1
|
Kästle M, Merten C, Hartig R, Plaza-Sirvent C, Schmitz I, Bommhardt U, Schraven B, Simeoni L. Type of PaperY192 within the SH2 Domain of Lck Regulates TCR Signaling Downstream of PLC-γ1 and Thymic Selection. Int J Mol Sci 2022; 23:ijms23137271. [PMID: 35806279 PMCID: PMC9267008 DOI: 10.3390/ijms23137271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Signaling via the TCR, which is initiated by the Src-family tyrosine kinase Lck, is crucial for the determination of cell fates in the thymus. Because of its pivotal role, ablation of Lck results in a profound block of T-cell development. Here, we show that, in addition to its well-known function in the initiation of TCR signaling, Lck also acts at a more downstream level. This novel function of Lck is determined by the tyrosine residue (Y192) located in its SH2 domain. Thymocytes from knock-in mice expressing a phosphomimetic Y192E mutant of Lck initiate TCR signaling upon CD3 cross-linking up to the level of PLC-γ1 phosphorylation. However, the activation of downstream pathways including Ca2+ influx and phosphorylation of Erk1/2 are impaired. Accordingly, positive and negative selections are blocked in LckY192E knock-in mice. Collectively, our data indicate that Lck has a novel function downstream of PLCγ-1 in the regulation of thymocyte differentiation and selection.
Collapse
Affiliation(s)
- Matthias Kästle
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Camilla Merten
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Roland Hartig
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
| | - Carlos Plaza-Sirvent
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ingo Schmitz
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Department of Molecular Immunology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ursula Bommhardt
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| | - Luca Simeoni
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; (M.K.); (C.M.); (R.H.); (C.P.-S.); (I.S.); (U.B.)
- Health Campus Immunology, Infectiology and Inflammation (GC-I3), Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
- Center for Health and Medical Prevention (CHaMP), Otto-von-Guericke University, 39120 Magdeburg, Germany
- Correspondence: (B.S.); (L.S.)
| |
Collapse
|
2
|
Ashouri JF, Lo W, Nguyen TTT, Shen L, Weiss A. ZAP70, too little, too much can lead to autoimmunity*. Immunol Rev 2021; 307:145-160. [PMID: 34923645 PMCID: PMC8986586 DOI: 10.1111/imr.13058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 12/21/2022]
Abstract
Establishing both central and peripheral tolerance requires the appropriate TCR signaling strength to discriminate self‐ from agonist‐peptide bound to self MHC molecules. ZAP70, a cytoplasmic tyrosine kinase, directly interacts with the TCR complex and plays a central and requisite role in TCR signaling in both thymocytes and peripheral T cells. By studying ZAP70 hypomorphic mutations in mice and humans with a spectrum of hypoactive or hyperactive activities, we have gained insights into mechanisms of central and peripheral tolerance. Interestingly, both hypoactive and hyperactive ZAP70 can lead to the development of autoimmune diseases, albeit through distinct mechanisms. Immature thymocytes and mature T cells rely on normal ZAP70 function to complete their development in the thymus and to modulate T cell responses in the periphery. Hypoactive ZAP70 function compromises key developmental checkpoints required to establish central tolerance, allowing thymocytes with potentially self‐reactive TCRs a greater chance to escape negative selection. Such ‘forbidden clones’ may escape into the periphery and may pose a greater risk for autoimmune disease development since they may not engage negative regulatory mechanisms as effectively. Hyperactive ZAP70 enhances thymic negative selection but some thymocytes will, nonetheless, escape negative selection and have greater sensitivity to weak and self‐ligands. Such cells must be controlled by mechanisms involved in anergy, expansion of Tregs, and upregulation of inhibitory receptors or signaling molecules. However, such potentially autoreactive cells may still be able to escape control by peripheral negative regulatory constraints. Consistent with findings in Zap70 mutants, the signaling defects in at least one ZAP70 substrate, LAT, can also lead to autoimmune disease. By dissecting the similarities and differences among mouse models of patient disease or mutations in ZAP70 that affect TCR signaling strength, we have gained insights into how perturbed ZAP70 function can lead to autoimmunity. Because of our work and that of others on ZAP70, it is likely that perturbations in other molecules affecting TCR signaling strength will be identified that also overcome tolerance mechanisms and cause autoimmunity. Delineating these molecular pathways could lead to the development of much needed new therapeutic targets in these complex diseases.
Collapse
Affiliation(s)
- Judith F. Ashouri
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Wan‐Lin Lo
- Division of Microbiology and Immunology Department of Pathology University of Utah Salt Lake City Utah USA
| | - Trang T. T. Nguyen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Lin Shen
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
| | - Arthur Weiss
- Department of Medicine Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center University of California, San Francisco San Francisco California USA
- Howard Hughes Medical Institute University of California, San Francisco San Francisco California USA
| |
Collapse
|
3
|
Lo WL, Weiss A. Adapting T Cell Receptor Ligand Discrimination Capability via LAT. Front Immunol 2021; 12:673196. [PMID: 33936119 PMCID: PMC8085316 DOI: 10.3389/fimmu.2021.673196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 03/29/2021] [Indexed: 12/19/2022] Open
Abstract
Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αβ T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αβ T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.
Collapse
Affiliation(s)
- Wan-Lin Lo
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Arthur Weiss
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Noncanonical binding of Lck to CD3ε promotes TCR signaling and CAR function. Nat Immunol 2020; 21:902-913. [PMID: 32690949 DOI: 10.1038/s41590-020-0732-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/08/2020] [Indexed: 11/09/2022]
Abstract
Initiation of T cell antigen receptor (TCR) signaling involves phosphorylation of CD3 cytoplasmic tails by the tyrosine kinase Lck. How Lck is recruited to the TCR to initiate signaling is not well known. We report a previously unknown binding motif in the CD3ε cytoplasmic tail that interacts in a noncanonical mode with the Lck SH3 domain: the receptor kinase (RK) motif. The RK motif is accessible only upon TCR ligation, demonstrating how ligand binding leads to Lck recruitment. Binding of the Lck SH3 domain to the exposed RK motif resulted in local augmentation of Lck activity, CD3 phosphorylation, T cell activation and thymocyte development. Introducing the RK motif into a well-characterized 41BB-based chimeric antigen receptor enhanced its antitumor function in vitro and in vivo. Our findings underscore how a better understanding of the functioning of the TCR might promote rational improvement of chimeric antigen receptor design for the treatment of cancer.
Collapse
|
5
|
Lck promotes Zap70-dependent LAT phosphorylation by bridging Zap70 to LAT. Nat Immunol 2018; 19:733-741. [PMID: 29915297 PMCID: PMC6202249 DOI: 10.1038/s41590-018-0131-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/18/2018] [Indexed: 12/23/2022]
Abstract
T cell-antigen receptor (TCR) signaling requires the sequential activities of the kinases Lck and Zap70. Upon TCR stimulation, Lck phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation of Zap70. Lck binds and stabilizes phosho-Zap70 by using its SH2 domain, and Zap70 phosphorylates the critical adaptors LAT and SLP76, which coordinate downstream signaling. It is unclear whether phosphorylation of these adaptors occurs through passive diffusion or active recruitment. We report the discovery of a conserved proline-rich motif in LAT that mediates efficient LAT phosphorylation. Lck associates with this motif via its SH3 domain, and with phospho-Zap70 via its SH2 domain, thereby acting as a molecular bridge that facilitates the colocalization of Zap70 and LAT. Elimination of this proline-rich motif compromises TCR signaling and T cell development. These results demonstrate the remarkable multifunctionality of Lck, wherein each of its domains has evolved to orchestrate a distinct step in TCR signaling.
Collapse
|
6
|
Belmont J, Gu T, Mudd A, Salomon AR. A PLC-γ1 Feedback Pathway Regulates Lck Substrate Phosphorylation at the T-Cell Receptor and SLP-76 Complex. J Proteome Res 2017. [PMID: 28644030 DOI: 10.1021/acs.jproteome.6b01026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Phospholipase C gamma 1 (PLC-γ1) occupies a critically important position in the T-cell signaling pathway. While its functions as a regulator of both Ca2+ signaling and PKC-family kinases are well characterized, PLC-γ1's role in the regulation of early T-cell receptor signaling events is incompletely understood. Activation of the T-cell receptor leads to the formation of a signalosome complex between SLP-76, LAT, PLC-γ1, Itk, and Vav1. Recent studies have revealed the existence of both positive and negative feedback pathways from SLP-76 to the apical kinase in the pathway, Lck. To determine if PLC-γ1 contributes to the regulation of these feedback networks, we performed a quantitative phosphoproteomic analysis of PLC-γ1-deficient T cells. These data revealed a previously unappreciated role for PLC-γ1 in the positive regulation of Zap-70 and T-cell receptor tyrosine phosphorylation. Conversely, PLC-γ1 negatively regulated the phosphorylation of SLP-76-associated proteins, including previously established Lck substrate phosphorylation sites within this complex. While the positive and negative regulatory phosphorylation sites on Lck were largely unchanged, Tyr192 phosphorylation was elevated in Jgamma1. The data supports a model wherein Lck's targeting, but not its kinase activity, is altered by PLC-γ1, possibly through Lck Tyr192 phosphorylation and increased association of the kinase with protein scaffolds SLP-76 and TSAd.
Collapse
Affiliation(s)
- Judson Belmont
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Tao Gu
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Ashley Mudd
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States
| | - Arthur R Salomon
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University , Providence, Rhode Island 02912, United States.,Department of Chemistry, Brown University , Providence, Rhode Island 02912, United States
| |
Collapse
|
7
|
Tomar N, De RK. A model of an integrated immune system pathway in Homo sapiens and its interaction with superantigen producing expression regulatory pathway in Staphylococcus aureus: comparing behavior of pathogen perturbed and unperturbed pathway. PLoS One 2013; 8:e80918. [PMID: 24324645 PMCID: PMC3855681 DOI: 10.1371/journal.pone.0080918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/17/2013] [Indexed: 11/19/2022] Open
Abstract
Response of an immune system to a pathogen attack depends on the balance between the host immune defense and the virulence of the pathogen. Investigation of molecular interactions between the proteins of a host and a pathogen helps in identifying the pathogenic proteins. It is necessary to understand the dynamics of a normally behaved host system to evaluate the capacity of its immune system upon pathogen attack. In this study, we have compared the behavior of an unperturbed and pathogen perturbed host system. Moreover, we have developed a formalism under Flux Balance Analysis (FBA) for the optimization of conflicting objective functions. We have constructed an integrated pathway system, which includes Staphylococcal Superantigen (SAg) expression regulatory pathway and TCR signaling pathway of Homo sapiens. We have implemented the method on this pathway system and observed the behavior of host signaling molecules upon pathogen attack. The entire study has been divided into six different cases, based on the perturbed/unperturbed conditions. In other words, we have investigated unperturbed and pathogen perturbed human TCR signaling pathway, with different combinations of optimization of concentrations of regulatory and signaling molecules. One of these cases has aimed at finding out whether minimization of the toxin production in a pathogen leads to the change in the concentration levels of the proteins coded by TCR signaling pathway genes in the infected host. Based on the computed results, we have hypothesized that the balance between TCR signaling inhibitory and stimulatory molecules can keep TCR signaling system into resting/stimulating state, depending upon the perturbation. The proposed integrated host-pathogen interaction pathway model has accurately reflected the experimental evidences, which we have used for validation purpose. The significance of this kind of investigation lies in revealing the susceptible interaction points that can take back the Staphylococcal Enterotoxin (SE)-challenged system within the range of normal behavior.
Collapse
Affiliation(s)
- Namrata Tomar
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Rajat K. De
- Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
8
|
Filipp D, Ballek O, Manning J. Lck, Membrane Microdomains, and TCR Triggering Machinery: Defining the New Rules of Engagement. Front Immunol 2012; 3:155. [PMID: 22701458 PMCID: PMC3372939 DOI: 10.3389/fimmu.2012.00155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/25/2012] [Indexed: 11/21/2022] Open
Abstract
In spite of a comprehensive understanding of the schematics of T cell receptor (TCR) signaling, the mechanisms regulating compartmentalization of signaling molecules, their transient interactions, and rearrangement of membrane structures initiated upon TCR engagement remain an outstanding problem. These gaps in our knowledge are exemplified by recent data demonstrating that TCR triggering is largely dependent on a preactivated pool of Lck concentrated in T cells in a specific type of membrane microdomains. Our current model posits that in resting T cells all critical components of TCR triggering machinery including TCR/CD3, Lck, Fyn, CD45, PAG, and LAT are associated with distinct types of lipid-based microdomains which represent the smallest structural and functional units of membrane confinement able to negatively control enzymatic activities and substrate availability that is required for the initiation of TCR signaling. In addition, the microdomains based segregation spatially limits the interaction of components of TCR triggering machinery prior to the onset of TCR signaling and allows their rapid communication and signal amplification after TCR engagement, via the process of their coalescence. Microdomains mediated compartmentalization thus represents an essential membrane organizing principle in resting T cells. The integration of these structural and functional aspects of signaling into a unified model of TCR triggering will require a deeper understanding of membrane biology, novel interdisciplinary approaches and the generation of specific reagents. We believe that the fully integrated model of TCR signaling must be based on membrane structural network which provides a proper environment for regulatory processes controlling TCR triggering.
Collapse
Affiliation(s)
- Dominik Filipp
- Laboratory of Immunobiology, Institute of Molecular Genetics AS CR Prague, Czech Republic
| | | | | |
Collapse
|
9
|
Kumar S, Naqvi RA, Khanna N, Rao DN. Disruption of HLA-DR raft, deregulations of Lck-ZAP-70-Cbl-b cross-talk and miR181a towards T cell hyporesponsiveness in leprosy. Mol Immunol 2011; 48:1178-90. [PMID: 21453975 DOI: 10.1016/j.molimm.2011.02.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 11/27/2022]
Abstract
Leprosy, a chronic human disease, results from infection of Mycobacterium leprae. Defective CMI and T cell hyporesponsiveness are the major hallmark of M. leprae pathogenesis. The present study demonstrates immunological-deregulations that eventually lead to T cell anergy/hyporesponsiveness in M. lepare infection. We firstly, evaluated the membrane fluidity and antigen-presenting-lipid-raft (HLA-DR) on macrophages of leprosy patients using fluorescence anisotropy and confocal microscopy, respectively. Increased membrane fluidity and raft-out localizations of over-expressed HLA-DR towards BL/LL pole are pinpointed as major defects, may be leading to defective antigen presentation in leprosy. Furthermore, altered expression and localization of Lck, ZAP-70, etc. and their deregulated cross talks with negative regulators (CD45, Cbl-b and SHP2) turned out to be the major putative reason(s) leading to T cell hyporesponsiveness in leprosy. Deregulations of Lck-ZAP-70 cross-talk in T cells were found to be associated with cholesterol-dependent-dismantling of HLA-DR rafts in macrophages in leprosy progression. Increased molecular interactions between Cbl-b and Lck/ZAP-70 and their subsequent degradation via ubiquitinization pathway, as result of high expression of Cbl-b, were turned out to be one of the principal underlying reason leading to T cell anergy in leprosy patients. Interestingly, overexpression of SHP2 due to gradual losses of miR181a and subsequent dephosphorylation of imperative T cell signaling molecules were emerged out as another important reason associated with prevailing T cell hyporesponsiveness during leprosy progression. Thus, this study for the first time pinpointed overexpression of Cbl-b and expressional losses of miR-181 as important hallmarks of progression of leprosy.
Collapse
Affiliation(s)
- Sudhir Kumar
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | | | | | | |
Collapse
|
10
|
Frawley R, White K, Brown R, Musgrove D, Walker N, Germolec D. Gene expression alterations in immune system pathways in the thymus after exposure to immunosuppressive chemicals. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:371-376. [PMID: 21041162 PMCID: PMC3060001 DOI: 10.1289/ehp.1002358] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 11/01/2010] [Indexed: 05/30/2023]
Abstract
BACKGROUND Dysregulation of positive and negative selection, antigen presentation, or apoptosis in the thymus can lead to immunosuppression or autoimmunity. Diethylstilbestrol (DES), dexamethasone (DEX), cyclophosphamide (CPS), and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are immunosuppressive chemicals that induce similar immunotoxic effects in the thymus, however, the mechanism of toxicity is purported to be different for each compound. OBJECTIVES We hypothesized that genomic analysis of thymus after chemical-induced atrophy would yield transcriptional profiles that suggest pathways of toxicity associated with reduced function. METHODS Female B6C3F1 mice were exposed to these immunosuppressive agents and changes in gene expression and immune cell subpopulations were evaluated. RESULTS All four chemicals induced thymic atrophy and changes in both the relative proportion and absolute number of CD3(+), CD4(+)/CD8(-), CD4(-)/CD8(+), and CD4(+)/CD8(+) thymocytes. The most significant impact of exposure to DEX, DES, and CPS was modulation of gene expression in the T-cell receptor (TCR) complex and TCR and CD28 signaling pathways; this could represent a common mechanism of action and play a pivotal role in lineage commitment and development of T cells. Up-regulation of genes associated with the antigen presentation and dendritic cell maturation pathways was the most distinctive effect of TCDD exposure. These elements, which were also up-regulated by DEX and DES, contribute to positive and negative selection. CONCLUSIONS Genomic analysis revealed gene expression changes in several pathways that are commonly associated with xenobiotic-induced immune system perturbations, particularly those that contribute to the development and maturation of thymic T cells.
Collapse
Affiliation(s)
- Rachel Frawley
- National Institute of Environmental Health Sciences, National Toxicology Program, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Mislocalization of Lck impairs thymocyte differentiation and can promote development of thymomas. Blood 2010; 117:108-17. [PMID: 20876849 DOI: 10.1182/blood-2010-03-277160] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
T-cell development is critically dependent on the activities of the Src-family kinases p56(lck) and p59(fyn). While Lck plays a dominant role in the initiation of T-cell receptor (TCR) signaling and in thymocyte differentiation, Fyn plays a more subtle regulatory role. We sought to determine the role of intracellular localization in the differing functions of Lck and Fyn in T cells. By generating transgenic mice that express chimeric Lck-Fyn proteins, we showed that the N-terminal unique domain determines the intracellular localization and function of Lck in pre-TCR and mature αβTCR signaling in vivo. Furthermore, coexpression of a "domain-swap" Lck protein containing the Fyn unique domain with an inducible Lck transgene resulted in the development of thymomas. In contrast to previous reports of Lck-driven thymomas, tumor development was dependent on either pre-TCR or mature TCR signals, and was completely ablated when mice were crossed to a recombination activating gene 1 (Rag1)-deficient background. These data provide a mechanistic basis for the differing roles of Lck and Fyn in T-cell development, and show that intracellular localization as determined by the N-terminal unique domains is critical for Src-family kinase function in vivo.
Collapse
|
12
|
McCoy ME, Finkelman FD, Straus DB. Th2-specific immunity and function of peripheral T cells is regulated by the p56Lck Src homology 3 domain. THE JOURNAL OF IMMUNOLOGY 2010; 185:3285-94. [PMID: 20729329 DOI: 10.4049/jimmunol.0900027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
T cell activation and effector function is essential for robust immunity. Ag TCR signals are known to regulate T lymphocyte differentiation, but the mechanisms involved in this regulation remain unclear. Recent work has demonstrated that the Src family protein tyrosine kinase p56Lck specifically links TCR signaling to activation of the MAPK pathway through the function of its Src homology 3 (SH3) domain. The MAPK pathway is involved in T cell activation and has previously been implicated in Th2 immunity. We have used Lck SH3 mutant knockin mice (LckW97A) to investigate the potential role of this regulatory mechanism in T lymphocyte activation and effector function. Our results demonstrate that Lck SH3 domain function regulates activation of T lymphocytes as indicated by reduced IL-2 production, CD69 induction, and proliferation of LckW97A T cells following TCR stimulation. Biochemical studies confirm that activation of the MAPK pathway is selectively altered following TCR ligation in LckW97A T lymphocytes. Phospho-ERK induction is reduced, but phospho-phospholipase Cgamma1 induction and calcium mobilization are largely unaffected. Immunization with DNP-keyhole limpet hemocyanin, heat-killed Brucella abortus, or infection with Nippostrongylus brasiliensis demonstrates selectively impaired Th2 immunity with reduced serum levels of IgG1, IgE, and IL-4. In vitro studies show that LckW97A T cells can differentiate into Th2-type cells, but they form IFN-gamma-producing cells under conditions that normally favor Th2 development. These data indicate that the Lck SH3 domain controls T lymphocyte activation by regulating MAPK pathway induction and demonstrate a novel role for Lck in the regulation of Th2-type immunity.
Collapse
Affiliation(s)
- Margaret E McCoy
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | | | |
Collapse
|
13
|
Salmond RJ, Filby A, Qureshi I, Caserta S, Zamoyska R. T-cell receptor proximal signaling via the Src-family kinases, Lck and Fyn, influences T-cell activation, differentiation, and tolerance. Immunol Rev 2009; 228:9-22. [PMID: 19290918 DOI: 10.1111/j.1600-065x.2008.00745.x] [Citation(s) in RCA: 273] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
T-cell development in the thymus and activation of mature T cells in secondary lymphoid organs requires the ability of cells to respond appropriately to environmental signals at multiple stages of their development. The process of thymocyte selection insures a functional T-cell repertoire, while activation of naive peripheral T cells induces proliferation, gain of effector function, and, ultimately, long-lived T-cell memory. The T-cell immune response is initiated upon engagement of the T-cell receptor (TCR) and coreceptor, CD4 or CD8, by cognate antigen/major histocompatibility complexes presented by antigen-presenting cells. TCR/coreceptor engagement induces the activation of biochemical signaling pathways that, in combination with signals from costimulator molecules and cytokine receptors, direct the outcome of the response. Activation of the src-family kinases p56(lck) (Lck) and p59(fyn) (Fyn) is central to the initiation of TCR signaling pathways. This review focuses on our current understanding of the mechanisms by which these two proteins orchestrate T-cell function.
Collapse
Affiliation(s)
- Robert J Salmond
- Molecular Immunology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, UK
| | | | | | | | | |
Collapse
|
14
|
Falahati R, Leitenberg D. Selective regulation of TCR signaling pathways by the CD45 protein tyrosine phosphatase during thymocyte development. THE JOURNAL OF IMMUNOLOGY 2009; 181:6082-91. [PMID: 18941197 DOI: 10.4049/jimmunol.181.9.6082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In CD45-deficient animals, there is a severe defect in thymocyte-positive selection, resulting in an absence of mature T cells and the accumulation of thymocytes at the DP stage of development. However, the signaling defect(s) responsible for the block in development of mature single-positive T cells is not well characterized. Previous studies have found that early signal transduction events in CD45-deficient cell lines and thymocytes are markedly diminished following stimulation with anti-CD3. Nevertheless, there are also situations in which T cell activation and TCR signaling events can be induced in the absence of CD45. For example, CD45-independent TCR signaling can be recovered upon simultaneous Ab cross-linking of CD3 and CD4 compared with cross-linking of CD3 alone. These data suggest that CD45 may differentially regulate TCR signaling events depending on the nature of the signal and/or on the differentiation state of the cell. In the current study, we have assessed the role of CD45 in regulating primary thymocyte activation following physiologic stimulation with peptide. Unlike CD3-mediated stimulation, peptide stimulation of CD45-deficient thymocytes induces diminished, but readily detectable TCR-mediated signaling events, such as phosphorylation of TCR-associated zeta, ZAP70, linker for activation of T cells, and Akt, and increased intracellular calcium concentration. In contrast, phosphorylation of ERK, which is essential for positive selection, is more severely affected in the absence of CD45. These data suggest that CD45 has a selective role in regulating different aspects of T cell activation.
Collapse
Affiliation(s)
- Rustom Falahati
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC 20037, USA
| | | |
Collapse
|
15
|
The SH3 domain of Lck modulates T-cell receptor-dependent activation of extracellular signal-regulated kinase through activation of Raf-1. Mol Cell Biol 2007; 28:630-41. [PMID: 17998336 DOI: 10.1128/mcb.00150-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the T-cell antigen receptor (TCR) results in the proximal activation of the Src family tyrosine kinase Lck. The activation of Lck leads to the downstream activation of the Ras/Raf/MEK/ERK signaling pathway (where ERK is extracellular signal-related kinase). Under conditions of weak, but not strong, stimulation through the TCR, a version of Lck that contains a single point mutation in the SH3 (Src homology 3) domain (W97ALck) fails to support the activation of ERK, despite initiating signaling through the TCR, as demonstrated by the robust activation of ZAP-70, PLC-gamma, and Ras. We determined that the signaling lesion in W97ALck-expressing cells lies at the level of Raf-1 activation and is dependent on the presence of tyrosines 340/341 in the Raf-1 sequence. These data demonstrate a second function for Lck in TCR-mediated signaling to ERK. Additionally, we found that a significant fraction of Lck is localized to the Golgi apparatus and that, compared with wild-type Lck, W97ALck displays aberrant Golgi membrane localization. Our results support a model where under conditions of weak stimulation through the TCR, in addition to activated Ras, Golgi apparatus-localized Lck is needed for the full activation of Raf-1.
Collapse
|