLUSION Our findings suggest that indomethacin, at high concentrations, may detrimentally affect myoblast proliferation and differentiation via an AKT-dependent mechanism, and thus provide new understanding of NSAIDs' effects on skeletal muscle cell development.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Alyssa V. Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Ronald W. Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
- Military Operational Medicine Research Program, Detrick, MD, USA
| |
Collapse
|
2
|
Roberts BM, Geddis AV, Matheny RW. Differential activation of AKT isoforms by growth factors in human myotubes. Physiol Rep 2023; 11:e15805. [PMID: 37879895 PMCID: PMC10599983 DOI: 10.14814/phy2.15805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/14/2023] [Accepted: 08/14/2023] [Indexed: 10/27/2023] Open
Abstract
AKT signaling plays a crucial role in muscle physiology, and is activated by stimuli, including insulin, growth factors, and exercise. Three AKT isoforms have been identified in mammals, and they possess both distinct and redundant functions. However, it is currently unknown what the predominant AKT isoform is in primary human skeletal myotubes, and very little is known regarding the effects of insulin and insulin-like growth factor-I (IGF-I) on AKT isoforms activation in human myotubes. Thus, we sought to determine the abundances of each AKT isoform in primary human skeletal myotubes and their responses to insulin or IGF-I. Analysis of protein lysates by liquid chromatography-parallel reaction monitoring/mass spectrometry revealed that AKT1 was the most abundant AKT isoform and AKT3 was the least-abundant isoform. Next, myotubes were treated with either 100 nM insulin or 10 nM IGF-I for 5, 20, 45, or 60 min. In response to insulin, there was a significant treatment effect on phosphorylation of AKT1 and AKT2, but not AKT3 (p < 0.01). In response to IGF-I, there was a significant treatment effect on phosphorylation of pan-AKT at all timepoints compared to control (p < 0.01). Next, we determined how much of the total AKT isoform pool was phosphorylated. For insulin stimulation, AKT1 was significantly higher than AKT2 at 5 min and 60 min posttreatment (p < 0.05 both) and significantly different than AKT3 at all timepoints (p < 0.05). For IGF-I stimulation, AKT1 was significantly higher than AKT2 at 45 and 60 min posttreatment (p < 0.05 both) and significantly higher than AKT3 at all timepoints (p < 0.05). Our findings reveal the differential phosphorylation patterns among the AKT isoforms and suggest a potential explanation for the regulatory role of AKT1 in skeletal muscle.
Collapse
Affiliation(s)
| | - Alyssa V. Geddis
- US Army Research of Environmental MedicineNatickMassachusettsUSA
| | - Ronald W. Matheny
- US Army Research of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| |
Collapse
|
3
|
Roberts BM, Kolb AL, Geddis AV, Naimo MA, Matheny RW. The dose-response effects of arachidonic acid on primary human skeletal myoblasts and myotubes. J Int Soc Sports Nutr 2023; 20:2164209. [PMID: 36620755 PMCID: PMC9817121 DOI: 10.1080/15502783.2022.2164209] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Cellular inflammatory response, mediated by arachidonic acid (AA) and cyclooxygenase, is a highly regulated process that leads to the repair of damaged tissue. Recent studies on murine C2C12 cells have demonstrated that AA supplementation leads to myotube hypertrophy. However, AA has not been tested on primary human muscle cells. Therefore, the purpose of this study was to determine whether AA supplementation has similar effects on human muscle cells. Methods Proliferating and differentiating human myoblasts were exposed to AA in a dose-dependent manner (50-0.80 µM) for 48 (myoblasts) or 72 (myotubes) hours. Cell viability was tested using a 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay and cell counting; myotube area was determined by immunocytochemistry and confocal microscopy; and anabolic signaling pathways were evaluated by western blot and RT-PCR. Results Our data show that the treatment of primary human myoblasts treated with 50 µM and 25 µM of AA led to the release of PGE2 and PGF2α at levels higher than those of control-treated cells (p < 0.001 for all concentrations). Additionally, 50 µM and 25 µM of AA suppressed myoblast proliferation, myotube area, and myotube fusion. Anabolic signaling indicated reductions in total and phosphorylated TSC2, AKT, S6, and 4EBP1 in myoblasts at 50 µM of AA (p < 0.01 for all), but not in myotubes. These changes were not affected by COX-2 inhibition with celecoxib. Conclusion Together, our data demonstrate that high concentrations of AA inhibit myoblast proliferation, myotube fusion, and myotube hypertrophy, thus revealing potential deleterious effects of AA on human skeletal muscle cell health and viability.
Collapse
Affiliation(s)
- Brandon M. Roberts
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA,CONTACT Brandon M. Roberts Military Performance Division, USARIEM10 General Greene Ave, Bldg. 42, Natick, MA
| | - Alexander L. Kolb
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Alyssa V. Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Marshall A. Naimo
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| | - Ronald W. Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, MA, USA
| |
Collapse
|
4
|
Matheny RW, Kolb AL, Geddis AV, Roberts BM. Celecoxib impairs primary human myoblast proliferation and differentiation independent of cyclooxygenase 2 inhibition. Physiol Rep 2022; 10:e15481. [PMID: 36325583 PMCID: PMC9630763 DOI: 10.14814/phy2.15481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) for treatment of musculoskeletal injuries is commonplace in the general, athletic, and military populations. While NSAIDs have been studied in a variety of tissues, the effects of NSAIDs on skeletal muscle have not been fully defined. To address this, we investigated the degree to which the cyclooxygenase (COX)-2-selective NSAID celecoxib affects muscle cell proliferation, differentiation, anabolic signaling, and mitochondrial function in primary human skeletal myoblasts and myotubes. Primary muscle cells were treated with celecoxib or NS-398 (a pharmacological inhibitor of COX-2) as a control. Celecoxib administration significantly reduced myoblast proliferation, viability, fusion, and myotube area in a dose-dependent manner, whereas NS-398 had no effect on any of these outcomes. Celecoxib treatment was also associated with reduced phosphorylation of ribosomal protein S6 in myoblasts, and reduced phosphorylation of AKT, p70S6K, S6, and ERK in myotubes. In contrast, NS-398 did not alter phosphorylation of these molecules in myoblasts or myotubes. In myoblasts, celecoxib significantly reduced mitochondrial membrane potential and respiration, as evidenced by the decreased citric acid cycle (CAC) intermediates cis-aconitic acid, alpha-keto-glutarate acid, succinate acid, and malic acid. Similar results were observed in myotubes, although celecoxib also reduced pyruvic acid, citric acid, and fumaric acid. NS-398 did not affect CAC intermediates in myoblasts or myotubes. Together, these data reveal that celecoxib inhibits proliferation, differentiation, intracellular signaling, and mitochondrial function in primary human myoblasts and myotubes independent of its function as a COX-2 inhibitor.
Collapse
Affiliation(s)
- Ronald W. Matheny
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
- Military Operational Medicine Research ProgramFt. DetrickMarylandUSA
| | - Alexander L. Kolb
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Alyssa V. Geddis
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| | - Brandon M. Roberts
- Military Performance DivisionUS Army Research Institute of Environmental MedicineNatickMassachusettsUSA
| |
Collapse
|
5
|
Gao X, Wang Y, Ribeiro CF, Manokaran C, Chang H, Von T, Rodrigues S, Cizmecioglu O, Jia S, Korpal M, Korn JM, Wang Z, Schmit F, Jiang L, Pagliarini R, Yang Y, Sethi I, Signoretti S, Yuan GC, Loda M, Zhao JJ, Roberts TM. Blocking PI3K p110β Attenuates Development of PTEN-Deficient Castration-Resistant Prostate Cancer. Mol Cancer Res 2022; 20:673-685. [PMID: 35105671 PMCID: PMC9081176 DOI: 10.1158/1541-7786.mcr-21-0322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/20/2021] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
A common outcome of androgen deprivation in prostate cancer therapy is disease relapse and progression to castration-resistant prostate cancer (CRPC) via multiple mechanisms. To gain insight into the recent clinical findings that highlighted genomic alterations leading to hyperactivation of PI3K, we examined the roles of the commonly expressed p110 catalytic isoforms of PI3K in a murine model of Pten-null invasive CRPC. While blocking p110α had negligible effects in the development of Pten-null invasive CRPC, either genetic or pharmacologic perturbation of p110β dramatically slowed CRPC initiation and progression. Once fully established, CRPC tumors became partially resistant to p110β inhibition, indicating the acquisition of new dependencies. Driven by our genomic analyses highlighting potential roles for the p110β/RAC/PAK1 and β-catenin pathways in CRPC, we found that combining p110β with RAC/PAK1 or tankyrase inhibitors significantly reduced the growth of murine and human CRPC organoids in vitro and in vivo. Because p110β activity is dispensable for most physiologic processes, our studies support novel therapeutic strategies both for preventing disease progression into CRPC and for treating CRPC. IMPLICATIONS This work establishes p110β as a promising target for preventing the progression of primary PTEN-deficient prostate tumors to CRPC, and for treating established CRPC in combination with RAC/PAK1 or tankyrase inhibitors.
Collapse
Affiliation(s)
- Xueliang Gao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South Carolina, SC, USA
| | - Yubao Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Caroline F. Ribeiro
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Cherubin Manokaran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Hyeyoun Chang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Thanh Von
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Silvia Rodrigues
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Onur Cizmecioglu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Shidong Jia
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Manav Korpal
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Joshua M. Korn
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Zhigang Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Fabienne Schmit
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Lan Jiang
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Raymond Pagliarini
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Yi Yang
- Oncology Disease Area, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, USA
| | - Isha Sethi
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Pathology, Harvard Medical School, Boston, Massachusetts USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| | - Thomas M. Roberts
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts USA
| |
Collapse
|
6
|
Huang B, Jiao Y, Zhu Y, Ning Z, Ye Z, Li QX, Hu C, Wang C. Putative MicroRNA-mRNA Networks Upon Mdfi Overexpression in C2C12 Cell Differentiation and Muscle Fiber Type Transformation. Front Mol Biosci 2021; 8:675993. [PMID: 34738011 PMCID: PMC8560695 DOI: 10.3389/fmolb.2021.675993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mdfi, an inhibitor of myogenic regulatory factors, is involved in myoblast myogenic development and muscle fiber type transformation. However, the regulatory network of Mdfi regulating myoblasts has not been revealed. In this study, we performed microRNAs (miRNAs)-seq on Mdfi overexpression (Mdfi-OE) and wild-type (WT) C2C12 cells to establish the regulatory networks. Comparative analyses of Mdfi-OE vs. WT identified 66 differentially expressed miRNAs (DEMs). Enrichment analysis of the target genes suggested that DEMs may be involved in myoblast differentiation and muscle fiber type transformation through MAPK, Wnt, PI3K-Akt, mTOR, and calcium signaling pathways. miRNA-mRNA interaction networks were suggested along with ten hub miRNAs and five hub genes. We also identified eight hub miRNAs and eleven hub genes in the networks of muscle fiber type transformation. Hub miRNAs mainly play key regulatory roles in muscle fiber type transformation through the PI3K-Akt, MAPK, cAMP, and calcium signaling pathways. Particularly, the three hub miRNAs (miR-335-3p, miR-494-3p, and miR-709) may be involved in both myogenic differentiation and muscle fiber type transformation. These hub miRNAs and genes might serve as candidate biomarkers for the treatment of muscle- and metabolic-related diseases.
Collapse
Affiliation(s)
- Bo Huang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yiren Jiao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yifan Zhu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zuocheng Ning
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zijian Ye
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chingyuan Hu
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Chong Wang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Kolb AL, Reynoso M, Matheny RW. Comparison of CRISPR and adenovirus-mediated Myd88 knockdown in RAW 264.7 cells and responses to lipopolysaccharide stimulation. J Biol Methods 2021; 8:e151. [PMID: 34514012 PMCID: PMC8411032 DOI: 10.14440/jbm.2021.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 11/23/2022] Open
Abstract
Genomic manipulation offers the possibility for novel therapies in lieu of medical interventions in use today. The ability to genetically restore missing inflammatory genes will have a monumental impact on our current immunotherapy treatments. This study compared the efficacy of two different genetic manipulation techniques: clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) transfection to adenoviral transduction to determine which method would provide the most transient and stable knockdown of myeloid differentiation primary response 88 (MyD88). MyD88 is a major regulator of nuclear factor kappa light chain enhancer of activated B cells (NFκB) pathway in Raw 264.7 macrophages. Following genetic manipulation, cells were treated for 24 h with Lipopolysaccharide (LPS) to stimulate the inflammatory pathway. Confirmation of knockdown was determined by western immunoblotting and quantification of band density. Both CRISPR/Cas9 and adenoviral transduction produced similar knockdown efficiency (~64% and 60%, respectively) in MyD88 protein 48 h post adenoviral transduction. NFκB phosphorylation was increased in CRISPR/Cas9-mediated MyD88 knockdown and control cells, but not in adenovirus-mediated MyD88 knockdown cells, following LPS administration. CRISPR/Cas9-mediated MyD88 knockdown macrophages treated with LPS for 24 h showed a 65% reduction in tumor necrosis factor alpha (TNFα) secretion, and a 67% reduction in interleukin-10 (IL-10) secretion when compared to LPS-stimulated control cells (P ≤ 0.01 for both). LPS did not stimulate TNFα or IL-10 secretion in adenovirus-mediated control or MyD88 knockdown cells. These data demonstrate that Raw 264.7 macrophages maintain responsiveness to inflammatory stimuli following CRISPR/Cas9-mediated reductions in MyD88, but not following adenovirus-mediated MyD88 knockdown.
Collapse
Affiliation(s)
- Alexander L Kolb
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Marinaliz Reynoso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Ronald W Matheny
- Military Operational Medicine Research Program, 810 Schreider St./MRDC-RTO/B201, Ft. Detrick, MD 21702, USA
| |
Collapse
|
8
|
Buchanan CM, Lee KL, Shepherd PR. For Better or Worse: The Potential for Dose Limiting the On-Target Toxicity of PI 3-Kinase Inhibitors. Biomolecules 2019; 9:biom9090402. [PMID: 31443495 PMCID: PMC6770514 DOI: 10.3390/biom9090402] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 02/07/2023] Open
Abstract
The hyper-activation of the phosphoinositide (PI) 3-kinase signaling pathway is a hallmark of many cancers and overgrowth syndromes, and as a result, there has been intense interest in the development of drugs that target the various isoforms of PI 3-kinase. Given the key role PI 3-kinases play in many normal cell functions, there is significant potential for the disruption of essential cellular functions by PI 3-kinase inhibitors in normal tissues; so-called on-target drug toxicity. It is, therefore, no surprise that progress within the clinical development of PI 3-kinase inhibitors as single-agent anti-cancer therapies has been slowed by the difficulty of identifying a therapeutic window. The aim of this review is to place the cellular, tissue and whole-body effects of PI 3-kinase inhibition in the context of understanding the potential for dose limiting on-target toxicities and to introduce possible strategies to overcome these.
Collapse
Affiliation(s)
- Christina M Buchanan
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kate L Lee
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
9
|
Matheny RW, Geddis AV, Abdalla MN, Leandry LA, Ford M, McClung HL, Pasiakos SM. AKT2 is the predominant AKT isoform expressed in human skeletal muscle. Physiol Rep 2019; 6:e13652. [PMID: 29595878 PMCID: PMC5875533 DOI: 10.14814/phy2.13652] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle physiology and metabolism are regulated by complex networks of intracellular signaling pathways. Among many of these pathways, the protein kinase AKT plays a prominent role. While three AKT isoforms have been identified (AKT1, AKT2, and AKT3), surprisingly little is known regarding isoform‐specific expression of AKT in human skeletal muscle. To address this, we examined the expressions of each AKT isoform in muscle biopsy samples collected from the vastus lateralis of healthy male adults at rest. In muscle, AKT2 was the most highly expressed AKT transcript, exhibiting a 15.4‐fold increase over AKT1 and AKT3 transcripts. Next, the abundance of AKT protein isoforms was determined using antibody immunoprecipitation followed by Liquid Chromatography‐Parallel Reaction Monitoring/Mass Spectrometry. Immunoprecipitation was performed using either mouse or rabbit pan AKT antibodies that were immunoreactive with all three AKT isoforms. We found that AKT2 was the most abundant AKT isoform in human skeletal muscle (4.2‐fold greater than AKT1 using the rabbit antibody and 1.6‐fold greater than AKT1 using the mouse antibody). AKT3 was virtually undetectable. Next, cultured primary human myoblasts were virally‐transduced with cDNAs encoding either wild‐type (WT) or kinase‐inactive AKT1 (AKT1‐K179M) or AKT2 (AKT2‐K181M) and allowed to terminally differentiate. Myotubes expressing WT‐AKT1 or WT‐AKT2 showed enhanced fusion compared to control myotubes, while myotubes expressing AKT1‐K179M showed a 14% reduction in fusion. Myotubes expressing AKT2‐K181M displayed 63% decreased fusion compared to control. Together, these data identify AKT2 as the most highly‐expressed AKT isoform in human skeletal muscle and as the principal AKT isoform regulating human myoblast differentiation.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Mary N Abdalla
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Luis A Leandry
- Military Performance Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | | | - Holly L McClung
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| | - Stefan M Pasiakos
- Military Nutrition Division, US Army Research Institute of Environmental Medicine, Natick, Massachusetts
| |
Collapse
|
10
|
Bresnick AR, Backer JM. PI3Kβ-A Versatile Transducer for GPCR, RTK, and Small GTPase Signaling. Endocrinology 2019; 160:536-555. [PMID: 30601996 PMCID: PMC6375709 DOI: 10.1210/en.2018-00843] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) family includes eight distinct catalytic subunits and seven regulatory subunits. Only two PI3Ks are directly regulated downstream from G protein-coupled receptors (GPCRs): the class I enzymes PI3Kβ and PI3Kγ. Both enzymes produce phosphatidylinositol 3,4,5-trisposphate in vivo and are regulated by both heterotrimeric G proteins and small GTPases from the Ras or Rho families. However, PI3Kβ is also regulated by direct interactions with receptor tyrosine kinases (RTKs) and their tyrosine phosphorylated substrates, and similar to the class II and III PI3Ks, it binds activated Rab5. The unusually complex regulation of PI3Kβ by small and trimeric G proteins and RTKs leads to a rich landscape of signaling responses at the cellular and organismic levels. This review focuses first on the regulation of PI3Kβ activity in vitro and in cells, and then summarizes the biology of PI3Kβ signaling in distinct tissues and in human disease.
Collapse
Affiliation(s)
- Anne R Bresnick
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
| | - Jonathan M Backer
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
11
|
Hobbs S, Reynoso M, Geddis AV, Mitrophanov AY, Matheny RW. LPS-stimulated NF-κB p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiol Rep 2018; 6:e13914. [PMID: 30426723 PMCID: PMC6234144 DOI: 10.14814/phy2.13914] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/03/2023] Open
Abstract
During injury and infection, inflammation is a response by macrophages to effect healing and repair. The kinetics of the responses of proinflammatory TNFα, anti-inflammatory IL-10, and inflammatory master regulator NF-κB elicited by lipopolysaccharide (LPS) may be critical determinants of the inflammatory response by macrophages; however, there is a lack of homogeneous kinetic data in this pathway. To address this gap, we used the RAW 264.7 macrophage cell line to define intracellular signaling kinetics and cytokine expression in cells treated with LPS for 15 min to 72 h. The abundance of IκBα was maximally reduced 45-min following LPS treatment, but expression increased at 10-h, reaching a maximum at 16 h. NF-κB phosphorylation was significantly increased 45-min following LPS treatment, maximal at 2-h, and decreased to basal levels by 6-h. Nuclear NF-κB expression was elevated 30-min following LPS treatment, maximal by 45-min, and returned to basal levels by 24-h. Binding of nuclear NF-κB to consensus oligonucleotide sequences followed a similar pattern to that observed for p-NF-κB, but lasted slightly longer. Following LPS treatment, TNFα mRNA expression began at 1-h, was maximal at 6-h, and decreased starting at 10-h. TNFα protein secretion in conditioned growth medium began at 4-h and was maximal by 16-h. IL-10 mRNA expression was induced by LPS at 10-h, and was maximal at 16-h. IL-10 protein secretion was induced at 16-h and was maximal at 24-h. Our data reveal the temporal kinetics of pro- and anti-inflammatory signaling events that may be important therapeutic targets for inflammatory diseases.
Collapse
Affiliation(s)
- Stuart Hobbs
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Marinaliz Reynoso
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Alyssa V. Geddis
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| | - Alexander Y. Mitrophanov
- DoD Biotechnology High Performance Computing Software Applications InstituteTelemedicine and Advanced Technology Research CenterU.S. Army Medical Research and Materiel CommandFt. DetrickMaryland
| | - Ronald W. Matheny
- Military Performance Division U.S. Army Research Institute of Environmental MedicineNatickMassachusetts
| |
Collapse
|
12
|
Geranylgeraniol Prevents Statin-Dependent Myotoxicity in C2C12 Muscle Cells through RAP1 GTPase Prenylation and Cytoprotective Autophagy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6463807. [PMID: 29951166 PMCID: PMC5987243 DOI: 10.1155/2018/6463807] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 12/21/2022]
Abstract
The present study investigated the cytotoxic effects of statins (atorvastatin (ATR) and simvastatin (SIM), resp.) and methyl-beta-cyclodextrin (MβCD), at their respective IC50 concentrations, on muscle regeneration in the in vitro model of murine C2C12 myoblasts. Cotreatment with mevalonate (MEV), farnesol (FOH), geranylgeraniol (GGOH), or water-soluble cholesterol (Chol-PEG) was employed to determine whether the statin-dependent myotoxicity resulted from the lower cholesterol levels or the attenuated synthesis of intermediates of mevalonate pathway. Our findings demonstrated that while GGOH fully reverted the statin-mediated cell viability in proliferating myoblasts, Chol-PEG exclusively rescued MβCD-induced toxicity in myocytes. Statins caused loss of prenylated RAP1, whereas the GGOH-dependent positive effect was accompanied by loss of nonprenylated RAP1. Geranylgeranyltransferases are essential for muscle cell survival as inhibition with GGTI-286 could not be reversed by GGOH cotreatment. The increase in cell viability correlated with elevated AKT 1(S463) and GSK-3β(S9) phosphorylations. Slight increase in the levels of autophagy markers (Beclin 1, MAP LC-3IIb) was found in response to GGOH cotreatment. Autophagy rose time-dependently during myogenesis and was inhibited by statins and MβCD. Statins and MβCD also suppressed myogenesis and neither nonsterol isoprenoids nor Chol-PEG could reverse this effect. These results point to GGOH as the principal target of statin-dependent myotoxicity, whereas plasma membrane cholesterol deposit is ultimately essential to restore viability of MβCD-treated myocytes. Overall, this study unveils for the first time a link found between the GGOH- and Chol-PEG-dependent reversal of statin- or MβCD-mediated myotoxicity and cytoprotective autophagy, respectively.
Collapse
|
13
|
Wang G, Zhu H, Situ C, Han L, Yu Y, Cheung TH, Liu K, Wu Z. p110α of PI3K is necessary and sufficient for quiescence exit in adult muscle satellite cells. EMBO J 2018; 37:embj.201798239. [PMID: 29581096 DOI: 10.15252/embj.201798239] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/19/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Adult mouse muscle satellite cells (MuSCs) are quiescent in uninjured muscles. Upon injury, MuSCs exit quiescence in vivo to become activated, re-enter the cell cycle to proliferate, and differentiate to repair the damaged muscles. It remains unclear which extrinsic cues and intrinsic signaling pathways regulate quiescence exit during MuSC activation. Here, we demonstrated that inducible MuSC-specific deletion of p110α, a catalytic subunit of phosphatidylinositol 3-kinase (PI3K), rendered MuSCs unable to exit quiescence, resulting in severely impaired MuSC proliferation and muscle regeneration. Genetic reactivation of mTORC1, or knockdown of FoxOs, in p110α-null MuSCs partially rescued the above defects, making them key effectors downstream of PI3K in regulating quiescence exit. c-Jun was found to be a key transcriptional target of the PI3K/mTORC1 signaling axis essential for MuSC quiescence exit. Moreover, induction of a constitutively active PI3K in quiescent MuSCs resulted in spontaneous MuSC activation in uninjured muscles and subsequent depletion of the MuSC pool. Thus, PI3K-p110α is both necessary and sufficient for MuSCs to exit quiescence in response to activating signals.
Collapse
Affiliation(s)
- Gang Wang
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Han Zhu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Chenghao Situ
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Lifang Han
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Youqian Yu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Tom H Cheung
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Kai Liu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| | - Zhenguo Wu
- Division of Life Science, Center for Stem Cell Research, Center for Systems Biology and Human Health, the State Key Laboratory in Neuroscience, Hong Kong University of Science & Technology, Kowloon Hong Kong, China
| |
Collapse
|
14
|
Shin JY, Méndez-López I, Hong M, Wang Y, Tanji K, Wu W, Shugol L, Krauss RS, Dauer WT, Worman HJ. Lamina-associated polypeptide 1 is dispensable for embryonic myogenesis but required for postnatal skeletal muscle growth. Hum Mol Genet 2017; 26:65-78. [PMID: 27798115 DOI: 10.1093/hmg/ddw368] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
Lamina-associated polypeptide 1 (LAP1) is an integral protein of the inner nuclear membrane that has been implicated in striated muscle maintenance. Mutations in its gene have been linked to muscular dystrophy and cardiomyopathy. As germline deletion of the gene encoding LAP1 is perinatal lethal, we explored its potential role in myogenic differentiation and development by generating a conditional knockout mouse in which the protein is depleted from muscle progenitors at embryonic day 8.5 (Myf5-Lap1CKO mice). Although cultured myoblasts lacking LAP1 demonstrated defective terminal differentiation and altered expression of muscle regulatory factors, embryonic myogenesis and formation of skeletal muscle occurred in both mice with a Lap1 germline deletion and Myf5-Lap1CKO mice. However, skeletal muscle fibres were hypotrophic and their nuclei were morphologically abnormal with a wider perinuclear space than normal myonuclei. Myf5-Lap1CKO mouse skeletal muscle contained fewer satellite cells than normal and these cells had evidence of reduced myogenic potential. Abnormalities in signalling pathways required for postnatal hypertrophic growth were also observed in skeletal muscles of these mice. Our results demonstrate that early embryonic depletion of LAP1 does not impair myogenesis but that it is necessary for postnatal skeletal muscle growth.
Collapse
Affiliation(s)
- Ji-Yeon Shin
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Iván Méndez-López
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Mingi Hong
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuexia Wang
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Kurenai Tanji
- Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Wei Wu
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Leana Shugol
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William T Dauer
- Department of Neurology.,Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Howard J Worman
- Department of Medicine.,Department of Pathology and Cell Biology, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
15
|
Matheny RW, Carrigan CT, Abdalla MN, Geddis AV, Leandry LA, Aguilar CA, Hobbs SS, Urso ML. RNA transcript expression of IGF-I/PI3K pathway components in regenerating skeletal muscle is sensitive to initial injury intensity. Growth Horm IGF Res 2017; 32:14-21. [PMID: 27647425 DOI: 10.1016/j.ghir.2016.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Skeletal muscle regeneration is a complex process involving the coordinated input from multiple stimuli. Of these processes, actions of the insulin-like growth factor-I (IGF-I) and phosphoinositide 3-kinase (PI3K) pathways are vital; however, whether IGF-I or PI3K expression is modified during regeneration relative to initial damage intensity is unknown. The objective of this study was to determine whether mRNA expression of IGF-I/PI3K pathway components was differentially regulated during muscle regeneration in mice in response to traumatic injury induced by freezing of two different durations. DESIGN Traumatic injury was imposed by applying a 6-mm diameter cylindrical steel probe, cooled to the temperature of dry ice (-79°C), to the belly of the left tibialis anterior muscle of 12-week-old C57BL/6J mice for either 5s (5s) or 10s (10s). The right leg served as the uninjured control. RNA was obtained from injured and control muscles following 3, 7, and 21days recovery and examined by real-time PCR. Expression of transcripts within the IGF, PI3K, and Akt families, as well as for myogenic regulatory factors and micro-RNAs were studied. RESULTS Three days following injury, there was significantly increased expression of Igf1, Igf2, Igf1r, Igf2r, Pik3cb, Pik3cd, Pik3cg, Pik3r1, Pik3r5, Akt1, and Akt3 in response to either 5s or 10s injury compared to uninjured control muscle. There was a significantly greater expression of Pik3cb, Pik3cd, Pik3cg, Pik3r5, Akt1, and Akt3 in 10s injured muscle compared to 5s injured muscle. Seven days following injury, we observed significantly increased expression of Igf1, Igf2, Pik3cd, and Pik3cg in injured muscle compared to control muscle in response to 10s freeze injury. We also observed significantly reduced expression of Igf1r and miR-133a in response to 5s freeze injury compared to control muscle, and significantly reduced expression of Ckm, miR-1 and miR-133a in response to 10s freeze injury as compared to control. Twenty-one days following injury, 5s freeze-injured muscle exhibited significantly increased expression of Igf2, Igf2r, Pik3cg, Akt3, Myod1, Myog, Myf5, and miR-206 compared to control muscle, while 10s freeze-injured muscles showed significantly increased expression of Igf2, Igf2r, Pik3cb, Pik3cd, Pik3r5, Akt1, Akt3, and Myog compared to control. Expression of miR-1 was significantly reduced in 10s freeze-injured muscle compared to control muscle at this time. There were no significant differences in RNA expression between 5s and 10s injury at either 7d or 21d recovery in any transcript examined. CONCLUSIONS During early skeletal muscle regeneration in mice, transcript expressions for some components of the IGF-I/PI3K pathway are sensitive to initial injury intensity induced by freeze damage.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA.
| | - Christopher T Carrigan
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Mary N Abdalla
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Luis A Leandry
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Carlos A Aguilar
- Massachusetts Institute of Technology Lincoln Laboratory, 244 Wood St., Lexington, MA 02420, USA
| | - Stuart S Hobbs
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| | - Maria L Urso
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave., Building 42, Natick, MA 01760, USA
| |
Collapse
|
16
|
Matheny RW, Abdalla MN, Geddis AV, Leandry LA, Lynch CM. Skeletal muscle PI3K p110β regulates expression of AMP-activated protein kinase. Biochem Biophys Res Commun 2016; 482:1420-1426. [PMID: 27965101 DOI: 10.1016/j.bbrc.2016.12.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 11/29/2022]
Abstract
Skeletal muscle metabolic homeostasis is maintained through numerous biochemical and physiological processes. Two principal molecular regulators of skeletal muscle metabolism include AMP-activated protein kinase (AMPK) and phosphatidylinositol 3-kinase (PI3K); however, PI3K exists as multiple isoforms, and specific metabolic actions of each isoform have not yet been fully elucidated in skeletal muscle. Given this lack of knowledge, we performed a series of experiments to define the extent to which PI3K p110β mediated expression and (or) activation of AMPK in skeletal muscle. To determine the effect of p110β inhibition on AMPK expression and phosphorylation in cultured cells, C2C12 myoblasts were treated with a pharmacological inhibitor of p110β (TGX-221), siRNA against p110β, or overexpression of kinase-dead p110β. Expression and phosphorylation of AMPK were unaffected in myoblasts treated with TGX-221 or expressing kinase-dead p110β. However, expressions of total and phosphorylated AMPK at T172 were reduced in myoblasts treated with p110β siRNA. When normalized to expression of total AMPK, phosphorylation of AMPK S485/491 was elevated in p110β-deficient myoblasts. Similar results were observed in tibialis anterior muscle from mice with conditional deletion of p110β (p110β-mKO mice). Analysis of AMPK transcript expression revealed decreased expression of Prkaa2 in p110β-deficient myoblasts and in p110β-mKO muscle. Loss of p110β had no effect on oligomycin-stimulated phosphorylation of AMPK or phosphorylated Acetyl-CoA carboxylase (ACC), although oligomycin-induced AMPK and ACC phosphorylation were increased in p110β-deficient myoblasts compared to oligomycin-stimulated control myoblasts when normalized to levels of total AMPK or ACC. Overall, these results suggest that p110β positively regulates expression of AMPK in cultured myoblasts and in skeletal muscle in vivo; moreover, despite the reduced abundance of AMPK in p110β-deficient myoblasts, loss of p110β does not appear to impair AMPK activation following stimulus. These findings thus reveal a novel role for p110β in mediating skeletal muscle metabolic signaling.
Collapse
Affiliation(s)
- Ronald W Matheny
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA.
| | - Mary N Abdalla
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA
| | - Alyssa V Geddis
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA
| | - Luis A Leandry
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA
| | - Christine M Lynch
- Military Performance Division, US Army Research Institute of Environmental Medicine, 10 General Greene Ave, Building 42, Natick, MA, 01760, USA
| |
Collapse
|
17
|
Aguilar CA, Pop R, Shcherbina A, Watts A, Matheny RW, Cacchiarelli D, Han WM, Shin E, Nakhai SA, Jang YC, Carrigan CT, Gifford CA, Kottke MA, Cesana M, Lee J, Urso ML, Meissner A. Transcriptional and Chromatin Dynamics of Muscle Regeneration after Severe Trauma. Stem Cell Reports 2016; 7:983-997. [PMID: 27773702 PMCID: PMC5106515 DOI: 10.1016/j.stemcr.2016.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/16/2016] [Accepted: 09/20/2016] [Indexed: 01/12/2023] Open
Abstract
Following injury, adult skeletal muscle undergoes a well-coordinated sequence of molecular and physiological events to promote repair and regeneration. However, a thorough understanding of the in vivo epigenomic and transcriptional mechanisms that control these reparative events is lacking. To address this, we monitored the in vivo dynamics of three histone modifications and coding and noncoding RNA expression throughout the regenerative process in a mouse model of traumatic muscle injury. We first illustrate how both coding and noncoding RNAs in tissues and sorted satellite cells are modified and regulated during various stages after trauma. Next, we use chromatin immunoprecipitation followed by sequencing to evaluate the chromatin state of cis-regulatory elements (promoters and enhancers) and view how these elements evolve and influence various muscle repair and regeneration transcriptional programs. These results provide a comprehensive view of the central factors that regulate muscle regeneration and underscore the multiple levels through which both transcriptional and epigenetic patterns are regulated to enact appropriate repair and regeneration.
Collapse
Affiliation(s)
- Carlos A Aguilar
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA.
| | - Ramona Pop
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Anna Shcherbina
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA
| | - Alain Watts
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA
| | - Ronald W Matheny
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Davide Cacchiarelli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Eunjung Shin
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Shadi A Nakhai
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Young C Jang
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA; Wallace Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Christopher T Carrigan
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Casey A Gifford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Melissa A Kottke
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Marcella Cesana
- Department of Biological Chemistry and Molecular Pharmacology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jackson Lee
- Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02127, USA
| | - Maria L Urso
- Military Performance Division, United States Army Institute of Environmental Medicine, Natick, MA 01760, USA
| | - Alexander Meissner
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Stem Cell and Regenerative Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
18
|
Hammoud AA, Kirstein N, Mournetas V, Darracq A, Broc S, Blanchard C, Zeineddine D, Mortada M, Boeuf H. Murine Embryonic Stem Cell Plasticity Is Regulated through Klf5 and Maintained by Metalloproteinase MMP1 and Hypoxia. PLoS One 2016; 11:e0146281. [PMID: 26731538 PMCID: PMC4701481 DOI: 10.1371/journal.pone.0146281] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
Mouse embryonic stem cells (mESCs) are expanded and maintained pluripotent in vitro in the presence of leukemia inhibitory factor (LIF), an IL6 cytokine family member which displays pleiotropic functions, depending on both cell maturity and cell type. LIF withdrawal leads to heterogeneous differentiation of mESCs with a proportion of the differentiated cells apoptosising. During LIF withdrawal, cells sequentially enter a reversible and irreversible phase of differentiation during which LIF addition induces different effects. However the regulators and effectors of LIF-mediated reprogramming are poorly understood. By employing a LIF-dependent 'plasticity' test, that we set up, we show that Klf5, but not JunB is a key LIF effector. Furthermore PI3K signaling, required for the maintenance of mESC pluripotency, has no effect on mESC plasticity while displaying a major role in committed cells by stimulating expression of the mesodermal marker Brachyury at the expense of endoderm and neuroectoderm lineage markers. We also show that the MMP1 metalloproteinase, which can replace LIF for maintenance of pluripotency, mimics LIF in the plasticity window, but less efficiently. Finally, we demonstrate that mESCs maintain plasticity and pluripotency potentials in vitro under hypoxic/physioxic growth conditions at 3% O2 despite lower levels of Pluri and Master gene expression in comparison to 20% O2.
Collapse
Affiliation(s)
- Aya Abou Hammoud
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- Lebanese University, Beyrouth, Liban
| | - Nina Kirstein
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Virginie Mournetas
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Anais Darracq
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Sabine Broc
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | - Camille Blanchard
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
| | | | | | - Helene Boeuf
- Univ. Bordeaux, CIRID, UMR5164, F-33 000 Bordeaux, France
- CNRS, CIRID, UMR 5164, F-33 000 Bordeaux, France
- * E-mail:
| |
Collapse
|
19
|
Phosphatidylinositol 3-kinase p110α mediates phosphorylation of AMP-activated protein kinase in myoblasts. Biochem Biophys Res Commun 2016; 469:1117-22. [DOI: 10.1016/j.bbrc.2015.12.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 12/27/2015] [Indexed: 11/21/2022]
|