1
|
Zhang C, Hu S, Yin C, Wang G, Liu P. STAT3 orchestrates immune dynamics in hepatocellular carcinoma: A pivotal nexus in tumor progression. Crit Rev Oncol Hematol 2025; 207:104620. [PMID: 39818308 DOI: 10.1016/j.critrevonc.2025.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/13/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) presents a formidable challenge in oncology, attributed to its association with chronic liver diseases and global prevalence. The immune microenvironment profoundly influences HCC progression, balancing immune suppression and antitumor responses. The Signal Transducer and Activator of Transcription 3 (STAT3) is central to this equilibrium, orchestrating immune dynamics and intertwining tumor progression with immune evasion mechanisms. Dysregulated STAT3 signaling, activated by various stimuli, including cytokines and growth factors, promotes an immunosuppressive milieu within HCC tumors, fostering tumor survival and proliferation while hindering immune surveillance. Non-coding RNAs and other molecules regulate this process, modulating STAT3 activity and influencing immune cell function. Moreover, therapeutic interventions targeting the STAT3 pathway, alongside advancements in radiotherapy, cancer vaccines, and diabetes-related drugs, offer promising strategies in HCC management. Integrating natural compounds with immunotherapy emerges as a novel approach, leveraging their ability to enhance antitumor immunity and counter immune evasion strategies. Understanding the multifaceted role of STAT3 and its interactions within the immune landscape of HCC is paramount for devising effective therapeutic interventions and improving patient outcomes.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Songbai Hu
- Department of Cancer Center, Yuexi County Hospital, Anqing, Anhui Province 246600, China
| | - Chuanzheng Yin
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Precision Radiation Oncology, Hubei, China.
| |
Collapse
|
2
|
Kim JE, Kim HS, Kim W, Lee EH, Kim S, Kim T, Shin EA, Pyo KH, Lee H, Jin SH, Lee JH, Byeon SM, Kim DJ, Jeong J, Lee J, Ohn M, Lee H, Yu SJ, Shin D, Kim S, Yoo JY, Lee SC, Suh YG, Lee JW. Isoxazole-based molecules restore NK cell immune surveillance in hepatocarcinogenesis by targeting TM4SF5 and SLAMF7 linkage. Signal Transduct Target Ther 2025; 10:15. [PMID: 39828766 PMCID: PMC11743776 DOI: 10.1038/s41392-024-02106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/22/2025] Open
Abstract
Dynamic communication between hepatocytes and the environment is critical in hepatocellular carcinoma (HCC) development. Clinical immunotherapy against HCC is currently unsatisfactory and needs more systemic considerations, including the identification of new biomarkers and immune checkpoints. Transmembrane 4 L six family member 5 (TM4SF5) is known to promote HCC, but it remains unclear how cancerous hepatocytes avoid immune surveillance and whether avoidance can be blocked. We investigated how TM4SF5-mediated hepatic tumorigenesis avoids surveillance by natural killer (NK) cells, which are prevalent in the liver, and whether the avoidance can be blocked by anti-TM4SF5 agents. We used comprehensive structure activity relationship analysis to identify TM4SF5-specific isoxazole (TSI)-based small molecules that inhibit TM4SF5-mediated effects. TM4SF5 expressed by hepatocytes reduced NK cell cytotoxicity by downregulating stimulatory ligands/receptors, including signaling lymphocytic activation molecule family member 7 (SLAMF7). TM4SF5 bound SLAMF7 depending on N-glycosylation and caused intracellular trafficking of SLAMF7 from the plasma membrane to lysosomes for degradation. TSI treatments in cell lines and animal models of HCC blocked this binding, intracellular trafficking, and downregulation, resulting in higher levels of stimulatory NK cell ligands. In mouse xenograft models, TSI treatment abrogated HCC development by increasing the abundance and dispersion of Slamf7-positive cells in liver tissues, recapitulating the phenotype of Tm4sf5-knockout mice and indicating TSI-mediated restoration of NK cell surveillance. These findings suggest that TSIs can inhibit TM4SF5-mediated liver carcinogenesis by increasing NK cell surveillance.
Collapse
Affiliation(s)
- Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyun Su Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Wonsik Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eun Hae Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soyeon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taewoo Kim
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Kyung-Hee Pyo
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Seo Hee Jin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jae-Ho Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Soo-Min Byeon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dong Joo Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jinwook Jeong
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jeongwon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Minjae Ohn
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hyojung Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Semi Kim
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jun Yeob Yoo
- CHA Advanced Research Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Seung-Chul Lee
- CHA Advanced Research Institute, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Young-Ger Suh
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea.
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Tang Q, Wang S, Li H, Liu J, Hu X, Zhao D, Di M. Integrated multi-omics analyses reveal the TM4SF family genes with prognostic and therapeutic relevance in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:593-616. [PMID: 38206300 PMCID: PMC10817404 DOI: 10.18632/aging.205398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/16/2023] [Indexed: 01/12/2024]
Abstract
TM4SF family members (TM4SFs) have been shown to be aberrantly expressed in multiple types of cancer. However, a comprehensive investigation of the TM4SFs has yet to be performed in LIHC. The study comprehensively investigated the expression and prognostic value of TM4SFs. Then, a TM4SFs-based risk model and nomogram were constructed for prognostic prediction. Finally, functional loss of TM4SFs was performed to verify the potential role of TM4SFs in LIHC. We found that TM4SFs were significantly up-regulated in LIHC. High expression and hypomethylation of TM4SFs were associated with poor prognosis of LIHC patients. Then, a TM4SFs-based risk model was constructed that could effectively classify LIHC patients into high and low-risk groups. In addition, we constructed a prognostic nomogram that could predict the long-term survival of LIHC patients. Based on immune infiltration analysis, high-risk patients had a relatively higher immune status than low-risk patients. Moreover, the prediction module could predict patient responses to immunotherapy and chemotherapy. Finally, loss-of-function studies showed that TM4SF4 knockdown could substantially suppress the growth, migratory, and invasive abilities of LIHC cells. Targeting TM4SFs will contribute to effective immunotherapy strategies and improve the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Qiang Tang
- Department of Gastrointestinal Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Hubei Province, China
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Shurui Wang
- School of Nursing, Peking Union Medical College, Beijing, China
| | - Huimin Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junzhi Liu
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xin Hu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Zhao
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, China
| | - Maojun Di
- Department of Gastrointestinal Surgery, Shiyan Taihe Hospital, Hubei University of Medicine, Hubei Province, China
| |
Collapse
|
4
|
Kim JE, Kim E, Lee JW. TM4SF5-Mediated Regulation of Hepatocyte Transporters during Metabolic Liver Diseases. Int J Mol Sci 2022; 23:ijms23158387. [PMID: 35955521 PMCID: PMC9369364 DOI: 10.3390/ijms23158387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/01/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is found in up to 30% of the world’s population and can lead to hepatocellular carcinoma (HCC), which has a poor 5-year relative survival rate of less than 40%. Clinical therapeutic strategies are not very successful. The co-occurrence of metabolic disorders and inflammatory environments during the development of steatohepatitis thus needs to be more specifically diagnosed and treated to prevent fatal HCC development. To improve diagnostic and therapeutic strategies, the identification of molecules and/or pathways responsible for the initiation and progression of chronic liver disease has been explored in many studies, but further study is still required. Transmembrane 4 L six family member 5 (TM4SF5) has been observed to play roles in the regulation of metabolic functions and activities in hepatocytes using in vitro cell and in vivo animal models without or with TM4SF5 expression in addition to clinical liver tissue samples. TM4SF5 is present on the membranes of different organelles or vesicles and cooperates with transporters for fatty acids, amino acids, and monocarbohydrates, thus regulating nutrient uptake into hepatocytes and metabolism and leading to phenotypes of chronic liver diseases. In addition, TM4SF5 can remodel the immune environment by interacting with immune cells during TM4SF5-mediated chronic liver diseases. Because TM4SF5 may act as an NAFLD biomarker, this review summarizes crosstalk between TM4SF5 and nutrient transporters in hepatocytes, which is related to chronic liver diseases.
Collapse
|
5
|
Murali M, Kumar AR, Nair B, Pavithran K, Devan AR, Pradeep GK, Nath LR. Antibody-drug conjugate as targeted therapeutics against hepatocellular carcinoma: preclinical studies and clinical relevance. Clin Transl Oncol 2022; 24:407-431. [PMID: 34595736 DOI: 10.1007/s12094-021-02707-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/29/2021] [Indexed: 02/05/2023]
Abstract
An antibody-drug conjugate (ADC) is an advanced chemotherapeutic option with immense promises in treating many tumor. They are designed to selectively attack and kill neoplastic cells with minimal toxicity to normal tissues. ADCs are complex engineered immunoconjugates that comprise a monoclonal antibody for site-directed delivery and cytotoxic payload for targeted destruction of malignant cells. Therefore, it enables the reduction of off-target toxicities and enhances the therapeutic index of the drug. Hepatocellular carcinoma (HCC) is a solid tumor that shows high heterogeneity of molecular phenotypes and is considered the second most common cause of cancer-related death. Studies show enormous potential for ADCs targeting GPC3 and CD24 and other tumor-associated antigens in HCC with their high, selective expression and show potential outputs in preclinical evaluations. The review mainly highlights the preclinical evaluation of different antigen-targeted ADCs such as MetFab-DOX, Anti-c-Met IgG-OXA, Anti CD 24, ANC-HN-01, G7mab-DOX, hYP7-DCand hYP7-PC, Anti-CD147 ILs-DOX and AC133-vcMMAF against hepatocellular carcinoma and its future relevance.
Collapse
Affiliation(s)
- M Murali
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - A R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - B Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, 682041, India
| | - A R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - G K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - L R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| |
Collapse
|
6
|
Sun H, Kim E, Ryu J, Lee H, Shin EA, Lee M, Lee H, Lee JH, Yoon JH, Song DG, Kim S, Lee JW. TM4SF5-mediated liver malignancy involves NK cell exhaustion-like phenotypes. Cell Mol Life Sci 2021; 79:49. [PMID: 34921636 PMCID: PMC8739317 DOI: 10.1007/s00018-021-04051-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Aberrant extracellular matrix and immune cell alterations within the tumor microenvironment promote the pathological progression of liver carcinogenesis. Although transmembrane 4 L six family member 5 (TM4SF5) is involved in liver fibrosis and cancer, its mechanism avoiding immune surveillance during carcinogenesis remains unknown. We investigated how TM4SF5-mediated signaling caused immune evasion using in vitro primary cells and in vivo liver tissues from genetic or chemically induced mouse models. TM4SF5-transgenic and diethylnitrosamine (DEN)-induced liver cancer mouse models exhibited fibrotic and cancerous livers, respectively, with enhanced TM4SF5, pY705STAT3, collagen I, and laminin γ2 levels. These TM4SF5-mediated effects were abolished by TM4SF5 inhibitor, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone (TSAHC). TM4SF5-dependent tumorigenesis involved natural killer (NK) cell exhaustion-like phenotypes including the reduction of NK cell number or function, which were blocked with TSAHC treatment. TM4SF5 expression in cancer cells downregulated stimulatory ligands and receptors for NK cell cytotoxicity, including SLAMF6, SLAMF7, MICA/B, and others. TM4SF5 suppression or inhibition reduced STAT3 signaling activity and recovered the receptor levels and NK cell surveillance, leading to reduced fibrotic and cancerous phenotypes, and longer survival. Altogether, these findings suggest that TM4SF5-mediated STAT3 activity for extracellular matrix modulation is involved in the progression of liver disease to HCC and that TM4SF5 appears to suppress NK cells during liver carcinogenesis.
Collapse
Affiliation(s)
- Hyunseung Sun
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jihye Ryu
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejin Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Minhyeong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jung-Hwan Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Geun Song
- Natural Product Informatics Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Gangwon-do, 25451, Republic of Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, 34141, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
7
|
Song HE, Lee Y, Kim E, Cho CY, Jung O, Lee D, Lee EG, Nam SH, Kang M, Macalino SJY, Kim JE, Jung JW, Kwon SW, Choi S, Lee JW. N-terminus-independent activation of c-Src via binding to a tetraspan(in) TM4SF5 in hepatocellular carcinoma is abolished by the TM4SF5 C-terminal peptide application. Theranostics 2021; 11:8092-8111. [PMID: 34335982 PMCID: PMC8315060 DOI: 10.7150/thno.58739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Active c-Src non-receptor tyrosine kinase localizes to the plasma membrane via N-terminal lipid modification. Membranous c-Src causes cancer initiation and progression. Even though transmembrane 4 L six family member 5 (TM4SF5), a tetraspan(in), can be involved in this mechanism, the molecular and structural influence of TM4SF5 on c-Src remains unknown. Methods: Here, we investigated molecular and structural details by which TM4SF5 regulated c-Src devoid of its N-terminus and how cell-penetrating peptides were able to interrupt c-Src activation via interference of c-Src-TM4SF5 interaction in hepatocellular carcinoma models. Results: The TM4SF5 C-terminus efficiently bound the c-Src SH1 kinase domain, efficiently to the inactively-closed form. The complex involved protein tyrosine phosphatase 1B able to dephosphorylate Tyr530. The c-Src SH1 domain alone, even in a closed form, bound TM4SF5 to cause c-Src Tyr419 and FAK Y861 phosphorylation. Homology modeling and molecular dynamics simulation studies predicted the directly interfacing residues, which were further validated by mutational studies. Cell penetration of TM4SF5 C-terminal peptides blocked the interaction of TM4SF5 with c-Src and prevented c-Src-dependent tumor initiation and progression in vivo. Conclusions: Collectively, these data demonstrate that binding of the TM4SF5 C-terminus to the kinase domain of inactive c-Src leads to its activation. Because this binding can be abolished by cell-penetrating peptides containing the TM4SF5 C-terminus, targeting this direct interaction may be an effective strategy for developing therapeutics that block the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Haeng Eun Song
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonji Lee
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang Yun Cho
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Oisun Jung
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Doohyung Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun Goo Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seo Hee Nam
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Minkyung Kang
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Stephani Joy Y. Macalino
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Woo Jung
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Won Kwon
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun Choi
- Global AI Drug Discovery Center, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Ryu J, Kim E, Kang MK, Song DG, Shin EA, Lee H, Jung JW, Nam SH, Kim JE, Kim HJ, Son T, Kim S, Kim HY, Lee JW. Differential TM4SF5-mediated SIRT1 modulation and metabolic signaling in nonalcoholic steatohepatitis progression. J Pathol 2021; 253:55-67. [PMID: 32918742 DOI: 10.1002/path.5548] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/10/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Nonalcoholic fatty liver disease is a chronic condition involving steatosis, steatohepatitis and fibrosis, and its progression remains unclear. Although the tetraspanin transmembrane 4 L six family member 5 (TM4SF5) is involved in hepatic fibrosis and cancer, its role in nonalcoholic steatohepatitis (NASH) progression is unknown. We investigated the contribution of TM4SF5 to liver pathology using transgenic and KO mice, diet- or drug-treated mice, in vitro primary cells, and in human tissue. TM4SF5-overexpressing mice exhibited nonalcoholic steatosis and NASH in an age-dependent manner. Initially, TM4SF5-positive hepatocytes and liver tissue exhibited lipid accumulation, decreased Sirtuin 1 (SIRT1), increased sterol regulatory-element binding proteins (SREBPs) and inactive STAT3 via suppressor of cytokine signaling (SOCS)1/3 upregulation. In older mice, TM4SF5 promoted inflammatory factor induction, SIRT1 expression and STAT3 activity, but did not change SOCS or SREBP levels, leading to active STAT3-mediated ECM production for NASH progression. A TM4SF5-associated increase in chemokines promoted SIRT1 expression and progression to NASH with fibrosis. Suppression of the chemokine CCL20 reduced immune cell infiltration and ECM production. Liver tissue from high-fat diet- or CCl4 -treated mice and human patients exhibited TM4SF5-dependent steatotic or steatohepatitic livers with links between TM4SF5-mediated SIRT1 modulation and SREBP or SOCS/STAT3 signaling axes. TM4SF5-mediated STAT3 activation in fibrotic NASH livers increased collagen I and laminin γ2. Both collagen I α1 and laminin γ2 suppression resulted in reduced SIRT1 and active STAT3, but no change in SREBP1 or SOCS, and abolished CCl4 -mediated mouse liver damage. TM4SF5-mediated signaling pathways that involve SIRT1, SREBPs and SOCS/STAT3 promoted progression to NASH. Therefore, TM4SF5 and its downstream effectors may be promising therapeutic targets to treat nonalcoholic fatty liver disease. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jihye Ryu
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Eunmi Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Min-Kyung Kang
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, Republic of Korea
| | - Eun-Ae Shin
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Haesong Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seo Hee Nam
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Taekwon Son
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Semi Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejon, Republic of Korea
| | - Hwi Young Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Wei X, Liu H, Li X, Liu X. Over-expression of MiR-122 promotes apoptosis of hepatocellular carcinoma via targeting TLR4. Ann Hepatol 2020; 18:869-878. [PMID: 31477445 DOI: 10.1016/j.aohep.2019.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/12/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVE MiR-122 has been regarded as a tumor suppressor. Toll-like receptor 4 (TLR4) has been found to be closely related to metastasis and immune escape of hepatocellular carcinoma (HCC). In the study, we sought to investigate the effect of miR-122 on HCC and the expression of TLR4. PATIENTS OR MATERIALS AND METHODS Real-time PCR and Western blot were performed to detect the expressions of target factors. CCK-8 and flow cytometry analysis were employed to evaluate cell viability and apoptosis, respectively. Luciferase reporter assay was used to determine whether miR-122 could directly regulate the expression of TLR4. Enzyme-linked Immuno Sorbent Assay was adopted to detect the secretion of inflammatory cytokines. RESULTS Both down-regulation of miR-122 and up-regulation of TLR4 were found to be correlated with low overall survival rate of HCC patients. TLR4 may be a direct target gene of miR-122. Over-expression of miR-122 induced apoptosis and inhibited cell viability of HCC by down-regulating TLR4, enhanced the expression of pro-apoptotic genes and suppressed the expression of anti-apoptotic genes. MiR-122 inhibited expressions and activities of inflammatory cytokines, including vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), cyclooxygenase-2 (Cox-2) and prostaglandin E2 (PGE2) and also reduced the expression of matrix metallopeptidase 9 (MMP-9). Furthermore, activities of phosphatidylinositide 3-kinases (PI3K), Akt and nuclear factor-kappa B (NF-κB) were suppressed by miR-122. CONCLUSIONS Down-regulation of miR-122 facilitated the immune escape of HCC by targeting TLR4, which was related to PI3K/Akt/NF-κB signaling pathways. Our study may provide a possible strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaolin Wei
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Hui Liu
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery, Shenzhen University General Hospital, Shenzhen, China
| | - Xiangde Liu
- Department of Hepatobiliary Surgery, Southwest Hospital, Chongqing, China.
| |
Collapse
|
10
|
Xu B, Lv W, Li X, Zhang L, Lin J. Clinicopathological significance of TM4SF5 expression in human hepatocellular carcinoma tissues. Oncol Lett 2019; 17:5187-5192. [PMID: 31186734 DOI: 10.3892/ol.2019.10210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/22/2019] [Indexed: 01/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a major cause of cancer-related mortality. Recent studies have indicated that transmembrane 4 L six family member 5 (TM4SF5) serves a vital role in tumor progression and metastasis in human cell lines and mouse models. However, little is known about the association between TM4SF5 expression and clinicopathological factors. The aim of the current study was to investigate this association and evaluate overall survival (OS) of patients. Immunohistochemistry and clinical record analysis revealed that TM4SF5 expression was significantly downregulated in HCC tissues. In addition, TM4SF5 expression was significantly associated with tumor size, vascular invasion, tumor differentiation, and tumor-node-metastasis stage. The survival analysis also demonstrated that low TM4SF5 expression resulted in shorter OS. In conclusion, the association between TM4SF5 expression and clinicopathologic factors was established, and prognostic significance of TM4SF5 as a potential biomarker was evaluated using human HCC formalin-fixed paraffin-embedded tissue samples. The results of the present study demonstrated that low TM4SF5 expression was associated with tumor malignant progression and may be a good prognostic biomarker for OS in HCC.
Collapse
Affiliation(s)
- Baojin Xu
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Wu Lv
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Lina Zhang
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| | - Jie Lin
- Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, P.R. China
| |
Collapse
|
11
|
Park S, Kim D, Wu G, Jung H, Park JA, Kwon HJ, Lee Y. A peptide-CpG-DNA-liposome complex vaccine targeting TM4SF5 suppresses growth of pancreatic cancer in a mouse allograft model. Onco Targets Ther 2018; 11:8655-8672. [PMID: 30584324 PMCID: PMC6284540 DOI: 10.2147/ott.s186606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background Patients with pancreatic cancer have a poor prognosis and are usually diagnosed at a late stage. Because TM4SF5 is known to be overexpressed in hepatocellular carcinoma, colon cancer, and pancreatic cancer, it is considered as one of the candidate molecular targets for an anticancer strategies. Purpose The purpose of this study was to evaluate possible utility of TM4SF5 to treat pancreatic cancer using a mouse allograft model. Materials and methods We analyzed expression of TM4SF5 in pancreatic cancer tissues using immunohistochemistry. We established a mouse pancreatic cancer cell line stably expressing TM4SF5 and identified the effect of TM4SF5 expression in vitro. We used the CpG-DNA-peptide-liposome complex as a peptide vaccine and investigated antitumor effects of the vaccine in a mouse model with TM4SF5 expressing pancreatic cells. To investigate the function of produced antibody, we evaluated effects of the anti-TM4SF5 monoclonal antibody in vitro in terms of cell growth and migration properties. Results Immunohistochemical analysis showed that 36.4% of pancreatic cancer tissue samples expressed TM4SF5. Expression of TM4SF5 induced increased cell proliferation and motility in vitro. Injection of the TM4SF5 peptide vaccine induced the production of anti-hTM4SF5 antibodies and reduced the growth of pancreatic tumors in mice established by subcutaneous injection of the TM4SF5-expressing mouse pancreatic cancer cell line. The treatment of TM4SF5-expressing cells with the anti-hTM4SF5 monoclonal antibody reduced cell growth, modulated the expression of the epithelial–mesenchymal transition markers Vimentin and E-cadherin, and decreased cell motility in vitro. Conclusion Our results showed that the TM4SF5 peptide vaccine had a protective effect against pancreatic tumors expressing TM4SF5, and this effect was mediated, at least in part, by the production and suppressive function of the anti-TM4SF5 antibodies. Therefore, we suggest that targeting TM4SF5 could be a novel strategy to prevent or treat pancreatic cancer.
Collapse
Affiliation(s)
- Sangkyu Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea, .,Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea,
| | - Dongbum Kim
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea,
| | - Guang Wu
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea, .,School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China,
| | - Harry Jung
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea,
| | - Jeong-A Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea, .,Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea,
| | - Hyung-Joo Kwon
- Center for Medical Science Research, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea, .,Department of Microbiology, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
| | - Younghee Lee
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea, .,Biotechnology Research Institute, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea,
| |
Collapse
|
12
|
Shin S, Kim M, Lee SJ, Park KS, Lee CH. Trichostatin A Sensitizes Hepatocellular Carcinoma Cells to Enhanced NK Cell-mediated Killing by Regulating Immune-related Genes. Cancer Genomics Proteomics 2018; 14:349-362. [PMID: 28871002 DOI: 10.21873/cgp.20045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND/AIM Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. The ability of HCC to avoid immune detection is considered one of the main factors making it difficult to cure. Abnormal histone deacetylation is thought to be one of the mechanisms for HCC immune escape, making histone deacetylases (HDACs) attractive targets for HCC treatment. Here, we investigated the effect of trichostatin A (TSA), a highly potent HDAC inhibitor, on HCC (HepG2) gene expression and function. MATERIALS AND METHODS A genome wide-transcriptional microarray was used to identify genes regulated by TSA in HepG2 cells. Gene Ontology was used to identify pathways regulated by TSA, and these changes were confirmed by qPCR. The effect of TSA on natural killer (NK) cell-mediated killing of HCC cell lines were analyzed by both flow cytometry and LDH cytotoxicity assay. A study was also conducted in a Balb/c nude mice xenograft model to assess the anti-tumor activity of TSA. RESULTS TSA regulated the transcription of numerous innate immunity & tumor antigen recognition-associated genes, such as ULBP1 and RAET1G, in HCC cells. In vivo, TSA reduced tumor cell growth in an NK cell-dependent manner. In vitro, TSA treatment of HepG2 cells rendered them more susceptible to NK cell-mediated killing while increasing the expression of NKGD2 ligands, including ULBP1/2/3 and MICA/B. TSA also induced direct killing of HCC cells by stimulating apoptosis. CONCLUSION TSA likely increases killing of HCC cells indirectly by increasing NK cell-directed killing and directly by increasing apoptosis.
Collapse
Affiliation(s)
- Sangsu Shin
- Department of Animal Biotechnology, Kyungpook National University, Sangju, Republic of Korea
| | - Miok Kim
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea.,Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| | - Seon-Jin Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Kang-Seo Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chang Hoon Lee
- Immunotherapy Convergence Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, Republic of Korea .,Bio & Drug Discovery Division, Center for Drug Discovery Technology, Korea Research Institute of Chemical Technology (KRICT), Daejeon, Republic of Korea
| |
Collapse
|
13
|
Bhavsar C, Momin M, Khan T, Omri A. Targeting tumor microenvironment to curb chemoresistance via novel drug delivery strategies. Expert Opin Drug Deliv 2018; 15:641-663. [PMID: 29301448 DOI: 10.1080/17425247.2018.1424825] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Tumor is a heterogeneous mass of malignant cells co-existing with non-malignant cells. This co-existence evolves from the initial developmental stages of the tumor and is one of the hallmarks of cancer providing a protumorigenic niche known as tumor microenvironment (TME). Proliferation, invasiveness, metastatic potential and maintenance of stemness through cross-talk between tumors and its stroma forms the basis of TME. AREAS COVERED The article highlights the developmental phases of a tumor from dysplasia to the formation of clinically detectable tumors. The authors discuss the mechanistic stages involved in the formation of TME and its contribution in tumor outgrowth and chemoresistance. The authors have reviewed various approaches for targeting TME and its hallmarks along with their advantages and pitfalls. The authors also highlight cancer stem cells (CSCs) that are resistant to chemotherapeutics and thus a primary reason for tumor recurrence thereby, posing a challenge for the oncologists. EXPERT OPINION Recent understanding of the cellular and molecular mechanisms involved in acquired chemoresistance has enabled scientists to target the tumor niche and TME and modulate and/or disrupt this communication leading to the transformation from a tumor-supportive niche environment to a tumor-non-supporting environment and give synergistic results towards an effective management of cancer.
Collapse
Affiliation(s)
- Chintan Bhavsar
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Munira Momin
- a Department of Pharmaceutics, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Tabassum Khan
- b Department of Quality Assurance and Pharmaceutical Chemistry, SVKMs Dr. Bhanuben Nanavati College of Pharmacy , University of Mumbai , Mumbai , India
| | - Abdelwahab Omri
- c The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry , Laurentian University , Sudbury , ON , Canada
| |
Collapse
|
14
|
Song DG, Lee GH, Nam SH, Cheong JG, Jeong D, Lee SJ, Pan CH, Jung JW, Kim HJ, Ryu J, Kim JE, Kim S, Cho CY, Kang MK, Lee KM, Lee JW. TM4SF5 promotes metastatic behavior of cells in 3D extracellular matrix gels by reducing dependency on environmental cues. Oncotarget 2017; 8:83480-83494. [PMID: 29137358 PMCID: PMC5663530 DOI: 10.18632/oncotarget.17644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/19/2017] [Indexed: 11/25/2022] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) is highly expressed in hepatocellular carcinoma tissues and enhances migration in two-dimensional environments. Here, we investigated how TM4SF5 is involved in diverse pro-metastatic phenotypes in in vivo-like three-dimensional (3D) extracellular matrix gels. TM4SF5-positive cells aggressively formed invasive foci in 3D Matrigel, depending on TM4SF5-mediated signaling activity, cytoskeletal organization, and matrix metallopeptidase (MMP) 2-mediated extracellular remodeling, whereas TM4SF5-null cells did not. The TM4SF5-null cells did, however, form invasive foci in 3D Matrigel following inhibition of Rho-associated protein kinase or addition of collagen I, suggesting that collagen I compensated for TM4SF5 expression. Similarly, TM4SF5-positive cells expressing vascular endothelial-cadherin formed network-like vasculogenic mimicry in 3D Matrigel and collagen I mixture gels, whereas TM4SF5-negative cells in the mixture gels displayed the network structures only upon further treatment with epidermal growth factor. The foci formation also required MMP2-mediated remodeling of the extracellular matrix. Co-cultures exhibited TM4SF5-positive or cancer-associated fibroblasts at the outward edges of TM4SF5-null cell clusters. Compared with TM4SF5-null cells, TM4SF5-positive cells in 3D collagen gels showed a more invasive outgrowth with dramatic invadopodia. These observations suggest that TM4SF5 plays roles in the promotion of diverse metastatic properties with fewer environmental requirements than TM4SF5-negative cells.
Collapse
Affiliation(s)
- Dae-Geun Song
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea.,Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, 25451 Gangwon-do, Korea
| | - Gyu-Ho Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Seo Hee Nam
- Interdisciplinary Program in Genetic Engineering, Seoul National University, 08826 Seoul, Korea
| | - Jin-Gyu Cheong
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Doyoung Jeong
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Seo-Jin Lee
- Department of Life Science and Biotechnology, Shingyeong University, Gyeonggi-do, 18274, Korea
| | - Cheol-Ho Pan
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung-si, 25451 Gangwon-do, Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, 08826 Seoul, Korea
| | - Hye-Jin Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Jihye Ryu
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Ji Eon Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Somi Kim
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Chang Yun Cho
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Min-Kyung Kang
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Kyung-Min Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea
| | - Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, 08826 Seoul, Korea.,Interdisciplinary Program in Genetic Engineering, Seoul National University, 08826 Seoul, Korea
| |
Collapse
|
15
|
TM4SF5-Mediated Roles in the Development of Fibrotic Phenotypes. Mediators Inflamm 2017; 2017:5108525. [PMID: 28458469 PMCID: PMC5385246 DOI: 10.1155/2017/5108525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022] Open
Abstract
Transmembrane 4 L six family member 5 (TM4SF5) can form tetraspanin-enriched microdomains (TERMs) on the cell's surface. TERMs contain protein-protein complexes comprised of tetraspanins, growth factor receptors, and integrins. These complexes regulate communication between extracellular and intracellular spaces to control diverse cellular functions. TM4SF5 influences the epithelial-mesenchymal transition (EMT), aberrant multilayer cellular growth, drug resistance, enhanced migration and invasion, circulation through the bloodstream, tumor-initiation property, metastasis, and muscle development in zebrafish. Here, current data on TM4SF5's roles in the development of fibrotic phenotypes are reviewed. TM4SF5 is induced by transforming growth factor β1 (TGFβ1) signaling via a collaboration with epidermal growth factor receptor (EGFR) activation. TM4SF5, by itself or in concert with other receptors, transduces signals intracellularly. In hepatocytes, TM4SF5 expression regulates cell cycle progression, migration, and expression of extracellular matrix components. In CCl4-treated mice, TM4SF5, α-smooth muscle actin (α-SMA), and collagen I expression are observed together along the fibrotic septa regions of the liver. These fibrotic phenotypes are diminished by anti-TM4SF5 reagents, such as a specific small compound [TSAHC, 4'-(p-toluenesulfonylamido)-4-hydroxychalcone] or a chimeric antibody. This review discusses the antifibrotic strategies that target TM4SF5 and its associated protein networks that regulate the intracellular signaling necessary for fibrotic functions of hepatocytes.
Collapse
|
16
|
Gong ZJ, Guo W, Sun YF, Zhang X, Qiu SJ, Zhou J, Fan J, Yang XR. Prognostic value of fever grade combined with neutrophil percentage in hepatocellular carcinoma patients presenting fever as the initial manifestation. Onco Targets Ther 2016; 9:6281-6290. [PMID: 27789960 PMCID: PMC5072517 DOI: 10.2147/ott.s109023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) patients with fever as the initial presentation are extremely rare. Our aim was to investigate the clinical characteristics and prognosis of patients with this disease. PATIENTS AND METHODS The clinical features were analyzed in a retrospective study of 63 HCC patients with fever as the first manifestation and 300 HCC patients without fever as the control group. RESULTS HCC patients with fever had a higher neutrophil percentage, larger tumor size, worse tumor differentiation, advanced Barcelona Clinic Liver Cancer stage, and more hilar lymph node metastasis than HCC patients without fever (all P<0.05). Compared with HCC patients without fever, patients presenting with fever had shorter overall survival (OS, median: 13 months, P<0.001) and time to recurrence (TTR, median: 7.5 months, P<0.001). In addition, HCC patients with fever also had shorter OS and TTR than those without fever in all clinical subgroups with aggressive features (all P<0.05). Multivariate analysis showed that neutrophil percentage >70%, fever grade ≥38.5°C, tumor size >5 cm, and hilar lymph node metastasis were independent factors for OS and TTR. A positive correlation was observed between body temperature and serum neutrophil percentage (r=0.527, P<0.001). Patients with a fever grade ≥38.5°C had more incomplete encapsulation and larger tumor size, while those with a neutrophil percentage >70% presented with more incomplete encapsulation, vascular invasion, and worse tumor differentiation. Patients with a fever grade ≥38.5°C combined with a neutrophil percentage >70% had worse OS and TTR than other groups. CONCLUSION HCC patients presenting with fever have poorer prognosis than those without fever; however, their prognosis could be improved by timely surgical intervention. Patients with a neutrophil percentage >70% and a fever grade ≥38.5°C represent a rare HCC subgroup with an extremely dismal outcome and more aggressive clinical course.
Collapse
Affiliation(s)
- Zi-Jun Gong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
| | - Wei Guo
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yun-Fan Sun
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
| | - Xin Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
| | - Shuang-Jian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Jia Fan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, People’s Republic of China
| | - Xin-Rong Yang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
- Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Lee JW. Transmembrane 4 L Six Family Member 5 (TM4SF5)-Mediated Epithelial-Mesenchymal Transition in Liver Diseases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:141-63. [PMID: 26404468 DOI: 10.1016/bs.ircmb.2015.06.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The membrane protein TM4SF5, a member of the transmembrane 4L six family, forms a tetraspanin-enriched microdomain (TEM) on the cell surface, where many different membrane proteins and receptors form a massive protein-protein complex to regulate cellular functions including transdifferentiation, migration, and invasion. We recently reported that TM4SF5 causes epithelial-mesenchymal transition (EMT), eventually contributing to aberrant multilayer cellular growth, drug resistance, enhanced migration, invasion, its circulation in the blood, tumor initiation for successful metastasis, and muscle development in zebrafish. In this review, I summarize the information on the role of TM4SF5 in EMT-related functions at TM4SF5-enriched microdomain (T5EM) on cell surface, where proteins such as TM4SF5, CD151, CD44, integrins, and epidermal growth factor receptor (EGFR) can form numerous protein complexes. TM4SF5-mediated EMT contributes to diverse cellular functions, leading to fibrotic phenotypes and initiating and maintaining tumors in primary and/or metastatic regions, in addition to its role in muscle development in zebrafish. Anti-TM4SF5 strategies for addressing the protein networks can lead to regulation of the fibrotic, tumorigenic, and tumor-maintaining functions of TM4SF5-positive hepatic cells. This review is for us to (re)consider the antifibrotic or antitumorigenic (i.e., anti-EMT-related diseases) strategies of dealing with protein networks that would be involved in cross-talks to regulate various cellular functions during TM4SF5-dependent progression from fibrotic to cancerous hepatic cells.
Collapse
Affiliation(s)
- Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Tumor Microenvironment Global Core Research Center, Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.
| |
Collapse
|
18
|
Lee D, Na J, Ryu J, Kim HJ, Nam SH, Kang M, Jung JW, Lee MS, Song HE, Choi J, Lee GH, Kim TY, Chung JK, Park KH, Kim SH, Kim H, Seo H, Kim P, Youn H, Lee JW. Interaction of tetraspan(in) TM4SF5 with CD44 promotes self-renewal and circulating capacities of hepatocarcinoma cells. Hepatology 2015; 61:1978-97. [PMID: 25627085 DOI: 10.1002/hep.27721] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 01/21/2015] [Indexed: 12/14/2022]
Abstract
UNLABELLED Tumor metastasis involves circulating and tumor-initiating capacities of metastatic cancer cells. Epithelial-mesenchymal transition (EMT) is related to self-renewal capacity and circulating tumor cell (CTC) characteristics for tumor metastasis. Although tumor metastasis is a life-threatening, complicated process that occurs through circulation of tumor cells, mechanistic aspects of self-renewal and circulating capacities have been largely unknown. Hepatic transmembrane 4 L six family member 5 (TM4SF5) promotes EMT for malignant growth and migration, so it was rationalized that TM4SF5, as a hepatocellular carcinoma (HCC) biomarker, might be important for metastatic potential. Here, self-renewal capacity by TM4SF5 was mechanistically explored using hepatocarcinoma cells with or without TM4SF5 expression, and we explored whether they became CTCs using mouse liver-orthotopic model systems. We found that TM4SF5-dependent sphere growth correlated with CD24(-) , aldehyde dehydrogenase (ALDH) activity, as well as a physical association between CD44 and TM4SF5. Interaction between TM4SF5 and CD44 was through their extracellular domains with N-glycosylation modifications. TM4SF5/CD44 interaction activated proto-oncogene tyrosine-protein kinase Src (c-Src)/signal transducer and activator of transcription 3 (STAT3)/Twist-related protein 1 (Twist1)/B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi1) signaling for spheroid formation, whereas disturbing the interaction, expression, or activity of any component in this signaling pathway inhibited spheroid formation. In serial xenografts using 200∼5,000 cells per injection, TM4SF5-positive tumors exhibited subpopulations with locally increased CD44 expressions, supporting for tumor cell differentiation. TM4SF5-positive, but not TM4SF5- or CD44-knocked-down, cells were identified circulating in blood 4-6 weeks after orthotopic liver injection using in vivo laser scanning endomicroscopy. Anti-TM4SF5 reagent blocked their metastasis to distal intestinal organs. CONCLUSION TM4SF5 promotes self-renewal and CTC properties supported by TM4SF5(+) /CD44(+(TM4SF5-bound)) /ALDH(+) /CD24(-) markers during HCC metastasis.
Collapse
Affiliation(s)
- Doohyung Lee
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Juri Na
- Department of Nuclear Medicine, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea
| | - Jihye Ryu
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Hye-Jin Kim
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Seo Hee Nam
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Minkyung Kang
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.,Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Korea
| | - Jae Woo Jung
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Mi-Sook Lee
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Haeng Eun Song
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Jungeun Choi
- Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Korea
| | - Gyu-Ho Lee
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - Tai Young Kim
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea
| | - June-Key Chung
- Department of Nuclear Medicine, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
| | - Ki Hun Park
- Division of Applied Life Science, Gyeongsang National University, Jinju, Korea
| | - Sung-Hak Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Hyunggee Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Howon Seo
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Korea.,Cancer Imaging Center, Seoul National University Hospital, Seoul, Korea
| | - Jung Weon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Korea.,Interdisciplinary Program in Genetic Engineering, Seoul National University, Seoul, Korea
| |
Collapse
|
19
|
Abstract
Transmembrane 4 L six family member 5 (TM4SF5), as a membrane glycoprotein with 4 transmembrane domains, is similar to the tetraspanins in terms of membrane topology and plays important roles in tumorigenesis and tumor metastasis. Especially, TM4SF5 appears to form a massive protein-protein complex consisting of diverse membrane proteins and/or receptors in addition to cytosolic signaling molecules to regulate their signaling activities during the pathological processes. TM4SF5 is shown to interact with integrins α2, α5, and β1, EGFR, IL6R, CD151, focal adhesion kinase (FAK), and c-Src. This review focuses on the significance of the interactions with regards to TM4SF5-positive tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Jung Weon Lee
- Department of Pharmacy, Research Institute of Pharmaceutical Sciences, Tumor Microenvironment Global Core Research Center, Medicinal Bioconvergence Research Center, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
20
|
Wala SJ, Karamchandani JR, Saleeb R, Evans A, Ding Q, Ibrahim R, Jewett M, Pasic M, Finelli A, Pace K, Lianidou E, Yousef GM. An integrated genomic analysis of papillary renal cell carcinoma type 1 uncovers the role of focal adhesion and extracellular matrix pathways. Mol Oncol 2015; 9:1667-77. [PMID: 26051997 DOI: 10.1016/j.molonc.2015.04.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/18/2015] [Accepted: 04/20/2015] [Indexed: 02/03/2023] Open
Abstract
Papillary renal cell carcinoma (pRCC) is the second most common RCC subtype and can be further classified as type 1 (pRCC1) or 2 (pRCC2). There is currently minimal understanding of pRCC1 pathogenesis, and treatment decisions are mostly empirical. The aim of this study was to identify biological pathways that are involved in pRCC1 pathogenesis using an integrated genomic approach. By microarray analysis, we identified a number of significantly dysregulated genes and microRNAs (miRNAs) that were unique to pRCC1. Integrated bioinformatics analyses showed enrichment of the focal adhesion and extracellular matrix (ECM) pathways. We experimentally validated that many members of these pathways are dysregulated in pRCC1. We identified and experimentally validated the downregulation of miR-199a-3p in pRCC1. Using cell line models, we showed that miR-199a-3p plays an important role in pRCC1 pathogenesis. Gain of function experiments showed that miR-199a-3p overexpression significantly decreased cell proliferation (p = 0.013). We also provide evidence that miR-199a-3p regulates the expression of genes linked to the focal adhesion and ECM pathways, such as caveolin 2 (CAV2), integrin beta 8 (ITGB8), MET proto-oncogene and mammalian target of rapamycin (MTOR). Using a luciferase reporter assay, we further provide evidence that miR-199a-3p overexpression decreases the expression of MET and MTOR. Using an integrated gene/miRNA approach, we provide evidence linking miRNAs to the focal adhesion and ECM pathways in pRCC1 pathogenesis. This novel information can contribute to the development of effective targeted therapies for pRCC1, for which there is none currently available in the clinic.
Collapse
Affiliation(s)
- Samantha Jane Wala
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Jason Raj Karamchandani
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Rola Saleeb
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Andrew Evans
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Pathology, Toronto General Hospital, Toronto, Ontario, Canada.
| | - Qiang Ding
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Rania Ibrahim
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Michael Jewett
- Department of Surgery, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Maria Pasic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada; Department of Laboratory Medicine, St. Joseph's Health Centre, 30 Queensway, Ontario M6R 1B5, Canada.
| | - Antonio Finelli
- Department of Surgery, Princess Margaret Hospital, 610 University Avenue, Toronto, Ontario M5G 2M9, Canada.
| | - Kenneth Pace
- Department of Surgery, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada.
| | - Evi Lianidou
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, 15771 Athens, Greece.
| | - George Makram Yousef
- The Keenan Research Centre in the Li Ka Shing Knowledge Institute, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|