1
|
Hu Y, Tan R, Zhu X, Wang B, Wang J, Guo B, Li Y, Du H, Yang Y. Genome-wide identification, phylogeny and expressional profile of the Dmrt gene family in Chinese sturgeon (Acipenser sinensis). Sci Rep 2024; 14:4231. [PMID: 38378745 PMCID: PMC10879162 DOI: 10.1038/s41598-024-54899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 02/18/2024] [Indexed: 02/22/2024] Open
Abstract
Chinese sturgeon Dmrt gene family was identified and characterized for the first time. A total of 5 putative Dmrt genes were identified. The gene structure, conserved protein domain and the phylogenetic relationship of Dmrt gene family were systematically analyzed. The expressed profile of Chinese sturgeon Dmrt genes in gonad, pituitary and hypothalamus in the male and female were investigated. The results indicated that the accumulation of Dmrt genes was involved in different tissues, and the expression profile also differed among each Dmrt genes. ASDmrt1A, ASDmrt2, ASDmrt3, and ASDmrtA1 were highly expressed in the testis in comparison with other tissue. This result showed that ASDmrt1A, ASDmrt2, ASDmrt3, and ASDmrtA1 played an important role in the development of testicle, and may be useful tool in distinguishing between male and female of Chinese sturgeon. Our study will provide a basis for additional analyses of Chinese sturgeon Dmrt genes. This systematic analysis provided a foundation for further functional characterization of Dmrt genes with an aim of study of Chinese sturgeon Dmrt gene family.
Collapse
Affiliation(s)
- Yacheng Hu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Ruihua Tan
- Shanghai Ocean University, Shanghai, 201306, China
| | - Xin Zhu
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Binzhong Wang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Jingshu Wang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Baifu Guo
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Yuan Li
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China
| | - Hejun Du
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China.
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China.
| | - Yuanjin Yang
- Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China.
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Yichang, 443100, Hubei, China.
| |
Collapse
|
2
|
Liu P, Liang Y, Li L, Lv X, He Z, Gu Y. Identification of Selection Signatures and Candidate Genes Related to Environmental Adaptation and Economic Traits in Tibetan Pigs. Animals (Basel) 2024; 14:654. [PMID: 38396622 PMCID: PMC10886212 DOI: 10.3390/ani14040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Tibetan pigs are indigenous to the Qinghai-Tibet Plateau and have been the subject of extensive genomic research primarily focused on their adaptation to high altitudes. However, genetic modifications associated with their response to low-altitude acclimation have not been thoroughly explored. To investigate the genetic basis underlying the low-altitude acclimation of Tibetan pigs, we generated and analyzed genotyping data of Tibetan pigs that inhabit high-altitude regions (average altitude 4000 m) and Tibetan pigs that have inhabited nearby low-altitude regions (average altitude 500 m) for approximately 20 generations. We found that the highland and lowland Tibetan pigs have distinguishable genotype and phenotype variations. We identified 46 and 126 potentially selected SNPs associated with 29 and 56 candidate genes in highland and lowland Tibetan pigs, respectively. Candidate genes in the highland Tibetan pigs were involved in immune response (NFYC and STAT1) and radiation (NABP1), whereas candidate genes in the lowland Tibetan pigs were related to reproduction (ESR2, DMRTA1, and ZNF366), growth and development (NTRK3, FGF18, and MAP1B), and blood pressure regulation (CARTPT). These findings will help to understand the mechanisms of environmental adaptation in Tibetan pigs and offer valuable information into the genetic improvement of Tibetan pigs pertaining to low-altitude acclimation and economic traits.
Collapse
Affiliation(s)
- Pengliang Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| | - Yan Liang
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (Y.L.)
| | - Li Li
- Renshou County Bureau of Agriculture and Rural Affairs, Meishan 620500, China
| | - Xuebin Lv
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (Y.L.)
| | - Zhiping He
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 610066, China; (Y.L.)
| | - Yiren Gu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China;
| |
Collapse
|
3
|
ZHANG RUI, ZHOU PENG, OU XIA, ZHAO PEIZHU, GUO XIJING, XI MIAN, QING CHEN. The DMRTA1-SOX2 positive feedback loop promotes progression and chemotherapy resistance of esophageal squamous cell carcinoma. Oncol Res 2023; 31:887-897. [PMID: 37744275 PMCID: PMC10513955 DOI: 10.32604/or.2023.030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/14/2023] [Indexed: 09/26/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is among the most prevalent causes of cancer-related death in patients worldwide. Resistance to immunotherapy and chemotherapy results in worse survival outcomes in ESCC. It is urgent to explore the underlying molecular mechanism of immune evasion and chemoresistance in ESCC. Here, we conducted RNA-sequencing analysis in ten ESCC tissues from cisplatin-based neoadjuvant chemotherapy patients. We found that DMRTA1 was extremely upregulated in the non-pathologic complete response (non-pCR) group. The proliferation rate of esophageal squamous carcinoma cells was markedly decreased after knockdown of DMRTA1 expression, which could increase cisplatin sensitivity in ESCC. Additionally, suppression of DMRTA1 could decrease the immune escape of esophageal squamous carcinoma cells. Further mechanistic studies suggest that DMRTA1 can promote its expression by binding to the promoter of SOX2, which plays important roles in the progression and chemoresistance of ESCC in the form of positive feedback. Therefore, DMRTA1 could be a potential target to suppress immune escape and overcome chemoresistance in ESCC.
Collapse
Affiliation(s)
- RUI ZHANG
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - PENG ZHOU
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
- Department of Pharmacy, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650101, China
| | - XIA OU
- Medical School, Kunming University of Science and Technology, Kunming, 650504, China
| | - PEIZHU ZHAO
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - XIJING GUO
- Department of Radiotherapy, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - MIAN XI
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - CHEN QING
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| |
Collapse
|
4
|
Ye Z, Bishop T, Wang Y, Shahriari R, Lynch M. Evolution of sex determination in crustaceans. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:1-11. [PMID: 37073332 PMCID: PMC10077267 DOI: 10.1007/s42995-023-00163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/28/2022] [Indexed: 05/03/2023]
Abstract
Sex determination (SD) involves mechanisms that determine whether an individual will develop into a male, female, or in rare cases, hermaphrodite. Crustaceans harbor extremely diverse SD systems, including hermaphroditism, environmental sex determination (ESD), genetic sex determination (GSD), and cytoplasmic sex determination (e.g., Wolbachia controlled SD systems). Such diversity lays the groundwork for researching the evolution of SD in crustaceans, i.e., transitions among different SD systems. However, most previous research has focused on understanding the mechanism of SD within a single lineage or species, overlooking the transition across different SD systems. To help bridge this gap, we summarize the understanding of SD in various clades of crustaceans, and discuss how different SD systems might evolve from one another. Furthermore, we review the genetic basis for transitions between different SD systems (i.e., Dmrt genes) and propose the microcrustacean Daphnia (clade Branchiopoda) as a model to study the transition from ESD to GSD.
Collapse
Affiliation(s)
- Zhiqiang Ye
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| | - Trent Bishop
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, 266003 China
| | - Ryan Shahriari
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| | - Michael Lynch
- Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ 85287 USA
| |
Collapse
|
5
|
Casado-Navarro R, Serrano-Saiz E. DMRT Transcription Factors in the Control of Nervous System Sexual Differentiation. Front Neuroanat 2022; 16:937596. [PMID: 35958734 PMCID: PMC9361473 DOI: 10.3389/fnana.2022.937596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Sexual phenotypic differences in the nervous system are one of the most prevalent features across the animal kingdom. The molecular mechanisms responsible for sexual dimorphism throughout metazoan nervous systems are extremely diverse, ranging from intrinsic cell autonomous mechanisms to gonad-dependent endocrine control of sexual traits, or even extrinsic environmental cues. In recent years, the DMRT ancient family of transcription factors has emerged as being central in the development of sex-specific differentiation in all animals in which they have been studied. In this review, we provide an overview of the function of Dmrt genes in nervous system sexual regulation from an evolutionary perspective.
Collapse
|
6
|
Zarkower D, Murphy MW. DMRT1: An Ancient Sexual Regulator Required for Human Gonadogenesis. Sex Dev 2022; 16:112-125. [PMID: 34515237 PMCID: PMC8885888 DOI: 10.1159/000518272] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/25/2021] [Indexed: 01/03/2023] Open
Abstract
Transcriptional regulators related to the invertebrate sexual regulators doublesex and mab-3 occur throughout metazoans and control sex in most animal groups. Seven of these DMRT genes are found in mammals, and mouse genetics has shown that one, Dmrt1, plays a crucial role in testis differentiation, both in germ cells and somatic cells. Deletions and, more recently, point mutations affecting human DMRT1 have demonstrated that its heterozygosity is associated with 46,XY complete gonadal dysgenesis. Most of our detailed knowledge of DMRT1 function in the testis, the focus of this review, derives from mouse studies, which have revealed that DMRT1 is essential for male somatic and germ cell differentiation and maintenance of male somatic cell fate after differentiation. Moreover, ectopic DMRT1 can reprogram differentiated female granulosa cells into male Sertoli-like cells. The ability of DMRT1 to control sexual cell fate likely derives from at least 3 properties. First, DMRT1 functionally collaborates with another key male sex regulator, SOX9, and possibly other proteins to maintain and reprogram sexual cell fate. Second, and related, DMRT1 appears to function as a pioneer transcription factor, binding "closed" inaccessible chromatin and promoting its opening to allow binding by other regulators including SOX9. Third, DMRT1 binds DNA by a highly unusual form of interaction and can bind with different stoichiometries.
Collapse
Affiliation(s)
- David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| | - Mark W. Murphy
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
7
|
Fukuda K, Muraoka M, Kato Y, Saga Y. Decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles in the mouse†. Biol Reprod 2021; 105:179-191. [PMID: 33847353 DOI: 10.1093/biolre/ioab065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Primordial follicles, a finite reservoir of eggs in mammalian ovaries, are composed of a single oocyte and its supporting somatic cells, termed granulosa cells. Although their formation may require reciprocal interplay between oocytes and pre-granulosa cells, precursors of granulosa cells, little is known about the underlying mechanisms. We addressed this issue by decoding the transcriptome of pre-granulosa cells during the formation of primordial follicles. We found that marked gene expression changes, including extracellular matrix, cell adhesion, and several signaling pathways, occur along with primordial follicle formation. Importantly, differentiation of Lgr5-EGFP-positive pre-granulosa cells to FOXL2-positive granulosa cells was delayed in mutant ovaries of the germ cell-specific genes Nanos3 and Figla, accompanied by perturbed gene expression in mutant pre-granulosa cells. These results suggest that proper development of oocytes is required for the differentiation of pre-granulosa cells. Our data provide a valuable resource for understanding the gene regulatory networks involved in the formation of primordial follicles.
Collapse
Affiliation(s)
- Kurumi Fukuda
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Masafumi Muraoka
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Yuzuru Kato
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Kasahara R, Yuzawa T, Fujii T, Aoki F, Suzuki MG. dmrt11E ortholog is a crucial factor for oogenesis of the domesticated silkworm, Bombyx mori. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103517. [PMID: 33422636 DOI: 10.1016/j.ibmb.2020.103517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 05/26/2023]
Abstract
DMRT (Doublesex and Mab-3-related transcription factor) is a highly conserved transcription factor family involved in sex determination in numerous animal species. One DMRT, dmrt2/dmrt11E, has entirely different functions in invertebrate and vertebrate species, indicating unpredicted functions. Here, we performed functional analysis of the dmrt11E gene in the domesticated silkworm, Bombyx mori. This gene was preferentially expressed in ovarioles at the last larval instar stage. Its mRNA accumulated in ovarian eggs during the adult stage. CRISPR/Cas9-mediated knockout of Bombyx dmrt11E (Bmdmrt11E) caused defects in oogenesis, resulting in the production of abnormal eggs with transparent liquids. These eggs had significantly reduced fertility and lipid levels. Transcriptomic comparisons between ovaries of control and mutant insects at two developmental stages identified six genes that may be under the control of Bmdmrt11E. Finally, we provide a possible model for lipid uptake and storage in eggs of Bombyx mori.
Collapse
Affiliation(s)
- Ryota Kasahara
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Tomohisa Yuzawa
- Japan Water Systems Corporation, 4-9-4 Hatchobori, Chuo-ku, Tokyo, 104-0032, Japan
| | - Takehsi Fujii
- Department of Agricultural Science and Technology, Faculty of Agriculture, Setsunan University, 45-1 Nagao-Togecho, Hirakata-shi, Osaka, 573-0101, Japan
| | - Fugaku Aoki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan
| | - Masataka G Suzuki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba, 277-8562, Japan.
| |
Collapse
|
9
|
Islam MR, Ichii O, Nakamura T, Irie T, Masum MA, Otani Y, Namba T, Chuluunbaatar T, Elewa YHA, Kon Y. Developmental Changes of the Ovary in Neonatal Cotton Rat ( Sigmodon hispidus). Front Physiol 2021; 11:601927. [PMID: 33519507 PMCID: PMC7838641 DOI: 10.3389/fphys.2020.601927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/16/2020] [Indexed: 12/31/2022] Open
Abstract
The reproductive characteristics and ovarian development in cotton rats (Sigmodon hispidus, CRs) are unclear, although CRs are commonly used as animal models in biomedical research. We previously reported that young (6-8 weeks) CRs showed multi-oocyte follicles (MOFs) and double nucleated oocytes (DNOs) in different stages of follicles. The developmental changes in neonatal CR ovaries were investigated in the present study and were compared with our findings in previous studies of unique phenotypes, particularly in oocytes. CR ovaries at postnatal days (PND) 0, 4, and 7 were obtained from the Hokkaido Institute of Public Health. Samples were analyzed by light and transmission electron microscopy. The general histology and folliculogenesis in CR ovaries were similar to those in other experimental rodents. However, DNOs were observed in all age categories and were frequently observed in primordial follicles, whereas MOFs started to develop from PND4 with greater frequency in primary follicles. Almost all developing follicles expressed DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 and forkhead box L2, which are representative markers of oocytes and follicular epithelial cells, respectively. Ki-67 staining demonstrated the proliferative activity of granulosa cells, but not of oocytes, in follicles. Moreover, rapid folliculogenesis of CR due to a small number of apoptotic oocytes was suggested, based on results of the terminal deoxynucleotidyl transferase dUTP nick end labeling assay, confirming the formation of DNOs or MOFs. These findings clarify the development of unique phenotypes of neonatal CR ovaries and support it as a useful model to better understand folliculogenesis and oocytogenesis as well as their abnormalities in humans and other animals.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Surgery and Theriogenology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Chitose, Japan
| | - Takao Irie
- Laboratory of Veterinary Parasitology, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Namba
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Tsolmon Chuluunbaatar
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Basic Science of Veterinary Medicine, School of Veterinary Medicine, Mongolian University of Life Science, Ulaanbaatar, Mongolia
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
10
|
Dong J, Li J, Hu J, Sun C, Tian Y, Li W, Yan N, Sun C, Sheng X, Yang S, Shi Q, Ye X. Comparative Genomics Studies on the dmrt Gene Family in Fish. Front Genet 2020; 11:563947. [PMID: 33281869 PMCID: PMC7689362 DOI: 10.3389/fgene.2020.563947] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/16/2020] [Indexed: 01/15/2023] Open
Abstract
Doublesex and mab-3-related transcription factor (dmrt) genes are widely distributed across various biological groups and play critical roles in sex determination and neural development. Here, we applied bioinformatics methods to exam cross-species changes in the dmrt family members and evolutionary relationships of the dmrt genes based on genomes of 17 fish species. All the examined fish species have dmrt1-5 while only five species contained dmrt6. Most fish harbored two dmrt2 paralogs (dmrt2a and dmrt2b), with dmrt2b being unique to fish. In the phylogenetic tree, 147 DMRT are categorized into eight groups (DMRT1-DMRT8) and then clustered in three main groups. Selective evolutionary pressure analysis indicated purifying selections on dmrt1-3 genes and the dmrt1-3-2(2a) gene cluster. Similar genomic conservation patterns of the dmrt1-dmrt3-dmrt2(2a) gene cluster with 20-kb upstream/downstream regions in fish with various sex-determination systems were observed except for three regions with remarkable diversity. Synteny analysis revealed that dmrt1, dmrt2a, dmrt2b, and dmrt3-5 were relatively conserved in fish during the evolutionary process. While dmrt6 was lost in most species during evolution. The high conservation of the dmrt1-dmrt3-dmrt2(2a) gene cluster in various fish genomes suggests their crucial biological functions while various dmrt family members and sequences across fish species suggest different biological roles during evolution. This study provides a molecular basis for fish dmrt functional analysis and may serve as a reference for in-depth phylogenomics.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI Group, Shenzhen, China
| | - Jie Hu
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengfei Sun
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wuhui Li
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Ningning Yan
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengxi Sun
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xihui Sheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, China
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI Group, Shenzhen, China
| | - Xing Ye
- Key Laboratory of Tropical and Subtropical Fisheries Resources Application and Cultivation, Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
11
|
Islam MR, Ichii O, Nakamura T, Irie T, Masum MA, Hosotani M, Otani Y, Elewa YHA, Kon Y. Unique morphological characteristics in the ovary of cotton rat (Sigmodon hispidus). J Reprod Dev 2020; 66:529-538. [PMID: 32879182 PMCID: PMC7768171 DOI: 10.1262/jrd.2020-061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cotton rats (Sigmodon hispidus, CRs) are commonly used as animal models in biomedical research. However, the reproductive characteristics and ovarian development in the CRs has not been widely investigated. We have previously shown that female CRs, in particular, show several unique phenotypes associated with the urogenital system, such as chronic kidney disease and pyometra. Our investigation revealed unique morphologies in CR ovaries, particularly in oocytes. Cotton rat ovaries at 6-8 weeks of age were obtained from the Hokkaido Institute of Public Health, and their sections analyzed by light microscopy and transmission electron microscopy. Although the general histology and folliculogenesis of CR ovaries were similar to those of other experimental rodents, multi-oocyte follicles (MOFs) and double nucleated oocytes (DNOs) were also observed. Although MOFs were found at all stages of follicular development, a greater frequency of MOFs was observed in the primary and secondary stages. However, DNOs tended to be frequently observed in primordial follicles. Almost all MOF oocytes and a few DNOs possessed a clear zona pellucida, expressed DEAD (Asp-Glu-Ala-Asp) box polypeptide 4 and Forkhead box protein 2, a representative marker of oocytes and follicular epithelial cells. Thus, our investigations revealed the unique phenotypes of the CR ovary. As MOFs and DNOs are occasionally observed in human patients with infertility, the CR would be a useful animal model to study for gaining a better understanding of folliculogenesis and oocytogenesis, as well as their abnormalities in humans and other animals.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Surgery and Theriogenology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Osamu Ichii
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Laboratory of Agrobiomedical Science, Faculty of Agriculture, Hokkaido University, Hokkaido 060-0818, Japan
| | - Teppei Nakamura
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Section of Biological Safety Research, Chitose Laboratory, Japan Food Research Laboratories, Hokkaido 060-0818, Japan
| | - Takao Irie
- Medical Zoology Group, Dept. of Infectious Diseases, Hokkaido Institute of Public Health, Hokkaido 060-0818, Japan
| | - Md Abdul Masum
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Anatomy, Histology and Physiology, Faculty of Animal Science and Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Marina Hosotani
- Laboratory of Anatomy, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido 060-0818, Japan
| | - Yuki Otani
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| | - Yaser Hosny Ali Elewa
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan.,Department of Histology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasuhiro Kon
- Laboratory of Anatomy, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Hokkaido 060-0818, Japan
| |
Collapse
|
12
|
Rossi LF, Nottola S, Miglietta S, Macchiarelli G, Luaces JP, Merico V, Merani S, Garagna S, Zuccotti M. Germ cell cysts, a fetal feature in mammals, are constitutively present in the adult armadillo. Mol Reprod Dev 2019; 87:91-101. [DOI: 10.1002/mrd.23296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/30/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Luis Francisco Rossi
- Laboratorio de Biología Cromosómica, Facultad de MedicinaUniversidad de Buenos AiresBuenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires Argentina
| | - Stefania Nottola
- Department of Anatomy, Histology, Forensic Medicine and OrthopedicsUniversity of Rome La SapienzaRome Italy
| | - Selenia Miglietta
- Department of Anatomy, Histology, Forensic Medicine and OrthopedicsUniversity of Rome La SapienzaRome Italy
| | - Guido Macchiarelli
- Department of Life, Health and Environmental SciencesUniversity of L'aquilaL'aquila Italy
| | - Juan Pablo Luaces
- Laboratorio de Biología Cromosómica, Facultad de MedicinaUniversidad de Buenos AiresBuenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires Argentina
| | - Valeria Merico
- Department of Biology and Biotechnology “Lazzaro Spallanzani,”University of PaviaPavia Italy
- Centre for Health TechnologyUniversity of PaviaPavia Italy
| | - Susana Merani
- Laboratorio de Biología Cromosómica, Facultad de MedicinaUniversidad de Buenos AiresBuenos Aires Argentina
- Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires Argentina
| | - Silvia Garagna
- Department of Biology and Biotechnology “Lazzaro Spallanzani,”University of PaviaPavia Italy
- Centre for Health TechnologyUniversity of PaviaPavia Italy
| | - Maurizio Zuccotti
- Department of Biology and Biotechnology “Lazzaro Spallanzani,”University of PaviaPavia Italy
- Centre for Health TechnologyUniversity of PaviaPavia Italy
| |
Collapse
|
13
|
Mawaribuchi S, Ito Y, Ito M. Independent evolution for sex determination and differentiation in the DMRT family in animals. Biol Open 2019; 8:8/8/bio041962. [PMID: 31399444 PMCID: PMC6737965 DOI: 10.1242/bio.041962] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Some DMRT family genes including arthropod dsx, nematode mab-3, and vertebrate dmrt1 are involved in sex determination and/or differentiation in bilaterian animals. Although there have been some reports about evolutionary analyses of the family by using its phylogenetic trees, it is still undecided as to whether these three sex determination-related genes share orthologous relationships or not. To clarify this question, we analyzed evolutional relationships among the family members in various bilaterians by using not only phylogenetic tree analysis, but also synteny analysis. We found that only four genes, dmrt2a/2b, dmrt3, dmrt4/5 and dmrt93B were commonly present in invertebrate bilateria. The syntenies of dmrt2a/2b-dmrt3 and dmrt4/5-dmrt93B are conserved before and after two rounds of whole genome duplication in the ancestral vertebrate. Importantly, this indicates that dmrt1 must have appeared in the common vertebrate ancestor. In addition, dmrt1, dsx, or mab-3 formed each different cluster at a distance in our phylogenetic tree. From these findings, we concluded that the three sex determination-related genes, dmrt1, dsx, and mab-3 have no orthologous relationships, and suggested independent evolution for sex determination and differentiation in the DMRT gene family. Our results may supply clues about why sex-determining systems have diverged during animal evolution. Summary: Three DMRT family genes, vertebrate dmrt1, arthropod dsx and nematode mab-3, involved in sex determination and primary sex differentiation have no orthologous relationships, indicating independent evolution in bilaterian animals.
Collapse
Affiliation(s)
- Shuuji Mawaribuchi
- Biotechnology Research Institute for Drug Discovery, National Institute of AIST, Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Yuzuru Ito
- Biotechnology Research Institute for Drug Discovery, National Institute of AIST, Central 5, 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Michihiko Ito
- Department of Biosciences, School of Science, Kitasato University, Kitasato 1-15-1, Minamiku, Sagamihara 252-0373, Japan
| |
Collapse
|
14
|
Bueno LM, Caun DL, Comelis MT, Beguelini MR, Taboga SR, Morielle‐Versute E. Ovarian morphology and folliculogenesis and ovulation process in the flat‐faced fruit‐eating bat
Artibeus planirostris
and the Argentine brown bat
Eptesicus furinalis
: A comparative analysis. ACTA ZOOL-STOCKHOLM 2018. [DOI: 10.1111/azo.12247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Larissa Mayumi Bueno
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (Ibilce)Campus São José do Rio PretoSão Paulo State University (UNESP) São Paulo Brazil
| | - Dianelli Lisboa Caun
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (Ibilce)Campus São José do Rio PretoSão Paulo State University (UNESP) São Paulo Brazil
| | - Manuela Tosi Comelis
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (Ibilce)Campus São José do Rio PretoSão Paulo State University (UNESP) São Paulo Brazil
| | - Mateus Rodrigues Beguelini
- Center of Biological and Health SciencesUFOB – Universidade Federal do Oeste da Bahia Bahia Barreiras Brazil
| | - Sebastião Roberto Taboga
- Department of BiologyInstitute of Biosciences, Humanities and Exact Sciences (Ibilce)Campus São José do Rio PretoSão Paulo State University (UNESP) São Paulo Brazil
| | - Eliana Morielle‐Versute
- Department of Zoology and BotanyInstitute of Biosciences, Humanities and Exact Sciences (Ibilce)Campus São José do Rio PretoSão Paulo State University (UNESP) São Paulo Brazil
| |
Collapse
|
15
|
The doublesex-related Dmrta2 safeguards neural progenitor maintenance involving transcriptional regulation of Hes1. Proc Natl Acad Sci U S A 2017; 114:E5599-E5607. [PMID: 28655839 DOI: 10.1073/pnas.1705186114] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mechanisms that determine whether a neural progenitor cell (NPC) reenters the cell cycle or exits and differentiates are pivotal for generating cells in the correct numbers and diverse types, and thus dictate proper brain development. Combining gain-of-function and loss-of-function approaches in an embryonic stem cell-derived cortical differentiation model, we report that doublesex- and mab-3-related transcription factor a2 (Dmrta2, also known as Dmrt5) plays an important role in maintaining NPCs in the cell cycle. Temporally controlled expression of transgenic Dmrta2 in NPCs suppresses differentiation without affecting their neurogenic competence. In contrast, Dmrta2 knockout accelerates the cell cycle exit and differentiation into postmitotic neurons of NPCs derived from embryonic stem cells and in Emx1-cre conditional mutant mice. Dmrta2 function is linked to the regulation of Hes1 and other proneural genes, as demonstrated by genome-wide RNA-seq and direct binding of Dmrta2 to the Hes1 genomic locus. Moreover, transient Hes1 expression rescues precocious neurogenesis in Dmrta2 knockout NPCs. Our study thus establishes a link between Dmrta2 modulation of Hes1 expression and the maintenance of NPCs during cortical development.
Collapse
|
16
|
Chen CJ, Shikina S, Chen WJ, Chung YJ, Chiu YL, Bertrand JAM, Lee YH, Chang CF. A Novel Female-Specific and Sexual Reproduction-Associated Dmrt Gene Discovered in the Stony Coral, Euphyllia ancora. Biol Reprod 2016; 94:40. [PMID: 26740592 DOI: 10.1095/biolreprod.115.133173] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/28/2015] [Indexed: 11/01/2022] Open
Abstract
Transcription factors encoded by the Dmrt gene family regulate multiple aspects of animal reproduction. Most studies investigating the Dmrt gene family were conducted in model organisms from bilateral species, with a particular emphasis on gene function in male sex determination. It is still unclear whether the E. ancora Dmrt (EaDmrt) genes found in basal metazoans such as cnidarians share similar characteristics with orthologs in other metazoans. In this study, seven full Dmrt gene transcript sequences for a gonochoric coral, Euphyllia ancora (phylum: Cnidaria; class: Anthozoa), were obtained through transcriptome data mining, RT-PCR analysis, rapid amplification of cDNA ends, and sequencing. These EaDmrts were subjected to quantitative assays measuring temporal and tissue-specific expression. Results demonstrated a unique gene expression pattern for EaDmrtE, which is enriched in female germ cells during the spawning season. Based on the phylogenetic analyses performed across the homologous Dmrt genes in metazoans, we found that the female-specific EaDmrtE gene is not related to the DM1 gene of Acropora spp. coral nor to Dmrt1 of vertebrates, which are involved in sexual reproduction, especially in sex determination (vertebrate Dmrt1). Additionally, high levels of EaDmrtE transcripts detected in unfertilized mature eggs are retained in newly formed zygotes but decrease during embryonic development. We suggest that the newly discovered gene may play a role in oogenesis and early embryogenesis as a maternal factor in corals. Therefore, the sexual reproduction-associated Dmrt gene(s) should have arisen in cnidarians and might have evolved multiple times in metazoans.
Collapse
Affiliation(s)
- Chieh-Jhen Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Shinya Shikina
- Institute of Marine Environment and Ecology, National Taiwan Ocean University, Keelung, Taiwan Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Wei-Jen Chen
- Institute of Oceanography, National Taiwan University, Taipei, Taiwan
| | - Yi-Jou Chung
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Yi-Ling Chiu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | | | - Yan-Horn Lee
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Tungkang, Taiwan
| | - Ching-Fong Chang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
17
|
Poulain M, Frydman N, Tourpin S, Muczynski V, Mucsynski V, Souquet B, Benachi A, Habert R, Rouiller-Fabre V, Livera G. Involvement of doublesex and mab-3-related transcription factors in human female germ cell development demonstrated by xenograft and interference RNA strategies. Mol Hum Reprod 2014; 20:960-71. [PMID: 25082981 DOI: 10.1093/molehr/gau058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We identified three doublesex and mab-3-related transcription factors (DMRT) that were sexually differentially expressed in human fetal gonads and present in the ovaries at the time of meiotic initiation. These were also identified in murine embryonic female germ cells. Among these, we focused on DMRTA2 (DMRT5), whose function is unknown in the developing gonads, and clarified its role in human female fetal germ cells, using an original xenograft model. Early human fetal ovaries (8-11 weeks post-fertilization) were grafted into nude mice. Grafted ovaries developed normally, with no apparent overt changes, when compared with ungrafted ovaries at equivalent developmental stages. Appropriate germ cell density, mitotic/meiotic transition, markers of meiotic progression and follicle formation were evident. Four weeks after grafting, mice were treated with siRNA, specifically targeting human DMRTA2 mRNA. DMRTA2 inhibition triggered an increase in undifferentiated FUT4-positive germ cells and a decrease in the percentage of meiotic γH2AX-positive germ cells, when compared with mice that were injected with control siRNA. Interestingly, the expression of markers associated with pre-meiotic germ cell differentiation was also impaired, as was the expression of DMRTB1 (DMRT6) and DMRTC2 (DMRT7). This study reveals, for the first time, the requirement of DMRTA2 for normal human female embryonic germ cell development. DMRTA2 appears to be necessary for proper differentiation of oogonia, prior to entry into meiosis, in the human species. Additionally, we developed a new model of organ xenografting, coupled with RNA interference, which provides a useful tool for genetic investigations of human germline development.
Collapse
Affiliation(s)
- Marine Poulain
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France AP-HP, University Paris-Sud, Reproductive Biology Unit, Clamart F-92140, France
| | - Nelly Frydman
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France AP-HP, University Paris-Sud, Reproductive Biology Unit, Clamart F-92140, France
| | - Sophie Tourpin
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| | - Vincent Muczynski
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| | - Vincent Mucsynski
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| | - Benoit Souquet
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| | - Alexandra Benachi
- AP-HP, University Paris-Sud, Department of Obstetrics and Gynecology, Clamart F-92140, France
| | - René Habert
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| | - Virginie Rouiller-Fabre
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| | - Gabriel Livera
- University Paris Diderot, Sorbonne Paris Cité, Laboratory of Development of the Gonads, Unit of Stem Cells and Radiation, UMR 967, Fontenay aux Roses F-92265, France CEA, DSV, iRCM, SCSR, LDG, Fontenay aux Roses F-92265, France INSERM, Unité 967, Fontenay aux Roses F-92265, France University Paris-Sud, UMR 967, Fontenay aux Roses F-92265, France
| |
Collapse
|
18
|
Induction of apoptosis through ER stress and TP53 in MCF-7 cells by the nanoparticle [Gd@C82(OH)22]n: A systems biology study. Methods 2014; 67:394-406. [DOI: 10.1016/j.ymeth.2014.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/10/2013] [Accepted: 01/05/2014] [Indexed: 01/20/2023] Open
|
19
|
Gaytán F, Morales C, Manfredi-Lozano M, Tena-Sempere M. Generation of multi-oocyte follicles in the peripubertal rat ovary: link to the invasive capacity of granulosa cells? Fertil Steril 2014; 101:1467-76. [PMID: 24581577 DOI: 10.1016/j.fertnstert.2014.01.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/24/2014] [Accepted: 01/24/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To assess the presence and numbers of multi-oocyte follicles (MOFs) in the rat ovary at different stages of postnatal maturation. DESIGN Animal (rat) study. SETTING Research laboratory. ANIMAL(S) Female Wistar rats. INTERVENTION(S) Histologic/morphometric analyses in ovaries from infantile, juvenile, pubertal, and adult female rats. MAIN OUTCOME MEASURE(S) Numbers and characteristics of MOFs in rat ovaries at different stages of postnatal maturation. RESULT(S) Female rats displayed low numbers (<5/ovary) of MOFs in the infantile period (postnatal day [PND] 15). The occurrence of MOFs increased sharply by PND-21 and remained at high values (>15/ovary) up to PND-60, to decline thereafter by PND-90. The presence of irregularly shaped and connected adjacent follicles, together with the identification of ruptures at the follicle surface and the occasional invasion of the ovarian stroma by granulosa cells, strongly suggests that the majority of MOFs in peripubertal rats are generated by fusion of adjacent growing follicles. CONCLUSION(S) A new mechanism for the generation of MOFs linked to the potential invasive capacity of granulosa cells is proposed. The basis for the upsurge in the generation of MOFs during the peripubertal period and whether, as predictable, this phenomenon is applicable to other mammalian species warrant further investigation.
Collapse
Affiliation(s)
- Francisco Gaytán
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigaciones Biomédicas/Hospital Universitario Reina Sofia, Córdoba, Spain.
| | | | - María Manfredi-Lozano
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
| | - Manuel Tena-Sempere
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Córdoba, Spain; Instituto Maimónides de Investigaciones Biomédicas/Hospital Universitario Reina Sofia, Córdoba, Spain.
| |
Collapse
|
20
|
Identification of Dmrt genes and their up-regulation during gonad transformation in the swamp eel (Monopterus albus). Mol Biol Rep 2014; 41:1237-45. [PMID: 24390316 DOI: 10.1007/s11033-013-2968-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 12/23/2013] [Indexed: 10/25/2022]
Abstract
The swamp eel is a teleost fish with a characteristic of natural sex reversal and an ideal model for vertebrate sexual development. However, underlying molecular mechanisms are poorly understood. We report the identification of five DM (doublesex and mab-3) domain genes in the swamp eel that include Dmrt2, Dmrt2b, Dmrt3, Dmrt4 and Dmrt5, which encode putative proteins of 527, 373, 471, 420 and 448 amino acids, respectively. Phylogenetic tree showed that these genes are clustered into corresponding branches of the DM genes in vertebrates. Southern blot analysis indicated that the Dmrt1-Dmrt3-Dmrt2 genes are tightly linked in a conserved gene cluster. Notably, these Dmrt genes are up-regulated during gonad transformation. Furthermore, mRNA in situ hybridisation showed that Dmrt2, Dmrt3, Dmrt4 and Dmrt5 are expressed in developing germ cells. These results are evidence that the DM genes are involved in sexual differentiation in the swamp eel.
Collapse
|
21
|
Bellefroid EJ, Leclère L, Saulnier A, Keruzore M, Sirakov M, Vervoort M, De Clercq S. Expanding roles for the evolutionarily conserved Dmrt sex transcriptional regulators during embryogenesis. Cell Mol Life Sci 2013; 70:3829-45. [PMID: 23463235 PMCID: PMC11113232 DOI: 10.1007/s00018-013-1288-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/18/2013] [Accepted: 01/31/2013] [Indexed: 01/20/2023]
Abstract
Dmrt genes encode a large family of transcription factors characterized by the presence of a DM domain, an unusual zinc finger DNA binding domain. While Dmrt genes are well known for their important role in sexual development in arthropodes, nematodes and vertebrates, several new findings indicate emerging functions of this gene family in other developmental processes. Here, we provide an overview of the evolution, structure and mechanisms of action of Dmrt genes. We summarize recent findings on their function in sexual regulation and discuss more extensively the role played by these proteins in somitogenesis and neural development.
Collapse
Affiliation(s)
- Eric J Bellefroid
- Laboratoire de Génétique du Développement, Institut de Biologie et de Médecine Moléculaires (IBMM), Université Libre de Bruxelles, rue des Profs. Jeener et Brachet 12, 6041, Gosselies, Belgium,
| | | | | | | | | | | | | |
Collapse
|
22
|
Su W, Guan X, Zhang D, Sun M, Yang L, Yi F, Hao F, Feng X, Ma T. Occurrence of multi-oocyte follicles in aquaporin 8-deficient mice. Reprod Biol Endocrinol 2013; 11:88. [PMID: 24020646 PMCID: PMC3847684 DOI: 10.1186/1477-7827-11-88] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 09/05/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Granulosa cells play a key role in folliculogenesis and female reproduction. Our previous study demonstrated that water channel aquaporin-8 (AQP8) is expressed in mouse follicular granulosa cells and is an important determinant of granulosa cell apoptosis and follicular maturation. More roles of AQP8 in folliculogenesis remain to be determined. FINDINGS The present study reports the increased occurrence of multi-oocyte follicles (MOFs) in ovaries of AQP8 knockout mice. The MOFs in AQP8-deficient ovaries contained two or three oocytes, and distributed at various follicle stages including primary (12.5%), secondary (50%), antral (18.8%) and atretic (18.8%) follicles in 5-week ovaries. The MOF is occasionally seen in wild-type ovary only in primary and secondary follicles. The number of MOFs in AQP8-deficient ovary reduced with age (26.7 +/- 5.2 per ovary at 5 weeks old, 14 +/- 5.5 at 10 weeks old, and 3.3 +/- 5.1 at 20 weeks old). mRNA expression of AQP5, AQP7, AQP8, AQP11 and AQP12 was detected in neonatal mouse ovaries and in granulosa cells in 4 week old mouse ovaries. The expression of AQP7, AQP11 and AQP12 mRNAs are decreased significantly in neonatal AQP8-deficient ovaries, whereas AQP5 mRNA expression remains unchanged. CONCLUSIONS The emergence of MOFs is associated with AQP8 deficiency. The study suggested the involvement of AQP8 in the formation of follicles and provided new insight into the molecular mechanisms of folliculogenesis.
Collapse
Affiliation(s)
- Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P.R. China
| | - Xingang Guan
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, Changchun, P.R. China
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| | - Di Zhang
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Meiyan Sun
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Longfei Yang
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Fei Yi
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Feng Hao
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Xuechao Feng
- Central Research Laboratory, Bethune Second Hospital, Jilin University, Changchun, P.R. China
| | - Tonghui Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, P.R. China
| |
Collapse
|
23
|
Xu J, Gridley T. Notch2 is required in somatic cells for breakdown of ovarian germ-cell nests and formation of primordial follicles. BMC Biol 2013; 11:13. [PMID: 23406467 PMCID: PMC3606475 DOI: 10.1186/1741-7007-11-13] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 12/22/2022] Open
Abstract
Background In the mouse ovary, oocytes initially develop in clusters termed germ-cell nests. Shortly after birth, these germ-cell nests break apart, and the oocytes individually become surrounded by somatic granulosa cells to form primordial follicles. Notch signaling plays essential roles during oogenesis in Drosophila, and recent studies have suggested that Notch signaling also plays an essential role during oogenesis and ovary development in mammals. However, no in vivo loss-of-function studies have been performed to establish whether Notch family receptors have an essential physiological role during normal ovarian development in mutant mice. Results Female mice with conditional deletion of the Notch2 gene in somatic granulosa cells of the ovary exhibited reduced fertility, accompanied by the formation of multi-oocyte follicles, which became hemorrhagic by 7 weeks of age. Formation of multi-oocyte follicles resulted from defects in breakdown of the primordial germ-cell nests. The ovaries of the Notch2 conditional mutant mice had increased numbers of oocytes, but decreased numbers of primordial follicles. Oocyte numbers in the Notch2 conditional mutants were increased not by excess or extended cellular proliferation, but as a result of decreased oocyte apoptosis. Conclusions Our work demonstrates that Notch2-mediated signaling in the somatic-cell lineage of the mouse ovary regulates oocyte apoptosis non-cell autonomously, and is essential for regulating breakdown of germ-cell nests and formation of primordial follicles. This model provides a new resource for studying the developmental and physiological roles of Notch signaling during mammalian reproductive biology.
Collapse
Affiliation(s)
- Jingxia Xu
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | |
Collapse
|
24
|
Xu S, Xia W, Zohar Y, Gui JF. Zebrafish dmrta2 regulates the expression of cdkn2c in spermatogenesis in the adult testis. Biol Reprod 2013; 88:14. [PMID: 23175770 DOI: 10.1095/biolreprod.112.105130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The exact function of the doublesex and mab-3 related transcription factor-like family a2 gene (dmrta2) has remained largely unknown possibly because of its functional redundancy with dmrta1 in most vertebrates. In this study, dmrta1 was demonstrated to likely be absent in the zebrafish genome, which facilitated our functional analysis of dmrta2 in this model organism. To analyze its gene function in embryos and adults, we generated a mutant form of Dmrta2 (R106Q, Dmrta2(RQ)) with its in vitro DNA-binding capacity abolished and a transgenic line for the inducible expression of this mutant Dmrta2(RQ) upon doxycycline (Dox) treatment. Preferential dmrta2 expression was detected in the developing brain during embryogenesis and in the adult testis. During embryogenesis, Dmrta2(RQ) expression caused severe embryonic development defects and dramatic expression changes of two telencephalic marker genes, fibroblast growth factor 8a (fgf8a), and empty spiracles homolog 1 (emx1). In adults, the inducible Dmrta2(RQ) expression occurred specifically in the adult testis and recapitulated the endogenous dmrta2 expression in this organ. Intriguingly, adult males expressing dmrta2(RQ) showed normal spermatogenesis and were fertile, but the expression of cyclin-dependent kinase inhibitor 2C (cdkn2c), which is evolutionarily clustered with dmrta2, was significantly suppressed during spermatogenesis. Further protein-binding and promoter mutation analysis indicated that a putative Dmrta2-binding site on the cdkn2c promoter was required for sustaining the normal expression of cdkn2c during zebrafish spermatogenesis, suggesting that Dmrta2 might regulate the expression of cdkn2c.
Collapse
Affiliation(s)
- Shan Xu
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
25
|
|
26
|
Parlier D, Moers V, Van Campenhout C, Preillon J, Leclère L, Saulnier A, Sirakov M, Busengdal H, Kricha S, Marine JC, Rentzsch F, Bellefroid EJ. The Xenopus doublesex-related gene Dmrt5 is required for olfactory placode neurogenesis. Dev Biol 2012; 373:39-52. [PMID: 23064029 DOI: 10.1016/j.ydbio.2012.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 09/16/2012] [Accepted: 10/03/2012] [Indexed: 11/17/2022]
Abstract
The Dmrt (doublesex and mab-3 related transcription factor) genes encode a large family of evolutionarily conserved transcription factors whose function in sex specific differentiation has been well studied in all animal lineages. In vertebrates, their function is not restricted to the developing gonads. For example, Xenopus Dmrt4 is essential for neurogenesis in the olfactory system. Here we have isolated and characterized Xenopus Dmrt5 and found that it is coexpressed with Dmrt4 in the developing olfactory placodes. As Dmrt4, Dmrt5 is positively regulated in the ectoderm by neural inducers and negatively by proneural factors. Both Dmrt5 and Dmrt4 genes are also activated by the combined action of the transcription factor Otx2, broadly transcribed in the head ectoderm and of Notch signaling, activated in the anterior neural ridge. As for Dmrt4, knockdown of Dmrt5 impairs neurogenesis in the embryonic olfactory system and in neuralized animal caps. Conversely, its overexpression promotes neuronal differentiation in animal caps, a property that requires the conserved C-terminal DMA and DMB domains. We also found that the sea anenome Dmrt4/5 related gene NvDmrtb also induces neurogenesis in Xenopus animal caps and that conversely, its knockdown in Nematostella reduces elav-1 positive neurons. Together, our data identify Dmrt5 as a novel important regulator of neurogenesis whose function overlaps with that of Dmrt4 during Xenopus olfactory system development. They also suggest that Dmrt may have had a role in neurogenesis in the last common ancestor of cnidarians and bilaterians.
Collapse
Affiliation(s)
- Damien Parlier
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Johnsen H, Andersen Ø. Sex dimorphic expression of five dmrt genes identified in the Atlantic cod genome. The fish-specific dmrt2b diverged from dmrt2a before the fish whole-genome duplication. Gene 2012; 505:221-32. [DOI: 10.1016/j.gene.2012.06.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 06/07/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
28
|
Saulnier A, Keruzore M, De Clercq S, Bar I, Moers V, Magnani D, Walcher T, Filippis C, Kricha S, Parlier D, Viviani L, Matson CK, Nakagawa Y, Theil T, Götz M, Mallamaci A, Marine JC, Zarkower D, Bellefroid EJ. The doublesex homolog Dmrt5 is required for the development of the caudomedial cerebral cortex in mammals. ACTA ACUST UNITED AC 2012; 23:2552-67. [PMID: 22923088 DOI: 10.1093/cercor/bhs234] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Regional patterning of the cerebral cortex is initiated by morphogens secreted by patterning centers that establish graded expression of transcription factors within cortical progenitors. Here, we show that Dmrt5 is expressed in cortical progenitors in a high-caudomedial to low-rostrolateral gradient. In its absence, the cortex is strongly reduced and exhibits severe abnormalities, including agenesis of the hippocampus and choroid plexus and defects in commissural and thalamocortical tracts. Loss of Dmrt5 results in decreased Wnt and Bmp in one of the major telencephalic patterning centers, the dorsomedial telencephalon, and in a reduction of Cajal-Retzius cells. Expression of the dorsal midline signaling center-dependent transcription factors is downregulated, including Emx2, which promotes caudomedial fates, while the rostral determinant Pax6, which is inhibited by midline signals, is upregulated. Consistently, Dmrt5(-/-) brains exhibit patterning defects with a dramatic reduction of the caudomedial cortex. Dmrt5 is increased upon the activation of Wnt signaling and downregulated in Gli3(xt/xt) mutants. We conclude that Dmrt5 is a novel Wnt-dependent transcription factor required for early cortical development and that it may regulate initial cortical patterning by promoting dorsal midline signaling center formation and thereby helping to establish the graded expression of the other transcription regulators of cortical identity.
Collapse
Affiliation(s)
- Amandine Saulnier
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kopp A. Dmrt genes in the development and evolution of sexual dimorphism. Trends Genet 2012; 28:175-84. [PMID: 22425532 DOI: 10.1016/j.tig.2012.02.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 02/07/2012] [Accepted: 02/08/2012] [Indexed: 12/20/2022]
Abstract
Most animals are sexually dimorphic, but different taxa have different sex-specific traits. Despite major differences in the genetic control of sexual development among animal lineages, the doublesex/mab-3 related (Dmrt) family of transcription factors has been shown to be involved in sex-specific differentiation in all animals that have been studied. In recent years the functions of Dmrt genes have been characterized in many animal groups, opening the way to a broad comparative perspective. This review focuses on the similarities and differences in the functions of Dmrt genes across the animal kingdom. I highlight a number of common themes in the sexual development of different taxa, discuss how Dmrt genes have acquired new roles during animal evolution, and show how they have contributed to the origin of novel sex-specific traits.
Collapse
Affiliation(s)
- Artyom Kopp
- Department of Evolution and Ecology, University of California-Davis, Davis, CA 95616 USA.
| |
Collapse
|
30
|
Yoshizawa A, Nakahara Y, Izawa T, Ishitani T, Tsutsumi M, Kuroiwa A, Itoh M, Kikuchi Y. Zebrafish Dmrta2 regulates neurogenesis in the telencephalon. Genes Cells 2012; 16:1097-109. [PMID: 22023386 DOI: 10.1111/j.1365-2443.2011.01555.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although recent findings showed that some Drosophila doublesex and Caenorhabditis elegans mab-3 related genes are expressed in neural tissues during development, their functions have not been fully elucidated. Here, we isolated a zebrafish mutant, ha2, that shows defects in telencephalic neurogenesis and found that ha2 encodes Doublesex and MAB-3 related transcription factor like family A2 (Dmrta2). dmrta2 expression is restricted to the telencephalon, diencephalon and olfactory placode during somitogenesis. We found that the expression of the proneural gene, neurogenin1, in the posterior and dorsal region of telencephalon (posterior-dorsal telencephalon) is markedly reduced in this mutant at the 14-somite stage without any defects in cell proliferation or cell death. In contrast, the telencephalic expression of her6, a Hes-related gene that is known to encode a negative regulator of neurogenin1, expands dramatically in the ha2 mutant. Based on over-expression experiments and epistatic analyses, we propose that zebrafish Dmrta2 controls neurogenin1 expression by repressing her6 in the posterior-dorsal telencephalon. Furthermore, the expression domains of the telencephalic marker genes, foxg1 and emx3, and the neuronal differentiation gene, neurod, are downregulated in the ha2 posterior-dorsal telencephalon during somitogenesis. These results suggest that Dmrta2 plays important roles in the specification of the posterior-dorsal telencephalic cell fate during somitogenesis.
Collapse
Affiliation(s)
- Akio Yoshizawa
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima 739-8526 Japan
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Matson CK, Zarkower D. Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 2012; 13:163-74. [PMID: 22310892 PMCID: PMC3595575 DOI: 10.1038/nrg3161] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Most animals reproduce sexually, but the genetic and molecular mechanisms that determine the eventual sex of each embryo vary remarkably. DM domain genes, which are related to the insect gene doublesex, are integral to sexual development and its evolution in many metazoans. Recent studies of DM domain genes reveal mechanisms by which new sexual dimorphisms have evolved in invertebrates and show that one gene, Dmrt1, was central to multiple evolutionary transitions between sex-determining mechanisms in vertebrates. In addition, Dmrt1 coordinates a surprising array of distinct cell fate decisions in the mammalian gonad and even guards against transdifferentiation of male cells into female cells in the adult testis.
Collapse
Affiliation(s)
- Clinton K Matson
- Department of Genetics, Cell Biology, and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
32
|
Siehr MS, Koo PK, Sherlekar AL, Bian X, Bunkers MR, Miller RM, Portman DS, Lints R. Multiple doublesex-related genes specify critical cell fates in a C. elegans male neural circuit. PLoS One 2011; 6:e26811. [PMID: 22069471 PMCID: PMC3206049 DOI: 10.1371/journal.pone.0026811] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 10/04/2011] [Indexed: 11/18/2022] Open
Abstract
Background In most animal species, males and females exhibit differences in behavior and morphology that relate to their respective roles in reproduction. DM (Doublesex/MAB-3) domain transcription factors are phylogenetically conserved regulators of sexual development. They are thought to establish sexual traits by sex-specifically modifying the activity of general developmental programs. However, there are few examples where the details of these interactions are known, particularly in the nervous system. Methodology/Principal Findings In this study, we show that two C. elegans DM domain genes, dmd-3 and mab-23, regulate sensory and muscle cell development in a male neural circuit required for mating. Using genetic approaches, we show that in the circuit sensory neurons, dmd-3 and mab-23 establish the correct pattern of dopaminergic (DA) and cholinergic (ACh) fate. We find that the ETS-domain transcription factor gene ast-1, a non-sex-specific, phylogenetically conserved activator of dopamine biosynthesis gene transcription, is broadly expressed in the circuit sensory neuron population. However, dmd-3 and mab-23 repress its activity in most cells, promoting ACh fate instead. A subset of neurons, preferentially exposed to a TGF-beta ligand, escape this repression because signal transduction pathway activity in these cells blocks dmd-3/mab-23 function, allowing DA fate to be established. Through optogenetic and pharmacological approaches, we show that the sensory and muscle cell characteristics controlled by dmd-3 and mab-23 are crucial for circuit function. Conclusions/Significance In the C. elegans male, DM domain genes dmd-3 and mab-23 regulate expression of cell sub-type characteristics that are critical for mating success. In particular, these factors limit the number of DA neurons in the male nervous system by sex-specifically regulating a phylogenetically conserved dopamine biosynthesis gene transcription factor. Homologous interactions between vertebrate counterparts could regulate sex differences in neuron sub-type populations in the brain.
Collapse
Affiliation(s)
- Meagan S. Siehr
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Pamela K. Koo
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Amrita L. Sherlekar
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Xuelin Bian
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Meredith R. Bunkers
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
| | - Renee M. Miller
- Department of Biomedical Genetics, Center for Neural Development and Disease, University of Rochester, Rochester, New York, United States of America
| | - Douglas S. Portman
- Department of Biomedical Genetics, Center for Neural Development and Disease, University of Rochester, Rochester, New York, United States of America
| | - Robyn Lints
- Department of Biology, Texas A & M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
33
|
Clinical, biological and genetic analysis of prepubertal isolated ovarian cyst in 11 girls. PLoS One 2010; 5:e11282. [PMID: 20593028 PMCID: PMC2892512 DOI: 10.1371/journal.pone.0011282] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Accepted: 05/18/2010] [Indexed: 11/29/2022] Open
Abstract
Background The cause of isolated gonadotropin-independent precocious puberty (PP) with an ovarian cyst is unknown in the majority of cases. Here, we describe 11 new cases of peripheral PP and, based on phenotypes observed in mouse models, we tested the hypothesis that mutations in the GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX may be associated with this phenotype. Methodology/Principal Findings 11 girls with gonadotropin-independent PP were included in this study. Three girls were seen for a history of prenatal ovarian cyst, 6 girls for breast development, and 2 girls for vaginal bleeding. With one exception, all girls were seen before 8 years of age. In 8 cases, an ovarian cyst was detected, and in one case, suspected. One other case has polycystic ovaries, and the remaining case was referred for vaginal bleeding. Four patients had a familial history of ovarian anomalies and/or infertility. Mutations in the coding sequences of the candidate genes GNAS1, NR5A1, LHCGR, FSHR, NR5A1, StAR, DMRT4 and NOBOX were not observed. Conclusions/Significance Ovarian PP shows markedly different clinical features from central PP. Our data suggest that mutations in the GNAS1, NR5A1, LHCGR, FSHR StAR, DMRT4 and NOBOX genes are not responsible for ovarian PP. Further research, including the identification of familial cases, is needed to understand the etiology of ovarian PP.
Collapse
|
34
|
|
35
|
Abstract
The classical view of ovarian follicle development is that it is regulated by the hypothalamic-pituitary-ovarian axis, in which gonadotropin-releasing hormone (GnRH) controls the release of the gonadotropic hormones follicle-stimulating hormone (FSH) and luteinizing hormone (LH), and that ovarian steroids exert both negative and positive regulatory effects on GnRH secretion. More recent studies in mice and humans indicate that many other intra-ovarian signaling cascades affect follicular development and gonadotropin action in a stage- and context-specific manner. As we discuss here, mutant mouse models and clinical evidence indicate that some of the most powerful intra-ovarian regulators of follicular development include the TGF-beta/SMAD, WNT/FZD/beta-catenin, and RAS/ERK1/2 signaling pathways and the FOXO/FOXL2 transcription factors.
Collapse
Affiliation(s)
- JoAnne S. Richards
- Department of Molecular and Cellular Biology and
Department of Pathology, Baylor College of Medicine, Houston, Texas
| | - Stephanie A. Pangas
- Department of Molecular and Cellular Biology and
Department of Pathology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
36
|
Kim H, Nakajima T, Hayashi S, Chambon P, Watanabe H, Iguchi T, Sato T. Effects of Diethylstilbestrol on Programmed Oocyte Death and Induction of Polyovular Follicles in Neonatal Mouse Ovaries1. Biol Reprod 2009; 81:1002-9. [DOI: 10.1095/biolreprod.108.070599] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
37
|
|
38
|
Ireland J, Scheetz D, Jimenez-Krassel F, Themmen A, Ward F, Lonergan P, Smith G, Perez G, Evans A, Ireland J. Antral Follicle Count Reliably Predicts Number of Morphologically Healthy Oocytes and Follicles in Ovaries of Young Adult Cattle1. Biol Reprod 2008; 79:1219-25. [DOI: 10.1095/biolreprod.108.071670] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
39
|
Wang X, Desai N, Hu YP, Price SM, Abate-Shen C, Shen MM. Mouse Fem1b interacts with the Nkx3.1 homeoprotein and is required for proper male secondary sexual development. Dev Dyn 2008; 237:2963-72. [PMID: 18816836 PMCID: PMC2779857 DOI: 10.1002/dvdy.21694] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies of epithelial cell growth and differentiation in the prostate gland have identified the homeodomain protein Nkx3.1 as a central regulator of prostate development and carcinogenesis. To understand the molecular mechanisms of Nkx3.1 function, we have used yeast two-hybrid analysis to identify Nkx3.1 interacting proteins, and have isolated Fem1b, a mammalian homolog of the C. elegans sex-determining gene Fem-1. In mice, the Fem1b and Nkx3.1 genes encode proteins that interact in glutathione-S-transferase (GST) pull-down and co-immunoprecipitation assays, and are co-expressed in the prostate and testis of neonatal mice. Null mutants for Fem1b generated by gene targeting display defects in prostate ductal morphogenesis and secretory protein expression, similar to phenotypes found in Nkx3.1 mutants. We propose that Fem1b may have a conserved role in the generation of sexual dimorphism through its interaction with Nkx3.1 in the developing prostate gland.
Collapse
Affiliation(s)
- Xi Wang
- Center for Advanced Biotechnology and Medicine, Departments of Pediatrics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Departments of Medicine and Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Nishita Desai
- Center for Advanced Biotechnology and Medicine, Departments of Pediatrics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Ya-Ping Hu
- Center for Advanced Biotechnology and Medicine, Departments of Pediatrics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Sandy M. Price
- Center for Advanced Biotechnology and Medicine, Departments of Pediatrics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Cory Abate-Shen
- Center for Advanced Biotechnology and Medicine, Departments of Pediatrics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Department of Urology, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032
| | - Michael M. Shen
- Center for Advanced Biotechnology and Medicine, Departments of Pediatrics, UMDNJ–Robert Wood Johnson Medical School, Piscataway, NJ 08854
- Departments of Medicine and Genetics & Development, Herbert Irving Comprehensive Cancer Center, Columbia University College of Physicians and Surgeons, New York, NY 10032
| |
Collapse
|
40
|
Nuclear localization, DNA binding and restricted expression in neural and germ cells of zebrafish Dmrt3. Biol Cell 2008; 100:453-63. [PMID: 18282142 DOI: 10.1042/bc20070114] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The DM (doublesex and male aberrant-3) genes implicated in sexual development in diverse metazoan organisms have been proved to be involved in development of non-gonadal tissues. The aim of the present study was to identify and characterize Dmrt3 (DM-related transcription factor 3) of zebrafish. RESULTS Zebrafish Dmrt3 has a conserved DMA domain, besides a common DM domain, which clustered it into the DMRTA subfamily. During embryogenesis, Dmrt3 expression increases gradually to a high level at pharyngula stage, which is restricted to the olfactory placode and the neural tube. In the juvenile zebrafish, the gene expression is first detected in undifferentiated gonad on 17 dpf (day post-fertilization). In adult, Dmrt3 is expressed only in the developing germ cells of both gonads, mainly in spermatogonia, spermatocytes and developing oocytes. The Dmrt3 has a functional NLS (nuclear localization signal) K(41)GHKR(45) within the DM domain, which ensures that Dmrt3 exerts its role in the nucleus. Moreover, EMSA (electrophoretic mobility-shift assay) indicates that the Dmrt3-derived DM polypeptide binds to similar sites of both targets of DSX (doublesex) and MAB-3 (male aberrant-3). CONCLUSION These results suggest that as a DNA-binding protein, zebrafish Dmrt3 may function in the nucleus as a potential transcription factor to exert potential roles in the development of the olfactory placode, the neural tube and germ cells.
Collapse
|
41
|
Hunt PA, Hassold TJ. Human female meiosis: what makes a good egg go bad? Trends Genet 2008; 24:86-93. [PMID: 18192063 DOI: 10.1016/j.tig.2007.11.010] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 11/19/2007] [Accepted: 11/19/2007] [Indexed: 11/26/2022]
Abstract
Critical events of oogenesis occur during three distinct developmental stages: meiotic initiation in the fetal ovary, follicle formation in the perinatal period, and oocyte growth and maturation in the adult. Evidence from studies in humans and mice suggests that the genetic quality of the egg may be influenced by events at each of these stages. Recent experimental studies add additional complexity, suggesting that environmental influences might adversely affect all three stages. Thus, understanding the molecular control of oogenesis during these critical developmental windows will not only contribute to an understanding of human aneuploidy, but also provide a means of assessing potential effects of environmental exposures on human reproductive health.
Collapse
Affiliation(s)
- Patricia A Hunt
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-4660, USA.
| | | |
Collapse
|
42
|
Hong CS, Park BY, Saint-Jeannet JP. The function of Dmrt genes in vertebrate development: It is not just about sex. Dev Biol 2007; 310:1-9. [PMID: 17720152 DOI: 10.1016/j.ydbio.2007.07.035] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/25/2007] [Accepted: 07/25/2007] [Indexed: 11/29/2022]
Abstract
The Dmrt genes encode a large family of transcription factors whose function in sexual development has been well studied in invertebrates and vertebrates. Their expression pattern is not restricted to the developing gonads, indicating that Dmrt genes might regulate other developmental processes. Here we review the expression pattern of several members of this family across species and summarize recent findings on the function of a subset of these genes in non-gonadal tissues.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
43
|
Vertebrate DM domain proteins bind similar DNA sequences and can heterodimerize on DNA. BMC Mol Biol 2007; 8:58. [PMID: 17605809 PMCID: PMC1931443 DOI: 10.1186/1471-2199-8-58] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Accepted: 07/02/2007] [Indexed: 11/29/2022] Open
Abstract
Background: The DM domain is a zinc finger-like DNA binding motif first identified in the sexual regulatory proteins Doublesex (DSX) and MAB-3, and is widely conserved among metazoans. DM domain proteins regulate sexual differentiation in at least three phyla and also control other aspects of development, including vertebrate segmentation. Most DM domain proteins share little similarity outside the DM domain. DSX and MAB-3 bind partially overlapping DNA sequences, and DSX has been shown to interact with DNA via the minor groove without inducing DNA bending. DSX and MAB-3 exhibit unusually high DNA sequence specificity relative to other minor groove binding proteins. No detailed analysis of DNA binding by the seven vertebrate DM domain proteins, DMRT1-DMRT7 has been reported, and thus it is unknown whether they recognize similar or diverse DNA sequences. Results: We used a random oligonucleotide in vitro selection method to determine DNA binding sites for six of the seven proteins. These proteins selected sites resembling that of DSX despite differences in the sequence of the DM domain recognition helix, but they varied in binding efficiency and in preferences for particular nucleotides, and some behaved anomalously in gel mobility shift assays. DMRT1 protein from mouse testis extracts binds the sequence we determined, and the DMRT proteins can bind their in vitro-defined sites in transfected cells. We also find that some DMRT proteins can bind DNA as heterodimers. Conclusion: Our results suggest that target gene specificity of the DMRT proteins does not derive exclusively from major differences in DNA binding specificity. Instead target specificity may come from more subtle differences in DNA binding preference between different homodimers, together with differences in binding specificity between homodimers versus heterodimers.
Collapse
|
44
|
Kim S, Namekawa SH, Niswander LM, Ward JO, Lee JT, Bardwell VJ, Zarkower D. A mammal-specific Doublesex homolog associates with male sex chromatin and is required for male meiosis. PLoS Genet 2007; 3:e62. [PMID: 17447844 PMCID: PMC1853120 DOI: 10.1371/journal.pgen.0030062] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2007] [Accepted: 03/06/2007] [Indexed: 11/25/2022] Open
Abstract
Gametogenesis is a sexually dimorphic process requiring profound differences in germ cell differentiation between the sexes. In mammals, the presence of heteromorphic sex chromosomes in males creates additional sex-specific challenges, including incomplete X and Y pairing during meiotic prophase. This triggers formation of a heterochromatin domain, the XY body. The XY body disassembles after prophase, but specialized sex chromatin persists, with further modification, through meiosis. Here, we investigate the function of DMRT7, a mammal-specific protein related to the invertebrate sexual regulators Doublesex and MAB-3. We find that DMRT7 preferentially localizes to the XY body in the pachytene stage of meiotic prophase and is required for male meiosis. In Dmrt7 mutants, meiotic pairing and recombination appear normal, and a transcriptionally silenced XY body with appropriate chromatin marks is formed, but most germ cells undergo apoptosis during pachynema. A minority of mutant cells can progress to diplonema, but many of these escaping cells have abnormal sex chromatin lacking histone H3K9 di- and trimethylation and heterochromatin protein 1β accumulation, modifications that normally occur between pachynema and diplonema. Based on the localization of DMRT7 to the XY body and the sex chromatin defects observed in Dmrt7 mutants, we conclude that DMRT7 plays a role in the sex chromatin transformation that occurs between pachynema and diplonema. We suggest that DMRT7 may help control the transition from meiotic sex chromosome inactivation to postmeiotic sex chromatin in males. In addition, because it is found in all branches of mammals, but not in other vertebrates, Dmrt7 may shed light on evolution of meiosis and of sex chromatin. Genes related to the sexual regulator Doublesex of Drosophila have been found to control sexual development in a wide variety of animals, ranging from roundworms to mammals. In this paper, we investigate the function of the Dmrt7 gene, one of seven related genes in the mouse. Female mammals are XX and males are XY, a chromosomal difference that presents specific challenges during the meiotic phase of male germ cell development. Some of these are thought to be overcome by incorporating the X and Y chromosomes into a specialized structure called the XY body. We find that DMRT7 protein is present in germ cells, localizes to the male XY body during meiosis, and is essential for male but not female fertility. The XY body normally is altered by recruitment of additional proteins and by specific modifications to histone proteins between the pachytene and diplotene stages of meiosis, but modification of the “sex chromatin” in Dmrt7 mutant cells is abnormal during this period. Because Dmrt7 is found in all branches of mammals, but not in other vertebrates, these results may indicate some commonality in regulation of sex chromatin among the mammals.
Collapse
Affiliation(s)
- Shinseog Kim
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Satoshi H Namekawa
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lisa M Niswander
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Jeremy O Ward
- Department of Biology, Middlebury College, Middlebury, Vermont, United States of America
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vivian J Bardwell
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Biochemistry, Molecular Biology, and Biophysics Graduate Program, University of Minnesota, Minneapolis, Minnesota, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Solomon BD, Turner CE, Klugman D, Sparks SE. Trisomy 9 mosaicism and XX sex reversal. Am J Med Genet A 2007; 143A:2688-91. [DOI: 10.1002/ajmg.a.31996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|