1
|
Kouchi Z, Kojima M. A Structural Network Analysis of Neuronal ArhGAP21/23 Interactors by Computational Modeling. ACS OMEGA 2023; 8:19249-19264. [PMID: 37305272 PMCID: PMC10249030 DOI: 10.1021/acsomega.2c08054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/05/2023] [Indexed: 06/13/2023]
Abstract
RhoGTPase-activating proteins (RhoGAPs) play multiple roles in neuronal development; however, details of their substrate recognition system remain elusive. ArhGAP21 and ArhGAP23 are RhoGAPs that contain N-terminal PDZ and pleckstrin homology domains. In the present study, the RhoGAP domain of these ArhGAPs was computationally modeled by template-based methods and the AlphaFold2 software program, and their intrinsic RhoGTPase recognition mechanism was analyzed from the domain structures using the protein docking programs HADDOCK and HDOCK. ArhGAP21 was predicted to preferentially catalyze Cdc42, RhoA, RhoB, RhoC, and RhoG and to downregulate RhoD and Tc10 activities. Regarding ArhGAP23, RhoA and Cdc42 were deduced to be its substrates, whereas RhoD downregulation was predicted to be less efficient. The PDZ domains of ArhGAP21/23 possess the FTLRXXXVY sequence, and similar globular folding consists of antiparalleled β-sheets and two α-helices that are conserved with PDZ domains of MAST-family proteins. A peptide docking analysis revealed the specific interaction of the ArhGAP23 PDZ domain with the PTEN C-terminus. The pleckstrin homology domain structure of ArhGAP23 was also predicted, and the functional selectivity for the interactors regulated by the folding and disordered domains in ArhGAP21 and ArhGAP23 was examined by an in silico analysis. An interaction analysis of these RhoGAPs revealed the existence of mammalian ArhGAP21/23-specific type I and type III Arf- and RhoGTPase-regulated signaling. Multiple recognition systems of RhoGTPase substrates and selective Arf-dependent localization of ArhGAP21/23 may form the basis of the functional core signaling necessary for synaptic homeostasis and axon/dendritic transport regulated by RhoGAP localization and activities.
Collapse
Affiliation(s)
- Zen Kouchi
- Department
of Genetics, Institute for Developmental
Research, Aichi Developmental Disability Center, 713-8 Kamiya-cho, Kasugai-city 480-0392 Aichi, Japan
| | - Masaki Kojima
- Laboratory
of Bioinformatics, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji 192-0392, Japan
| |
Collapse
|
2
|
Okyere AD, Song J, Patwa V, Carter RL, Enjamuri N, Lucchese AM, Ibetti J, de Lucia C, Schumacher SM, Koch WJ, Cheung JY, Benovic JL, Tilley DG. Pepducin ICL1-9-Mediated β2-Adrenergic Receptor-Dependent Cardiomyocyte Contractility Occurs in a G i Protein/ROCK/PKD-Sensitive Manner. Cardiovasc Drugs Ther 2023; 37:245-256. [PMID: 34997361 PMCID: PMC9262991 DOI: 10.1007/s10557-021-07299-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE β-Adrenergic receptors (βAR) are essential targets for the treatment of heart failure (HF); however, chronic use of βAR agonists as positive inotropes to increase contractility in a Gs protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of β2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a β-arrestin (βarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9. METHODS We measured adult mouse cardiomyocyte contractility in response to ICL1-9 or isoproterenol (ISO, as a positive control) alone or in the presence of inhibitors of various potential components of βarr- or RhoA-dependent signaling. We also assessed the contractile effects of ICL1-9 on cardiomyocytes lacking G protein-coupled receptor (GPCR) kinase 2 (GRK2) or 5 (GRK5). RESULTS Consistent with RhoA activation by ICL1-9, both Rho-associated protein kinase (ROCK) and protein kinase D (PKD) inhibition were able to attenuate ICL1-9-mediated contractility, as was inhibition of myosin light chain kinase (MLCK). While neither GRK2 nor GRK5 deletion impacted ICL1-9-mediated contractility, pertussis toxin attenuated the response, suggesting that ICL1-9 promotes downstream RhoA-dependent signaling in a Gi protein-dependent manner. CONCLUSION Altogether, our study highlights a novel signaling modality that may offer a new approach to the promotion, or preservation, of cardiac contractility during HF via the allosteric regulation of β2AR to promote Gi protein/βarr-dependent activation of RhoA/ROCK/PKD signaling.
Collapse
Affiliation(s)
- Ama Dedo Okyere
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jianliang Song
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Viren Patwa
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Rhonda L Carter
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Nitya Enjamuri
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Anna Maria Lucchese
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Claudio de Lucia
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
- Instituti Clinici Scientifici Maugeri di Telese Terme, Telese Terme, Italy
| | - Sarah M Schumacher
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Joseph Y Cheung
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA
| | - Jeffrey L Benovic
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Douglas G Tilley
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Room 945A MERB, 3500 N. Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Fixing the GAP: the role of RhoGAPs in cancer. Eur J Cell Biol 2022; 101:151209. [DOI: 10.1016/j.ejcb.2022.151209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/29/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
|
4
|
Comer SP. Turning Platelets Off and On: Role of RhoGAPs and RhoGEFs in Platelet Activity. Front Cardiovasc Med 2022; 8:820945. [PMID: 35071371 PMCID: PMC8770426 DOI: 10.3389/fcvm.2021.820945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet cytoskeletal reorganisation is a critical component of platelet activation and thrombus formation in haemostasis. The Rho GTPases RhoA, Rac1 and Cdc42 are the primary drivers in the dynamic reorganisation process, leading to the development of filopodia and lamellipodia which dramatically increase platelet surface area upon activation. Rho GTPases cycle between their active (GTP-bound) and inactive (GDP-bound) states through tightly regulated processes, central to which are the guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). GEFs catalyse the dissociation of GDP by inducing changes in the nucleotide binding site, facilitating GTP binding and activating Rho GTPases. By contrast, while all GTPases possess intrinsic hydrolysing activity, this reaction is extremely slow. Therefore, GAPs catalyse the hydrolysis of GTP to GDP, reverting Rho GTPases to their inactive state. Our current knowledge of these proteins is constantly being updated but there is considerably less known about the functionality of Rho GTPase specific GAPs and GEFs in platelets. In the present review, we discuss GAP and GEF proteins for Rho GTPases identified in platelets, their regulation, biological function and present a case for their further study in platelets.
Collapse
Affiliation(s)
- Shane P Comer
- ConwaySPHERE Research Group, UCD Conway Institute, University College Dublin, Dublin, Ireland.,School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
5
|
Pissarra MF, Torello CO, Gomes RGB, Shiraishi RN, Santos I, Vieira Ferro KP, Lopes MR, Bergamo Favaro PM, Olalla Saad ST, Lazarini M. Arhgap21 Deficiency Results in Increase of Osteoblastic Lineage Cells in the Murine Bone Marrow Microenvironment. Front Cell Dev Biol 2021; 9:718560. [PMID: 34917608 PMCID: PMC8670086 DOI: 10.3389/fcell.2021.718560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
ARHGAP21 is a member of the RhoGAP family of proteins involved in cell growth, differentiation, and adhesion. We have previously shown that the heterozygous Arhgap21 knockout mouse model (Arhgap21+/-) presents several alterations in the hematopoietic compartment, including increased frequency of hematopoietic stem and progenitor cells (HSPC) with impaired adhesion in vitro, increased mobilization to peripheral blood, and decreased engraftment after bone marrow transplantation. Although these HSPC functions strongly depend on their interactions with the components of the bone marrow (BM) niche, the role of ARHGAP21 in the marrow microenvironment has not yet been explored. In this study, we investigated the composition and function of the BM microenvironment in Arhgap21+/- mice. The BM of Arhgap21+/- mice presented a significant increase in the frequency of phenotypic osteoblastic lineage cells, with no differences in the frequencies of multipotent stromal cells or endothelial cells when compared to the BM of wild type mice. Arhgap21+/- BM cells had increased capacity of generating osteogenic colony-forming units (CFU-OB) in vitro and higher levels of osteocalcin were detected in the Arhgap21+/- BM supernatant. Increased expression of Col1a1, Ocn and decreased expression of Trap1 were observed after osteogenic differentiation of Arhgap21+/- BM cells. In addition, Arhgap21+/- mice recipients of normal BM cells showed decreased leucocyte numbers during transplantation recovery. Our data suggest participation of ARHGAP21 in the balanced composition of the BM microenvironment through the regulation of osteogenic differentiation.
Collapse
Affiliation(s)
| | | | | | | | - Irene Santos
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil
| | | | | | - Patricia Maria Bergamo Favaro
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil.,Institute of Environmental, Chemical and Pharmaceutical Sciences-Federal University of São Paulo, São Paulo, Brazil
| | | | - Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas, São Paulo, Brazil.,Institute of Environmental, Chemical and Pharmaceutical Sciences-Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Deficiency of ARHGAP21 alters megakaryocytic cell lineage responses and enhances platelet hemostatic function. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119012. [PMID: 33727037 DOI: 10.1016/j.bbamcr.2021.119012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022]
|
7
|
Alexander RA, Lot I, Saha K, Abadie G, Lambert M, Decosta E, Kobayashi H, Beautrait A, Borrull A, Asnacios A, Bouvier M, Scott MGH, Marullo S, Enslen H. Beta-arrestins operate an on/off control switch for focal adhesion kinase activity. Cell Mol Life Sci 2020; 77:5259-5279. [PMID: 32040695 PMCID: PMC11104786 DOI: 10.1007/s00018-020-03471-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 12/20/2022]
Abstract
Focal adhesion kinase (FAK) regulates key biological processes downstream of G protein-coupled receptors (GPCRs) in normal and cancer cells, but the modes of kinase activation by these receptors remain unclear. We report that after GPCR stimulation, FAK activation is controlled by a sequence of events depending on the scaffolding proteins β-arrestins and G proteins. Depletion of β-arrestins results in a marked increase in FAK autophosphorylation and focal adhesion number. We demonstrate that β-arrestins interact directly with FAK and inhibit its autophosphorylation in resting cells. Both FAK-β-arrestin interaction and FAK inhibition require the FERM domain of FAK. Following the stimulation of the angiotensin receptor AT1AR and subsequent translocation of the FAK-β-arrestin complex to the plasma membrane, β-arrestin interaction with the adaptor AP-2 releases inactive FAK from the inhibitory complex, allowing its activation by receptor-stimulated G proteins and activation of downstream FAK effectors. Release and activation of FAK in response to angiotensin are prevented by an AP-2-binding deficient β-arrestin and by a specific inhibitor of β-arrestin/AP-2 interaction; this inhibitor also prevents FAK activation in response to vasopressin. This previously unrecognized mechanism of FAK regulation involving a dual role of β-arrestins, which inhibit FAK in resting cells while driving its activation at the plasma membrane by GPCR-stimulated G proteins, opens new potential therapeutic perspectives in cancers with up-regulated FAK.
Collapse
Affiliation(s)
- Revu Ann Alexander
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Isaure Lot
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Kusumika Saha
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Guillaume Abadie
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Mireille Lambert
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Eleonore Decosta
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hiroyuki Kobayashi
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Alexandre Beautrait
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Aurélie Borrull
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Atef Asnacios
- Laboratoire Matière et Systèmes Complexes, CNRS UMR 7057, Université de Paris, Paris, France
| | - Michel Bouvier
- Department of Biochemistry and the Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Mark G H Scott
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Stefano Marullo
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - Hervé Enslen
- Institut Cochin, Inserm U 1016, CNRS UMR8104, Université de Paris, 27 rue du Faubourg Saint-Jacques, 75014, Paris, France.
| |
Collapse
|
8
|
Gurevich VV, Gurevich EV. Biased GPCR signaling: Possible mechanisms and inherent limitations. Pharmacol Ther 2020; 211:107540. [PMID: 32201315 PMCID: PMC7275904 DOI: 10.1016/j.pharmthera.2020.107540] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
G protein-coupled receptors (GPCRs) are targeted by about a third of clinically used drugs. Many GPCRs couple to more than one type of heterotrimeric G proteins, become phosphorylated by any of several different GRKs, and then bind one or more types of arrestin. Thus, classical therapeutically active drugs simultaneously initiate several branches of signaling, some of which are beneficial, whereas others result in unwanted on-target side effects. The development of novel compounds to selectively channel the signaling into the desired direction has the potential to become a breakthrough in health care. However, there are natural and technological hurdles that must be overcome. The fact that most GPCRs are subject to homologous desensitization, where the active receptor couples to G proteins, is phosphorylated by GRKs, and then binds arrestins, suggest that in most cases the GPCR conformations that facilitate their interactions with these three classes of binding partners significantly overlap. Thus, while partner-specific conformations might exist, they are likely low-probability states. GPCRs are inherently flexible, which suggests that complete bias is highly unlikely to be feasible: in the conformational ensemble induced by any ligand, there would be some conformations facilitating receptor coupling to unwanted partners. Things are further complicated by the fact that virtually every cell expresses numerous G proteins, several GRK subtypes, and two non-visual arrestins with distinct signaling capabilities. Finally, novel screening methods for measuring ligand bias must be devised, as the existing methods are not specific for one particular branch of signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
9
|
Vanderboor CMG, Thibeault PE, Nixon KCJ, Gros R, Kramer J, Ramachandran R. Proteinase-Activated Receptor 4 Activation Triggers Cell Membrane Blebbing through RhoA and β-Arrestin. Mol Pharmacol 2020; 97:365-376. [PMID: 32234808 DOI: 10.1124/mol.119.118232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 12/22/2022] Open
Abstract
Proteinase-activated receptors (PARs) are a four-member family of G-protein-coupled receptors that are activated via proteolysis. PAR4 is a member of this family that is cleaved and activated by serine proteinases such as thrombin, trypsin, and cathepsin-G. PAR4 is expressed in a variety of tissues and cell types, including platelets, vascular smooth muscle cells, and neuronal cells. In studying PAR4 signaling and trafficking, we observed dynamic changes in the cell membrane, with spherical membrane protrusions that resemble plasma membrane blebbing. Since nonapoptotic membrane blebbing is now recognized as an important regulator of cell migration, cancer cell invasion, and vesicular content release, we sought to elucidate the signaling pathway downstream of PAR4 activation that leads to such events. Using a combination of pharmacological inhibition and CRISPR/CRISPR-associated protein 9 (Cas9)-mediated gene editing approaches, we establish that PAR4-dependent membrane blebbing occurs independently of the Gα q/11- and Gα i-signaling pathways and is dependent on signaling via the β-arrestin-1/2 and Ras homolog family member A (RhoA) signaling pathways. Together these studies provide further mechanistic insight into PAR4 regulation of cellular function. SIGNIFICANCE STATEMENT: We find that the thrombin receptor PAR4 triggers cell membrane blebbing in a RhoA-and β-arrestin-dependent manner. In addition to identifying novel cellular responses mediated by PAR4, these data provide further evidence for biased signaling in PAR4 since membrane blebbing was dependent on some, but not all, signaling pathways activated by PAR4.
Collapse
Affiliation(s)
- Christina M G Vanderboor
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Pierre E Thibeault
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Kevin C J Nixon
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert Gros
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Jamie Kramer
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
10
|
Sagittal Craniosynostosis with Uncommon Anatomical Pathologies in a 56-Year-Old Male Cadaver. Case Rep Pathol 2019; 2019:8034021. [PMID: 31885995 PMCID: PMC6925784 DOI: 10.1155/2019/8034021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 08/09/2019] [Accepted: 10/04/2019] [Indexed: 11/17/2022] Open
Abstract
Sagittal craniosynostosis (CS) is a pathologic condition that results in premature fusion of the sagittal suture, restricting the transverse growth of the skull leading in some cases to elevated intracranial pressure and neurodevelopmental delay. There is still much to be learned about the etiology of CS. Here, we report a case of 56-year-old male cadaver that we describe as sagittal CS with torus palatinus being an additional anomaly. The craniotomy was unsuccessful (cephalic index, CI = 56) and resulted in abnormal vertical outgrowth of the craniotomized bone strip. The histological analysis of the latter revealed atypical, noncompensatory massive bone overproduction. Exome sequencing of DNA extracted from the cadaveric tissue specimen performed on the Next Generation Sequencing (NGS) platform yielded 81 genetic variants identified as pathologic. Nine of those variants could be directly linked to CS with five of them targeting RhoA GTPase signaling, with a potential to make it sustained in nature. The latter could trigger upregulated calvarial osteogenesis leading to premature suture fusion, skull bone thickening, and craniotomized bone strip outgrowth observed in the present case.
Collapse
|
11
|
Wang Z, Yao L, Li Y, Hao B, Wang M, Wang J, Gu W, Zhan H, Liu G, Wu Q. miR‑337‑3p inhibits gastric tumor metastasis by targeting ARHGAP10. Mol Med Rep 2019; 21:705-719. [PMID: 31789419 PMCID: PMC6947896 DOI: 10.3892/mmr.2019.10856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Several microRNAs (miRNAs) are known as regulatory molecules involved in gastric tumor metastasis. The expression of miR‑337‑3p was revealed to be downregulated in metastatic gastric tumor cells. Overexpression of miR‑337‑3p in gastric cancer cells resulted in the reduction of their invasive abilities. To characterize the functions of miR‑337‑3p, miR‑337‑3p was expressed in a metastatic lymph node‑derived gastric tumor cell line, SGC‑7901. Overexpression of miR‑337‑3p reduced the viability of cells but had no effects on the cell cycle. Wound healing and Transwell migration assays revealed that miR‑337‑3p inhibited the migration capacity of cells. miR‑337‑3p was capable of binding to the 3'‑untranslated region of a cytoskeleton‑associated molecule, ARHGAP10. Overexpression of miR‑337‑3p reduced the mRNA and protein levels of ARHGAP10 and the co‑expression of ARHGAP10 and miR‑337‑3p resulted in the recovery of cell migration capacity. Furthermore, the injection of miR‑337‑3p‑overexpressing SGC‑7901 cells into an immunodeficient mouse model resulted in a decrease in tumor metastasis in the liver and lungs. The present results indicated that miR‑337‑3p regulates gastric tumor metastasis by targeting the cytoskeleton‑associated protein ARHGAP10.
Collapse
Affiliation(s)
- Zishu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu, Anhui 233004, P.R. China
| | - Lun Yao
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Yu Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu, Anhui 233004, P.R. China
| | - Bo Hao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Mingxi Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu, Anhui 233004, P.R. China
| | - Junbin Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu, Anhui 233004, P.R. China
| | - Wei Gu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Huihui Zhan
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Guoquan Liu
- Department of Basic Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, P.R. China
| | - Qiong Wu
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
12
|
Gong H, Chen X, Jin Y, Lu J, Cai Y, Wei O, Zhao J, Zhang W, Wen X, Wang Y, Chen W. Expression of ARHGAP10 correlates with prognosis of prostate cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:3839-3846. [PMID: 31933772 PMCID: PMC6949770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Prostate cancer is one of the most common malignancies in men worldwide. Altered expression of ARHGAP10, a member of the Rho GTPase activating protein (RhoGAP) family, has been found in several human cancers. However, its clinical significance in prostate cancer remains unknown. In the current study, we found that mRNA levels of ARHGAP10 were significantly higher in prostate cancer tissues than in the non-cancerous controls. Gene set enrichment analysis (GSEA) revealed that ARHGAP10 expression was negatively correlated with the Wnt signaling pathway. Immunohistochemical staining results showed that 62.2% (56/90) and 65.5% (59/90) of prostate cancer tissues displayed low expression of ARHGAP10 and high expression of β-catenin, respectively. ARHGAP10 protein expression was significantly correlated with histologic grade (P < 0.0001), tumor stage (P = 0.0298), preoperative prostate specific antigen level (P = 0.0261), vital status (P = 0.0017) and β-catenin expression (P < 0.0001). Kaplan-Meier survival analysis indicated that patients with low levels of ARHGAP10 and high levels of β-catenin had poor overall survival. Multivariate analyses revealed that ARHGAP10 and β-catenin expression was independent prognostic factor for prostate cancer. In summary, the current study suggests that ARHGAP10 in association with β-catenin may play a role in the development of prostate cancer and serve as a prognostic factor for this disease.
Collapse
Affiliation(s)
- Hua Gong
- Department of Urology, Longhua Hospital, Shanghai University of Traditional Chinese MedicineShanghai, P. R. China
| | - Xingyi Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, P. R. China
| | - Yongcao Jin
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, P. R. China
| | - Jiasun Lu
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, P. R. China
| | - Yuanjue Cai
- Department of Urology, Shanghai East Hospital Ji An HospitalJi An, Jiangxi Provence, P. R. China
| | - Ouyang Wei
- Department of Urology, Shanghai East Hospital Ji An HospitalJi An, Jiangxi Provence, P. R. China
| | - Jun Zhao
- Department of Urology, Shanghai East Hospital Ji An HospitalJi An, Jiangxi Provence, P. R. China
| | - Wenyuan Zhang
- Department of Urology, Shanghai East Hospital Ji An HospitalJi An, Jiangxi Provence, P. R. China
| | - Xiaofei Wen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, P. R. China
| | - Yuemin Wang
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, P. R. China
| | - Weihua Chen
- Department of Urology, Shanghai East Hospital, School of Medicine, Tongji UniversityShanghai, P. R. China
- Department of Urology, Shanghai East Hospital Ji An HospitalJi An, Jiangxi Provence, P. R. China
| |
Collapse
|
13
|
Blair CM, Walsh NM, Littman BH, Marcoux FW, Baillie GS. Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A - C-Raf. BMC Cancer 2019; 19:266. [PMID: 30909892 PMCID: PMC6434832 DOI: 10.1186/s12885-019-5489-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 03/19/2019] [Indexed: 11/24/2022] Open
Abstract
Background Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf – MEK – ERK signalling pathway, followed by metastasis. PDE8A has been shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase. Methods We have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A – C-Raf complex in a human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP kinase signalling. Results We have demonstrated that the PDE8A – C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-S259 phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008 to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue and significantly reduced phospho-ERK signalling in that domain. Conclusion Our data suggests that the PDE8A-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor resistant melanoma. Electronic supplementary material The online version of this article (10.1186/s12885-019-5489-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Connor M Blair
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Portage Glasgow Limited, Glasgow, UK
| | - Nicola M Walsh
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Bruce H Littman
- Portage Pharmaceuticals Limited, Tortola, British Virgin Islands.,EyGen Inc, Wilmington, DE, USA
| | - Frank W Marcoux
- Portage Glasgow Limited, Glasgow, UK.,Portage Pharmaceuticals Limited, Tortola, British Virgin Islands
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK. .,Portage Glasgow Limited, Glasgow, UK.
| |
Collapse
|
14
|
Stolwijk JA, Wegener J. Impedance-Based Assays Along the Life Span of Adherent Mammalian Cells In Vitro: From Initial Adhesion to Cell Death. BIOANALYTICAL REVIEWS 2019. [DOI: 10.1007/11663_2019_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
15
|
Laporte SA, Scott MGH. β-Arrestins: Multitask Scaffolds Orchestrating the Where and When in Cell Signalling. Methods Mol Biol 2019; 1957:9-55. [PMID: 30919345 DOI: 10.1007/978-1-4939-9158-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The β-arrestins (β-arrs) were initially appreciated for the roles they play in the desensitization and endocytosis of G protein-coupled receptors (GPCRs). They are now also known to act as multifunctional adaptor proteins binding many non-receptor protein partners to control multiple signalling pathways. β-arrs therefore act as key regulatory hubs at the crossroads of external cell inputs and functional outputs in cellular processes ranging from gene transcription to cell growth, survival, cytoskeletal regulation, polarity, and migration. An increasing number of studies have also highlighted the scaffolding roles β-arrs play in vivo in both physiological and pathological conditions, which opens up therapeutic avenues to explore. In this introductory review chapter, we discuss the functional roles that β-arrs exert to control GPCR function, their dynamic scaffolding roles and how this impacts signal transduction events, compartmentalization of β-arrs, how β-arrs are regulated themselves, and how the combination of these events culminates in cellular regulation.
Collapse
Affiliation(s)
- Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center (RI-MUHC), McGill University, Montreal, QC, Canada. .,Department of Pharmacology and Therapeutics, McGill University, Montréal, QC, Canada. .,Department of Anatomy and Cell Biology, McGill University, Montréal, QC, Canada. .,RI-MUHC/Glen Site, Montréal, QC, Canada.
| | - Mark G H Scott
- Institut Cochin, INSERM U1016, Paris, France. .,CNRS, UMR 8104, Paris, France. .,Univ. Paris Descartes, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
16
|
Bazan NG. Docosanoids and elovanoids from omega-3 fatty acids are pro-homeostatic modulators of inflammatory responses, cell damage and neuroprotection. Mol Aspects Med 2018; 64:18-33. [PMID: 30244005 DOI: 10.1016/j.mam.2018.09.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 02/06/2023]
Abstract
The functional significance of the selective enrichment of the omega-3 essential fatty acid docosahexaenoic acid (DHA; 22C and 6 double bonds) in cellular membrane phospholipids of the nervous system is being clarified by defining its specific roles on membrane protein function and by the uncovering of the bioactive mediators, docosanoids and elovanoids (ELVs). Here, we describe the preferential uptake and DHA metabolism in photoreceptors and brain as well as the significance of the Adiponectin receptor 1 in DHA retention and photoreceptor cell (PRC) survival. We now know that this integral membrane protein is engaged in DHA retention as a necessary event for the function of PRCs and retinal pigment epithelial (RPE) cells. We present an overview of how a) NPD1 selectively mediates preconditioning rescue of RPE and PR cells; b) NPD1 restores aberrant neuronal networks in experimental epileptogenesis; c) the decreased ability to biosynthesize NPD1 in memory hippocampal areas of early stages of Alzheimer's disease takes place; d) NPD1 protection of dopaminergic circuits in an in vitro model using neurotoxins; and e) bioactivity elicited by DHA and NPD1 activate a neuroprotective gene-expression program that includes the expression of Bcl-2 family members affected by Aβ42, DHA, or NPD1. In addition, we highlight ELOVL4 (ELOngation of Very Long chain fatty acids-4), specifically the neurological and ophthalmological consequences of its mutations, and their role in providing precursors for the biosynthesis of ELVs. Then we outline evidence of ELVs ability to protect RPE cells, which sustain PRC integrity. In the last section, we present a summary of the protective bioactivity of docosanoids and ELVs in experimental ischemic stroke. The identification of early mechanisms of neural cell survival mediated by DHA-synthesized ELVs and docosanoids contributes to the understanding of cell function, pro-homeostatic cellular modulation, inflammatory responses, and innate immunity, opening avenues for prevention and therapeutic applications in neurotrauma, stroke and neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, 70112, USA.
| |
Collapse
|
17
|
Xu XF, Wang JJ, Ding L, Ye JS, Huang LJ, Tao L, Gao F, Ji Y. Suppression of BMX-ARHGAP fusion gene inhibits epithelial-mesenchymal transition in gastric cancer cells via RhoA-mediated blockade of JAK/STAT axis. J Cell Biochem 2018; 120:439-451. [PMID: 30216523 DOI: 10.1002/jcb.27400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/11/2018] [Indexed: 12/24/2022]
Abstract
Gastric cancer (GC) is one of the main causes of cancer-related mortality worldwide. Epithelial-mesenchymal transition (EMT) is an important biological process involving the process by which malignant tumor cells obtain the ability of migration, invasion, resistance of apoptosis, and degradation in the extracellular matrix. The current study aimed at investigating whether bone marrow X kinase Rho GTPase activating protein 12 (BMX-ARHGAP) fusion gene affects GC. First, short hairpin RNA (shRNA) against BMX-ARHGAP or BMX-ARHGAP were introduced to treat SGC-7901 cells with the highest BMX-ARHGAP among the five GC cell lines (SGC-7901, MKN-45, NCI-N87, SNU-5, and AGS). Next, cell vitality, drug resistance, migration, and invasion of SGC-7901 cells, activities of Rho and JAK/STAT axis, as well as EMT and lymph node metastasis (LNM) were evaluated. The survival rate of the mice was then determined through the transfection of the specific pathogen-free NOD-SCID mice with treated SGC-7901 cells. The results showed that BMX-ARHGAP expression was associated with the infiltration degree of GC tumor and poor prognosis for patients with GC. BMX-ARHGAP silencing was found to play an inhibitory role in the Rho and JAK/STAT axis to reduce cell vitality, drug resistance, migration and invasion, reverse EMT process, as well as inhibit LNM. BMX-ARHGAP overexpression was observed to have induced effects on GC cells as opposed to those inhibited by BMX-ARHGAP silencing. The survival rate of mice was increased after transfection with silenced BMX-ARHGAP. These findings provided evidence that the suppression of BMX-ARHGAP resulted in the inhibition of RhoA to restraint the development of GC cells by blocking the JAK/STAT axis.
Collapse
Affiliation(s)
- Xiao-Feng Xu
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Jian-Jiang Wang
- Department of Gastrointestinal Surgery, Jingjiang People's Hospital, Jingjiang, China
| | - Li Ding
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Jin-Song Ye
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Li-Juan Huang
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Lan Tao
- Department of Clinical Laboratory, Jingjiang People's Hospital, Jingjiang, China
| | - Feng Gao
- Department of Gastrointestinal Surgery, Jingjiang People's Hospital, Jingjiang, China
| | - Yong Ji
- Department of Gastrointestinal Surgery, Jingjiang People's Hospital, Jingjiang, China
| |
Collapse
|
18
|
Grisanti LA, Thomas TP, Carter RL, de Lucia C, Gao E, Koch WJ, Benovic JL, Tilley DG. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics 2018; 8:4664-4678. [PMID: 30279730 PMCID: PMC6160776 DOI: 10.7150/thno.26619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Reperfusion as a therapeutic intervention for acute myocardial infarction-induced cardiac injury itself induces further cardiomyocyte death. β-arrestin (βarr)-biased β-adrenergic receptor (βAR) activation promotes survival signaling responses in vitro; thus, we hypothesize that this pathway can mitigate cardiomyocyte death at the time of reperfusion to better preserve function. However, a lack of efficacious βarr-biased orthosteric small molecules has prevented investigation into whether this pathway relays protection against ischemic injury in vivo. We recently demonstrated that the pepducin ICL1-9, a small lipidated peptide fragment designed from the first intracellular loop of β2AR, allosterically engaged pro-survival signaling cascades in a βarr-dependent manner in vitro. Thus, in this study we tested whether ICL1-9 relays cardioprotection against ischemia/reperfusion (I/R)-induced injury in vivo. Methods: Wild-type (WT) C57BL/6, β2AR knockout (KO), βarr1KO and βarr2KO mice received intracardiac injections of either ICL1-9 or a scrambled control pepducin (Scr) at the time of ischemia (30 min) followed by reperfusion for either 24 h, to assess infarct size and cardiomyocyte death, or 4 weeks, to monitor the impact of ICL1-9 on long-term cardiac structure and function. Neonatal rat ventricular myocytes (NRVM) were used to assess the impact of ICL1-9 versus Scr pepducin on cardiomyocyte survival and mitochondrial superoxide formation in response to either serum deprivation or hypoxia/reoxygenation (H/R) in vitro and to investigate the associated mechanism(s). Results: Intramyocardial injection of ICL1-9 at the time of I/R reduced infarct size, cardiomyocyte death and improved cardiac function in a β2AR- and βarr-dependent manner, which led to improved contractile function early and less fibrotic remodeling over time. Mechanistically, ICL1-9 attenuated mitochondrial superoxide production and promoted cardiomyocyte survival in a RhoA/ROCK-dependent manner. RhoA activation could be detected in cardiomyocytes and whole heart up to 24 h post-treatment, demonstrating the stability of ICL1-9 effects on βarr-dependent β2AR signaling. Conclusion: Pepducin-based allosteric modulation of βarr-dependent β2AR signaling represents a novel therapeutic approach to reduce reperfusion-induced cardiac injury and relay long-term cardiac remodeling benefits.
Collapse
|
19
|
Grisanti LA, Schumacher SM, Tilley DG, Koch WJ. Designer Approaches for G Protein-Coupled Receptor Modulation for Cardiovascular Disease. JACC Basic Transl Sci 2018; 3:550-562. [PMID: 30175279 PMCID: PMC6115700 DOI: 10.1016/j.jacbts.2017.12.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 12/14/2017] [Indexed: 12/17/2022]
Abstract
The new horizon for cardiac therapy may lie beneath the surface, with the downstream mediators of G protein–coupled receptor (GPCR) activity. Targeted approaches have shown that receptor activation may be biased toward signaling through G proteins or through GPCR kinases (GRKs) and β-arrestins, with divergent functional outcomes. In addition to these canonical roles, numerous noncanonical activities of GRKs and β-arrestins have been demonstrated to modulate GPCR signaling at all levels of receptor activation and regulation. Further, research continues to identify novel GRK/effector and β-arrestin/effector complexes with distinct impacts on cardiac function in the normal heart and the diseased heart. Coupled with the identification of once orphan receptors and endogenous ligands with beneficial cardiovascular effects, this expands the repertoire of GPCR targets. Together, this research highlights the potential for focused therapeutic activation of beneficial pathways, with simultaneous exclusion or inhibition of detrimental signaling, and represents a new wave of therapeutic development.
Collapse
Key Words
- AR, adrenergic receptor
- AT1R, angiotensin II type 1A receptor
- CRF, corticotropin-releasing factor
- EGFR, epidermal growth factor receptor
- ERK1/2, extracellular signal-regulated kinase
- G protein–coupled receptor kinases
- G protein–coupled receptors
- GPCR, G protein–coupled receptor
- GRK, G protein–coupled receptor kinase
- HF, heart failure
- ICL, intracellular loop
- PI3K, phosphoinositide 3-kinase
- SERCA2a, sarco(endo)plasmic reticulum Ca2+-ATPase
- SII, [Sar(1), Ile (4), Ile(8)]-angiotensin II
- biased ligands
Collapse
Affiliation(s)
- Laurel A Grisanti
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Sarah M Schumacher
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania.,Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Douglas G Tilley
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
20
|
Rosa LRO, Soares GM, Silveira LR, Boschero AC, Barbosa-Sampaio HCL. ARHGAP21 as a master regulator of multiple cellular processes. J Cell Physiol 2018; 233:8477-8481. [PMID: 29856495 DOI: 10.1002/jcp.26829] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/30/2018] [Indexed: 01/17/2023]
Abstract
The cellular cytoskeleton is involved with multiple biological processes and is tightly regulated by multiple proteins and effectors. Among these, the RhoGTPases family is one of the most important players. RhoGTPAses are, in turn, regulated by many other elements. In the past decade, one of those regulators, the RhoGAP Rho GTPase Activating Protein 21 (ARHGAP21), has been overlooked, despite being implied as having an important role on many of those processes. In this paper, we aimed to review the available literature regarding ARHGAP21 to highlight its importance and the mechanisms of action that have been found so far for this still unknown protein involved with cell adhesion, migration, Golgi regulation, cell trafficking, and even insulin secretion.
Collapse
Affiliation(s)
- Lucas R O Rosa
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Gabriela M Soares
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Leonardo R Silveira
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Antonio C Boschero
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Helena C L Barbosa-Sampaio
- Department of Structural and Functional Biology, Obesity and Comorbidities Research Center (OCRC), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
21
|
Abstract
β-arrestin1 (or arrestin2) and β-arrestin2 (or arrestin3) are ubiquitously expressed cytosolic adaptor proteins that were originally discovered for their inhibitory role in G protein-coupled receptor (GPCR) signaling through heterotrimeric G proteins. However, further biochemical characterization revealed that β-arrestins do not just "block" the activated GPCRs, but trigger endocytosis and kinase activation leading to specific signaling pathways that can be localized on endosomes. The signaling pathways initiated by β-arrestins were also found to be independent of G protein activation by GPCRs. The discovery of ligands that blocked G protein activation but promoted β-arrestin binding, or vice-versa, suggested the exciting possibility of selectively activating intracellular signaling pathways. In addition, it is becoming increasingly evident that β-arrestin-dependent signaling is extremely diverse and provokes distinct cellular responses through different GPCRs even when the same effector kinase is involved. In this review, we summarize various signaling pathways mediated by β-arrestins and highlight the physiologic effects of β-arrestin-dependent signaling.
Collapse
|
22
|
Yalla K, Elliott C, Day JP, Findlay J, Barratt S, Hughes ZA, Wilson L, Whiteley E, Popiolek M, Li Y, Dunlop J, Killick R, Adams DR, Brandon NJ, Houslay MD, Hao B, Baillie GS. FBXW7 regulates DISC1 stability via the ubiquitin-proteosome system. Mol Psychiatry 2018; 23:1278-1286. [PMID: 28727686 PMCID: PMC5984089 DOI: 10.1038/mp.2017.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/27/2023]
Abstract
Disrupted in schizophrenia 1 (DISC1) is a multi-functional scaffolding protein that has been associated with neuropsychiatric disease. The role of DISC1 is to assemble protein complexes that promote neural development and signaling, hence tight control of the concentration of cellular DISC1 in neurons is vital to brain function. Using structural and biochemical techniques, we show for we believe the first time that not only is DISC1 turnover elicited by the ubiquitin proteasome system (UPS) but that it is orchestrated by the F-Box protein, FBXW7. We present the structure of FBXW7 bound to the DISC1 phosphodegron motif and exploit this information to prove that disruption of the FBXW7-DISC1 complex results in a stabilization of DISC1. This action can counteract DISC1 deficiencies observed in neural progenitor cells derived from induced pluripotent stem cells from schizophrenia patients with a DISC1 frameshift mutation. Thus manipulation of DISC1 levels via the UPS may provide a novel method to explore DISC1 function.
Collapse
Affiliation(s)
- K Yalla
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - C Elliott
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
- Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - J P Day
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - J Findlay
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - S Barratt
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Z A Hughes
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - L Wilson
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - E Whiteley
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - M Popiolek
- Neuroscience Research Unit, Pfizer Inc, Cambridge, MA, USA
| | - Y Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Centre, Farmington, CT, USA
| | - J Dunlop
- AstraZeneca, Neuroscience, Innovative Medicines & Early Development, Waltham, MA, USA
| | - R Killick
- Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - D R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, UK
| | - N J Brandon
- AstraZeneca, Neuroscience, Innovative Medicines & Early Development, Waltham, MA, USA
| | - M D Houslay
- Institute of Pharmaceutical Science, King’s College, London, UK
| | - B Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Centre, Farmington, CT, USA
| | - G S Baillie
- College of Veterinary Medical and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Cleghorn WM, Bulus N, Kook S, Gurevich VV, Zent R, Gurevich EV. Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs. Cell Signal 2018; 42:259-269. [PMID: 29133163 PMCID: PMC5732042 DOI: 10.1016/j.cellsig.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Arrestins recruit a variety of signaling proteins to active phosphorylated G protein-coupled receptors in the plasma membrane and to the cytoskeleton. Loss of arrestins leads to decreased cell migration, altered cell shape, and an increase in focal adhesions. Small GTPases of the Rho family are molecular switches that regulate actin cytoskeleton and affect a variety of dynamic cellular functions including cell migration and cell morphology. Here we show that non-visual arrestins differentially regulate RhoA and Rac1 activity to promote cell spreading via actin reorganization, and focal adhesion formation via two distinct mechanisms. Arrestins regulate these small GTPases independently of G-protein-coupled receptor activation.
Collapse
Affiliation(s)
- Whitney M Cleghorn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Nada Bulus
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, United States
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Roy Zent
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, United States; Department of Veterans Affairs Hospital, Nashville, TN, 37232, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
24
|
Li B, Wang L, Li Z, Wang W, Zhi X, Huang X, Zhang Q, Chen Z, Zhang X, He Z, Xu J, Zhang L, Xu H, Zhang D, Xu Z. miR-3174 Contributes to Apoptosis and Autophagic Cell Death Defects in Gastric Cancer Cells by Targeting ARHGAP10. MOLECULAR THERAPY-NUCLEIC ACIDS 2017; 9:294-311. [PMID: 29246308 PMCID: PMC5684471 DOI: 10.1016/j.omtn.2017.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 01/04/2023]
Abstract
Gastric cancer (GC) is a major health problem worldwide because of its high morbidity and mortality. Considering the well-established roles of miRNA in the regulation of GC carcinogenesis and progression, we screened differentially expressed microRNAs (miRNAs) by using The Cancer Genome Atlas (TCGA) and the GEO databases. We found that miR-3174 was the most significantly differentially expressed miRNA in GC. Ectopic miR-3174 expression was also detected in clinical GC patient samples and cell lines and associated with poor patient prognosis. Apoptosis and autophagic cell death are two types of programmed cell death, whereas both are deficient in gastric cancer. Our functional analyses demonstrated that miR-3174 inhibited mitochondria-dependent apoptosis and autophagic cell death in GC. Moreover, high expression of miR-3174 also resulted in Cisplatin resistance in GC cells. Using bioinformatics analyses combined with in vitro and in vivo experiments, we determined that miR-3174 directly targets ARHGAP10. Notably, ARHGAP10 promoted mitochondria-dependent apoptosis by enhancing p53 expression, which was followed by Bax trans-activation and caspase cleavage. ARHGAP10 also facilitated autophagic cell death by suppressing mammalian target of rapamycin complex 1 (mTOC1) activity. Our results reveal a potential miRNA-based clinical therapeutic target that may also serve as a predictive marker for GC.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaofei Zhi
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zheng Chen
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Xuan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jianghao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
25
|
Teng JP, Yang ZY, Zhu YM, Ni D, Zhu ZJ, Li XQ. The roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells. Oncol Lett 2017; 14:4613-4618. [PMID: 28943961 PMCID: PMC5592856 DOI: 10.3892/ol.2017.6729] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/01/2017] [Indexed: 01/06/2023] Open
Abstract
Lung cancer is a leading cause of cancer-related mortalities worldwide. In the present study, a comparison of To determine the roles of ARHGAP10 in the proliferation, migration and invasion of lung cancer cells expression levels between normal lung tissues and lung cancer tissues were compared using immunoblotting, and CCK-8 and Transwell assays. Lung cancer tissues had a decreased ARHGAP10 mRNA expression level compared to the adjacent normal tissues. The ectopic expression of ARHGAP10 significantly suppressed the migration, invasion and proliferation of lung cancer cells. Gene set enrichment analysis revealed that metastasis and Wnt signaling pathways were negatively correlated with ARHGAP10 expression. Immunoblotting analysis revealed that ARHGAP10 overexpression inhibited metastasis [matrix metalloproteinase (MMP)-2, MMP-9 and VEGF] and the expression of Wnt pathway-related proteins (β-catenin and c-Myc). Moreover, the stimulation effects of lithium chloride, a GSK3β inhibitor, on the accumulation of β-catenin were notably suppressed by ARHGAP10 overexpression. Collectively, ARHGAP10 acts to suppress tumor within lung cancer by affecting metastasis and Wnt signaling pathways. The results therefore suggest that ARHGAP10 is a potentially attractive target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ji-Ping Teng
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhi-Ying Yang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yu-Ming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai 200433, P.R. China
| | - Da Ni
- Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhi-Jun Zhu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiao-Qiang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
26
|
Javadi A, Deevi RK, Evergren E, Blondel-Tepaz E, Baillie GS, Scott MGH, Campbell FC. PTEN controls glandular morphogenesis through a juxtamembrane β-Arrestin1/ARHGAP21 scaffolding complex. eLife 2017; 6:e24578. [PMID: 28749339 PMCID: PMC5576923 DOI: 10.7554/elife.24578] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/24/2017] [Indexed: 01/01/2023] Open
Abstract
PTEN controls three-dimensional (3D) glandular morphogenesis by coupling juxtamembrane signaling to mitotic spindle machinery. While molecular mechanisms remain unclear, PTEN interacts through its C2 membrane-binding domain with the scaffold protein β-Arrestin1. Because β-Arrestin1 binds and suppresses the Cdc42 GTPase-activating protein ARHGAP21, we hypothesize that PTEN controls Cdc42 -dependent morphogenic processes through a β-Arrestin1-ARHGAP21 complex. Here, we show that PTEN knockdown (KD) impairs β-Arrestin1 membrane localization, β-Arrestin1-ARHGAP21 interactions, Cdc42 activation, mitotic spindle orientation and 3D glandular morphogenesis. Effects of PTEN deficiency were phenocopied by β-Arrestin1 KD or inhibition of β-Arrestin1-ARHGAP21 interactions. Conversely, silencing of ARHGAP21 enhanced Cdc42 activation and rescued aberrant morphogenic processes of PTEN-deficient cultures. Expression of the PTEN C2 domain mimicked effects of full-length PTEN but a membrane-binding defective mutant of the C2 domain abrogated these properties. Our results show that PTEN controls multicellular assembly through a membrane-associated regulatory protein complex composed of β-Arrestin1, ARHGAP21 and Cdc42.
Collapse
Affiliation(s)
- Arman Javadi
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Ravi K Deevi
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Emma Evergren
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| | - Elodie Blondel-Tepaz
- Inserm, U1016, Institut CochinParisFrance
- CNRS, UMR8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - George S Baillie
- Institute of Cardiovascular and Medical Science, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowScotland
| | - Mark GH Scott
- Inserm, U1016, Institut CochinParisFrance
- CNRS, UMR8104ParisFrance
- Univ. Paris Descartes, Sorbonne Paris CitéParisFrance
| | - Frederick C Campbell
- Centre for Cancer Research and Cell BiologyQueen’s University of BelfastBelfastUnited Kingdom
| |
Collapse
|
27
|
Peterson YK, Luttrell LM. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol Rev 2017; 69:256-297. [PMID: 28626043 PMCID: PMC5482185 DOI: 10.1124/pr.116.013367] [Citation(s) in RCA: 320] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The visual/β-arrestins, a small family of proteins originally described for their role in the desensitization and intracellular trafficking of G protein-coupled receptors (GPCRs), have emerged as key regulators of multiple signaling pathways. Evolutionarily related to a larger group of regulatory scaffolds that share a common arrestin fold, the visual/β-arrestins acquired the capacity to detect and bind activated GPCRs on the plasma membrane, which enables them to control GPCR desensitization, internalization, and intracellular trafficking. By acting as scaffolds that bind key pathway intermediates, visual/β-arrestins both influence the tonic level of pathway activity in cells and, in some cases, serve as ligand-regulated scaffolds for GPCR-mediated signaling. Growing evidence supports the physiologic and pathophysiologic roles of arrestins and underscores their potential as therapeutic targets. Circumventing arrestin-dependent GPCR desensitization may alleviate the problem of tachyphylaxis to drugs that target GPCRs, and find application in the management of chronic pain, asthma, and psychiatric illness. As signaling scaffolds, arrestins are also central regulators of pathways controlling cell growth, migration, and survival, suggesting that manipulating their scaffolding functions may be beneficial in inflammatory diseases, fibrosis, and cancer. In this review we examine the structure-function relationships that enable arrestins to perform their diverse roles, addressing arrestin structure at the molecular level, the relationship between arrestin conformation and function, and sites of interaction between arrestins, GPCRs, and nonreceptor-binding partners. We conclude with a discussion of arrestins as therapeutic targets and the settings in which manipulating arrestin function might be of clinical benefit.
Collapse
Affiliation(s)
- Yuri K Peterson
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| | - Louis M Luttrell
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy (Y.K.P.), and Departments of Medicine and Biochemistry and Molecular Biology (L.M.L.), Medical University of South Carolina, Charleston, South Carolina; and Ralph H. Johnson Veterans Affairs Medical Center, Charleston, South Carolina (L.M.L.)
| |
Collapse
|
28
|
Freedman NJ, Shenoy SK. Regulation of inflammation by β-arrestins: Not just receptor tales. Cell Signal 2017; 41:41-45. [PMID: 28189586 DOI: 10.1016/j.cellsig.2017.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 01/14/2023]
Abstract
The ubiquitously expressed, multifunctional scaffolding proteins β-arrestin1 and β-arrestin2 each affect inflammatory signaling in a variety of cell lines. In addition to binding the carboxyl-terminal tails of innumerable 7-transmembrane receptors, β-arrestins scaffold untold numbers of other plasma membrane and cytoplasmic proteins. Consequently, the effects of β-arrestins on inflammatory signaling are diverse, and context-specific. This review highlights the roles of β-arrestins in regulating canonical activation of the pro-inflammatory transcription factor NFκB.
Collapse
Affiliation(s)
- Neil J Freedman
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North, Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North, Carolina, USA.
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Duke University Medical Center, Durham, North, Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North, Carolina, USA.
| |
Collapse
|
29
|
Alekhina O, Marchese A. β-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem 2016; 291:26083-26097. [PMID: 27789711 DOI: 10.1074/jbc.m116.757138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
The chemokine receptor CXCR4 and its chemokine ligand CXCL12 mediate directed cell migration during organogenesis, immune responses, and metastatic disease. However, the mechanisms governing CXCL12/CXCR4-dependent chemotaxis remain poorly understood. Here, we show that the β-arrestin1·signal-transducing adaptor molecule 1 (STAM1) complex, initially identified to govern lysosomal trafficking of CXCR4, also mediates CXCR4-dependent chemotaxis. Expression of minigene fragments from β-arrestin1 or STAM1, known to disrupt the β-arrestin1·STAM1 complex, and RNAi against β-arrestin1 or STAM1, attenuates CXCL12-induced chemotaxis. The β-arrestin1·STAM1 complex is necessary for promoting autophosphorylation of focal adhesion kinase (FAK). FAK is necessary for CXCL12-induced chemotaxis and associates with and localizes with β-arrestin1 and STAM1 in a CXCL12-dependent manner. Our data reveal previously unknown roles in CXCR4-dependent chemotaxis for β-arrestin1 and STAM1, which we propose act in concert to regulate FAK signaling. The β-arrestin1·STAM1 complex is a promising target for blocking CXCR4-promoted FAK autophosphorylation and chemotaxis.
Collapse
Affiliation(s)
- Olga Alekhina
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
30
|
Bagnato A, Rosanò L. Endothelin-1 receptor drives invadopodia: Exploiting how β-arrestin-1 guides the way. Small GTPases 2016; 9:394-398. [PMID: 27690729 DOI: 10.1080/21541248.2016.1235526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Metastatization is a complex multistep process requiring fine-tuned regulated cytoskeleton re-modeling, mediated by the cross-talk of actin with interacting partners, such as the Rho GTPases. Our expanding knowledge of invadopodia, small invasive membrane protrusions composed of a core of F-actin, actin regulators and actin-binding proteins, and hotspots for secretion of extracellular matrix (ECM) proteinases, contributes to clarify critical steps of the metastatic program. Growth factor receptors and their intermediate signaling molecules, along with matrix adhesion and rigidity, pH and hypoxia, act as drivers of cytoskeleton changes and invadopodia formation. We recently pro-posed a novel route map by which cancer cells regulates invadopodia dynamics supporting metastasis as response to the endothelin A receptor (ETAR), among the highly druggable G-protein coupled receptors in cancer. The metastatic behavior exhibited by ovarian cancer cells overe-xpressing ETAR is now explained by the interplay with β-arrestin1 (β-arr1), a scaffold protein acting as signal-integrating module of RhoC and cofilin signaling for specific invadopodia formation, accomplished by its interaction with a Rho guanine nucleotide exchange factor (GEF), PDZ-RhoGEF, in a G-protein independent manner. Here, we summarize this novel activation of the RhoC pathway from ETAR/β-arr1 signaling that may be exploited therapeutically and discuss new perspectives for future directions of investigations.
Collapse
Affiliation(s)
- Anna Bagnato
- a Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area , Regina Elena National Cancer Institute , Rome , Italy
| | - Laura Rosanò
- a Preclinical Models and New Therapeutic Agents Unit, Translational Research Functional Departmental Area , Regina Elena National Cancer Institute , Rome , Italy
| |
Collapse
|
31
|
Gera N, Swanson KD, Jin T. β-Arrestin 1-dependent regulation of Rap2 is required for fMLP-stimulated chemotaxis in neutrophil-like HL-60 cells. J Leukoc Biol 2016; 101:239-251. [PMID: 27493245 DOI: 10.1189/jlb.2a1215-572r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/14/2023] Open
Abstract
β-Arrestins have emerged as key regulators of cytoskeletal rearrangement that are required for directed cell migration. Whereas it is known that β-arrestins are required for formyl-Met-Leu-Phe receptor (FPR) recycling, less is known about their role in regulating FPR-mediated neutrophil chemotaxis. Here, we show that β-arrestin 1 (ArrB1) coaccumulated with F-actin within the leading edge of neutrophil-like HL-60 cells during chemotaxis, and its knockdown resulted in markedly reduced migration within fMLP gradients. The small GTPase Ras-related protein 2 (Rap2) was found to bind ArrB1 under resting conditions but dissociated upon fMLP stimulation. The FPR-dependent activation of Rap2 required ArrB1 but was independent of Gαi activity. Significantly, depletion of either ArrB1 or Rap2 resulted in reduced chemotaxis and defects in cellular repolarization within fMLP gradients. These data strongly suggest a model in which FPR is able to direct ArrB1 and other bound proteins that are required for lamellipodial extension to the leading edge in migrating neutrophils, thereby orientating and directing cell migration.
Collapse
Affiliation(s)
- Nidhi Gera
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| | - Kenneth D Swanson
- Department of Neurology, Division of Neuro-Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA; and
| |
Collapse
|
32
|
Tocci P, Caprara V, Cianfrocca R, Sestito R, Di Castro V, Bagnato A, Rosanò L. Endothelin-1/endothelin A receptor axis activates RhoA GTPase in epithelial ovarian cancer. Life Sci 2016; 159:49-54. [DOI: 10.1016/j.lfs.2016.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/25/2015] [Accepted: 01/07/2016] [Indexed: 01/16/2023]
|
33
|
Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction. Proc Natl Acad Sci U S A 2016; 113:4524-9. [PMID: 27071102 DOI: 10.1073/pnas.1521706113] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR-biased ligands with important implications for drug discovery.
Collapse
|
34
|
Luo N, Guo J, Chen L, Yang W, Qu X, Cheng Z. ARHGAP10, downregulated in ovarian cancer, suppresses tumorigenicity of ovarian cancer cells. Cell Death Dis 2016; 7:e2157. [PMID: 27010858 PMCID: PMC4823924 DOI: 10.1038/cddis.2015.401] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 11/17/2015] [Accepted: 11/30/2015] [Indexed: 12/14/2022]
Abstract
Rho GTPase-activating proteins (RhoGAPs) are implicated in the development and progression of ovarian cancer. ARHGAP10 is a member of RhoGAP proteins and inactivates Cdc42 by converting GTP-bound form to GDP-bound form. Here, we aimed to evaluate ARHGAP10 expression profile and functions in ovarian cancer. The decreased expression of ARHGAP10 was found in 77.3% (58/75) of ovarian cancer tissues, compared with their non-tumorous counterparts. Furthermore, overall survival in ovarian cancer patients with higher expression of ARHGAP10 was longer than those with lower expression. Ectopic expression of ARHGAP10 in two ovarian cancer cell lines with lower expression of ARHGAP10 (A2780 and HO-8910) dramatically suppressed cell proliferation in vitro. In nude mice, its stable overexpression significantly inhibited the tumorigenicity of A2780 cells. We further demonstrated that overexpression of ARHGAP10 significantly inhibited cell adhesion, migration and invasion, resulted in cell arrest in G1 phase of cell cycle and a significant increase of apoptosis. Moreover, ARHGAP10 interacted with Cdc42 and overexpression of ARHGAP10 inhibited the activity of Cdc42 in A2780 cells. Gene set enrichment analysis on The Cancer Genome Atlas dataset showed that KEGG cell cycle, replication and base excision repair (BER) pathways were correlatively with the ARHGAP10 expression, which was further confirmed in ovarian cancer cells by western blotting. Hence, ARHGAP10 may serve as a tumor suppressor through inactivating Cdc42, as well as inhibiting cell cycle, replication and BER pathways. Our data suggest an important role of ARHGAP10 in the molecular etiology of cancer and implicate the potential application of ARHGAP10 in cancer therapy.
Collapse
Affiliation(s)
- N Luo
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - J Guo
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - L Chen
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - W Yang
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - X Qu
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| | - Z Cheng
- Department of Gynecology & Obstetrics, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China.,Institute of Gynecological Minimally Invasive Medicine, School of Medicine, Tongji University, Shanghai 200090, China
| |
Collapse
|
35
|
Charles R, Namkung Y, Cotton M, Laporte SA, Claing A. β-Arrestin-mediated Angiotensin II Signaling Controls the Activation of ARF6 Protein and Endocytosis in Migration of Vascular Smooth Muscle Cells. J Biol Chem 2015; 291:3967-81. [PMID: 26703465 DOI: 10.1074/jbc.m115.684357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/19/2022] Open
Abstract
Angiotensin II (Ang II) is a vasopressive hormone but is also a potent activator of cellular migration. We have previously shown that it can promote the activation of the GTPase ARF6 in a heterologous overexpressing system. The molecular mechanisms by which receptors control the activation of this small G protein remain, however, largely unknown. Furthermore, how ARF6 coordinates the activation of complex cellular responses needs to be further elucidated. In this study, we demonstrate that Ang II receptors engage β-arrestin, but not Gq, to mediate ARF6 activation in HEK 293 cells. To further confirm the key role of β-arrestin proteins, we overexpressed β-arrestin2-(1-320), a dominant negative mutant known to block receptor endocytosis. We show that expression of this truncated construct does not support the activation of the GTPase nor cell migration. Interestingly, β-arrestin2 can interact with the ARF guanine nucleotide exchange factor ARNO, although the C-terminally lacking mutant does not. We finally examined whether receptor endocytosis controlled ARF6 activation and cell migration. Although the clathrin inhibitor PitStop2 did not impact the ability of Ang II to activate ARF6, cell migration was markedly impaired. To further show that ARF activation regulates key signaling events leading to migration, we also examined MAPK activation. We demonstrate that this signaling axis is relevant in smooth muscle cells of the vasculature. Altogether, our findings show for the first time that Ang II receptor signaling to β-arrestin regulates ARF6 activation. These proteins together control receptor endocytosis and ultimately cell migration.
Collapse
Affiliation(s)
- Ricardo Charles
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | - Yoon Namkung
- the Department of Medicine, Research Institute of McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Mathieu Cotton
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| | - Stéphane A Laporte
- the Department of Medicine, Research Institute of McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Audrey Claing
- From the Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7 and
| |
Collapse
|
36
|
Semprucci E, Tocci P, Cianfrocca R, Sestito R, Caprara V, Veglione M, Castro VD, Spadaro F, Ferrandina G, Bagnato A, Rosanò L. Endothelin A receptor drives invadopodia function and cell motility through the β-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma. Oncogene 2015; 35:3432-42. [PMID: 26522724 DOI: 10.1038/onc.2015.403] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
The endothelin-1 (ET-1)/ET A receptor (ETAR) signalling pathway is a well-established driver of epithelial ovarian cancer (EOC) progression. One key process promoted by ET-1 is tumor cell invasion, which requires the scaffolding functions of β-arrestin-1 (β-arr1) downstream of the receptor; however, the potential role of ET-1 in inducing invadopodia, which are crucial for cellular invasion and tumor metastasis, is completely unknown. We describe here that ET-1/ETAR, through β-arr1, activates RhoA and RhoC GTPase and downstream ROCK (Rho-associated coiled coil-forming kinase) kinase activity, promoting actin-based dynamic remodelling and enhanced cell invasion. This is accomplished by the direct interaction of β-arr1 with PDZ-RhoGEF (postsynaptic density protein 95/disc-large/zonula occludens-RhoGEF). Interestingly, ETAR-mediated invasive properties are related to the regulation of invadopodia, as evaluated by colocalization of actin with cortactin, as well as with TKS5 and MT1-MMP (membrane type 1-matrix metalloproteinase) with areas of matrix degradation, and activation of cofilin pathway, which is crucial for regulating invadopodia activity. Depletion of PDZ-RhoGEF, or β-arr1, or RhoC, as well as the treatment with the dual ET-1 receptor antagonist macitentan, significantly impairs invadopodia function, MMP activity and invasion, demonstrating that β-arr1/PDZ-RhoGEF interaction mediates ETAR-driven ROCK-LIMK-cofilin pathway through the control of RhoC activity. In vivo, macitentan is able to inhibit metastatic dissemination and cofilin phosphorylation. Collectively, our data unveil a noncanonical activation of the RhoC/ROCK pathway through the β-arr1/PDZ-RhoGEF complex as a regulator of ETAR-induced motility and metastasis, establishing ET-1 axis as a novel regulator of invadopodia protrusions through the RhoC/ROCK/LIMK/cofilin pathway during the initial steps of EOC invasion.
Collapse
Affiliation(s)
- E Semprucci
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - P Tocci
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - R Cianfrocca
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - R Sestito
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - V Caprara
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - M Veglione
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - V Di Castro
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - F Spadaro
- Section of Experimental Immunotherapy, Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - G Ferrandina
- Gynecologic Oncology Unit, Catholic University of Rome, Rome, Italy
| | - A Bagnato
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - L Rosanò
- Regina Elena National Cancer Institute Rome, Rome, Italy
| |
Collapse
|
37
|
Ferreira SM, Santos GJ, Rezende LF, Gonçalves LM, Santos-Silva JC, Bigarella CL, Carneiro EM, Saad STO, Boschero AC, Barbosa-Sampaio HC. ARHGAP21 prevents abnormal insulin release through actin rearrangement in pancreatic islets from neonatal mice. Life Sci 2015; 127:53-8. [PMID: 25744409 DOI: 10.1016/j.lfs.2015.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 12/31/2022]
Abstract
AIMS ARHGAP21 is a Rho GTPase-activating protein (RhoGAP) that associates with many proteins and modulates several cellular functions, including actin cytoskeleton rearrangement in different tissues. However, it is unknown whether ARHGAP21 is expressed in pancreatic beta cells and its function in these cells. Herein, we assess the participation of ARHGAP21 in insulin secretion. MAIN METHODS Neonatal mice were treated with anti-sense oligonucleotide against ARHG AP21 (AS) for 2 days, resulting in a reduction of the protein's expression of about 60% in the islets. F-actin depolimerization, insulin secretion,mRNA level of genes involved in insulin secretion, maturation and proliferation were evaluated in islets from both control and AS-treated mice. KEY FINDINGS ARHGAP21 co-localized with actin inMIN6 beta cells and with insulin in neonatal pancreatic islets. F-actin was reduced in AS-islets, as judged by lower phalloidin intensity. Insulin secretion was increased in islets from AS-treated mice, however no differences were observed in the GSIS (glucose-stimulated insulin secretion). In these islets, the pERK1/2 was increased, as well as the gene expressions of VAMP2 and SNAP25, proteins that are present in the secretory machinery. Maturation and cell proliferation were not affected in islets from AS-treated mice. SIGNIFICANCE In conclusion, our data show, for the first time, that ARHGAP21 is expressed and participates in the secretory process of pancreatic beta cells. Its effect is probably via pERK1/2, which modulates the rearrangement of the cytoskeleton. ARHGAP21 also controls the expression of genes that encodes proteins of the secretory machinery.
Collapse
Affiliation(s)
- Sandra Mara Ferreira
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Gustavo Jorge Santos
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luiz F Rezende
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luciana Mateus Gonçalves
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Junia Carolina Santos-Silva
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carolina Louzão Bigarella
- Department of Internal Medicine, School of Medical Science, Hematology and Hemotherapy Center - Hemocentro, INCT Sangue, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Everardo Magalhães Carneiro
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Sara Teresinha Ollala Saad
- Department of Internal Medicine, School of Medical Science, Hematology and Hemotherapy Center - Hemocentro, INCT Sangue, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Antonio Carlos Boschero
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Helena Cristina Barbosa-Sampaio
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
38
|
Cleghorn WM, Branch KM, Kook S, Arnette C, Bulus N, Zent R, Kaverina I, Gurevich EV, Weaver AM, Gurevich VV. Arrestins regulate cell spreading and motility via focal adhesion dynamics. Mol Biol Cell 2015; 26:622-635. [PMID: 25540425 PMCID: PMC4325834 DOI: 10.1091/mbc.e14-02-0740] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 11/19/2014] [Accepted: 12/16/2014] [Indexed: 12/12/2022] Open
Abstract
Focal adhesions (FAs) play a key role in cell attachment, and their timely disassembly is required for cell motility. Both microtubule-dependent targeting and recruitment of clathrin are critical for FA disassembly. Here we identify nonvisual arrestins as molecular links between microtubules and clathrin. Cells lacking both nonvisual arrestins showed excessive spreading on fibronectin and poly-d-lysine, increased adhesion, and reduced motility. The absence of arrestins greatly increases the size and lifespan of FAs, indicating that arrestins are necessary for rapid FA turnover. In nocodazole washout assays, FAs in arrestin-deficient cells were unresponsive to disassociation or regrowth of microtubules, suggesting that arrestins are necessary for microtubule targeting-dependent FA disassembly. Clathrin exhibited decreased dynamics near FA in arrestin-deficient cells. In contrast to wild-type arrestins, mutants deficient in clathrin binding did not rescue the phenotype. Collectively the data indicate that arrestins are key regulators of FA disassembly linking microtubules and clathrin.
Collapse
Affiliation(s)
| | - Kevin M Branch
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | | | - Nada Bulus
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Roy Zent
- Department of Medicine, Vanderbilt University, Nashville, TN 37232
| | - Irina Kaverina
- Department of Cell Biology, Vanderbilt University, Nashville, TN 37232
| | | | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University, Nashville, TN 37232
| | | |
Collapse
|
39
|
PTEN phosphatase-independent maintenance of glandular morphology in a predictive colorectal cancer model system. Neoplasia 2014; 15:1218-30. [PMID: 24348097 DOI: 10.1593/neo.121516] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/08/2013] [Accepted: 10/11/2013] [Indexed: 02/06/2023] Open
Abstract
Organotypic models may provide mechanistic insight into colorectal cancer (CRC) morphology. Three-dimensional (3D) colorectal gland formation is regulated by phosphatase and tensin homologue deleted on chromosome 10 (PTEN) coupling of cell division cycle 42 (cdc42) to atypical protein kinase C (aPKC). This study investigated PTEN phosphatase-dependent and phosphatase-independent morphogenic functions in 3D models and assessed translational relevance in human studies. Isogenic PTEN-expressing or PTEN-deficient 3D colorectal cultures were used. In translational studies, apical aPKC activity readout was assessed against apical membrane (AM) orientation and gland morphology in 3D models and human CRC. We found that catalytically active or inactive PTEN constructs containing an intact C2 domain enhanced cdc42 activity, whereas mutants of the C2 domain calcium binding region 3 membrane-binding loop (M-CBR3) were ineffective. The isolated PTEN C2 domain (C2) accumulated in membrane fractions, but C2 M-CBR3 remained in cytosol. Transfection of C2 but not C2 M-CBR3 rescued defective AM orientation and 3D morphogenesis of PTEN-deficient Caco-2 cultures. The signal intensity of apical phospho-aPKC correlated with that of Na(+)/H(+) exchanger regulatory factor-1 (NHERF-1) in the 3D model. Apical NHERF-1 intensity thus provided readout of apical aPKC activity and associated with glandular morphology in the model system and human colon. Low apical NHERF-1 intensity in CRC associated with disruption of glandular architecture, high cancer grade, and metastatic dissemination. We conclude that the membrane-binding function of the catalytically inert PTEN C2 domain influences cdc42/aPKC-dependent AM dynamics and gland formation in a highly relevant 3D CRC morphogenesis model system.
Collapse
|
40
|
Lima-Fernandes E, Misticone S, Boularan C, Paradis JS, Enslen H, Roux PP, Bouvier M, Baillie GS, Marullo S, Scott MGH. A biosensor to monitor dynamic regulation and function of tumour suppressor PTEN in living cells. Nat Commun 2014; 5:4431. [PMID: 25028204 DOI: 10.1038/ncomms5431] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/17/2014] [Indexed: 01/01/2023] Open
Abstract
Tumour suppressor PTEN is a phosphatase that negatively regulates the PI3K/AKT pathway. The ability to directly monitor PTEN conformation and function in a rapid, sensitive manner is a key step towards developing anti-cancer drugs aimed at enhancing or restoring PTEN-dependent pathways. Here we developed an intramolecular bioluminescence resonance energy transfer (BRET)-based biosensor, capable of detecting signal-dependent PTEN conformational changes in live cells. The biosensor retains intrinsic properties of PTEN, enabling structure-function and kinetic analyses. BRET shifts, indicating conformational change, were detected following mutations that disrupt intramolecular PTEN interactions, promoting plasma membrane targeting and also following physiological PTEN activation. Using the biosensor as a reporter, we uncovered PTEN activation by several G protein-coupled receptors, previously unknown as PTEN regulators. Trastuzumab, used to treat ERBB2-overexpressing breast cancers also elicited activation-associated PTEN conformational rearrangement. We propose the biosensor can be used to identify pathways regulating PTEN or molecules that enhance its anti-tumour activity.
Collapse
Affiliation(s)
- Evelyne Lima-Fernandes
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Stanislas Misticone
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Cédric Boularan
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France [4]
| | - Justine S Paradis
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [3]
| | - Hervé Enslen
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Philippe P Roux
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | - Michel Bouvier
- 1] Molecular Biology Program, Department of Biochemistry, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7 [2] Department of Pathology and Cell Biology, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Quebec, Canada H3C 3J7
| | - George S Baillie
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Stefano Marullo
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| | - Mark G H Scott
- 1] Department of Endocrinology, Metabolism and Diabetes, Inserm, U1016, Institut Cochin, 27 rue du Faubourg St Jaques, Paris 75014, France [2] CNRS, UMR8104, Paris 75014, France [3] University Paris Descartes, Sorbonne Paris Cité, Paris 75014, France
| |
Collapse
|
41
|
Ma X, Espana-Serrano L, Kim WJ, Thayele Purayil H, Nie Z, Daaka Y. βArrestin1 regulates the guanine nucleotide exchange factor RasGRF2 expression and the small GTPase Rac-mediated formation of membrane protrusion and cell motility. J Biol Chem 2014; 289:13638-50. [PMID: 24692549 DOI: 10.1074/jbc.m113.511360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
βArrestin proteins shuttle between the cytosol and nucleus and have been shown to regulate G protein-coupled receptor signaling, actin remodeling, and gene expression. Here, we tested the hypothesis that βarrestin1 regulates actin remodeling and cell migration through the small GTPase Rac. Depletion of βarrestin1 promotes Rac activation, leading to the formation of multipolar protrusions and increased cell circularity, and overexpression of a dominant negative form of Rac reverses these morphological changes. Small interfering RNA library screen identifies RasGRF2 as a target of βarrestin1. RasGRF2 gene and protein expression levels are elevated following depletion of βarrestin1, and the consequent activation of Rac results in dephosphorylation of cofilin that can promote actin polymerization and formation of multipolar protrusions, thereby retarding cell migration and invasion. Together, these results suggest that βarrestin1 regulates rasgrf2 gene expression and Rac activation to affect membrane protrusion and cell migration and invasion.
Collapse
Affiliation(s)
- Xiaojie Ma
- From the Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | | | | | | | | | | |
Collapse
|
42
|
Khan AR, Ménétrey J. Structural biology of Arf and Rab GTPases' effector recruitment and specificity. Structure 2014; 21:1284-97. [PMID: 23931141 DOI: 10.1016/j.str.2013.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
Arf and Rab proteins, members of small GTPases superfamily, localize to specific subcellular compartments and regulate intracellular trafficking. To carry out their cellular functions, Arfs/Rabs interact with numerous and structurally diverse effector proteins. Over the years, a number of Arf/Rab:effector complexes have been crystallized and their structures reveal shared binding modes including α-helical packing, β-β complementation, and heterotetrameric assemblies. We review available structural information and provide a framework for in-depth analysis of complexes. The unifying features that we identify are organized into a classification scheme for different modes of Arf/Rab:effector interactions, which includes "all-α-helical," "mixed α-helical," "β-β zipping," and "bivalent" modes of binding. Additionally, we highlight structural determinants that are the basis of effector specificity. We conclude by expanding on functional implications that are emerging from available structural information under our proposed classification scheme.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
43
|
Pirot N, Delpech H, Deleuze V, Dohet C, Courtade-Saïdi M, Basset-Léobon C, Chalhoub E, Mathieu D, Pinet V. Lung endothelial barrier disruption in Lyl1-deficient mice. Am J Physiol Lung Cell Mol Physiol 2014; 306:L775-85. [PMID: 24532287 DOI: 10.1152/ajplung.00200.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Maturation of newly formed vessels is a multistep phenomenon during which functional endothelial barriers are established. Disruption of vessel integrity is an important feature in many physiological and pathological processes. We previously reported that lymphoblastic leukemia-derived sequence 1 (LYL1) is required for the late stages of postnatal angiogenesis to limit the formation of new blood vessels, notably by regulating the activity of the small GTPase Rap1. In this study, we show that LYL1 is also required during the formation of the mature endothelial barrier in the lungs of adult mice. Specifically, LYL1 knockdown in human endothelial cells downregulated the expression of ARHGAP21 and ARHGAP24, which encode two Rho GTPase-activating proteins, and this was correlated with increased RhoA activity and reorganization of the actin cytoskeleton into stress fibers. Importantly, in lungs of Lyl1-deficient mice, both vascular endothelial (VE)-cadherin and p120-catenin were poorly recruited to endothelial adherens junctions, indicative of defective cell-cell junctions. Consistent with this, higher Evans blue dye extravasation, edema, and leukocyte infiltration in the lung parenchyma of Lyl1-/- mice than in wild-type littermates confirmed that lung vascular permeability is constitutively elevated in Lyl1-/- adult mice. Our data show that LYL1 acts as a stabilizing signal for adherens junction formation by operating upstream of VE-cadherin and of the two GTPases Rap1 and RhoA. As increased vascular permeability is a key feature and a major mechanism of acute respiratory distress syndrome, molecules that regulate LYL1 activity could represent additional tools to modify the endothelial barrier permeability.
Collapse
Affiliation(s)
- Nelly Pirot
- Institut de Génétique Moléculaire de Montpellier, UMR 5535, CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The regulation of small GTPases by arrestins is a relatively new way by which arrestin can exert influence over cell signalling cascades, hence, molecular interactions and specific binding partners are still being discovered. A pathway showcasing the regulation of GTPase activity by β-arrestin was first elucidated in 2001. Since this original study, growing evidence has emerged for arrestin modulation of GTPase activity through direct interactions and also via the scaffolding of GTPase regulatory proteins. Given the importance of small GTPases in a variety of essential cellular functions, pharmacological manipulation of this pathway may represent an area with therapeutic potential, particularly with respect to cancer pathology and cardiac hypertrophy.The regulation of small GTPases by arrestins is a relatively new way by which arrestin can exert influence over cell signalling cascades, hence, molecular interactions and specific binding partners are still being discovered. A pathway showcasing the regulation of GTPase activity by β-arrestin was first elucidated in 2001. Since this original study, growing evidence has emerged for arrestin modulation of GTPase activity through direct interactions and also via the scaffolding of GTPase regulatory proteins. Given the importance of small GTPases in a variety of essential cellular functions, pharmacological manipulation of this pathway may represent an area with therapeutic potential, particularly with respect to cancer pathology and cardiac hypertrophy.
Collapse
Affiliation(s)
- Ryan T Cameron
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G128QQ, UK
| | | |
Collapse
|
45
|
McGovern KW, DeFea KA. Molecular mechanisms underlying beta-arrestin-dependent chemotaxis and actin-cytoskeletal reorganization. Handb Exp Pharmacol 2014; 219:341-359. [PMID: 24292838 DOI: 10.1007/978-3-642-41199-1_17] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
β-Arrestins play a crucial role in cell migration downstream of multiple G-protein-coupled receptors (GPCRs) through multiple mechanisms. There is considerable evidence that β-arrestin-dependent scaffolding of actin assembly proteins facilitates the formation of a leading edge in response to a chemotactic signal. Conversely, there is substantial support for the hypothesis that β-arrestins facilitate receptor turnover through their ability to desensitize and internalize GPCRs. This chapter discusses both theories for β-arrestin-dependent chemotaxis in the context of recent studies, specifically addressing known actin assembly proteins regulated by β-arrestins, chemokine receptors, and signaling by chemotactic receptors.
Collapse
Affiliation(s)
- Kathryn W McGovern
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA, USA
| | | |
Collapse
|
46
|
Guo L, Tsai SQ, Hardison NE, James AH, Motsinger-Reif AA, Thames B, Stone EA, Deng C, Piedrahita JA. Differentially expressed microRNAs and affected biological pathways revealed by modulated modularity clustering (MMC) analysis of human preeclamptic and IUGR placentas. Placenta 2013; 34:599-605. [PMID: 23639576 DOI: 10.1016/j.placenta.2013.04.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 03/25/2013] [Accepted: 04/05/2013] [Indexed: 01/12/2023]
Abstract
INTRODUCTION This study focuses on the implementation of modulated modularity clustering (MMC) a new cluster algorithm for the identification of molecular signatures of preeclampsia and intrauterine growth restriction (IUGR), and the identification of affected microRNAs METHODS Eighty-six human placentas from normal (40), growth-restricted (27), and preeclamptic (19) term pregnancies were profiled using Illumina Human-6 Beadarrays. MMC was utilized to generate modules based on similarities in placental transcriptome. Gene Set Enrichment Analysis (GSEA) was used to predict affected microRNAs. Expression levels of these candidate microRNAs were investigated in seventy-one human term placentas as follows: control (29); IUGR (26); and preeclampsia (16). RESULTS MMC identified two modules, one representing IUGR placentas and one representing preeclamptic placentas. 326 differentially expressed genes in the module representing IUGR and 889 differentially expressed genes in a module representing preeclampsia were identified. Functional analysis of molecular signatures associated with IUGR identified P13K/AKT, mTOR, p70S6K, apoptosis and IGF-1 signaling as being affected. Analysis of variance of GSEA-predicted microRNAs indicated that miR-194 was significantly down-regulated both in preeclampsia (p = 0.0001) and IUGR (p = 0.0304), and miR-149 was significantly down-regulated in preeclampsia (p = 0.0168). DISCUSSION Implementation of MMC, allowed identification of genes disregulated in IUGR and preeclampsia. The reliability of MMC was validated by comparing to previous linear modeling analysis of preeclamptic placentas. CONCLUSION MMC allowed the elucidation of a molecular signature associated with preeclampsia and a subset of IUGR samples. This allowed the identification of genes, pathways, and microRNAs affected in these diseases.
Collapse
Affiliation(s)
- L Guo
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
V-raf-1 murine leukemia viral oncogene homolog 1 (Raf-1) is a key activator of the ERK pathway and is a target for cross-regulation of this pathway by the cAMP signaling system. The cAMP-activated protein kinase, PKA, inhibits Raf-1 by phosphorylation on S259. Here, we show that the cAMP-degrading phosphodiesterase-8A (PDE8A) associates with Raf-1 to protect it from inhibitory phosphorylation by PKA, thereby enhancing Raf-1's ability to stimulate ERK signaling. PDE8A binds to Raf-1 with high (picomolar) affinity. Mapping of the interaction domain on PDE8A using peptide array technology identified amino acids 454-465 as the main binding site, which could be disrupted by mutation. A cell-permeable peptide corresponding to this region disrupted the PDE8A/Raf-1 interaction in cells, thereby reducing ERK activation and the cellular response to EGF. Overexpression of a catalytically inactive PDE8A in cells displayed a dominant negative phenotype on ERK activation. These effects were recapitulated at the organism level in genetically modified (PDE8A(-/-)) mice. Similarly, PDE8 deletion in Drosophila melanogaster reduced basal ERK activation and sensitized flies to stress-induced death. We propose that PDE8A is a physiological regulator of Raf-1 signaling in some cells.
Collapse
|
48
|
Lazarini M, Traina F, Machado-Neto JA, Barcellos KSA, Moreira YB, Brandão MM, Verjovski-Almeida S, Ridley AJ, Saad STO. ARHGAP21 is a RhoGAP for RhoA and RhoC with a role in proliferation and migration of prostate adenocarcinoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:365-74. [PMID: 23200924 DOI: 10.1016/j.bbadis.2012.11.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 10/15/2012] [Accepted: 11/16/2012] [Indexed: 01/30/2023]
Abstract
BACKGROUND Several Rho GTPase-activating proteins (RhoGAPs) are implicated in tumor progression through their effects on Rho GTPase activity. ARHGAP21 is a RhoGAP with increased expression in head and neck squamous cell carcinoma and with a possible role in glioblastoma tumor progression, yet little is known about the function of ARHGAP21 in cancer cells. Here we studied the role of ARHGAP21 in two prostate adenocarcinoma cell lines, LNCaP and PC3, which respectively represent initial and advanced stages of prostate carcinogenesis. RESULTS ARHGAP21 is located in the nucleus and cytoplasm of both cell lines and its depletion resulted in decreased proliferation and increased migration of PC3 cells but not LNCaP cells. In PC3 cells, ARHGAP21 presented GAP activity for RhoA and RhoC and induced changes in cell morphology. Moreover, its silencing altered the expression of genes involved in cell proliferation and cytoskeleton organization, as well as the endothelin-1 canonical pathway. CONCLUSIONS Our results reveal new functions and signaling pathways regulated by ARHGAP21, and indicate that it could contribute to prostate cancer progression.
Collapse
Affiliation(s)
- Mariana Lazarini
- Hematology and Hemotherapy Center, University of Campinas/Hemocentro-Unicamp, Instituto Nacional de Ciência e Tecnologia do Sangue, INCTS, Campinas, São Paulo, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Li B, Wang C, Zhou Z, Zhao J, Pei G. β-Arrestin-1 directly interacts with Gαs and regulates its function. FEBS Lett 2013; 587:410-6. [PMID: 23353685 DOI: 10.1016/j.febslet.2013.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/24/2012] [Accepted: 01/07/2013] [Indexed: 10/27/2022]
Abstract
β-Arrestins function to mediate G protein-coupled receptor (GPCR) desensitization and internalization and to initiate G protein independent signaling of GPCRs. Elucidating how β-arrestin and G protein signal pathways coordinate with each other is important to fully understand GPCR signaling. Here we report that β-arrestin-1 directly interacts with Gα(s). Purified β-arrestin-1 binds to Gα(s) in a rapid association and dissociation manner. β-Arrestin-1 promotes the binding and the release of GTPγS from Gα(s) in vitro. β-Arrestin-1 L33K mutant shows reduced interaction with Gα(s) and has no detectable effects on Gα(s) function. Our study thus reveals a direct crosstalk of β-arrestin-1 with Gα(s).
Collapse
Affiliation(s)
- Bo Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Graduate School of the Chinese Academy of Sciences, Shanghai, PR China
| | | | | | | | | |
Collapse
|
50
|
Arrestins in actin reorganization and cell migration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 118:205-22. [PMID: 23764055 DOI: 10.1016/b978-0-12-394440-5.00008-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Arrestins have emerged as important regulators of actin reorganization and cell migration. Both in their classical roles as mediators of receptor desensitization and internalization, and in their newer role as signaling scaffolds, β-arrestins help orchestrate the cellular response to chemotactic signals. However, there is still a considerable amount to be learned about the precise molecular mechanisms underlying these processes. This review discusses how, by regulating receptor internalization and by scaffolding of signaling molecules in discrete cellular locations, arrestins facilitate gradient sensing and cytoskeletal reorganization, ultimately resulting in cell migration. In addition, putative new targets of β-arrestin regulation that may play important roles in cell migration are discussed, as continued research on these targets may provide important details to fill in the current gaps in our understanding of these processes.
Collapse
|