1
|
Ghorai A, Singh B, Dutt S. Biphasic DNA damage and non-canonical replication stress response govern radiation-induced senescence in glioblastoma. J Cell Sci 2024; 137:jcs261844. [PMID: 39568404 DOI: 10.1242/jcs.261844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/28/2024] [Indexed: 11/22/2024] Open
Abstract
Therapy-induced senescence (TIS) in glioblastoma (GBM) residual disease and escape from TIS account for resistance and recurrence, but the mechanism of TIS manifestation remains obscure. Here, we demonstrate that replication stress (RS) is critical for the induction of TIS in residual cells by employing an in vitro GBM therapy-resistance cellular model. Interestingly, we found a 'biphasic' mode of DNA damage after radiation treatment and reveal that the second phase of DNA damage arises majorly in the S phase of residual cells due to RS. Mechanistically, we show that persistent phosphorylated ATR is a safeguard for radiation resilience, whereas the other canonical RS molecules remain unaltered during the second phase of DNA damage. Importantly, RS preceded the induction of senescence, and ATR inhibition resulted in TIS reduction, leading to apoptosis. Moreover, ATR inhibition sensitized PARP-1 inhibitor-induced enhanced TIS-mediated resistance, leading to cell death. Our study demonstrates the crucial role of RS in TIS induction and maintenance in GBM residual cells, and targeting ATR alone or in combination with a PARP-1 inhibitor will be an effective strategy to eliminate TIS for better treatment outcomes.
Collapse
Affiliation(s)
- Atanu Ghorai
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
| | - Bhawna Singh
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai 410210, India
- Shilpee Dutt Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| |
Collapse
|
2
|
Joudeh LA, Schuck PL, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin can induce DNA damage in the absence of global changes in replication or cell proliferation. PLoS One 2024; 19:e0315084. [PMID: 39636792 PMCID: PMC11620420 DOI: 10.1371/journal.pone.0315084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jason A. Stewart
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
3
|
Wu Z, Omura I, Saito A, Imaizumi K, Kamikawa Y. VPS4B orchestrates response to nuclear envelope stress by regulating ESCRT-III dynamics in glioblastoma. Nucleus 2024; 15:2423660. [PMID: 39540606 PMCID: PMC11572143 DOI: 10.1080/19491034.2024.2423660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The Nuclear envelope (NE) is frequently challenged by mechanical stimuli involving cells passing through a tight space and such stress is known as "NE stress." Various factors that cooperate to repair the NE have been identified, including endosomal sorting complex required for transport-III (ESCRT-III). Recently, vacuolar protein sorting 4 homolog B (VPS4B) has been reported to modulate the recycling of ESCRT-III during NE repair, but the regulatory mechanism remains unclear. Our previous study revealed that U251MG cells, derived from the glioblastoma (GBM), exhibited nuclear deformation followed by DNA damage upon mechanical NE stress while these phenotypes were not observed in U87MG, another GBM-derived cell line. Here, we found that VPS4B expression was lower in U251MG than in U87MG. Our functional analysis demonstrated that insufficient VPS4B triggers an inadequate response to NE stress and that VPS4B regulates the dynamics of ESCRT-III, uncovering the mechanism underlying the NE stress response in GBM.
Collapse
Affiliation(s)
- Zuqian Wu
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Issei Omura
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Atsushi Saito
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
- Department of Frontier Science and Interdisciplinary Research, Faculty of Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Kazunori Imaizumi
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| | - Yasunao Kamikawa
- Department of Biochemistry, Institute of Biomedical & Health Sciences, Hiroshima University, Minami-ku, Hiroshima, Japan
| |
Collapse
|
4
|
Jiang X, Luo X, Cai C, Bai Y, Ding H, Yue H, Li Y, Yang Z, Zhang H, Liang Y, Peng C, Huang H, Liu M, Li Z, Shi Y, Han S, Li X, Zhang B. Umbilical cord mesenchymal stem cells in ulcerative colitis treatment: efficacy and possible mechanisms. Stem Cell Res Ther 2024; 15:272. [PMID: 39218946 PMCID: PMC11368034 DOI: 10.1186/s13287-024-03878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) possess powerful immunomodulatory ability. This study aimed to assess the efficacy and safety of human umbilical cord-derived mesenchymal stem cells (UMSCs) in patients with ulcerative colitis (UC) and to explore the potential mechanisms. METHODS This prospective, self-controlled clinical study was conducted at Henan Provincial People's Hospital. Patients with moderate-to-severe active UC, unresponsive to traditional drugs were continuously enrolled from September 2018 to March 2023. UMSCs were administered intravenously monthly for two months at a cell dosage of 1 × 106 per kg. The primary outcome was a clinical response at 2 months. The levels of cytokines and progerin in the plasma of the patients were analyzed using enzyme-linked immunosorbent assay kits, and longitudinal data was analyzed using generalized estimation equation. RESULTS Forty-one patients were enrolled and received UMSC therapy. At 2 months, 73.2% (30/41) of patients achieved a clinical response, and 41.5% (17/41) achieved a clinical remission. At 6 months, 2 patients were lost to follow-up; the corresponding figures were 70.0% (25/41) and 34.2% (14/41), respectively. After UMSC therapy, the Mayo score, Mayo endoscopy score, mean and maximum values of Ulcerative Colitis Endoscopic Index of Severity and Nancy index were significantly reduced compared with baseline values. Additionally, the levels of progerin and inflammatory markers, such as interleukin (IL)-1β, IL-6, IL-8, IL-12, and IL-17 A decreased, while hemoglobin, albumin, and IL-10/IL-17 A ratio increased, particularly in the response group. Multiple stepwise logistic regression analysis showed age was an independent risk factor affecting efficacy (odds ratio, 0.875 (95% confidence interval (0.787, 0.972)); the area under the receiver operating characteristic curve for age was 0.79. No serious adverse events were observed during or after UMSC therapy. CONCLUSION UMSCs are safe and effective for patients with UC, with age being an independent risk factor affecting efficacy. Mechanistically, UMSC treatment may ameliorate cell senescence and suppress the secretion of pro-inflammatory cytokines. TRIAL REGISTRATION The study was retrospectively registered at www.chictr.org.cn/ (ChiCTR1900026035) on September 18, 2019.
Collapse
Affiliation(s)
- Xiaoke Jiang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Xiaoying Luo
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Conghui Cai
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yangqiu Bai
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Hui Ding
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Han Yue
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yalong Li
- Stem Cell Research Center, Henan Key Laboratory of Stem Cell Differentiation and Modification, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Zhiyu Yang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Huimin Zhang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yuan Liang
- Department of Pulmonary and Critical Care Medicine, Xinyang Central Hospital, No.1, Siyi Road, Xinyang, Henan Province, 464000, China
| | - Cong Peng
- Department of Gastroenterology, Yunfu People's Hospital, No. 120, Huanshi East Road, Yunfu, Guangdong Province, 527300, China
| | - Huanrong Huang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Min Liu
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Zhenjuan Li
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Yujie Shi
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Microbiome Laboratory, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
- Department of Pathology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China
| | - Shuangyin Han
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| | - Xiuling Li
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| | - Bingyong Zhang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, School of Clinical Medicine, Henan University, No.7 Weiwu Road, Jinshui District, Zhengzhou, Henan Province, 450003, China.
| |
Collapse
|
5
|
Shores KL, Truskey GA. Mechanotransduction of the vasculature in Hutchinson-Gilford Progeria Syndrome. Front Physiol 2024; 15:1464678. [PMID: 39239311 PMCID: PMC11374724 DOI: 10.3389/fphys.2024.1464678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a premature aging disorder that causes severe cardiovascular disease, resulting in the death of patients in their teenage years. The disease pathology is caused by the accumulation of progerin, a mutated form of the nuclear lamina protein, lamin A. Progerin binds to the inner nuclear membrane, disrupting nuclear integrity, and causes severe nuclear abnormalities and changes in gene expression. This results in increased cellular inflammation, senescence, and overall dysfunction. The molecular mechanisms by which progerin induces the disease pathology are not fully understood. Progerin's detrimental impact on nuclear mechanics and the role of the nucleus as a mechanosensor suggests dysfunctional mechanotransduction could play a role in HGPS. This is especially relevant in cells exposed to dynamic, continuous mechanical stimuli, like those of the vasculature. The endothelial (ECs) and smooth muscle cells (SMCs) within arteries rely on physical forces produced by blood flow to maintain function and homeostasis. Certain regions within arteries produce disturbed flow, leading to an impaired transduction of mechanical signals, and a reduction in cellular function, which also occurs in HGPS. In this review, we discuss the mechanics of nuclear mechanotransduction, how this is disrupted in HGPS, and what effect this has on cell health and function. We also address healthy responses of ECs and SMCs to physiological mechanical stimuli and how these responses are impaired by progerin accumulation.
Collapse
Affiliation(s)
- Kevin L Shores
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
6
|
Nie P, Zhang C, Wu F, Chen S, Wang L. The Compromised Fanconi Anemia Pathway in Prelamin A-Expressing Cells Contributes to Replication Stress-Induced Genomic Instability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307751. [PMID: 38894550 PMCID: PMC11321653 DOI: 10.1002/advs.202307751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/30/2024] [Indexed: 06/21/2024]
Abstract
Genomic instability is not only a hallmark of senescent cells but also a key factor driving cellular senescence, and replication stress is the main source of genomic instability. Defective prelamin A processing caused by lamin A/C (LMNA) or zinc metallopeptidase STE24 (ZMPSTE24) gene mutations results in premature aging. Although previous studies have shown that dysregulated lamin A interferes with DNA replication and causes replication stress, the relationship between lamin A dysfunction and replication stress remains largely unknown. Here, an increase in baseline replication stress and genomic instability is found in prelamin A-expressing cells. Moreover, prelamin A confers hypersensitivity of cells to exogenous replication stress, resulting in decreased cell survival and exacerbated genomic instability. These effects occur because prelamin A promotes MRE11-mediated resection of stalled replication forks. Fanconi anemia (FA) proteins, which play important roles in replication fork maintenance, are downregulated by prelamin A in a retinoblastoma (RB)/E2F-dependent manner. Additionally, prelamin A inhibits the activation of the FA pathway upon replication stress. More importantly, FA pathway downregulation is an upstream event of p53-p21 axis activation during the induction of prelamin A expression. Overall, these findings highlight the critical role of FA pathway dysfunction in driving replication stress-induced genomic instability and cellular senescence in prelamin A-expressing cells.
Collapse
Affiliation(s)
- Pengqing Nie
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
- Department of Infectious DiseasesInstitute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038China
| | - Cheng Zhang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Fengyi Wu
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
| | - Shi Chen
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
- Department of Burn and Plastic SurgeryShenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's HospitalShenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and ApplicationGuangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen University Medical School, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Lianrong Wang
- Department of GastroenterologyHubei Clinical Center and Key Laboratory of Intestinal and Colorectal DiseaseMinistry of Education Key Laboratory of Combinatorial Biosynthesis and Drug DiscoveryTaikang Center for Life and Medical SciencesZhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan UniversityWuhan430071China
- Department of Infectious DiseasesInstitute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038China
| |
Collapse
|
7
|
Urrestizala-Arenaza N, Cerchio S, Cavaliere F, Magliaro C. Limitations of human brain organoids to study neurodegenerative diseases: a manual to survive. Front Cell Neurosci 2024; 18:1419526. [PMID: 39049825 PMCID: PMC11267621 DOI: 10.3389/fncel.2024.1419526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In 2013, M. Lancaster described the first protocol to obtain human brain organoids. These organoids, usually generated from human-induced pluripotent stem cells, can mimic the three-dimensional structure of the human brain. While they recapitulate the salient developmental stages of the human brain, their use to investigate the onset and mechanisms of neurodegenerative diseases still faces crucial limitations. In this review, we aim to highlight these limitations, which hinder brain organoids from becoming reliable models to study neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Specifically, we will describe structural and biological impediments, including the lack of an aging footprint, angiogenesis, myelination, and the inclusion of functional and immunocompetent microglia—all important factors in the onset of neurodegeneration in AD, PD, and ALS. Additionally, we will discuss technical limitations for monitoring the microanatomy and electrophysiology of these organoids. In parallel, we will propose solutions to overcome the current limitations, thereby making human brain organoids a more reliable tool to model neurodegeneration.
Collapse
Affiliation(s)
- Nerea Urrestizala-Arenaza
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
| | - Sonia Cerchio
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
| | - Fabio Cavaliere
- Achucarro Basque Center for Neuroscience, The Basque Biomodels Platform for Human Research (BBioH), Leioa, Spain
- Fundación Biofisica Bizkaia, Leioa, Spain
| | - Chiara Magliaro
- Centro di Ricerca “E. Piaggio” – University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| |
Collapse
|
8
|
Joudeh LA, Logan Schuck P, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin Can Induce DNA Damage in the Absence of Global Changes in Replication or Cell Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601729. [PMID: 39005395 PMCID: PMC11244969 DOI: 10.1101/2024.07.02.601729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Jason A. Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| |
Collapse
|
9
|
Herr LM, Schaffer ED, Fuchs KF, Datta A, Brosh RM. Replication stress as a driver of cellular senescence and aging. Commun Biol 2024; 7:616. [PMID: 38777831 PMCID: PMC11111458 DOI: 10.1038/s42003-024-06263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Replication stress refers to slowing or stalling of replication fork progression during DNA synthesis that disrupts faithful copying of the genome. While long considered a nexus for DNA damage, the role of replication stress in aging is under-appreciated. The consequential role of replication stress in promotion of organismal aging phenotypes is evidenced by an extensive list of hereditary accelerated aging disorders marked by molecular defects in factors that promote replication fork progression and operate uniquely in the replication stress response. Additionally, recent studies have revealed cellular pathways and phenotypes elicited by replication stress that align with designated hallmarks of aging. Here we review recent advances demonstrating the role of replication stress as an ultimate driver of cellular senescence and aging. We discuss clinical implications of the intriguing links between cellular senescence and aging including application of senotherapeutic approaches in the context of replication stress.
Collapse
Affiliation(s)
- Lauren M Herr
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Ethan D Schaffer
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Cisneros B, García-Aguirre I, De Ita M, Arrieta-Cruz I, Rosas-Vargas H. Hutchinson-Gilford Progeria Syndrome: Cellular Mechanisms and Therapeutic Perspectives. Arch Med Res 2023; 54:102837. [PMID: 37390702 DOI: 10.1016/j.arcmed.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/26/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
In humans, aging is characterized by a gradual decline of physical and psychological functions, with the concomitant onset of chronic-degenerative diseases, which ultimately lead to death. The study of Hutchinson-Gilford progeria syndrome (HGPS), a premature aging disorder that recapitulates several features of natural aging, has provided important insights into deciphering the aging process. The genetic origin of HGPS is a de novo point mutation in the LMNA gene that drives the synthesis of progerin, mutant version of lamin A. Progerin is aberrantly anchored to the nuclear envelope disrupting a plethora of molecular processes; nonetheless, how progerin exerts a cascade of deleterious alterations at the cellular and systemic levels is not fully understood. Over the past decade, the use of different cellular and animal models for HGPS has allowed the identification of the molecular mechanisms underlying HGPS, paving the way towards the development of therapeutic treatments against the disease. In this review, we present an updated overview of the biology of HGPS, including its clinical features, description of key cellular processes affected by progerin (nuclear morphology and function, nucleolar activity, mitochondrial function, protein nucleocytoplasmic trafficking and telomere homeostasis), as well as discussion of the therapeutic strategies under development.
Collapse
Affiliation(s)
- Bulmaro Cisneros
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico
| | - Ian García-Aguirre
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Bioengineering Department, School of Engineering and Sciences, Tecnológico de Monterrey, Mexico City, Mexico
| | - Marlon De Ita
- Genetics and Molecular Biology Department, Research and Advanced Studies Center, National Polytechnical Institute, Mexico City, Mexico; Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Isabel Arrieta-Cruz
- Basic Research Department, Research Direction, National Institute of Geriatrics, Ministry of Health, Mexico City, Mexico
| | - Haydeé Rosas-Vargas
- Medical Research Unit in Human Genetics, Pediatrics Hospital, 21st Century National Medical Center, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| |
Collapse
|
11
|
Lebdy R, Patouillard J, Larroque M, Urbach S, Abou Merhi R, Larroque C, Ribeyre C. The organizer of chromatin topology RIF1 ensures cellular resilience to DNA replication stress. Life Sci Alliance 2023; 6:e202101186. [PMID: 36746532 PMCID: PMC9906048 DOI: 10.26508/lsa.202101186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic genomes are duplicated from thousands of replication origins that fire sequentially forming a defined spatiotemporal pattern of replication clusters. The temporal order of DNA replication is determined by chromatin architecture and, more specifically, by chromatin contacts that are stabilized by RIF1. Here, we show that RIF1 localizes near newly synthesized DNA. In cells exposed to the DNA replication inhibitor aphidicolin, suppression of RIF1 markedly decreased the efficacy of isolation of proteins on nascent DNA, suggesting that the isolation of proteins on nascent DNA procedure is biased by chromatin topology. RIF1 was required to limit the accumulation of DNA lesions induced by aphidicolin treatment and promoted the recruitment of cohesins in the vicinity of nascent DNA. Collectively, the data suggest that the stabilization of chromatin topology by RIF1 limits replication-associated genomic instability.
Collapse
Affiliation(s)
- Rana Lebdy
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
- Doctoral School of Sciences and Technology-DSST, Rafic Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Julie Patouillard
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
| | | | - Serge Urbach
- Institut de Génomique Fonctionnelle, CNRS UMR5203, INSERM U1191, Université de Montpellier, Montpellier, France
| | - Raghida Abou Merhi
- Doctoral School of Sciences and Technology-DSST, Rafic Hariri Campus, Lebanese University, Hadath, Lebanon
| | - Christian Larroque
- Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Cyril Ribeyre
- Institut de Génétique Humaine, CNRS UMR9002, Université de Montpellier, Montpellier, France
| |
Collapse
|
12
|
Li Z, Tian M, Wang G, Cui X, Ma J, Liu S, Shen B, Liu F, Wu K, Xiao X, Zhu C. Senotherapeutics: An emerging approach to the treatment of viral infectious diseases in the elderly. Front Cell Infect Microbiol 2023; 13:1098712. [PMID: 37065192 PMCID: PMC10094634 DOI: 10.3389/fcimb.2023.1098712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
In the context of the global COVID-19 pandemic, the phenomenon that the elderly have higher morbidity and mortality is of great concern. Existing evidence suggests that senescence and viral infection interact with each other. Viral infection can lead to the aggravation of senescence through multiple pathways, while virus-induced senescence combined with existing senescence in the elderly aggravates the severity of viral infections and promotes excessive age-related inflammation and multiple organ damage or dysfunction, ultimately resulting in higher mortality. The underlying mechanisms may involve mitochondrial dysfunction, abnormal activation of the cGAS-STING pathway and NLRP3 inflammasome, the role of pre-activated macrophages and over-recruited immune cells, and accumulation of immune cells with trained immunity. Thus, senescence-targeted drugs were shown to have positive effects on the treatment of viral infectious diseases in the elderly, which has received great attention and extensive research. Therefore, this review focused on the relationship between senescence and viral infection, as well as the significance of senotherapeutics for the treatment of viral infectious diseases.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Guolei Wang
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xianghua Cui
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun’e Ma
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Siyu Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xuan Xiao
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| | - Chengliang Zhu
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Chengliang Zhu, ; Xuan Xiao,
| |
Collapse
|
13
|
San Martin R, Das P, Sanders JT, Hill AM, McCord RP. Transcriptional profiling of Hutchinson-Gilford Progeria syndrome fibroblasts reveals deficits in mesenchymal stem cell commitment to differentiation related to early events in endochondral ossification. eLife 2022; 11:e81290. [PMID: 36579892 PMCID: PMC9833827 DOI: 10.7554/elife.81290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/29/2022] [Indexed: 12/30/2022] Open
Abstract
The expression of a mutant Lamin A, progerin, in Hutchinson-Gilford Progeria Syndrome leads to alterations in genome architecture, nuclear morphology, epigenetic states, and altered phenotypes in all cells of the mesenchymal lineage. Here, we report a comprehensive analysis of the transcriptional status of patient derived HGPS fibroblasts, including nine cell lines not previously reported, in comparison with age-matched controls, adults, and old adults. We find that Progeria fibroblasts carry abnormal transcriptional signatures, centering around several functional hubs: DNA maintenance and epigenetics, bone development and homeostasis, blood vessel maturation and development, fat deposition and lipid management, and processes related to muscle growth. Stratification of patients by age revealed misregulated expression of genes related to endochondral ossification and chondrogenic commitment in children aged 4-7 years old, where this differentiation program starts in earnest. Hi-C measurements on patient fibroblasts show weakening of genome compartmentalization strength but increases in TAD strength. While the majority of gene misregulation occurs in regions which do not change spatial chromosome organization, some expression changes in key mesenchymal lineage genes coincide with lamin associated domain misregulation and shifts in genome compartmentalization.
Collapse
Affiliation(s)
- Rebeca San Martin
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Priyojit Das
- UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Jacob T Sanders
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
- Department of Pathology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Ashtyn M Hill
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| | - Rachel Patton McCord
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at KnoxvilleKnoxvilleUnited States
| |
Collapse
|
14
|
Ghosh DK, Pande S, Kumar J, Yesodharan D, Nampoothiri S, Radhakrishnan P, Reddy CG, Ranjan A, Girisha KM. The E262K mutation in Lamin A links nuclear proteostasis imbalance to laminopathy-associated premature aging. Aging Cell 2022; 21:e13688. [PMID: 36225129 PMCID: PMC9649601 DOI: 10.1111/acel.13688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/25/2023] Open
Abstract
Deleterious, mostly de novo, mutations in the lamin A (LMNA) gene cause spatio-functional nuclear abnormalities that result in several laminopathy-associated progeroid conditions. In this study, exome sequencing in a sixteen-year-old male with manifestations of premature aging led to the identification of a mutation, c.784G>A, in LMNA, resulting in a missense protein variant, p.Glu262Lys (E262K), that aggregates in nucleoplasm. While bioinformatic analyses reveal the instability and pathogenicity of LMNAE262K , local unfolding of the mutation-harboring helical region drives the structural collapse of LMNAE262K into aggregates. The E262K mutation also disrupts SUMOylation of lysine residues by preventing UBE2I binding to LMNAE262K , thereby reducing LMNAE262K degradation, aggregated LMNAE262K sequesters nuclear chaperones, proteasomal proteins, and DNA repair proteins. Consequently, aggregates of LMNAE262K disrupt nuclear proteostasis and DNA repair response. Thus, we report a structure-function association of mutant LMNAE262K with toxicity, which is consistent with the concept that loss of nuclear proteostasis causes early aging in laminopathies.
Collapse
Affiliation(s)
- Debasish Kumar Ghosh
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Shruti Pande
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Jeevan Kumar
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| | - Dhanya Yesodharan
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Sheela Nampoothiri
- Department of Pediatric Genetics, Amrita Institute of Medical Sciences & Research Centre, Cochin, India
| | - Periyasamy Radhakrishnan
- Suma Genomics Private Limited, Manipal Center for Biotherapeutics Research and Department of Reproductive Science, Manipal Academy of Higher Education, Manipal, India
| | - Chilakala Gangi Reddy
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Akash Ranjan
- Computational and Functional Genomics Group, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Katta M Girisha
- Department of Medical Genetics, Manipal Academy of Higher Education, Kasturba Medical College, Manipal, Manipal, India
| |
Collapse
|
15
|
Sengupta D, Sengupta K. Lamin A and telomere maintenance in aging: Two to Tango. Mutat Res 2022; 825:111788. [PMID: 35687934 DOI: 10.1016/j.mrfmmm.2022.111788] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 03/28/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Lamin proteins which constitute the nuclear lamina in almost all higher eukaryotes, are mainly of two types A & B encoded by LMNA and LMNB1/B2 genes respectively. While lamin A remains the principal product of LMNA gene, variants like lamin C, C2 and A∆10 are also formed as alternate splice products. Role of lamin A in aging has been highlighted in recent times due to its association with progeroid or premature aging syndromes which is classified as a type of laminopathy. Progeria caused by accelerated accumulation of lamin A Δ50 or progerin occurs due to a mutation in this LMNA gene leading to defects in post translational modification of lamin A. One of the most common and severe symptoms of progeroid laminopathy is accelerated cellular senescence or aging along with bone resorption, muscle weakness, lipodystrophy and cardiovascular disorders. On the other hand, progerin accumulation and telomere dysfunction merge as common traits in the process of chronological aging. Two major hallmarks of physiological aging in humans include loss of genomic integrity and telomere attrition which can result from defective laminar organization leading to deformed nuclear architecture and culminates into replicative senescence. This also adversely affects epigenetic landscape, mitochondrial dysfunction and several signalling pathways like DNA repair, mTOR, MAPK, TGFβ. In this review, we discuss the telomere-lamina interplay in the context of physiological aging and progeria.
Collapse
Affiliation(s)
- Duhita Sengupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kaushik Sengupta
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
16
|
Jiang Y, Ji JY. Progerin-Induced Impairment in Wound Healing and Proliferation in Vascular Endothelial Cells. FRONTIERS IN AGING 2022; 3:844885. [PMID: 35821855 PMCID: PMC9261432 DOI: 10.3389/fragi.2022.844885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Progerin as a mutated isoform of lamin A protein was first known to induce premature atherosclerosis progression in patients with Hutchinson-Gilford progeria syndrome (HGPS), and its role in provoking an inflammatory response in vascular cells and accelerating cell senescence has been investigated recently. However, how progerin triggers endothelial dysfunction that often occurs at the early stage of atherosclerosis in a mechanical environment has not been studied intensively. Here, we generated a stable endothelial cell line that expressed progerin and examined its effects on endothelial wound repair under laminar flow. We found decreased wound healing rate in progerin-expressing ECs under higher shear stress compared with those under low shear. Furthermore, the decreased wound recovery could be due to reduced number of cells at late mitosis, suggesting potential interference by progerin with endothelial proliferation. These findings provided insights into how progerin affects endothelial mechanotransduction and may contribute to the disruption of endothelial integrity in HGPS vasculature, as we continue to examine the mechanistic effect of progerin in shear-induced endothelial functions.
Collapse
|
17
|
Graziano S, Coll-Bonfill N, Teodoro-Castro B, Kuppa S, Jackson J, Shashkova E, Mahajan U, Vindigni A, Antony E, Gonzalo S. Lamin A/C recruits ssDNA protective proteins RPA and RAD51 to stalled replication forks to maintain fork stability. J Biol Chem 2021; 297:101301. [PMID: 34648766 PMCID: PMC8571089 DOI: 10.1016/j.jbc.2021.101301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/15/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
Lamin A/C provides a nuclear scaffold for compartmentalization of genome function that is important for genome integrity. Lamin A/C dysfunction is associated with cancer, aging, and degenerative diseases. The mechanisms whereby lamin A/C regulates genome stability remain poorly understood. We demonstrate a crucial role for lamin A/C in DNA replication. Lamin A/C binds to nascent DNA, especially during replication stress (RS), ensuring the recruitment of replication fork protective factors RPA and RAD51. These ssDNA-binding proteins, considered the first and second responders to RS respectively, function in the stabilization, remodeling, and repair of the stalled fork to ensure proper restart and genome stability. Reduced recruitment of RPA and RAD51 upon lamin A/C depletion elicits replication fork instability (RFI) characterized by MRE11 nuclease–mediated degradation of nascent DNA, RS-induced DNA damage, and sensitivity to replication inhibitors. Importantly, unlike homologous recombination–deficient cells, RFI in lamin A/C-depleted cells is not linked to replication fork reversal. Thus, the point of entry of nucleases is not the reversed fork but regions of ssDNA generated during RS that are not protected by RPA and RAD51. Consistently, RFI in lamin A/C-depleted cells is rescued by exogenous overexpression of RPA or RAD51. These data unveil involvement of structural nuclear proteins in the protection of ssDNA from nucleases during RS by promoting recruitment of RPA and RAD51 to stalled forks. Supporting this model, we show physical interaction between RPA and lamin A/C. We suggest that RS is a major source of genomic instability in laminopathies and lamin A/C-deficient tumors.
Collapse
Affiliation(s)
- Simona Graziano
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Nuria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Barbara Teodoro-Castro
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Sahiti Kuppa
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Jessica Jackson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Elena Shashkova
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Urvashi Mahajan
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Alessandro Vindigni
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Edwin Antony
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, St Louis University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
18
|
Barone M, Salzillo R, Cogliandro A, Persichetti P. Rhinoplasty on Hutchinson-Gilford Progeria Syndrome Patient. Aesthetic Plast Surg 2021; 46:1513-1514. [PMID: 34608515 DOI: 10.1007/s00266-021-02616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Mauro Barone
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Rosa Salzillo
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo, 200 - 00128, Rome, Italy.
| | - Annalisa Cogliandro
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| | - Paolo Persichetti
- Department of Plastic, Reconstructive and Aesthetic Surgery, Campus Bio-Medico University of Rome, Via Alvaro del Portillo, 200 - 00128, Rome, Italy
| |
Collapse
|
19
|
Shahini A, Rajabian N, Choudhury D, Shahini S, Vydiam K, Nguyen T, Kulczyk J, Santarelli T, Ikhapoh I, Zhang Y, Wang J, Liu S, Stablewski A, Thiyagarajan R, Seldeen K, Troen BR, Peirick J, Lei P, Andreadis ST. Ameliorating the hallmarks of cellular senescence in skeletal muscle myogenic progenitors in vitro and in vivo. SCIENCE ADVANCES 2021; 7:eabe5671. [PMID: 34516892 PMCID: PMC8442867 DOI: 10.1126/sciadv.abe5671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Senescence of myogenic progenitors impedes skeletal muscle regeneration. Here, we show that overexpression of the transcription factor NANOG in senescent myoblasts can overcome the effects of cellular senescence and confer a youthful phenotype to senescent cells. NANOG ameliorated primary hallmarks of cellular senescence including genomic instability, loss of proteostasis, and mitochondrial dysfunction. The rejuvenating effects of NANOG included restoration of DNA damage response via up-regulation of DNA repair proteins, recovery of heterochromatin marks via up-regulation of histones, and reactivation of autophagy and mitochondrial energetics via up-regulation of AMP-activated protein kinase (AMPK). Expression of NANOG in the skeletal muscle of a mouse model of premature aging restored the number of myogenic progenitors and induced formation of eMyHC+ myofibers. This work demonstrates the feasibility of reversing the effects of cellular senescence in vitro and in vivo, with no need for reprogramming to the pluripotent state.
Collapse
Affiliation(s)
- Aref Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Nika Rajabian
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Debanik Choudhury
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shahryar Shahini
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kalyan Vydiam
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Thy Nguyen
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Joseph Kulczyk
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Tyler Santarelli
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Izuagie Ikhapoh
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yali Zhang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY 14260, USA
| | - Aimee Stablewski
- Gene Targeting and Transgenic Shared Resource, Roswell Park Comprehensive Cancer Center
| | - Ramkumar Thiyagarajan
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Kenneth Seldeen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Bruce R. Troen
- Department of Medicine, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Research Service, VA Western New York Healthcare System, Buffalo, NY 14260, USA
| | - Jennifer Peirick
- Laboratory Animal Facilities, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Pedro Lei
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Stelios T. Andreadis
- Bioengineering Laboratory, Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
- Center for Cell Gene and Tissue Engineering (CGTE), University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
20
|
Kychygina A, Dall'Osto M, Allen JAM, Cadoret JC, Piras V, Pickett HA, Crabbe L. Progerin impairs 3D genome organization and induces fragile telomeres by limiting the dNTP pools. Sci Rep 2021; 11:13195. [PMID: 34162976 PMCID: PMC8222272 DOI: 10.1038/s41598-021-92631-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/11/2021] [Indexed: 11/09/2022] Open
Abstract
Chromatin organization within the nuclear volume is essential to regulate many aspects of its function and to safeguard its integrity. A key player in this spatial scattering of chromosomes is the nuclear envelope (NE). The NE tethers large chromatin domains through interaction with the nuclear lamina and other associated proteins. This organization is perturbed in cells from Hutchinson–Gilford progeria syndrome (HGPS), a genetic disorder characterized by premature aging features. Here, we show that HGPS-related lamina defects trigger an altered 3D telomere organization with increased contact sites between telomeres and the nuclear lamina, and an altered telomeric chromatin state. The genome-wide replication timing signature of these cells is perturbed, with a shift to earlier replication for regions that normally replicate late. As a consequence, we detected a higher density of replication forks traveling simultaneously on DNA fibers, which relies on limiting cellular dNTP pools to support processive DNA synthesis. Remarkably, increasing dNTP levels in HGPS cells rescued fragile telomeres, and improved the replicative capacity of the cells. Our work highlights a functional connection between NE dysfunction and telomere homeostasis in the context of premature aging.
Collapse
Affiliation(s)
- Anna Kychygina
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.,INSERM UMR1291, CNRS UMR5051, UT3, Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), 31059, Toulouse, France
| | - Marina Dall'Osto
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Joshua A M Allen
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | | | - Vincent Piras
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France
| | - Hilda A Pickett
- Telomere Length Regulation Unit, Faculty of Medicine and Health, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Laure Crabbe
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), CNRS, UPS, University of Toulouse, 31062, Toulouse, France.
| |
Collapse
|
21
|
Willaume S, Rass E, Fontanilla-Ramirez P, Moussa A, Wanschoor P, Bertrand P. A Link between Replicative Stress, Lamin Proteins, and Inflammation. Genes (Basel) 2021; 12:genes12040552. [PMID: 33918867 PMCID: PMC8070205 DOI: 10.3390/genes12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Double-stranded breaks (DSB), the most toxic DNA lesions, are either a consequence of cellular metabolism, programmed as in during V(D)J recombination, or induced by anti-tumoral therapies or accidental genotoxic exposure. One origin of DSB sources is replicative stress, a major source of genome instability, especially when the integrity of the replication forks is not properly guaranteed. To complete stalled replication, restarting the fork requires complex molecular mechanisms, such as protection, remodeling, and processing. Recently, a link has been made between DNA damage accumulation and inflammation. Indeed, defects in DNA repair or in replication can lead to the release of DNA fragments in the cytosol. The recognition of this self-DNA by DNA sensors leads to the production of inflammatory factors. This beneficial response activating an innate immune response and destruction of cells bearing DNA damage may be considered as a novel part of DNA damage response. However, upon accumulation of DNA damage, a chronic inflammatory cellular microenvironment may lead to inflammatory pathologies, aging, and progression of tumor cells. Progress in understanding the molecular mechanisms of DNA damage repair, replication stress, and cytosolic DNA production would allow to propose new therapeutical strategies against cancer or inflammatory diseases associated with aging. In this review, we describe the mechanisms involved in DSB repair, the replicative stress management, and its consequences. We also focus on new emerging links between key components of the nuclear envelope, the lamins, and DNA repair, management of replicative stress, and inflammation.
Collapse
|
22
|
Helbling-Leclerc A, Garcin C, Rosselli F. Beyond DNA repair and chromosome instability-Fanconi anaemia as a cellular senescence-associated syndrome. Cell Death Differ 2021; 28:1159-1173. [PMID: 33723374 PMCID: PMC8026967 DOI: 10.1038/s41418-021-00764-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Fanconi anaemia (FA) is the most frequent inherited bone marrow failure syndrome, due to mutations in genes encoding proteins involved in replication fork protection, DNA interstrand crosslink repair and replication rescue through inducing double-strand break repair and homologous recombination. Clinically, FA is characterised by aplastic anaemia, congenital defects and cancer predisposition. In in vitro studies, FA cells presented hallmarks defining senescent cells, including p53-p21 axis activation, altered telomere length, mitochondrial dysfunction, chromatin alterations, and a pro-inflammatory status. Senescence is a programme leading to proliferation arrest that is involved in different physiological contexts, such as embryogenesis, tissue remodelling and repair and guarantees tumour suppression activity. However, senescence can become a driving force for developmental abnormalities, aging and cancer. Herein, we summarise the current knowledge in the field to highlight the mutual relationships between FA and senescence that lead us to consider FA not only as a DNA repair and chromosome fragility syndrome but also as a "senescence syndrome".
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Cécile Garcin
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| | - Filippo Rosselli
- grid.14925.3b0000 0001 2284 9388UMR9019-CNRS, Gustave Roussy, Villejuif, Cedex France ,grid.460789.40000 0004 4910 6535Université Paris-Saclay, Orsay, France ,Equipe labellisée “La Ligue Contre le Cancer”, Villejuif, France
| |
Collapse
|
23
|
Tiemann J, Wagner T, Lindenkamp C, Plümers R, Faust I, Knabbe C, Hendig D. Linking ABCC6 Deficiency in Primary Human Dermal Fibroblasts of PXE Patients to p21-Mediated Premature Cellular Senescence and the Development of a Proinflammatory Secretory Phenotype. Int J Mol Sci 2020; 21:E9665. [PMID: 33352936 PMCID: PMC7766446 DOI: 10.3390/ijms21249665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare autosomal-recessive disorder that is mainly caused by mutations in the ATP-binding cassette sub-family C member 6 (ABCC6) gene. Clinically PXE is characterized by a loss of skin elasticity, arteriosclerosis or visual impairments. It also shares some molecular characteristics with known premature aging syndromes like the Hutchinson-Gilford progeria syndrome (HGPS). However, little is known about accelerated aging processes, especially on a cellular level for PXE now. Therefore, this study was performed to reveal a potential connection between premature cellular aging and PXE pathogenesis by analyzing cellular senescence, a corresponding secretory phenotype and relevant factors of the cell cycle control in primary human dermal fibroblasts of PXE patients. Here, we could show an increased senescence-associated β-galactosidase (SA-β-Gal) activity as well as an increased expression of proinflammatory factors of a senescence-associated secretory phenotype (SASP) like interleukin 6 (IL6) and monocyte chemoattractant protein-1 (MCP1). We further observed an increased gene expression of the cyclin-dependent kinase inhibitor (CDKI) p21, but no simultaneous induction of p53 gene expression. These data indicate that PXE is associated with premature cellular senescence, which is possibly triggered by a p53-independent p21-mediated mechanism leading to a proinflammatory secretory phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Doris Hendig
- Institut für Laboratoriums-und Transfusionsmedizin, Herz-und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, 32545 Bad Oeynhausen, Germany; (J.T.); (T.W.); (C.L.); (R.P.); (I.F.); (C.K.)
| |
Collapse
|
24
|
Kelley WJ, Zemans RL, Goldstein DR. Cellular senescence: friend or foe to respiratory viral infections? Eur Respir J 2020; 56:2002708. [PMID: 33033152 PMCID: PMC7758538 DOI: 10.1183/13993003.02708-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/30/2020] [Indexed: 01/26/2023]
Abstract
Cellular senescence permanently arrests the replication of various cell types and contributes to age-associated diseases. In particular, cellular senescence may enhance chronic lung diseases including COPD and idiopathic pulmonary fibrosis. However, the role cellular senescence plays in the pathophysiology of acute inflammatory diseases, especially viral infections, is less well understood. There is evidence that cellular senescence prevents viral replication by increasing antiviral cytokines, but other evidence shows that senescence may enhance viral replication by downregulating antiviral signalling. Furthermore, cellular senescence leads to the secretion of inflammatory mediators, which may either promote host defence or exacerbate immune pathology during viral infections. In this Perspective article, we summarise how senescence contributes to physiology and disease, the role of senescence in chronic lung diseases, and how senescence impacts acute respiratory viral infections. Finally, we develop a potential framework for how senescence may contribute, both positively and negatively, to the pathophysiology of viral respiratory infections, including severe acute respiratory syndrome due to the coronavirus SARS-CoV-2.
Collapse
Affiliation(s)
- William J Kelley
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Dept of Microbiology and Immunology, University of Michigan, Ann Arbor, MI USA
| | - Rachel L Zemans
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel R Goldstein
- Dept of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Program in Immunology, University of Michigan, Ann Arbor, MI, USA
- Dept of Microbiology and Immunology, University of Michigan, Ann Arbor, MI USA
| |
Collapse
|
25
|
Marcelot A, Worman HJ, Zinn-Justin S. Protein structural and mechanistic basis of progeroid laminopathies. FEBS J 2020; 288:2757-2772. [PMID: 32799420 DOI: 10.1111/febs.15526] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Progeroid laminopathies are characterized by the premature appearance of certain signs of physiological aging in a subset of tissues. They are caused by mutations in genes coding for A-type lamins or lamin-binding proteins. Here, we review how different mutations causing progeroid laminopathies alter protein structure or protein-protein interactions and how these impact on mechanisms that protect cell viability and function. One group of progeroid laminopathies, which includes Hutchinson-Gilford progeria syndrome, is characterized by accumulation of unprocessed prelamin A or variants. These are caused by mutations in the A-type lamin gene (LMNA), altering prelamin A itself, or in ZMPSTE24, encoding an endoprotease involved in its processing. The abnormally expressed farnesylated proteins impact on various cellular processes that may contribute to progeroid phenotypes. Other LMNA mutations lead to the production of nonfarnesylated A-type lamin variants with amino acid substitutions in solvent-exposed hot spots located mainly in coil 1B and the immunoglobulin fold domain. Dominant missense mutations might reinforce interactions between lamin domains, thus giving rise to excessively stabilized filament networks. Recessive missense mutations in A-type lamins and barrier-to-autointegration factor (BAF) causing progeroid disorders are found at the interface between these interacting proteins. The amino acid changes decrease the binding affinity of A-type lamins for BAF, which may contribute to lamina disorganization, as well as defective repair of mechanically induced nuclear envelope rupture. Targeting these molecular alterations in A-type lamins and associated proteins identified through structural biology studies could facilitate the design of therapeutic strategies to treat patients with rare but severe progeroid laminopathies.
Collapse
Affiliation(s)
- Agathe Marcelot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Howard J Worman
- Department of Medicine and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
26
|
Towards delineating the chain of events that cause premature senescence in the accelerated aging syndrome Hutchinson-Gilford progeria (HGPS). Biochem Soc Trans 2020; 48:981-991. [PMID: 32539085 PMCID: PMC7329345 DOI: 10.1042/bst20190882] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/17/2022]
Abstract
The metazoan nucleus is equipped with a meshwork of intermediate filament proteins called the A- and B-type lamins. Lamins lie beneath the inner nuclear membrane and serve as a nexus to maintain the architectural integrity of the nucleus, chromatin organization, DNA repair and replication and to regulate nucleocytoplasmic transport. Perturbations or mutations in various components of the nuclear lamina result in a large spectrum of human diseases collectively called laminopathies. One of the most well-characterized laminopathies is Hutchinson-Gilford progeria (HGPS), a rare segmental premature aging syndrome that resembles many features of normal human aging. HGPS patients exhibit alopecia, skin abnormalities, osteoporosis and succumb to cardiovascular complications in their teens. HGPS is caused by a mutation in LMNA, resulting in a mutated form of lamin A, termed progerin. Progerin expression results in a myriad of cellular phenotypes including abnormal nuclear morphology, loss of peripheral heterochromatin, transcriptional changes, DNA replication defects, DNA damage and premature cellular senescence. A key challenge is to elucidate how these different phenotypes are causally and mechanistically linked. In this mini-review, we highlight some key findings and present a model on how progerin-induced phenotypes may be temporally and mechanistically linked.
Collapse
|
27
|
Hu XT, Song HC, Yu H, Wu ZC, Liu XG, Chen WC. Overexpression of Progerin Results in Impaired Proliferation and Invasion of Non-Small Cell Lung Cancer Cells. Onco Targets Ther 2020; 13:2629-2642. [PMID: 32280239 PMCID: PMC7127879 DOI: 10.2147/ott.s237016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/26/2020] [Indexed: 01/03/2023] Open
Abstract
Purpose The accumulation of progerin (PG) in patients is responsible for the pathogenesis of Hutchinson-Gilford Progeria Syndrome (HGPS) because it triggers accelerated aging of cells. However, there are few studies on the effects of progerin on tumor cells. Lung cancer is one of the most common malignant cancers with high global morbidity and mortality rates; non-small cell lung cancer accounts for the majority of cases. The purpose of this study was to determine the effects of progerin on A549 cell proliferation, cell cycle, invasion, migration, sensitivity to DNA damaging agents, senescence and apoptosis with a goal of exploring new ideas for lung cancer treatment. Methods A549 cells overexpressing progerin (A549-PG) and a corresponding blank control (A549-GFP) were constructed by lentiviral infection. A nuclear staining assay was utilized to detect abnormal nuclear morphology. The proliferation, cell cycle, colony formation, invasion and migration abilities of A549-PG were compared with those of A549-GFP via EdU assays, flow cytometry, colony formation experiments, and Matrigel invasion and migration assays, respectively. SA‐β‐gal staining was used to measure senescence in cells. Results The expression of progerin was significantly higher in A549-PG than A549-GFP. About 20% of A549-PG possessed abnormal nuclei. Overexpression of progerin in A549 cells inhibited cell proliferation, migration and invasion, and associated proteins (CDK4, pRB, ANLN, MMP7 and MMP9) were downregulated. DNA damage repair was also impaired. Progerin did not cause cells to senesce, and there was no difference in apoptosis. Conclusion A549-PG generated some cellular changes, including the nuclear skeleton, the cell cycle, DNA damage repair, and migration and invasion abilities. Our data indicate that progerin could cause an imbalance in the steady state in A549 cells and increase their sensitivity to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Xiao-Ting Hu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hao-Chang Song
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Zu-Chun Wu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xin-Guang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Wei-Chun Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute of Aging Research, Institute of Biochemistry & Molecular Biology, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| |
Collapse
|
28
|
Mao X, Bharti P, Thaivalappil A, Cao K. Peroxisomal abnormalities and catalase deficiency in Hutchinson-Gilford Progeria Syndrome. Aging (Albany NY) 2020; 12:5195-5208. [PMID: 32186522 PMCID: PMC7138560 DOI: 10.18632/aging.102941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/03/2020] [Indexed: 12/01/2022]
Abstract
Peroxisomes are small, membrane-enclosed eukaryotic organelles that house various enzymes with metabolic functions. One important feature in both Hutchinson-Gilford Progeria Syndrome (HGPS) and normal aging is the elevated levels of Reactive Oxygen Species (ROS), which are generated from metabolic pathways with the capacity to cause oxidative damage to macromolecules within the cells. Although peroxisomal bioreactions can generate free radicals as their byproducts, many metabolic enzymes within the peroxisomes play critical roles as ROS scavengers, in particular, catalase. Here, we observed impaired peroxisomes-targeting protein trafficking, which suggested that the poorly assembled peroxisomes might cause high oxidative stress, contributing to the premature senescent phenotype in HGPS. We then investigated the ROS clearance efficiency by peroxisomal enzymes and found a significantly decreased expression of catalase in HGPS. Furthermore, we evaluated the effects of two promising HGPS-treatment drugs Methylene Blue and RAD001 (Everolimus, a rapamycin analog) on catalase in HGPS fibroblasts. We found that both drugs effectively reduced cellular ROS levels. MB, as a well-known antioxidant, did not affect catalase expression or activity. Interestingly, RAD001 treatment significantly upregulated catalase activity in HGPS cells. Our study presents the first characterization of peroxisomal function in HGPS and provides new insights into the cellular aspects of HGPS and the ongoing clinical trial.
Collapse
Affiliation(s)
- Xiaojing Mao
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Pratima Bharti
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Abhirami Thaivalappil
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
29
|
Coll-Bonfill N, de Faria RC, Bhoopatiraju S, Gonzalo S. Calcitriol Prevents RAD51 Loss and cGAS-STING-IFN Response Triggered by Progerin. Proteomics 2020; 20:e1800406. [PMID: 31834988 PMCID: PMC7117971 DOI: 10.1002/pmic.201800406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/29/2019] [Indexed: 12/14/2022]
Abstract
Hutchinson Gilford progeria syndrome (HGPS) is a devastating accelerated aging disease caused by LMNA gene mutation. The truncated lamin A protein produced "progerin" has a dominant toxic effect in cells, causing disruption of nuclear architecture and chromatin structure, genomic instability, gene expression changes, oxidative stress, and premature senescence. It was previously shown that progerin-induced genomic instability involves replication stress (RS), characterized by replication fork stalling and nuclease-mediated degradation of stalled forks. RS is accompanied by activation of cGAS/STING cytosolic DNA sensing pathway and STAT1-regulated interferon (IFN)-like response. It is also found that calcitriol, the active hormonal form of vitamin D, rescues RS and represses the cGAS/STING/IFN cascade. Here, the mechanisms underlying RS in progerin-expressing cells and the rescue by calcitriol are explored. It is found that progerin elicits a marked downregulation of RAD51, concomitant with increased levels of phosphorylated-RPA, a marker of RS. Interestingly, calcitriol prevents RS and activation of the cGAS/STING/IFN response in part through maintenance of RAD51 levels in progerin-expressing cells. Thus, loss of RAD51 is one of the consequences of progerin expression that can contribute to RS and activation of the IFN response. Stabilization of RAD51 helps explain the beneficial effects of calcitriol in these processes.
Collapse
Affiliation(s)
- Nuria Coll-Bonfill
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| | - Rafael Cancado de Faria
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| | - Sweta Bhoopatiraju
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1100 S Grand Blvd, St. Louis, MO 63104, USA
| |
Collapse
|
30
|
Chojnowski A, Ong PF, Foo MXR, Liebl D, Hor L, Stewart CL, Dreesen O. Heterochromatin loss as a determinant of progerin-induced DNA damage in Hutchinson-Gilford Progeria. Aging Cell 2020; 19:e13108. [PMID: 32087607 PMCID: PMC7059134 DOI: 10.1111/acel.13108] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 12/15/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Hutchinson-Gilford progeria is a premature aging syndrome caused by a truncated form of lamin A called progerin. Progerin expression results in a variety of cellular defects including heterochromatin loss, DNA damage, impaired proliferation and premature senescence. It remains unclear how these different progerin-induced phenotypes are temporally and mechanistically linked. To address these questions, we use a doxycycline-inducible system to restrict progerin expression to different stages of the cell cycle. We find that progerin expression leads to rapid and widespread loss of heterochromatin in G1-arrested cells, without causing DNA damage. In contrast, progerin triggers DNA damage exclusively during late stages of DNA replication, when heterochromatin is normally replicated, and preferentially in cells that have lost heterochromatin. Importantly, removal of progerin from G1-arrested cells restores heterochromatin levels and results in no permanent proliferative impediment. Taken together, these results delineate the chain of events that starts with progerin expression and ultimately results in premature senescence. Moreover, they provide a proof of principle that removal of progerin from quiescent cells restores heterochromatin levels and their proliferative capacity to normal levels.
Collapse
Affiliation(s)
- Alexandre Chojnowski
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Peh Fern Ong
- Cell Ageing, Skin Research Institute SingaporeSingaporeSingapore
| | | | - David Liebl
- A*STAR Microscopy PlatformSingaporeSingapore
| | - Louis‐Peter Hor
- Cell Ageing, Skin Research Institute SingaporeSingaporeSingapore
| | - Colin L. Stewart
- Developmental and Regenerative BiologyInstitute of Medical BiologySingaporeSingapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute SingaporeSingaporeSingapore
| |
Collapse
|
31
|
Kreienkamp R, Gonzalo S. Metabolic Dysfunction in Hutchinson-Gilford Progeria Syndrome. Cells 2020; 9:cells9020395. [PMID: 32046343 PMCID: PMC7072593 DOI: 10.3390/cells9020395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 12/22/2022] Open
Abstract
Hutchinson–Gilford Progeria Syndrome (HGPS) is a segmental premature aging disease causing patient death by early teenage years from cardiovascular dysfunction. Although HGPS does not totally recapitulate normal aging, it does harbor many similarities to the normal aging process, with patients also developing cardiovascular disease, alopecia, bone and joint abnormalities, and adipose changes. It is unsurprising, then, that as physicians and scientists have searched for treatments for HGPS, they have targeted many pathways known to be involved in normal aging, including inflammation, DNA damage, epigenetic changes, and stem cell exhaustion. Although less studied at a mechanistic level, severe metabolic problems are observed in HGPS patients. Interestingly, new research in animal models of HGPS has demonstrated impressive lifespan improvements secondary to metabolic interventions. As such, further understanding metabolism, its contribution to HGPS, and its therapeutic potential has far-reaching ramifications for this disease still lacking a robust treatment strategy.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Department of Pediatrics Residency, Washington University Medical School, St. Louis, MO 63105, USA;
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +1-314-977-9244
| |
Collapse
|
32
|
Duan C, Allard JB. Insulin-Like Growth Factor Binding Protein-5 in Physiology and Disease. Front Endocrinol (Lausanne) 2020; 11:100. [PMID: 32194505 PMCID: PMC7063065 DOI: 10.3389/fendo.2020.00100] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/17/2020] [Indexed: 12/25/2022] Open
Abstract
Insulin-like growth factor (IGF) signaling is regulated by a conserved family of IGF binding proteins (IGFBPs) in vertebrates. Among the six distinct types of IGFBPs, IGFBP-5 is the most highly conserved across species and has the broadest range of biological activities. IGFBP-5 is expressed in diverse cell types, and its expression level is regulated by a variety of signaling pathways in different contexts. IGFBP-5 can exert a range of biological actions including prolonging the half-life of IGFs in the circulation, inhibition of IGF signaling by competing with the IGF-1 receptor for ligand binding, concentrating IGFs in certain cells and tissues, and potentiation of IGF signaling by delivery of IGFs to the IGF-1 receptor. IGFBP-5 also has IGF-independent activities and is even detected in the nucleus. Its broad biological activities make IGFBP-5 an excellent representative for understanding IGFBP functions. Despite its evolutionary conservation and numerous biological activities, knockout of IGFBP-5 in mice produced only a negligible phenotype. Recent research has begun to explain this paradox by demonstrating cell type-specific and physiological/pathological context-dependent roles for IGFBP-5. In this review, we survey and discuss what is currently known about IGFBP-5 in normal physiology and human disease. Based on recent in vivo genetic evidence, we suggest that IGFBP-5 is a multifunctional protein with the ability to act as a molecular switch to conditionally regulate IGF signaling.
Collapse
|
33
|
van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019; 11:11268-11313. [PMID: 31794429 PMCID: PMC6932917 DOI: 10.18632/aging.102528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/18/2019] [Indexed: 12/19/2022]
Abstract
DNA damage response (DDR) processes, often caused by oxidative stress, are important in aging and -related disorders. We recently showed that G protein-coupled receptor (GPCR) kinase interacting protein 2 (GIT2) plays a key role in both DNA damage and oxidative stress. Multiple tissue analyses in GIT2KO mice demonstrated that GIT2 expression affects the GPCR relaxin family peptide 3 receptor (RXFP3), and is thus a therapeutically-targetable system. RXFP3 and GIT2 play similar roles in metabolic aging processes. Gaining a detailed understanding of the RXFP3-GIT2 functional relationship could aid the development of novel anti-aging therapies. We determined the connection between RXFP3 and GIT2 by investigating the role of RXFP3 in oxidative stress and DDR. Analyzing the effects of oxidizing (H2O2) and DNA-damaging (camptothecin) stressors on the interacting partners of RXFP3 using Affinity Purification-Mass Spectrometry, we found multiple proteins linked to DDR and cell cycle control. RXFP3 expression increased in response to DNA damage, overexpression, and Relaxin 3-mediated stimulation of RXFP3 reduced phosphorylation of DNA damage marker H2AX, and repair protein BRCA1, moderating DNA damage. Our data suggests an RXFP3-GIT2 system that could regulate cellular degradation after DNA damage, and could be a novel mechanism for mitigating the rate of age-related damage accumulation.
Collapse
Affiliation(s)
- Jaana van Gastel
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Hanne Leysen
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Paula Santos-Otte
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Jhana O Hendrickx
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Abdelkrim Azmi
- Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| | - Bronwen Martin
- Faculty of Pharmaceutical, Veterinary and Biomedical Science, University of Antwerp, Antwerp, Belgium
| | - Stuart Maudsley
- Receptor Biology Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.,Translational Neurobiology Group, Centre for Molecular Neuroscience, VIB, Antwerp, Belgium
| |
Collapse
|
34
|
Foo MXR, Ong PF, Dreesen O. Premature aging syndromes: From patients to mechanism. J Dermatol Sci 2019; 96:58-65. [PMID: 31727429 DOI: 10.1016/j.jdermsci.2019.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Aging is an inevitable consequence of human life resulting in a gradual deterioration of cell, tissue and organismal function and an increased risk to develop chronic ailments. Premature aging syndromes, also known as progeroid syndromes, recapitulate many clinical features of normal aging and offer a unique opportunity to elucidate fundamental mechanisms that contribute to human aging. Progeroid syndromes can be broadly classified into those caused by perturbations of the nuclear lamina, a meshwork of proteins located underneath the inner nuclear membrane (laminopathies); and a second group that is caused by mutations that directly impair DNA replication and repair. We will focus mainly on laminopathies caused by incorrect processing of lamin A, an intermediate filament protein that resides at the nuclear periphery. Hutchinson-Gilford Progeria (HGPS) is an accelerated aging syndrome caused by a mutation in lamin A and one of the best studied laminopathies. HGPS patients exhibit clinical characteristics of premature aging, including alopecia, aberrant pigmentation, loss of subcutaneous fat and die in their teens as a result of atherosclerosis and cardiovascular complications. Here we summarize how cell- and mouse-based disease models provided mechanistic insights into human aging and discuss experimental strategies under consideration for the treatment of these rare genetic disorders.
Collapse
Affiliation(s)
- Mattheus Xing Rong Foo
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore; Nanyang Technological University, Singapore
| | - Peh Fern Ong
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore
| | - Oliver Dreesen
- Cell Aging Laboratory, Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, 138648 Singapore; Nanyang Technological University, Singapore.
| |
Collapse
|
35
|
Hämäläinen RH, Landoni JC, Ahlqvist KJ, Goffart S, Ryytty S, Rahman MO, Brilhante V, Icay K, Hautaniemi S, Wang L, Laiho M, Suomalainen A. Defects in mtDNA replication challenge nuclear genome stability through nucleotide depletion and provide a unifying mechanism for mouse progerias. Nat Metab 2019; 1:958-965. [PMID: 32694840 DOI: 10.1038/s42255-019-0120-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023]
Abstract
Mitochondrial DNA (mtDNA) mutagenesis and nuclear DNA repair defects are considered cellular mechanisms of ageing. mtDNA mutator mice with increased mtDNA mutagenesis show signs of premature ageing. However, why patients with mitochondrial diseases, or mice with other forms of mitochondrial dysfunction, do not age prematurely remains unknown. Here, we show that cells from mutator mice display challenged nuclear genome maintenance similar to that observed in progeric cells with defects in nuclear DNA repair. Cells from mutator mice show slow nuclear DNA replication fork progression, cell cycle stalling and chronic DNA replication stress, leading to double-strand DNA breaks in proliferating progenitor or stem cells. The underlying mechanism involves increased mtDNA replication frequency, sequestering of nucleotides to mitochondria, depletion of total cellular nucleotide pools, decreased deoxynucleoside 5'-triphosphate (dNTP) availability for nuclear genome replication and compromised nuclear genome maintenance. Our data indicate that defects in mtDNA replication can challenge nuclear genome stability. We suggest that defects in nuclear genome maintenance, particularly in the stem cell compartment, represent a unified mechanism for mouse progerias. Therefore, through their destabilizing effects on the nuclear genome, mtDNA mutations are indirect contributors to organismal ageing, suggesting that the direct role of mtDNA mutations in driving ageing-like symptoms might need to be revisited.
Collapse
Affiliation(s)
- Riikka H Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
| | - Juan C Landoni
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Kati J Ahlqvist
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Sanna Ryytty
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - M Obaidur Rahman
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Virginia Brilhante
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland
| | - Katherine Icay
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sampsa Hautaniemi
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Liya Wang
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Marikki Laiho
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anu Suomalainen
- Research Program in Stem Cells and Metabolism, University of Helsinki, Helsinki, Finland.
- Helsinki University Hospital, Department of Neurosciences, Helsinki, Finland.
- Neuroscience Center, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
36
|
Graziano S, Kreienkamp R, Coll-Bonfill N, Gonzalo S. Causes and consequences of genomic instability in laminopathies: Replication stress and interferon response. Nucleus 2019; 9:258-275. [PMID: 29637811 PMCID: PMC5973265 DOI: 10.1080/19491034.2018.1454168] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian nuclei are equipped with a framework of intermediate filaments that function as a karyoskeleton. This nuclear scaffold, formed primarily by lamins (A-type and B-type), maintains the spatial and functional organization of the genome and of sub-nuclear compartments. Over the past decade, a body of evidence has highlighted the significance of these structural nuclear proteins in the maintenance of nuclear architecture and mechanical stability, as well as genome function and integrity. The importance of these structures is now unquestioned given the wide range of degenerative diseases that stem from LMNA gene mutations, including muscular dystrophy disorders, peripheral neuropathies, lipodystrophies, and premature aging syndromes. Here, we review our knowledge about how alterations in nuclear lamins, either by mutation or reduced expression, impact cellular mechanisms that maintain genome integrity. Despite the fact that DNA replication is the major source of DNA damage and genomic instability in dividing cells, how alterations in lamins function impact replication remains minimally explored. We summarize recent studies showing that lamins play a role in DNA replication, and that the DNA damage that accumulates upon lamins dysfunction is elicited in part by deprotection of replication forks. We also discuss the emerging model that DNA damage and replication stress are “sensed” at the cytoplasm by proteins that normally survey this space in search of foreign nucleic acids. In turn, these cytosolic sensors activate innate immune responses, which are materializing as important players in aging and cancer, as well as in the response to cancer immunotherapy.
Collapse
Affiliation(s)
- Simona Graziano
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Ray Kreienkamp
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Nuria Coll-Bonfill
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| | - Susana Gonzalo
- a Edward A. Doisy Department of Biochemistry and Molecular Biology , Saint Louis University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
37
|
Rivera-Torres J, San José E. Src Tyrosine Kinase Inhibitors: New Perspectives on Their Immune, Antiviral, and Senotherapeutic Potential. Front Pharmacol 2019; 10:1011. [PMID: 31619990 PMCID: PMC6759511 DOI: 10.3389/fphar.2019.01011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/08/2019] [Indexed: 12/14/2022] Open
Abstract
Deregulated activity of the Src tyrosine kinases leads to malignant transformation. Since the FDA approval of the tyrosine kinase inhibitor, imatinib, in 2001 for the treatment of chronic myeloid leukemia (CML), the number of these inhibitors together with Src tyrosine kinase inhibitors (STKIs) has increased notably due to their beneficial effects. Dasatinib, a second-generation STKI inhibitor widely studied, proved high efficiency in CML patients resistant to imatinib. In the last decade STKIs have also been implicated and showed therapeutic potential for the treatment of diverse pathologies other than cancer. In this regard, we review the properties of STKIs, dasatinib in particular, including its immunomodulatory role. Similarly, the potential benefits, adverse effects, and safety concerns of these inhibitors regarding viral infections are considered. Moreover, since life expectancy has increased in the last decades accompanied by age-related morbidity, the reduction of undesirable effects associated to aging has become a powerful therapeutic target. Here, we comment on the ability of STKIs to alleviate age-associated physical dysfunction and their potential impact in the clinic.
Collapse
Affiliation(s)
- José Rivera-Torres
- Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid. Madrid, Spain
| | - Esther San José
- Department of Pharmacy, Biotechnology, Nutrition, Optics and Optometry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid. Madrid, Spain
| |
Collapse
|
38
|
Yousefzadeh MJ, Melos KI, Angelini L, Burd CE, Robbins PD, Niedernhofer LJ. Mouse Models of Accelerated Cellular Senescence. Methods Mol Biol 2019; 1896:203-230. [PMID: 30474850 DOI: 10.1007/978-1-4939-8931-7_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Senescent cells accumulate in multiple tissues as virtually all vertebrate organisms age. Senescence is a highly conserved response to many forms of cellular stress intended to block the propagation of damaged cells. Senescent cells have been demonstrated to play a causal role in aging via their senescence-associated secretory phenotype and by impeding tissue regeneration. Depletion of senescent cells either through genetic or pharmacologic methods has been demonstrated to extend murine lifespan and delay the onset of age-related diseases. Measuring the burden and location of senescent cells in vivo remains challenging, as there is no marker unique to senescent cells. Here, we describe multiple methods to detect the presence and extent of cellular senescence in preclinical models, with a special emphasis on murine models of accelerated aging that exhibit a more rapid onset of cellular senescence.
Collapse
Affiliation(s)
- Matthew J Yousefzadeh
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Kendra I Melos
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Luise Angelini
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Christin E Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA
| | - Paul D Robbins
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
39
|
Genomic instability and innate immune responses to self-DNA in progeria. GeroScience 2019; 41:255-266. [PMID: 31280482 DOI: 10.1007/s11357-019-00082-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/21/2019] [Indexed: 12/15/2022] Open
Abstract
In the last decade, we have seen increasing evidence of the importance of structural nuclear proteins such as lamins in nuclear architecture and compartmentalization of genome function and in the maintenance of mechanical stability and genome integrity. With over 400 mutations identified in the LMNA gene (encoding for A-type lamins) associated with more than ten distinct degenerative disorders, the role of lamins as genome caretakers and the contribution of lamins dysfunction to disease are unarguable. However, the molecular mechanisms whereby lamins mutations cause pathologies remain less understood. Here, we review pathways and mechanisms recently identified as playing a role in the pathophysiology of laminopathies, with special emphasis in Hutchinson Gilford Progeria Syndrome (HGPS). This devastating incurable accelerated aging disease is caused by a silent mutation in the LMNA gene that generates a truncated lamin A protein "progerin" that exerts profound cellular toxicity and organismal decline. Patients usually die in their teens due to cardiovascular complications such as myocardial infarction or stroke. To date, there are no efficient therapies that ameliorate disease progression, stressing the need to understand molecularly disease mechanisms that can be targeted therapeutically. We will summarize data supporting that replication stress is a major cause of genomic instability in laminopathies, which contributes to the activation of innate immune responses to self-DNA that in turn accelerate the aging process.
Collapse
|
40
|
Kreienkamp R, Gonzalo S. Hutchinson-Gilford Progeria Syndrome: Challenges at Bench and Bedside. Subcell Biochem 2019; 91:435-451. [PMID: 30888661 DOI: 10.1007/978-981-13-3681-2_15] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The structural nuclear proteins known as "lamins" (A-type and B-type) provide a scaffold for the compartmentalization of genome function that is important to maintain genome stability. Mutations in the LMNA gene -encoding for A-type lamins- are associated with over a dozen of degenerative disorders termed laminopathies, which include muscular dystrophies, lipodystrophies, neuropathies, and premature ageing diseases such as Hutchinson Gilford Progeria Syndrome (HGPS). This devastating disease is caused by the expression of a truncated lamin A protein named "progerin". To date, there is no effective treatment for HGPS patients, who die in their teens from cardiovascular disease. At a cellular level, progerin expression impacts nuclear architecture, chromatin organization, response to mechanical stress, and DNA transactions such as transcription, replication and repair. However, the current view is that key mechanisms behind progerin toxicity still remain to be discovered. Here, we discuss new findings about pathological mechanisms in HGPS, especially the contribution of replication stress to cellular decline, and therapeutic strategies to ameliorate progerin toxicity. In particular, we present evidence for retinoids and calcitriol (hormonal vitamin D metabolite) being among the most potent compounds to ameliorate HGPS cellular phenotypes in vitro, providing the rationale for testing these compounds in preclinical models of the disease in the near term, and in patients in the future.
Collapse
Affiliation(s)
- Ray Kreienkamp
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA
| | - Susana Gonzalo
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Doisy Research Center, St Louis University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
41
|
A Cell-Intrinsic Interferon-like Response Links Replication Stress to Cellular Aging Caused by Progerin. Cell Rep 2019; 22:2006-2015. [PMID: 29466729 PMCID: PMC5848491 DOI: 10.1016/j.celrep.2018.01.090] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/22/2017] [Accepted: 01/30/2018] [Indexed: 12/05/2022] Open
Abstract
Hutchinson-Gilford progeria syndrome (HGPS) is a premature aging disease caused by a truncated lamin A protein (progerin) that drives cellular and organismal decline. HGPS patient-derived fibroblasts accumulate genomic instability, but its underlying mechanisms and contribution to disease remain poorly understood. Here, we show that progerin-induced replication stress (RS) drives genomic instability by eliciting replication fork (RF) stalling and nuclease-mediated degradation. Rampant RS is accompanied by upregulation of the cGAS/STING cytosolic DNA sensing pathway and activation of a robust STAT1-regulated interferon (IFN)-like response. Reducing RS and the IFN-like response, especially with calcitriol, improves the fitness of progeria cells and increases the efficiency of cellular reprogramming. Importantly, other compounds that improve HGPS phenotypes reduce RS and the IFN-like response. Our study reveals mechanisms underlying progerin toxicity, including RS-induced genomic instability and activation of IFN-like responses, and their relevance for cellular decline in HGPS.
Collapse
|
42
|
Griveau A, Wiel C, Le Calvé B, Ziegler DV, Djebali S, Warnier M, Martin N, Marvel J, Vindrieux D, Bergo MO, Bernard D. Targeting the phospholipase A2 receptor ameliorates premature aging phenotypes. Aging Cell 2018; 17:e12835. [PMID: 30216637 PMCID: PMC6260922 DOI: 10.1111/acel.12835] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/13/2018] [Accepted: 07/29/2018] [Indexed: 11/26/2022] Open
Abstract
Hutchinson–Gilford progeria syndrome (HGPS) is a lethal premature aging that recapitulates many normal aging characteristics. This disorder is caused by mutation in the LMNA gene leading to the production of progerin which induces misshapen nuclei, cellular senescence, and aging. We previously showed that the phospholipase A2 receptor (PLA2R1) promotes senescence induced by replicative, oxidative, and oncogenic stress but its role during progerin‐induced senescence and in progeria is currently unknown. Here, we show that knockdown of PLA2R1 prevented senescence induced by progerin expression in human fibroblasts and markedly delayed senescence of HGPS patient‐derived fibroblasts. Whole‐body knockout of Pla2r1 in a mouse model of progeria decreased some premature aging phenotypes, such as rib fracture and decreased bone content, together with decreased senescence marker. Progerin‐expressing human fibroblasts exhibited a high frequency of misshapen nuclei and increased farnesyl diphosphate synthase (FDPS) expression compared to controls; knockdown of PLA2R1 reduced the frequency of misshapen nuclei and normalized FDPS expression. Pamidronate, a FDPS inhibitor, also reduced senescence and misshapen nuclei. Downstream of PLA2R1, we found that p53 mediated the progerin‐induced increase in FDPS expression and in misshapen nuclei. These results suggest that PLA2R1 mediates key premature aging phenotypes through a p53/FDPS pathway and might be a new therapeutic target.
Collapse
Affiliation(s)
- Audrey Griveau
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Clotilde Wiel
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - Benjamin Le Calvé
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Dorian V. Ziegler
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Sophia Djebali
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; Lyon France
| | - Marine Warnier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Jacqueline Marvel
- Centre International de Recherche en Infectiologie, Inserm U1111, CNRS, UMR5308, École Normale Supérieure de Lyon; Université de Lyon; Université Claude Bernard Lyon 1; Lyon France
| | - David Vindrieux
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| | - Martin O. Bergo
- Department of Biosciences and Nutrition; Karolinska Institutet; Huddinge Sweden
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard; Université de Lyon; Lyon France
| |
Collapse
|
43
|
Choi JY, Lai JK, Xiong ZM, Ren M, Moorer MC, Stains JP, Cao K. Diminished Canonical β-Catenin Signaling During Osteoblast Differentiation Contributes to Osteopenia in Progeria. J Bone Miner Res 2018; 33:2059-2070. [PMID: 30001457 PMCID: PMC7739562 DOI: 10.1002/jbmr.3549] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 12/31/2022]
Abstract
Patients with Hutchinson-Gilford progeria syndrome (HGPS) have low bone mass and an atypical skeletal geometry that manifests in a high risk of fractures. Using both in vitro and in vivo models of HGPS, we demonstrate that defects in the canonical WNT/β-catenin pathway, seemingly at the level of the efficiency of nuclear import of β-catenin, impair osteoblast differentiation and that restoring β-catenin activity rescues osteoblast differentiation and significantly improves bone mass. Specifically, we show that HGPS patient-derived iPSCs display defects in osteoblast differentiation, characterized by a decreased alkaline phosphatase activity and mineralizing capacity. We demonstrate that the canonical WNT/β-catenin pathway, a major signaling cascade involved in skeletal homeostasis, is impaired by progerin, causing a reduction in the active β-catenin in the nucleus and thus decreased transcriptional activity, and its reciprocal cytoplasmic accumulation. Blocking farnesylation of progerin restores active β-catenin accumulation in the nucleus, increasing signaling, and ameliorates the defective osteogenesis. Moreover, in vivo analysis of the Zmpste24-/- HGPS mouse model demonstrates that treatment with a sclerostin-neutralizing antibody (SclAb), which targets an antagonist of canonical WNT/β-catenin signaling pathway, fully rescues the low bone mass phenotype to wild-type levels. Together, this study reveals that the β-catenin signaling cascade is a therapeutic target for restoring defective skeletal microarchitecture in HGPS. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Ji Young Choi
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Jim K Lai
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Zheng-Mei Xiong
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Margaret Ren
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| | - Megan C Moorer
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph P Stains
- Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kan Cao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD 20742
| |
Collapse
|
44
|
Wang AS, Dreesen O. Biomarkers of Cellular Senescence and Skin Aging. Front Genet 2018; 9:247. [PMID: 30190724 PMCID: PMC6115505 DOI: 10.3389/fgene.2018.00247] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/22/2018] [Indexed: 02/06/2023] Open
Abstract
Cellular senescence is an irreversible growth arrest that occurs as a result of different damaging stimuli, including DNA damage, telomere shortening and dysfunction or oncogenic stress. Senescent cells exert a pleotropic effect on development, tissue aging and regeneration, inflammation, wound healing and tumor suppression. Strategies to remove senescent cells from aging tissues or preneoplastic lesions can delay tissue dysfunction and lead to increased healthspan. However, a significant hurdle in the aging field has been the identification of a universal biomarker that facilitates the unequivocal detection and quantification of senescent cell types in vitro and in vivo. Mammalian skin is the largest organ of the human body and consists of different cell types and compartments. Skin provides a physical barrier against harmful microbes, toxins, and protects us from ultraviolet radiation. Increasing evidence suggests that senescent cells accumulate in chronologically aged and photoaged skin; and may contribute to age-related skin changes and pathologies. Here, we highlight current biomarkers to detect senescent cells and review their utility in the context of skin aging. In particular, we discuss the efficacy of biomarkers to detect senescence within different skin compartments and cell types, and how they may contribute to myriad manifestations of skin aging and age-related skin pathologies.
Collapse
Affiliation(s)
- Audrey S Wang
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore
| | - Oliver Dreesen
- Cell Ageing, Skin Research Institute of Singapore (SRIS), A∗STAR, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
45
|
Rodriguez-Acebes S, Mourón S, Méndez J. Uncoupling fork speed and origin activity to identify the primary cause of replicative stress phenotypes. J Biol Chem 2018; 293:12855-12861. [PMID: 29959228 PMCID: PMC6102153 DOI: 10.1074/jbc.ra118.003740] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/25/2018] [Indexed: 01/05/2023] Open
Abstract
In growing cells, DNA replication precedes mitotic cell division to transmit genetic information to the next generation. The slowing or stalling of DNA replication forks at natural or exogenous obstacles causes “replicative stress” that promotes genomic instability and affects cellular fitness. Replicative stress phenotypes can be characterized at the single-molecule level with DNA combing or stretched DNA fibers, but interpreting the results obtained with these approaches is complicated by the fact that the speed of replication forks is connected to the frequency of origin activation. Primary alterations in fork speed trigger secondary responses in origins, and, conversely, primary alterations in the number of active origins induce compensatory changes in fork speed. Here, by employing interventions that temporally restrict either fork speed or origin firing while still allowing interrogation of the other variable, we report a set of experimental conditions to separate cause and effect in any manipulation that affects DNA replication dynamics. Using HeLa cells and chemical inhibition of origin activity (through a CDC7 kinase inhibitor) and of DNA synthesis (via the DNA polymerase inhibitor aphidicolin), we found that primary effects of replicative stress on velocity of replisomes (fork rate) can be readily distinguished from primary effects on origin firing. Identifying the primary cause of replicative stress in each case as demonstrated here may facilitate the design of methods to counteract replication stress in primary cells or to enhance it in cancer cells to increase their susceptibility to therapies that target DNA repair.
Collapse
Affiliation(s)
- Sara Rodriguez-Acebes
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, 3 Melchor Fernández Almagro, 28029 Madrid, Spain
| | - Silvana Mourón
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, 3 Melchor Fernández Almagro, 28029 Madrid, Spain
| | - Juan Méndez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre, 3 Melchor Fernández Almagro, 28029 Madrid, Spain.
| |
Collapse
|
46
|
Burla R, La Torre M, Merigliano C, Vernì F, Saggio I. Genomic instability and DNA replication defects in progeroid syndromes. Nucleus 2018; 9:368-379. [PMID: 29936894 PMCID: PMC7000143 DOI: 10.1080/19491034.2018.1476793] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Progeroid syndromes induced by mutations in lamin A or in its interactors – named progeroid laminopathies – are model systems for the dissection of the molecular pathways causing physiological and premature aging. A large amount of data, based mainly on the Hutchinson Gilford Progeria syndrome (HGPS), one of the best characterized progeroid laminopathy, has highlighted the role of lamins in multiple DNA activities, including replication, repair, chromatin organization and telomere function. On the other hand, the phenotypes generated by mutations affecting genes directly acting on DNA function, as mutations in the helicases WRN and BLM or in the polymerase polδ, share many of the traits of progeroid laminopathies. These evidences support the hypothesis of a concerted implication of DNA function and lamins in aging. We focus here on these aspects to contribute to the comprehension of the driving forces acting in progeroid syndromes and premature aging.
Collapse
Affiliation(s)
- Romina Burla
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Mattia La Torre
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy
| | - Chiara Merigliano
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Fiammetta Vernì
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy
| | - Isabella Saggio
- a Dipartimento di Biologia e Biotecnologie "C. Darwin" , Sapienza Università di Roma , Roma , Italy.,b Istituto di Biologia e Patologia Molecolari del CNR , Rome , Italy.,c Istituto Pasteur Fondazione Cenci Bolognetti , Rome , Italy
| |
Collapse
|
47
|
Cho S, Abbas A, Irianto J, Ivanovska IL, Xia Y, Tewari M, Discher DE. Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A,C in iPS-derived mesenchymal stem cells. Nucleus 2018; 9:230-245. [PMID: 29619860 PMCID: PMC5973135 DOI: 10.1080/19491034.2018.1460185] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Interphase phosphorylation of lamin-A,C depends dynamically on a cell's microenvironment, including the stiffness of extracellular matrix. However, phosphorylation dynamics is poorly understood for diseased forms such as progerin, a permanently farnesylated mutant of LMNA that accelerates aging of stiff and mechanically stressed tissues. Here, fine-excision alignment mass spectrometry (FEA-MS) is developed to quantify progerin and its phosphorylation levels in patient iPS cells differentiated to mesenchymal stem cells (MSCs). The stoichiometry of total A-type lamins (including progerin) versus B-type lamins measured for Progeria iPS-MSCs prove similar to that of normal MSCs, with total A-type lamins more abundant than B-type lamins. However, progerin behaves more like farnesylated B-type lamins in mechanically-induced segregation from nuclear blebs. Phosphorylation of progerin at multiple sites in iPS-MSCs cultured on rigid plastic is also lower than that of normal lamin-A and C. Reduction of nuclear tension upon i) cell rounding/detachment from plastic, ii) culture on soft gels, and iii) inhibition of actomyosin stress increases phosphorylation and degradation of lamin-C > lamin-A > progerin. Such mechano-sensitivity diminishes, however, with passage as progerin and DNA damage accumulate. Lastly, transcription-regulating retinoids exert equal effects on both diseased and normal A-type lamins, suggesting a differential mechano-responsiveness might best explain the stiff tissue defects in Progeria.
Collapse
Affiliation(s)
- Sangkyun Cho
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Amal Abbas
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Jerome Irianto
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Irena L. Ivanovska
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Yuntao Xia
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Manu Tewari
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis E. Discher
- Molecular & Cell Biophysics Lab, University of Pennsylvania, Philadelphia, PA, USA,CONTACT Dennis E. Discher , University of Pennsylvania, 129 Towne Bldg, Philadelphia, PA 19104
| |
Collapse
|
48
|
Serebryannyy L, Misteli T. Protein sequestration at the nuclear periphery as a potential regulatory mechanism in premature aging. J Cell Biol 2017; 217:21-37. [PMID: 29051264 PMCID: PMC5748986 DOI: 10.1083/jcb.201706061] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/19/2022] Open
Abstract
Serebryannyy and Misteli provide a perspective on how protein sequestration at the inner nuclear membrane and nuclear lamina might influence aging. Despite the extensive description of numerous molecular changes associated with aging, insights into the driver mechanisms of this fundamental biological process are limited. Based on observations in the premature aging syndrome Hutchinson–Gilford progeria, we explore the possibility that protein regulation at the inner nuclear membrane and the nuclear lamina contributes to the aging process. In support, sequestration of nucleoplasmic proteins to the periphery impacts cell stemness, the response to cytotoxicity, proliferation, changes in chromatin state, and telomere stability. These observations point to the nuclear periphery as a central regulator of the aging phenotype.
Collapse
Affiliation(s)
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|