1
|
Ohtsuka H, Kawai S, Ito Y, Kato Y, Shimasaki T, Imada K, Otsubo Y, Yamashita A, Mishiro‐Sato E, Kuwata K, Aiba H. Novel TORC1 inhibitor Ecl1 is regulated by phosphorylation in fission yeast. Aging Cell 2025; 24:e14450. [PMID: 39910760 PMCID: PMC11984688 DOI: 10.1111/acel.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 02/07/2025] Open
Abstract
Extender of chronological lifespan 1 (Ecl1) inhibits target of rapamycin complex 1 (TORC1) and is necessary for appropriate cellular responses to various stressors, such as starvation, in fission yeast. However, little is known about the effect of posttranslational modifications on Ecl1 regulation. Thus, we investigated the phosphorylation levels of Ecl1 extracted from yeast under conditions of sulfur or metal starvation. Mass spectrometry analysis revealed that Ecl1 was phosphorylated at Thr7, and the level was decreased by starvation. The phosphorylation-mimetic mutation of Thr7 significantly reduced the effects of Ecl1-induced cellular responses to starvation, suggesting that Ecl1 function was suppressed by Thr7 phosphorylation. By contrast, regardless of starvation exposure, TORC1 was significantly suppressed, even when Thr7 phosphorylation-mimetic Ecl1 was overexpressed. This indicated that Ecl1 suppressed TORC1 regardless of Thr7 phosphorylation. We newly identified that Ecl1 physically interacted with TORC1 subunit RAPTOR (Mip1). Based on these evidences, we propose that, Ecl1 has dual functional modes: quantity-dependent TORC1 inhibition and Thr7 phosphorylation-dependent control of cellular function.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Sawa Kawai
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yurika Ito
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Yuka Kato
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Takafumi Shimasaki
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Kazuki Imada
- Department of Chemistry and BiochemistrySuzuka College, National Institute of Technology (KOSEN)SuzukaJapan
- Department of Biology, Graduate School of ScienceOsaka City UniversityOsakaJapan
| | - Yoko Otsubo
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Life Science NetworkThe University of TokyoTokyoJapan
| | - Akira Yamashita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Emi Mishiro‐Sato
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Keiko Kuwata
- Institute of Transformative bio‐MoleculesTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| | - Hirofumi Aiba
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Laboratory of Molecular MicrobiologyTokai National Higher Education and Research System, Nagoya UniversityNagoyaJapan
| |
Collapse
|
2
|
Adams-Brown SE, Reid KZ. The Central FacilitaTOR: Coordinating Transcription and Translation in Eukaryotes. Int J Mol Sci 2025; 26:2845. [PMID: 40243440 PMCID: PMC11989106 DOI: 10.3390/ijms26072845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
One of the biggest challenges to eukaryotic gene expression is coordinating transcription in the nucleus and protein synthesis in the cytoplasm. However, little is known about how these major steps in gene expression are connected. The Target of Rapamycin (TOR) signaling pathway is crucial in connecting these critical phases of gene expression. Highly conserved among eukaryotic cells, TOR regulates growth, metabolism, and cellular equilibrium in response to changes in nutrients, energy levels, and stress conditions. This review examines the extensive role of TOR in gene expression regulation. We highlight how TOR is involved in phosphorylation, remodeling chromatin structure, and managing the factors that facilitate transcription and translation. Furthermore, the critical functions of TOR extend to processing RNA, assembling RNA-protein complexes, and managing their export from the nucleus, demonstrating its wide-reaching impact throughout the cell. Our discussion emphasizes the integral roles of TOR in bridging the processes of transcription and translation and explores how it orchestrates these complex cellular processes.
Collapse
Affiliation(s)
| | - Ke Zhang Reid
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| |
Collapse
|
3
|
Dang W, Wang Z, Li H, Yuan H, Iqbal B, Zhang H. Negative Regulation of Kog1 on Lipid Accumulation in the Oleaginous Fungus Mucor circinelloides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6807-6819. [PMID: 40052636 DOI: 10.1021/acs.jafc.4c12093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Oleaginous microorganisms can produce polyunsaturated fatty acids beneficial to human health through adjusting the nitrogen content in the medium. The target of rapamycin complex 1 (TORC1) is important for nitrogen sensing and then regulates lipid metabolism. However, the function of Kog1, a subunit of TORC1, in TORC1-regulated lipid metabolism in oleaginous microorganisms remains unclear. In this study, the gene kog1 was knocked out to explore the mechanism of lipid accumulation in the oleaginous fungus M. circinelloides under nitrogen-limited and nitrogen-rich conditions. The results showed that the cell dry weight (CDW) of the kog1 deletion mutant was obviously decreased from 22.2 to 15.4 g/L under nitrogen-limited conditions; however, the lipid content markedly increased by 43.2% compared to the control, from 20.8% of CDW to 29.9%. A similar trend was observed under nitrogen-rich conditions; the cell growth was significantly inhibited, the CDW was decreased from 28.6 to 23.0 g/L, and the lipid content increased by 79.6% compared to the control strain, reaching 9.7% of CDW. The addition of rapamycin further enhanced lipid accumulation in the kog1 knockout mutant but not in the tor knockout mutant, indicating that Kog1 is the upstream target of rapamycin (TOR) in regulating lipid regulation. Transcriptional analysis under both nitrogen-limited and nitrogen-rich conditions notably suggested that nitrogen stress may activate Snf1/AMPK to inhibit Kog1, facilitating SREBP-1c nuclear translocation and activating fatty acid biosynthesis genes.
Collapse
Affiliation(s)
- Wenrui Dang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Zhen Wang
- School of public health, Qilu Medical University, Zibo, Shandong 255300, People's Republic of China
| | - Hequn Li
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Hongjuan Yuan
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Bushra Iqbal
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Science, Shandong University of Technology, 266 Xincun West Road, Zibo, Shandong 255000, People's Republic of China
| |
Collapse
|
4
|
Encinar Del Dedo J, Suárez MB, López-San Segundo R, Vázquez-Bolado A, Sun J, García-Blanco N, García P, Tricquet P, Chen JS, Dedon PC, Gould KL, Hidalgo E, Hermand D, Moreno S. The Greatwall-Endosulfine-PP2A/B55 pathway regulates entry into quiescence by enhancing translation of Elongator-tunable transcripts. Nat Commun 2024; 15:10603. [PMID: 39638797 PMCID: PMC11621810 DOI: 10.1038/s41467-024-55004-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
Quiescent cells require a continuous supply of proteins to maintain protein homeostasis. In fission yeast, entry into quiescence is triggered by nitrogen stress, leading to the inactivation of TORC1 and the activation of TORC2. In this study, we demonstrate that the Greatwall-Endosulfine-PPA/B55 pathway connects the downregulation of TORC1 with the upregulation of TORC2, resulting in the activation of Elongator-dependent tRNA modifications crucial for sustaining the translation programme during entry into quiescence. This mechanism promotes U34 and A37 tRNA modifications at the anticodon stem loop, enhancing translation efficiency and fidelity of mRNAs enriched for AAA versus AAG lysine codons. Notably, several of these mRNAs encode TORC1 inhibitors, TORC2 activators, tRNA modifiers, and proteins necessary for telomeric and subtelomeric functions. Therefore, we propose a mechanism by which cells respond to nitrogen stress at the level of translation, involving a coordinated interplay between tRNA epitranscriptome and biased codon usage.
Collapse
Affiliation(s)
- Javier Encinar Del Dedo
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007, Salamanca, Spain.
| | - M Belén Suárez
- Instituto de Biología Funcional y Genómica, University of Salamanca, CSIC, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, University of Salamanca, 37007, Salamanca, Spain
| | - Rafael López-San Segundo
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007, Salamanca, Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007, Salamanca, Spain
| | - Jingjing Sun
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007, Salamanca, Spain
| | - Patricia García
- Instituto de Biología Funcional y Genómica, University of Salamanca, CSIC, 37007, Salamanca, Spain
- Departamento de Microbiología y Genética, University of Salamanca, 37007, Salamanca, Spain
| | - Pauline Tricquet
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Peter C Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathleen L Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Damien Hermand
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur, 5000, Belgium
- The Francis Crick Institute, 1 Midland Road London, London, NW1 1AT, UK
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
5
|
Bérard M, Merlini L, Martin SG. Proteomic and phosphoproteomic analyses reveal that TORC1 is reactivated by pheromone signaling during sexual reproduction in fission yeast. PLoS Biol 2024; 22:e3002963. [PMID: 39705284 PMCID: PMC11750111 DOI: 10.1371/journal.pbio.3002963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/21/2025] [Accepted: 12/02/2024] [Indexed: 12/22/2024] Open
Abstract
Starvation, which is associated with inactivation of the growth-promoting TOR complex 1 (TORC1), is a strong environmental signal for cell differentiation. In the fission yeast Schizosaccharomyces pombe, nitrogen starvation has distinct physiological consequences depending on the presence of mating partners. In their absence, cells enter quiescence, and TORC1 inactivation prolongs their life. In presence of compatible mates, TORC1 inactivation is essential for sexual differentiation. Gametes engage in paracrine pheromone signaling, grow towards each other, fuse to form the diploid zygote, and form resistant, haploid spore progenies. To understand the signaling changes in the proteome and phospho-proteome during sexual reproduction, we developed cell synchronization strategies and present (phospho-)proteomic data sets that dissect pheromone from starvation signals over the sexual differentiation and cell-cell fusion processes. Unexpectedly, these data sets reveal phosphorylation of ribosomal protein S6 during sexual development, which we establish requires TORC1 activity. We demonstrate that TORC1 is re-activated by pheromone signaling, in a manner that does not require autophagy. Mutants with low TORC1 re-activation exhibit compromised mating and poorly viable spores. Thus, while inactivated to initiate the mating process, TORC1 is reactivated by pheromone signaling in starved cells to support sexual reproduction.
Collapse
Affiliation(s)
- Melvin Bérard
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Laura Merlini
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Sophie G. Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Morozumi Y, Hayashi Y, Chu CM, Sofyantoro F, Akikusa Y, Fukuda T, Shiozaki K. Fission yeast Pib2 localizes to vacuolar membranes and regulates TOR complex 1 through evolutionarily conserved domains. FEBS Lett 2024; 598:2886-2896. [PMID: 39010328 DOI: 10.1002/1873-3468.14980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
TOR complex 1 (TORC1) is a multi-protein kinase complex that coordinates cellular growth with environmental cues. Recent studies have identified Pib2 as a critical activator of TORC1 in budding yeast. Here, we show that loss of Pib2 causes severe growth defects in fission yeast cells, particularly when basal TORC1 activity is diminished by hypomorphic mutations in tor2, the gene encoding the catalytic subunit of TORC1. Consistently, TORC1 activity is significantly compromised in the tor2 hypomorphic mutants lacking Pib2. Moreover, as in budding yeast, fission yeast Pib2 localizes to vacuolar membranes via its FYVE domain, with its tail motif indispensable for TORC1 activation. These results strongly suggest that Pib2-mediated positive regulation of TORC1 is evolutionarily conserved between the two yeast species.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yumi Hayashi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Cuong Minh Chu
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Vijayan J, Alvarez S, Naldrett MJ, Morse W, Maliva A, Wase N, Riekhof WR. Nitrogen starvation leads to TOR kinase-mediated downregulation of fatty acid synthesis in the algae Chlorella sorokiniana and Chlamydomonas reinhardtii. BMC PLANT BIOLOGY 2024; 24:753. [PMID: 39107711 PMCID: PMC11302099 DOI: 10.1186/s12870-024-05408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND When subject to stress conditions such as nutrient limitation microalgae accumulate triacylglycerol (TAG). Fatty acid, a substrate for TAG synthesis is derived from de novo synthesis or by membrane remodeling. The model industrial alga Chlorellasorokiniana accumulates TAG and other storage compounds under nitrogen (N)-limited growth. Molecular mechanisms underlying these processes are still to be elucidated. RESULT Previously we used transcriptomics to explore the regulation of TAG synthesis in C. sorokiniana. Surprisingly, our analysis showed that the expression of several key genes encoding enzymes involved in plastidic fatty acid synthesis are significantly repressed. Metabolic labeling with radiolabeled acetate showed that de novo fatty acid synthesis is indeed downregulated under N-limitation. Likewise, inhibition of the Target of Rapamycin kinase (TOR), a key regulator of metabolism and growth, decreased fatty acid synthesis. We compared the changes in proteins and phosphoprotein abundance using a proteomics and phosphoproteomics approach in C. sorokiniana cells under N-limitation or TOR inhibition and found extensive overlap between the N-limited and TOR-inhibited conditions. We also identified changes in the phosphorylation status of TOR complex proteins, TOR-kinase, and RAPTOR, under N-limitation. This indicates that TOR signaling is altered in a nitrogen-dependent manner. We find that TOR-mediated metabolic remodeling of fatty acid synthesis under N-limitation is conserved in the chlorophyte algae Chlorella sorokiniana and Chlamydomonas reinhardtii. CONCLUSION Our results indicate that under N-limitation there is significant metabolic remodeling, including fatty acid synthesis, mediated by TOR signaling. This process is conserved across chlorophyte algae. Using proteomic and phosphoproteomic analysis, we show that N-limitation affects TOR signaling and this in-turn affects the metabolic status of the cells. This study presents a link between N-limitation, TOR signaling and fatty acid synthesis in green-lineage.
Collapse
Affiliation(s)
- Jithesh Vijayan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA.
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | - Sophie Alvarez
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Michael J Naldrett
- Proteomics and Metabolomics Facility, Nebraska Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Wyatt Morse
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amanda Maliva
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Wayne R Riekhof
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
8
|
Cohen A, Lubenski L, Mouzon A, Kupiec M, Weisman R. TORC2 is required for the accumulation of γH2A in response to DNA damage. J Biol Chem 2024; 300:107531. [PMID: 38971312 PMCID: PMC11321321 DOI: 10.1016/j.jbc.2024.107531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/08/2024] Open
Abstract
TOR protein kinases serve as the catalytic subunit of the TORC1 and TORC2 complexes, which regulate cellular growth, proliferation, and survival. In the fission yeast, Schizosaccharomyces pombe, cells lacking TORC2 or its downstream kinase Gad8 (AKT or SGK1 in human cells) exhibit sensitivity to a wide range of stress conditions, including DNA damage stress. One of the first responses to DNA damage is the phosphorylation of C-terminal serine residues within histone H2AX in human cells (γH2AX), or histone H2A in yeast cells (γH2A). The kinases responsible for γH2A in S. pombe are the two DNA damage checkpoint kinases Rad3 and Tel1 (ATR and ATM, respectively, in human cells). Here we report that TORC2-Gad8 signaling is required for accumulation of γH2A in response to DNA damage and during quiescence. Using the TOR-specific inhibitor, Torin1, we demonstrate that the effect of TORC2 on γH2A in response to DNA damage is immediate, rather than adaptive. The lack of γH2A is restored by deletion mutations of transcription and chromatin modification factors, including loss of components of Paf1C, SAGA, Mediator, and the bromo-domain proteins Bdf1/Bdf2. Thus, we suggest that TORC2-Gad8 may affect the accumulation of γH2A by regulating chromatin structure and function.
Collapse
Affiliation(s)
- Adiel Cohen
- Department of Natural Sciences, The Open University of Israel, Ranana, Israel
| | - Lea Lubenski
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ava Mouzon
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Martin Kupiec
- The Shmunis School of Biomedicine & Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural Sciences, The Open University of Israel, Ranana, Israel.
| |
Collapse
|
9
|
Liu L, Wu Y, Liu K, Zhu M, Guang S, Wang F, Liu X, Yao X, He J, Fu C. The absence of the ribosomal protein Rpl2702 elicits the MAPK-mTOR signaling to modulate mitochondrial morphology and functions. Redox Biol 2024; 73:103174. [PMID: 38701646 PMCID: PMC11088351 DOI: 10.1016/j.redox.2024.103174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024] Open
Abstract
Ribosomes mediate protein synthesis, which is one of the most energy-demanding activities within the cell, and mitochondria are one of the main sources generating energy. How mitochondrial morphology and functions are adjusted to cope with ribosomal defects, which can impair protein synthesis and affect cell viability, is poorly understood. Here, we used the fission yeast Schizosaccharomyces Pombe as a model organism to investigate the interplay between ribosome and mitochondria. We found that a ribosomal insult, caused by the absence of Rpl2702, activates a signaling pathway involving Sty1/MAPK and mTOR to modulate mitochondrial morphology and functions. Specifically, we demonstrated that Sty1/MAPK induces mitochondrial fragmentation in a mTOR-independent manner while both Sty1/MAPK and mTOR increases the levels of mitochondrial membrane potential and mitochondrial reactive oxygen species (mROS). Moreover, we demonstrated that Sty1/MAPK acts upstream of Tor1/TORC2 and Tor1/TORC2 and is required to activate Tor2/TORC1. The enhancements of mitochondrial membrane potential and mROS function to promote proliferation of cells bearing ribosomal defects. Hence, our study reveals a previously uncharacterized Sty1/MAPK-mTOR signaling axis that regulates mitochondrial morphology and functions in response to ribosomal insults and provides new insights into the molecular and physiological adaptations of cells to impaired protein synthesis.
Collapse
Affiliation(s)
- Ling Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yifan Wu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Ke Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Mengdan Zhu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Shouhong Guang
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Fengsong Wang
- Department of Biology, School of Life Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xing Liu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Xuebiao Yao
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Jiajia He
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| | - Chuanhai Fu
- MOE Key Laboratory for Cellular Dynamics & Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Anhui Key Laboratory of Cellular Dynamics and Chemical Biology & Hefei National Research Center for Interdisciplinary Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
10
|
Zemlianski V, Marešová A, Princová J, Holič R, Häsler R, Ramos Del Río MJ, Lhoste L, Zarechyntsava M, Převorovský M. Nitrogen availability is important for preventing catastrophic mitosis in fission yeast. J Cell Sci 2024; 137:jcs262196. [PMID: 38780300 DOI: 10.1242/jcs.262196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024] Open
Abstract
Mitosis is a crucial stage in the cell cycle, controlled by a vast network of regulators responding to multiple internal and external factors. The fission yeast Schizosaccharomyces pombe demonstrates catastrophic mitotic phenotypes due to mutations or drug treatments. One of the factors provoking catastrophic mitosis is a disturbed lipid metabolism, resulting from, for example, mutations in the acetyl-CoA/biotin carboxylase (cut6), fatty acid synthase (fas2, also known as lsd1) or transcriptional regulator of lipid metabolism (cbf11) genes, as well as treatment with inhibitors of fatty acid synthesis. It has been previously shown that mitotic fidelity in lipid metabolism mutants can be partially rescued by ammonium chloride supplementation. In this study, we demonstrate that mitotic fidelity can be improved by multiple nitrogen sources. Moreover, this improvement is not limited to lipid metabolism disturbances but also applies to a number of unrelated mitotic mutants. Interestingly, the partial rescue is not achieved by restoring the lipid metabolism state, but rather indirectly. Our results highlight a novel role for nitrogen availability in mitotic fidelity.
Collapse
Affiliation(s)
- Viacheslav Zemlianski
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Anna Marešová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Jarmila Princová
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Roman Holič
- Centre of Biosciences SAS, Institute of Animal Biochemistry and Genetics, Dúbravská cesta 9, 840 05 Bratislava, Slovak Republic
| | - Robert Häsler
- Center for Inflammatory Skin Diseases, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Campus Kiel, Rosalind-Franklin-Straße 9, 24105 Kiel, Germany
| | - Manuel José Ramos Del Río
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Laurane Lhoste
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Maryia Zarechyntsava
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, 128 00 Prague 2, Czechia
| |
Collapse
|
11
|
Kawamukai M. Regulation of sexual differentiation initiation in Schizosaccharomyces pombe. Biosci Biotechnol Biochem 2024; 88:475-492. [PMID: 38449372 DOI: 10.1093/bbb/zbae019] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
The fission yeast Schizosaccharomyces pombe is an excellent model organism to explore cellular events owing to rich tools in genetics, molecular biology, cellular biology, and biochemistry. Schizosaccharomyces pombe proliferates continuously when nutrients are abundant but arrests in G1 phase upon depletion of nutrients such as nitrogen and glucose. When cells of opposite mating types are present, cells conjugate, fuse, undergo meiosis, and finally form 4 spores. This sexual differentiation process in S. pombe has been studied extensively. To execute sexual differentiation, the glucose-sensing cAMP-PKA (cyclic adenosine monophosphate-protein kinase A) pathway, nitrogen-sensing TOR (target of rapamycin) pathway, and SAPK (stress-activating protein kinase) pathway are crucial, and the MAPK (mitogen-activating protein kinase) cascade is essential for pheromone sensing. These signals regulate ste11 at the transcriptional and translational levels, and Ste11 is modified in multiple ways. This review summarizes the initiation of sexual differentiation in S. pombe based on results I have helped to obtain, including the work of many excellent researchers.
Collapse
Affiliation(s)
- Makoto Kawamukai
- D epartment of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu, Matsue, Japan
| |
Collapse
|
12
|
Rabeh K, Oubohssaine M, Hnini M. TOR in plants: Multidimensional regulators of plant growth and signaling pathways. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154186. [PMID: 38330538 DOI: 10.1016/j.jplph.2024.154186] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/10/2024]
Abstract
Target Of Rapamycin (TOR) represents a ubiquitous kinase complex that has emerged as a central regulator of cell growth and metabolism in nearly all eukaryotic organisms. TOR is an evolutionarily conserved protein kinase, functioning as a central signaling hub that integrates diverse internal and external cues to regulate a multitude of biological processes. These processes collectively exert significant influence on plant growth, development, nutrient assimilation, photosynthesis, fruit ripening, and interactions with microorganisms. Within the plant domain, the TOR complex comprises three integral components: TOR, RAPTOR, and LST8. This comprehensive review provides insights into various facets of the TOR protein, encompassing its origin, structure, function, and the regulatory and signaling pathways operative in photosynthetic organisms. Additionally, we explore future perspectives related to this pivotal protein kinase.
Collapse
Affiliation(s)
- Karim Rabeh
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco.
| | - Malika Oubohssaine
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Mohamed Hnini
- Microbiology and Molecular Biology Team, Center of Plant and Microbial Biotechnologies, Biodiversity and Environment, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| |
Collapse
|
13
|
Morozumi Y, Mahayot F, Nakase Y, Soong JX, Yamawaki S, Sofyantoro F, Imabata Y, Oda AH, Tamura M, Kofuji S, Akikusa Y, Shibatani A, Ohta K, Shiozaki K. Rapamycin-sensitive mechanisms confine the growth of fission yeast below the temperatures detrimental to cell physiology. iScience 2024; 27:108777. [PMID: 38269097 PMCID: PMC10805665 DOI: 10.1016/j.isci.2023.108777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/12/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
Cells cease to proliferate above their growth-permissible temperatures, a ubiquitous phenomenon generally attributed to heat damage to cellular macromolecules. We here report that, in the presence of rapamycin, a potent inhibitor of Target of Rapamycin Complex 1 (TORC1), the fission yeast Schizosaccharomyces pombe can proliferate at high temperatures that usually arrest its growth. Consistently, mutations to the TORC1 subunit RAPTOR/Mip1 and the TORC1 substrate Sck1 significantly improve cellular heat resistance, suggesting that TORC1 restricts fission yeast growth at high temperatures. Aiming for a more comprehensive understanding of the negative regulation of high-temperature growth, we conducted genome-wide screens, which identified additional factors that suppress cell proliferation at high temperatures. Among them is Mks1, which is phosphorylated in a TORC1-dependent manner, forms a complex with the 14-3-3 protein Rad24, and suppresses the high-temperature growth independently of Sck1. Our study has uncovered unexpected mechanisms of growth restraint even below the temperatures deleterious to cell physiology.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fontip Mahayot
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yukiko Nakase
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Jia Xin Soong
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Sayaka Yamawaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Faculty of Biology, Universitas Gadjah Mada, Sleman, Yogyakarta 55281, Indonesia
| | - Yuki Imabata
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Miki Tamura
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Shunsuke Kofuji
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ayu Shibatani
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
14
|
Anjum S, Srivastava S, Panigrahi L, Ansari UA, Trivedi AK, Ahmed S. TORC1 mediated regulation of mitochondrial integrity and calcium ion homeostasis by Wat1/mLst8 in S. pombe. Int J Biol Macromol 2023; 253:126907. [PMID: 37717872 DOI: 10.1016/j.ijbiomac.2023.126907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The mTOR complexes play a fundamental role in mitochondrial biogenesis and cellular homeostasis. Wat1, an ortholog of mammalian Lst8 is an important component of TOR complex and is essential for the regulation of downstream signaling. Earlier we reported the role of Wat1 in oxidative stress response. Here, we have shown that the abrogation of wat1 causes respiratory defects and mitochondrial depolarization that leads to a decrease in ATP production. The confocal and electron microscopy in wat1Δ cells revealed the fragmented mitochondrial morphology implying its role in mitochondrial fission. Furthermore, we also showed its role in autophagy and the maintenance of calcium ion homeostasis. Additionally, tor2-287 mutant cells also exhibit defects in mitochondrial integrity indicating the TORC1-dependent involvement of Wat1 in the maintenance of mitochondrial homeostasis. The interaction studies of Wat1 and Tor2 with Por1 and Mmm1 proteins revealed a plausible cross-talk between mitochondria and endoplasmic reticulum through the Mitochondria-associated membranes (MAM) and endoplasmic reticulum-mitochondria encounter structure (ERMES) complex, involving TORC1. Taken together, this study demonstrates the involvement of Wat1/mLst8 in harmonizing various mitochondrial functions, redox status, and Ca2+ homeostasis.
Collapse
Affiliation(s)
- Simmi Anjum
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Swati Srivastava
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Uzair Ahmad Ansari
- System Toxicology and Health Risk Assessment Group, CSIR- Indian Institute of Toxicological Research, Vishvigyan Bhawan, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Arun Kumar Trivedi
- Division of Cancer Biology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Tai YT, Fukuda T, Morozumi Y, Hirai H, Oda AH, Kamada Y, Akikusa Y, Kanki T, Ohta K, Shiozaki K. Fission Yeast TORC1 Promotes Cell Proliferation through Sfp1, a Transcription Factor Involved in Ribosome Biogenesis. Mol Cell Biol 2023; 43:675-692. [PMID: 38051102 PMCID: PMC10761059 DOI: 10.1080/10985549.2023.2282349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is activated in response to nutrient availability and growth factors, promoting cellular anabolism and proliferation. To explore the mechanism of TORC1-mediated proliferation control, we performed a genetic screen in fission yeast and identified Sfp1, a zinc-finger transcription factor, as a multicopy suppressor of temperature-sensitive TORC1 mutants. Our observations suggest that TORC1 phosphorylates Sfp1 and protects Sfp1 from proteasomal degradation. Transcription analysis revealed that Sfp1 positively regulates genes involved in ribosome production together with two additional transcription factors, Ifh1/Crf1 and Fhl1. Ifh1 physically interacts with Fhl1, and the nuclear localization of Ifh1 is regulated in response to nutrient levels in a manner dependent on TORC1 and Sfp1. Taken together, our data suggest that the transcriptional regulation of the genes involved in ribosome biosynthesis by Sfp1, Ifh1, and Fhl1 is one of the key pathways through which nutrient-activated TORC1 promotes cell proliferation.
Collapse
Affiliation(s)
- Yen Teng Tai
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tomoyuki Fukuda
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Hayato Hirai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Arisa H. Oda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshiaki Kamada
- National Institute for Basic Biology, Okazaki, Aichi, Japan
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan
| | - Yutaka Akikusa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kunihiro Ohta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
- Department of Microbiology and Molecular Genetics, University of California, Davis, California, USA
| |
Collapse
|
16
|
del Dedo JE, Segundo RLS, Vázquez-Bolado A, Sun J, García-Blanco N, Suárez MB, García P, Tricquet P, Chen JS, Dedon PC, Gould KL, Hidalgo E, Hermand D, Moreno S. The Greatwall-Endosulfine-PP2A/B55 pathway controls entry into quiescence by promoting translation of Elongator-tuneable transcripts. RESEARCH SQUARE 2023:rs.3.rs-3616701. [PMID: 38105947 PMCID: PMC10723533 DOI: 10.21203/rs.3.rs-3616701/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Quiescent cells require a continuous supply of proteins to maintain protein homeostasis. In fission yeast, entry into quiescence is triggered by nitrogen stress, leading to the inactivation of TORC1 and the activation of TORC2. Here, we report that the Greatwall-Endosulfine-PPA/B55 pathway connects the downregulation of TORC1 with the upregulation of TORC2, resulting in the activation of Elongator-dependent tRNA modifications essential for sustaining the translation programme during entry into quiescence. This process promotes U34 and A37 tRNA modifications at the anticodon stem loop, enhancing translation efficiency and fidelity of mRNAs enriched for AAA versus AAG lysine codons. Notably, some of these mRNAs encode inhibitors of TORC1, activators of TORC2, tRNA modifiers, and proteins necessary for telomeric and subtelomeric functions. Therefore, we propose a novel mechanism by which cells respond to nitrogen stress at the level of translation, involving a coordinated interplay between the tRNA epitranscriptome and biased codon usage.
Collapse
Affiliation(s)
- Javier Encinar del Dedo
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| | - Rafael López-San Segundo
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| | - Alicia Vázquez-Bolado
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| | - Jingjing Sun
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Natalia García-Blanco
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
| | - M. Belén Suárez
- Instituto de Biología Funcional y Genómica, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, University of Salamanca, 37007 Salamanca, Spain
| | - Patricia García
- Instituto de Biología Funcional y Genómica, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Departamento de Microbiología y Genética, University of Salamanca, 37007 Salamanca, Spain
| | - Pauline Tricquet
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Jun-Song Chen
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Peter C. Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Biological Engineering and Center for Environmental Health Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Kathleen L. Gould
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, United States
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Damien Hermand
- URPHYM-GEMO, University of Namur, rue de Bruxelles, 61, Namur 5000, Belgium
| | - Sergio Moreno
- Instituto de Biología Funcional y Genómica, CSIC, University of Salamanca, 37007 Salamanca, Spain
- Lead contact
| |
Collapse
|
17
|
Otsubo Y, Yamashita A, Goto Y, Sakai K, Iida T, Yoshimura S, Johzuka K. Cellular responses to compound stress induced by atmospheric-pressure plasma in fission yeast. J Cell Sci 2023; 136:jcs261292. [PMID: 37990810 DOI: 10.1242/jcs.261292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023] Open
Abstract
The stress response is one of the most fundamental cellular processes. Although the molecular mechanisms underlying responses to a single stressor have been extensively studied, cellular responses to multiple stresses remain largely unknown. Here, we characterized fission yeast cellular responses to a novel stress inducer, non-thermal atmospheric-pressure plasma. Plasma irradiation generates ultraviolet radiation, electromagnetic fields and a variety of chemically reactive species simultaneously, and thus can impose multiple stresses on cells. We applied direct plasma irradiation to fission yeast and showed that strong plasma irradiation inhibited fission yeast growth. We demonstrated that mutants lacking sep1 and ace2, both of which encode transcription factors required for proper cell separation, were resistant to plasma irradiation. Sep1-target transcripts were downregulated by mild plasma irradiation. We also demonstrated that plasma irradiation inhibited the target of rapamycin kinase complex 1 (TORC1). These observations indicate that two pathways, namely the Sep1-Ace2 cell separation pathway and TORC1 pathway, operate when fission yeast cope with multiple stresses induced by plasma irradiation.
Collapse
Affiliation(s)
- Yoko Otsubo
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Keiichiro Sakai
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Tetsushi Iida
- Gene Engineering Division, RIKEN BioResource Research Center (BRC), 3-1-1 Koyadai, Tsukuba-shi, Ibaraki 305-0074, Japan
| | - Shinji Yoshimura
- Center for Low-temperature Plasma Sciences, Nagoya University, Nagoya, Aichi 464-8601, Japan
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
| | - Katsuki Johzuka
- Interdisciplinary Research Unit, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Astrobiology Center, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Aichi 444-8585, Japan
| |
Collapse
|
18
|
Acs-Szabo L, Papp LA, Takacs S, Miklos I. Disruption of the Schizosaccharomyces japonicus lig4 Disturbs Several Cellular Processes and Leads to a Pleiotropic Phenotype. J Fungi (Basel) 2023; 9:jof9050550. [PMID: 37233261 DOI: 10.3390/jof9050550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
Gene targeting is a commonly used method to reveal the function of genes. Although it is an attractive tool for molecular studies, it can frequently be a challenge because its efficiency can be low and it requires the screening of a large number of transformants. Generally, these problems originate from the elevated level of ectopic integration caused by non-homologous DNA end joining (NHEJ). To eliminate this problem, NHEJ-related genes are frequently deleted or disrupted. Although these manipulations can improve gene targeting, the phenotype of the mutant strains raised the question of whether mutations have side effects. The aim of this study was to disrupt the lig4 gene in the dimorphic fission yeast, S. japonicus, and investigate the phenotypic changes of the mutant strain. The mutant cells have shown various phenotypic changes, such as increased sporulation on complete medium, decreased hyphal growth, faster chronological aging, and higher sensitivity to heat shock, UV light, and caffeine. In addition, higher flocculation capacity has been observed, especially at lower sugar concentrations. These changes were supported by transcriptional profiling. Many genes belonging to metabolic and transport processes, cell division, or signaling had altered mRNA levels compared to the control strain. Although the disruption improved the gene targeting, we assume that the lig4 inactivation can cause unexpected physiological side effects, and we have to be very careful with the manipulations of the NHEJ-related genes. To reveal the exact mechanisms behind these changes, further investigations are required.
Collapse
Affiliation(s)
- Lajos Acs-Szabo
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Laszlo Attila Papp
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Szonja Takacs
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ida Miklos
- Department of Genetics and Applied Microbiology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| |
Collapse
|
19
|
Panigrahi L, Anjum S, Ahmed S. Critical role of Wat1/Pop3 in regulating the TORC1 signalling pathway in fission yeast S. pombe. Fungal Genet Biol 2023; 164:103764. [PMID: 36481249 DOI: 10.1016/j.fgb.2022.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The target of rapamycin (TOR), a major pathway for the regulation of cell growth and proliferation is conserved from yeast to humans. Fission yeast contains two tor complexes, TORC1 is crucial for cell growth while TORC2 gets activated under stress conditions. Pop3/Wat1, a mammalian Lst8 ortholog is an important component of both TOR complexes and has been implicated in the oxidative stress response pathway. Here in this study, the genetic interaction analysis revealed a synthetic lethal interaction of wat1 with tor2-287 mutant cells. Co-immunoprecipitation analysis revealed Wat1 interacts with TORC1 components Tor2, Mip1, and Tco89 while wat1-17 mutant protein fails to interact with these proteins. In the absence of Wat1, the cells arrest at G1 phase with reduced cell size at non-permissive temperature reminiscent of tor2-287 mutant phenotype. Similarly, inactivation of Wat1 results in the failure of TORC1 mediated phosphorylation of Psk1 and Rps602, leading to dysregulation of amino acid permeases and delocalization of Gaf1, a DNA binding transcription factor. Overall, we have hypothesized that Wat1/Pop3 is required to execute the function of TORC1.
Collapse
Affiliation(s)
- Lalita Panigrahi
- Biochemistry and Structural Biology Division, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Simmi Anjum
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shakil Ahmed
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Busche M, Hake S, Brunkard JO. Terminal ear 1 and phytochromes B1/B2 regulate maize leaf initiation independently. Genetics 2022; 223:6887217. [PMID: 36495288 PMCID: PMC9910401 DOI: 10.1093/genetics/iyac182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Higher plants generate new leaves from shoot meristems throughout their vegetative lifespan. The tempo of leaf initiation is dynamically regulated by physiological cues, but little is known about the underlying genetic signaling pathways that coordinate this rate. Two maize (Zea mays) mutants, terminal ear1 (te1) and phytochrome B1;phytochrome B2 (phyB1;phyB2), oppositely affect leaf initiation rates and total leaf number at the flowering time: te1 mutants make leaves faster whereas phyB1;phyB2 mutants make leaves slower than wild-type plants. To test whether PhyB1, PhyB2, and TE1 act in overlapping or distinct pathways to regulate leaf initiation, we crossed te1 and phyB1;phyB2 created an F2 population segregating for these three mutations and quantified various phenotypes among the resulting genotypes, including leaf number, leaf initiation rate, plant height, leaf length, leaf width, number of juvenile leaves, stalk diameter, and dry shoot biomass. Leaf number and initiation rate in phyB1;phyB2;te1 plants fell between the extremes of the two parents, suggesting an additive genetic interaction between te1 and phyB1;phyB2 rather than epistasis. Therefore, we conclude that PhyB1, PhyB2, and TE1 likely control leaf initiation through distinct signaling pathways.
Collapse
Affiliation(s)
- Michael Busche
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA
| | - Sarah Hake
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA,Plant Gene Expression Center, USDA Agricultural Research Service, Albany, CA 94710, USA
| | - Jacob O Brunkard
- Corresponding author: Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
21
|
Ono Y, Katayama K, Onuma T, Kubo K, Tsuyuzaki H, Hamada M, Sato M. Structure-based screening for functional non-coding RNAs in fission yeast identifies a factor repressing untimely initiation of sexual differentiation. Nucleic Acids Res 2022; 50:11229-11242. [PMID: 36259651 PMCID: PMC9638895 DOI: 10.1093/nar/gkac825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/04/2022] Open
Abstract
Non-coding RNAs (ncRNAs) ubiquitously exist in normal and cancer cells. Despite their prevalent distribution, the functions of most long ncRNAs remain uncharacterized. The fission yeast Schizosaccharomyces pombe expresses >1800 ncRNAs annotated to date, but most unconventional ncRNAs (excluding tRNA, rRNA, snRNA and snoRNA) remain uncharacterized. To discover the functional ncRNAs, here we performed a combinatory screening of computational and biological tests. First, all S. pombe ncRNAs were screened in silico for those showing conservation in sequence as well as in secondary structure with ncRNAs in closely related species. Almost a half of the 151 selected conserved ncRNA genes were uncharacterized. Twelve ncRNA genes that did not overlap with protein-coding sequences were next chosen for biological screening that examines defects in growth or sexual differentiation, as well as sensitivities to drugs and stresses. Finally, we highlighted an ncRNA transcribed from SPNCRNA.1669, which inhibited untimely initiation of sexual differentiation. A domain that was predicted as conserved secondary structure by the computational operations was essential for the ncRNA to function. Thus, this study demonstrates that in silico selection focusing on conservation of the secondary structure over species is a powerful method to pinpoint novel functional ncRNAs.
Collapse
Affiliation(s)
- Yu Ono
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kenta Katayama
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomoki Onuma
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Kento Kubo
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hayato Tsuyuzaki
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Michiaki Hamada
- Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), National Institute of Advanced Industrial Science and Technology (AIST), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Bioinformatics Laboratory, Department of Electrical Engineering and Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo Shinjuku-ku, Tokyo 169-8555, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Masamitsu Sato
- Laboratory of Cytoskeletal Logistics, Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Medical-oriented Structural Biology, Waseda University, 2-2 Wakamatsucho, Shinjuku-ku, Tokyo 162-8480, Japan.,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Graduate School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
22
|
Haq SIU, Shang J, Xie H, Qiu QS. Roles of TOR signaling in nutrient deprivation and abiotic stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 274:153716. [PMID: 35597106 DOI: 10.1016/j.jplph.2022.153716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
In living organisms, nutrient, energy, and environmental stimuli sensing and signaling are considered as the most primordial regulatory networks governing growth and development. Target of Rapamycin (TOR) is a diversified Serine/Threonine protein kinase existing in all eukaryotes that regulates distinct salient growth and developmental signaling pathways. TOR signaling acts as a central hub in plants that allows a variety of nutrients, energy, hormones, and environmental stimuli to be integrated. TOR is activated by several nutrients and promotes energy-consuming processes such as cell division, protein translation, mRNA translation and ribosome biogenesis. We summarized the recent findings on the TOR function in regulating the dynamic networks of nutrients, including sugar, sulfur, nitrogen, carbon, phosphorus, potassium, and amino acids. TOR's role in abiotic stress was discussed, in which TOR orchestrating stress signaling, including heat, cold, salt, and osmotic stress, to regulate transcriptional and metabolic reprogramming, as well as growth and development. The interconnections between TOR and SnRK1 kinase were discussed in controlling nutrient deprivation and abiotic stress.
Collapse
Affiliation(s)
- Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Jun Shang
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Xining, Qinghai, 810008, China
| | - Huichun Xie
- Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China; Qinghai Provincial Key Laboratory of Medicinal Plant and Animal Resources of Qinghai-Tibet Plateau, Xining, Qinghai, 810008, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, School of Life Sciences, Qinghai Normal University, Xining, Qinghai, 810000, China.
| |
Collapse
|
23
|
Wang T, Woodman P, Humphrey SJ, Petersen J. Environmental control of Pub1 (NEDD4 family E3 ligase) in Schizosaccharomyces pombe is regulated by TORC2 and Gsk3. Life Sci Alliance 2022; 5:5/5/e202101082. [PMID: 35121625 PMCID: PMC8817228 DOI: 10.26508/lsa.202101082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
The NEDD4 family E3 ligase Pub1 is regulated by the nutrient environment, TORC2, and Gsk3 signalling pathway to control the level of amino acid transporters on the plasma membrane and thus nutrient uptake. Cells respond to changing nutrient environments by adjusting the abundance of surface nutrient transporters and receptors. This can be achieved by modulating ubiquitin-dependent endocytosis, which in part is regulated by the NEDD4 family of E3 ligases. Here we report novel regulation of Pub1, a fission yeast Schizosaccharomyces pombe member of the NEDD4-family of E3 ligases. We show that nitrogen stress inhibits Pub1 function, thereby increasing the abundance of the amino acid transporter Aat1 at the plasma membrane and enhancing sensitivity to the toxic arginine analogue canavanine. We show that TOR complex 2 (TORC2) signalling negatively regulates Pub1, thus TORC2 mutants under nutrient stress have decreased Aat1 at the plasma membrane and are resistant to canavanine. Inhibition of TORC2 signalling increases Pub1 phosphorylation, and this is dependent on Gsk3 activity. Addition of the Tor inhibitor Torin1 increases phosphorylation of Pub1 at serine 199 (S199) by 2.5-fold, and Pub1 protein levels in S199A phospho-ablated mutants are reduced. S199 is conserved in NEDD4 and is located immediately upstream of a WW domain required for protein interaction. Together, we describe how the major TORC2 nutrient-sensing signalling network regulates environmental control of Pub1 to modulate the abundance of nutrient transporters.
Collapse
Affiliation(s)
- Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, Australia
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Sean J Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, Australia
| | - Janni Petersen
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, Australia
| |
Collapse
|
24
|
Calvo IA, Sharma S, Paulo JA, Gulka AO, Boeszoermenyi A, Zhang J, Lombana JM, Palmieri CM, Laviolette LA, Arthanari H, Iliopoulos O, Gygi SP, Motamedi M. The fission yeast FLCN/FNIP complex augments TORC1 repression or activation in response to amino acid (AA) availability. iScience 2021; 24:103338. [PMID: 34805795 PMCID: PMC8590082 DOI: 10.1016/j.isci.2021.103338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The target of Rapamycin complex1 (TORC1) senses and integrates several environmental signals, including amino acid (AA) availability, to regulate cell growth. Folliculin (FLCN) is a tumor suppressor (TS) protein in renal cell carcinoma, which paradoxically activates TORC1 in response to AA supplementation. Few tractable systems for modeling FLCN as a TS are available. Here, we characterize the FLCN-containing complex in Schizosaccharomyces pombe (called BFC) and show that BFC augments TORC1 repression and activation in response to AA starvation and supplementation, respectively. BFC co-immunoprecipitates V-ATPase, a TORC1 modulator, and regulates its activity in an AA-dependent manner. BFC genetic and proteomic networks identify the conserved peptide transmembrane transporter Ptr2 and the phosphoribosylformylglycinamidine synthase Ade3 as new AA-dependent regulators of TORC1. Overall, these data ascribe an additional repressive function to Folliculin in TORC1 regulation and reveal S. pombe as an excellent system for modeling the AA-dependent, FLCN-mediated repression of TORC1 in eukaryotes.
Collapse
Affiliation(s)
- Isabel A. Calvo
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Shalini Sharma
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander O.D. Gulka
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Andras Boeszoermenyi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyu Zhang
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Jose M. Lombana
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Christina M. Palmieri
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Laura A. Laviolette
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Haribabu Arthanari
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Othon Iliopoulos
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
25
|
Fission Yeast TORC2 Signaling Pathway Ensures Cell Proliferation under Glucose-Limited, Nitrogen-Replete Conditions. Biomolecules 2021; 11:biom11101465. [PMID: 34680098 PMCID: PMC8533292 DOI: 10.3390/biom11101465] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
Target of rapamycin (TOR) kinases form two distinct complexes, TORC1 and TORC2, which are evolutionarily conserved among eukaryotes. These complexes control intracellular biochemical processes in response to changes in extracellular nutrient conditions. Previous studies using the fission yeast, Schizosaccharomyces pombe, showed that the TORC2 signaling pathway, which is essential for cell proliferation under glucose-limited conditions, ensures cell-surface localization of a high-affinity hexose transporter, Ght5, by downregulating its endocytosis. The TORC2 signaling pathway retains Ght5 on the cell surface, depending on the presence of nitrogen sources in medium. Ght5 is transported to vacuoles upon nitrogen starvation. In this review, we discuss the molecular mechanisms underlying this regulation to cope with nutritional stress, a response which may be conserved from yeasts to mammals.
Collapse
|
26
|
Morozumi Y, Hishinuma A, Furusawa S, Sofyantoro F, Tatebe H, Shiozaki K. Fission yeast TOR complex 1 phosphorylates Psk1 through an evolutionarily conserved interaction mediated by the TOS motif. J Cell Sci 2021; 134:272450. [PMID: 34499159 PMCID: PMC8542387 DOI: 10.1242/jcs.258865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 12/28/2022] Open
Abstract
TOR complex 1 (TORC1) is a multi-subunit protein kinase complex that controls cellular growth in response to environmental cues. The regulatory subunits of mammalian TORC1 (mTORC1) include RAPTOR (also known as RPTOR), which recruits mTORC1 substrates, such as S6K1 (also known as RPS6KB1) and 4EBP1 (EIF4EBP1), by interacting with their TOR signaling (TOS) motif. Despite the evolutionary conservation of TORC1, no TOS motif has been described in lower eukaryotes. In the present study, we show that the fission yeast S6 kinase Psk1 contains a TOS motif that interacts with Mip1, a RAPTOR ortholog. The TOS motif in Psk1 resembles those in mammals, including the conserved phenylalanine and aspartic acid residues essential for the Mip1 interaction and TORC1-dependent phosphorylation of Psk1. The binding of the TOS motif to Mip1 is dependent on Mip1 Tyr-533, whose equivalent in RAPTOR is known to interact with the TOS motif in their co-crystals. Furthermore, we utilized the mip1-Y533A mutation to screen the known TORC1 substrates in fission yeast and successfully identified Atg13 as a novel TOS-motif-containing substrate. These results strongly suggest that the TOS motif represents an evolutionarily conserved mechanism of the substrate recognition by TORC1. Summary: By analyzing S6 kinase in fission yeast, we have demonstrated that the TOR signaling (TOS) motif-mediated substrate recognition by TOR complex 1 is conserved from yeast to humans.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Ai Hishinuma
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Tohoku Agricultural Research Center, National Agriculture and Food Research Organization, Daisen, Akita 019-2112, Japan
| | - Suguru Furusawa
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Fajar Sofyantoro
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Department of Animal Physiology, Faculty of Biology, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Hisashi Tatebe
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
27
|
Navratilova A, Kovar M, Trakovicka A, Pozgajova M. Nickel induced cell impairments are negatively regulated by the Tor1 kinase in Schizosaccharomyces pombe. World J Microbiol Biotechnol 2021; 37:165. [PMID: 34458935 DOI: 10.1007/s11274-021-03130-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/17/2021] [Indexed: 11/26/2022]
Abstract
In our study we investigated the effect of different nickel (NiSO4·6H2O) (Ni) concentrations on cell division, cellular morphology and ionome homeostasis of the eukaryotic model organism Schizosaccharomyces pombe. Target of rapamycin (TOR) protein kinase is one of the key regulators of cell growth under different environmental stresses. We analyzed the effect of Ni on cell strains lacking the Tor1 signaling pathway utilizing light-absorbance spectroscopy, visualization, microscopy and inductively coupled plasma optical emission spectroscopy. Interestingly, our findings revealed that Ni mediated cell growth alterations are noticeably lower in Tor1 deficient cells. Greater size of Tor1 depleted cells reached similar quantitative parameters to wild type cells upon incubation with 400 μM Ni. Differences of ion levels among the two tested yeast strains were detected even before Ni addition. Addition of high concentration (1 mM) of the heavy metal, representing acute contamination, caused considerable changes in the ionome of both strains. Strikingly, Tor1 deficient cells displayed largely reduced Ni content after treatment compared to wild type controls (644.1 ± 49 vs. 2096.8 ± 75 μg/g), suggesting its significant role in Ni trafficking. Together our results predict yet undefined role for the Tor1 signaling in metal uptake and/or metabolism.
Collapse
Affiliation(s)
- Alica Navratilova
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Marek Kovar
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Anna Trakovicka
- Department of Genetics and Breeding Biology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia
| | - Miroslava Pozgajova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976, Nitra, Slovakia.
| |
Collapse
|
28
|
Corral-Ramos C, Barrios R, Ayté J, Hidalgo E. TOR and MAP kinase pathways synergistically regulate autophagy in response to nutrient depletion in fission yeast. Autophagy 2021; 18:375-390. [PMID: 34157946 DOI: 10.1080/15548627.2021.1935522] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
General autophagy is an evolutionarily conserved process in eukaryotes, by which intracellular materials are transported into and degraded inside lysosomes or vacuoles, with the main goal of recycling those materials during periods of starvation. The molecular bases of autophagy have been widely described in Saccharomyces cerevisiae, and the specific roles of Atg proteins in the process were first characterized in this model system. Important contributions have been made in Schizosaccharomyces pombe highlighting the evolutionary similarity and, at the same time, diversity of Atg components in autophagy. However, little is known regarding signals, pathways and role of autophagy in this distant yeast. Here, we undertake a global approach to investigate the signals, the pathways and the consequences of autophagy activation. We demonstrate that not only nitrogen but several nutritional deprivations including lack of carbon, sulfur, phosphorus or leucine sources, trigger autophagy, and that the TORC1, TORC2 and MAP kinase Sty1 pathways control the onset of autophagy. Furthermore, we identify an unexpected phenotype of autophagy-defective mutants, namely their inability to survive in the absence of leucine when biosynthesis of this amino acid is impaired.Abbreviations: ATG: autophagy-related; cAMP: cyclic adenosine monophosphate; cDNA: complementary deoxyribonucleic acid; GFP: green fluorescence protein; Gluc: glucose; Leu: leucine; MAP: mitogen-activated protein; MM: minimal medium; PI: propidium iodine; PKA: protein kinase A; RNA: ribonucleic acid; RT-qPCR: real time quantitative polymerase chain reaction; S. cerevisiae: Saccharomyces cerevisiae; S. pombe: Schizosaccharomyces pombe; TCA: trichloroacetic acid; TOR: target of rapamycin; TORC1: target of rapamycin complex 1; TORC2: target of rapamycin complex 2; YE5S: yeast extract 5 amino acid supplemented.
Collapse
Affiliation(s)
| | - Rubén Barrios
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
29
|
Ohtsuka H, Shimasaki T, Aiba H. Extension of chronological lifespan in Schizosaccharomyces pombe. Genes Cells 2021; 26:459-473. [PMID: 33977597 PMCID: PMC9290682 DOI: 10.1111/gtc.12854] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
There are several examples in the nature wherein the mechanism of longevity control of unicellular organisms is evolutionarily conserved with that of higher multicellular organisms. The present microreview focuses on aging and longevity studies, particularly on chronological lifespan (CLS) concerning the unicellular eukaryotic fission yeast Schizosaccharomyces pombe. In S. pombe, >30 compounds, 8 types of nutrient restriction, and >80 genes that extend CLS have been reported. Several CLS control mechanisms are known to be involved in nutritional response, energy utilization, stress responses, translation, autophagy, and sexual differentiation. In unicellular organisms, the control of CLS is directly linked to the mechanism by which cells are maintained in limited‐resource environments, and their genetic information is left to posterity. We believe that this important mechanism may have been preserved as a lifespan control mechanism for higher organisms.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
30
|
Halova L, Cobley D, Franz-Wachtel M, Wang T, Morrison KR, Krug K, Nalpas N, Maček B, Hagan IM, Humphrey SJ, Petersen J. A TOR (target of rapamycin) and nutritional phosphoproteome of fission yeast reveals novel targets in networks conserved in humans. Open Biol 2021; 11:200405. [PMID: 33823663 PMCID: PMC8025308 DOI: 10.1098/rsob.200405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/05/2021] [Indexed: 12/21/2022] Open
Abstract
Fluctuations in TOR, AMPK and MAP-kinase signalling maintain cellular homeostasis and coordinate growth and division with environmental context. We have applied quantitative, SILAC mass spectrometry to map TOR and nutrient-controlled signalling in the fission yeast Schizosaccharomyces pombe. Phosphorylation levels at more than 1000 sites were altered following nitrogen stress or Torin1 inhibition of the TORC1 and TORC2 networks that comprise TOR signalling. One hundred and thirty of these sites were regulated by both perturbations, and the majority of these (119) new targets have not previously been linked to either nutritional or TOR control in either yeasts or humans. Elimination of AMPK inhibition of TORC1, by removal of AMPKα (ssp2::ura4+), identified phosphosites where nitrogen stress-induced changes were independent of TOR control. Using a yeast strain with an ATP analogue-sensitized Cdc2 kinase, we excluded sites that were changed as an indirect consequence of mitotic control modulation by nitrogen stress or TOR signalling. Nutritional control of gene expression was reflected in multiple targets in RNA metabolism, while significant modulation of actin cytoskeletal components points to adaptations in morphogenesis and cell integrity networks. Reduced phosphorylation of the MAPKK Byr1, at a site whose human equivalent controls docking between MEK and ERK, prevented sexual differentiation when resources were sparse but not eliminated.
Collapse
Affiliation(s)
- Lenka Halova
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - David Cobley
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Tingting Wang
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5042, Australia
| | - Kaitlin R. Morrison
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5042, Australia
| | - Karsten Krug
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Nicolas Nalpas
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Boris Maček
- Proteome Center Tuebingen, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Iain M. Hagan
- Cancer Research UK Manchester Institute, Alderley Park, Macclesfield SK10 4TG, UK
| | - Sean J. Humphrey
- Charles Perkins Centre, School of Life and Environmental Sciences, The University of Sydney, Camperdown, New South Wales, Australia
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Flinders Health and Medical Research Institute, Flinders Centre for Innovation in Cancer, Flinders University, Adelaide, South Australia 5042, Australia
- Nutrition and Metabolism, South Australia Health and Medical Research Institute, North Terrace, Adelaide, South Australia 5000, Australia
| |
Collapse
|
31
|
Wake-up alarm: virtual time-lapse gene expression landscape illuminates mechanisms underlying dormancy breaking of germinating spores. Curr Genet 2021; 67:519-534. [PMID: 33782714 DOI: 10.1007/s00294-021-01177-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/28/2022]
Abstract
Dormancy breaking is a common physiological phenomenon that is shared by eukaryotes. Germination of spores in fungi is one of the most representative cases of dormancy breaking. Understanding the mechanisms of spore germination is therefore fundamental to basic studies on the control of cell proliferation and differentiation, as well as agricultural applications and medical investigation of fungal pathogenesis. In fission yeast, spores are generated as a consequence of sexual differentiation under nutrient starvation, remaining dormant until further nourishment, but little is known about how dormant spores germinate in response to environmental change. In a breakthrough, methods for single-cell-based gene expression profiling have recently been introduced. Several mRNA expression profiles were assembled from single spore cells during dormancy or germination. Single-cell RNA-seq profiles were aligned sequentially according to their similarities. The alignment of transcriptomes visualised how gene expression varies over time upon dormancy breaking. In this review, we revisit knowledge from previous studies on germination, select candidate genes that may be involved in germination, and query their expression from the temporal transcriptomic dataset so that studies on S. pombe germination can be extended further.
Collapse
|
32
|
TOR targets an RNA processing network to regulate facultative heterochromatin, developmental gene expression and cell proliferation. Nat Cell Biol 2021; 23:243-256. [PMID: 33574613 PMCID: PMC9260697 DOI: 10.1038/s41556-021-00631-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 01/30/2023]
Abstract
Cell proliferation and differentiation require signalling pathways that enforce appropriate and timely gene expression. We find that Tor2, the catalytic subunit of the TORC1 complex in fission yeast, targets a conserved nuclear RNA elimination network, particularly the serine and proline-rich protein Pir1, to control gene expression through RNA decay and facultative heterochromatin assembly. Phosphorylation by Tor2 protects Pir1 from degradation by the ubiquitin-proteasome system involving the polyubiquitin Ubi4 stress-response protein and the Cul4-Ddb1 E3 ligase. This pathway suppresses widespread and untimely gene expression and is critical for sustaining cell proliferation. Moreover, we find that the dynamic nature of Tor2-mediated control of RNA elimination machinery defines gene expression patterns that coordinate fundamental chromosomal events during gametogenesis, such as meiotic double-strand-break formation and chromosome segregation. These findings have important implications for understanding how the TOR signalling pathway reprogrammes gene expression patterns and contributes to diseases such as cancer.
Collapse
|
33
|
Alao JP, Legon L, Rallis C. Crosstalk between the mTOR and DNA Damage Response Pathways in Fission Yeast. Cells 2021; 10:cells10020305. [PMID: 33540829 PMCID: PMC7913062 DOI: 10.3390/cells10020305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Cells have developed response systems to constantly monitor environmental changes and accordingly adjust growth, differentiation, and cellular stress programs. The evolutionarily conserved, nutrient-responsive, mechanistic target of rapamycin signaling (mTOR) pathway coordinates basic anabolic and catabolic cellular processes such as gene transcription, protein translation, autophagy, and metabolism, and is directly implicated in cellular and organismal aging as well as age-related diseases. mTOR mediates these processes in response to a broad range of inputs such as oxygen, amino acids, hormones, and energy levels, as well as stresses, including DNA damage. Here, we briefly summarize data relating to the interplays of the mTOR pathway with DNA damage response pathways in fission yeast, a favorite model in cell biology, and how these interactions shape cell decisions, growth, and cell-cycle progression. We, especially, comment on the roles of caffeine-mediated DNA-damage override. Understanding the biology of nutrient response, DNA damage and related pharmacological treatments can lead to the design of interventions towards improved cellular and organismal fitness, health, and survival.
Collapse
Affiliation(s)
- John-Patrick Alao
- ZEAB Therapeutic, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Luc Legon
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, Water Lane, Stratford, London E15 4LZ, UK;
| | - Charalampos Rallis
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK
- Correspondence:
| |
Collapse
|
34
|
Morozumi Y, Shiozaki K. Conserved and Divergent Mechanisms That Control TORC1 in Yeasts and Mammals. Genes (Basel) 2021; 12:genes12010088. [PMID: 33445779 PMCID: PMC7828246 DOI: 10.3390/genes12010088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 12/23/2022] Open
Abstract
Target of rapamycin complex 1 (TORC1), a serine/threonine-protein kinase complex highly conserved among eukaryotes, coordinates cellular growth and metabolism with environmental cues, including nutrients and growth factors. Aberrant TORC1 signaling is associated with cancers and various human diseases, and TORC1 also plays a key role in ageing and lifespan, urging current active research on the mechanisms of TORC1 regulation in a variety of model organisms. Identification and characterization of the RAG small GTPases as well as their regulators, many of which are highly conserved from yeast to humans, led to a series of breakthroughs in understanding the molecular bases of TORC1 regulation. Recruitment of mammalian TORC1 (mTORC1) by RAGs to lysosomal membranes is a key step for mTORC1 activation. Interestingly, the RAG GTPases in fission yeast are primarily responsible for attenuation of TORC1 activity on vacuoles, the yeast equivalent of lysosomes. In this review, we summarize our current knowledge about the functions of TORC1 regulators on yeast vacuoles, and illustrate the conserved and divergent mechanisms of TORC1 regulation between yeasts and mammals.
Collapse
Affiliation(s)
- Yuichi Morozumi
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
- Correspondence: ; Tel.: +81-743-72-5543
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan;
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
35
|
Wang K, Okada H, Bi E. Comparative Analysis of the Roles of Non-muscle Myosin-IIs in Cytokinesis in Budding Yeast, Fission Yeast, and Mammalian Cells. Front Cell Dev Biol 2020; 8:593400. [PMID: 33330476 PMCID: PMC7710916 DOI: 10.3389/fcell.2020.593400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/30/2020] [Indexed: 12/31/2022] Open
Abstract
The contractile ring, which plays critical roles in cytokinesis in fungal and animal cells, has fascinated biologists for decades. However, the basic question of how the non-muscle myosin-II and actin filaments are assembled into a ring structure to drive cytokinesis remains poorly understood. It is even more mysterious why and how the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe, and humans construct the ring structure with one, two, and three myosin-II isoforms, respectively. Here, we provide a comparative analysis of the roles of the non-muscle myosin-IIs in cytokinesis in these three model systems, with the goal of defining the common and unique features and highlighting the major questions regarding this family of proteins.
Collapse
Affiliation(s)
- Kangji Wang
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hiroki Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
36
|
Matsuda S, Kikkawa U, Uda H, Nakashima A. The S. pombe CDK5 ortholog Pef1 regulates sexual differentiation through control of the TORC1 pathway and autophagy. J Cell Sci 2020; 133:jcs247817. [PMID: 32788233 DOI: 10.1242/jcs.247817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
In Schizosaccharomyces pombe, a general strategy for survival in response to environmental changes is sexual differentiation, which is triggered by TORC1 inactivation. However, mechanisms of TORC1 regulation in fission yeast remain poorly understood. In this study, we found that Pef1, which is an ortholog of mammalian CDK5, regulates the initiation of sexual differentiation through positive regulation of TORC1 activity. Conversely, deletion of pef1 leads to activation of autophagy and subsequent excessive TORC1 reactivation during the early phases of the nitrogen starvation response. This excessive TORC1 reactivation results in the silencing of the Ste11-Mei2 pathway and mating defects. Additionally, we found that pef1 genetically interacts with tsc1 and tsc2 for TORC1 regulation, and physically interacts with three cyclins, Clg1, Pas1 and Psl1. The double deletion of clg1 and pas1 promotes activation of autophagy and TORC1 during nitrogen starvation, similar to what is seen in pef1Δ cells. Overall, our work suggests that Pef1-Clg1 and Pef1-Pas1 complexes regulate initiation of sexual differentiation through control of the TSC-TORC1 pathway and autophagy.
Collapse
Affiliation(s)
- Shinya Matsuda
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ushio Kikkawa
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Haruka Uda
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Akio Nakashima
- Biosignal Research Center, Kobe University, Kobe, 657-8501, Japan
- Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| |
Collapse
|
37
|
Malecki M, Kamrad S, Ralser M, Bähler J. Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast. EMBO Rep 2020; 21:e50845. [PMID: 32896087 PMCID: PMC7645267 DOI: 10.15252/embr.202050845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/07/2020] [Accepted: 08/10/2020] [Indexed: 12/21/2022] Open
Abstract
When glucose is available, many organisms repress mitochondrial respiration in favour of aerobic glycolysis, or fermentation in yeast, that suffices for ATP production. Fission yeast cells, however, rely partially on respiration for rapid proliferation under fermentative conditions. Here, we determined the limiting factors that require respiratory function during fermentation. When inhibiting the electron transport chain, supplementation with arginine was necessary and sufficient to restore rapid proliferation. Accordingly, a systematic screen for mutants growing poorly without arginine identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered a drop in intracellular levels of arginine and amino acids derived from the Krebs cycle metabolite alpha‐ketoglutarate: glutamine, lysine and glutamic acid. Conversion of arginine into these amino acids was required for rapid proliferation when blocking the respiratory chain. The respiratory block triggered an immediate gene expression response diagnostic of TOR inhibition, which was muted by arginine supplementation or without the AMPK‐activating kinase Ssp1. The TOR‐controlled proteins featured biased composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid proliferation in fermenting fission yeast cells by boosting the supply of Krebs cycle‐derived amino acids.
Collapse
Affiliation(s)
- Michal Malecki
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland.,Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| | - Stephan Kamrad
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK.,Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Markus Ralser
- Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Jürg Bähler
- Institute of Healthy Ageing and Research Department of Genetics, Evolution & Environment, University College London, London, UK
| |
Collapse
|
38
|
Otsubo Y, Kamada Y, Yamashita A. Novel Links between TORC1 and Traditional Non-Coding RNA, tRNA. Genes (Basel) 2020; 11:E956. [PMID: 32825021 PMCID: PMC7563549 DOI: 10.3390/genes11090956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Target of rapamycin (TOR) is a serine/threonine kinase that modulates cell growth and metabolism in response to environmental changes. Transfer RNA (tRNA) is an abundant and ubiquitous small non-coding RNA that is essential in the translation of mRNAs. Beyond its canonical role, it has been revealed that tRNAs have more diverse functions. TOR complex 1 (TORC1), which is one of the two TOR complexes, regulates tRNA synthesis by controlling RNA polymerase III. In addition to tRNA synthesis regulation, recent studies have revealed hidden connections between TORC1 and tRNA, which are both essential players in eukaryotic cellular activities. Here, we review the accumulating findings on the regulatory links between TORC1 and tRNA-particularly those links in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe.
Collapse
Affiliation(s)
- Yoko Otsubo
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292, Japan
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Yoshiaki Kamada
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Akira Yamashita
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan; (Y.O.); (Y.K.)
- Center for Novel Science Initiatives, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
39
|
Brunkard JO. Exaptive Evolution of Target of Rapamycin Signaling in Multicellular Eukaryotes. Dev Cell 2020; 54:142-155. [PMID: 32649861 PMCID: PMC7346820 DOI: 10.1016/j.devcel.2020.06.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022]
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates metabolism with nutrient and energy availability in eukaryotes. TOR and its primary interactors, RAPTOR and LST8, have been remarkably evolutionarily static since they arose in the unicellular last common ancestor of plants, fungi, and animals, but the upstream regulatory mechanisms and downstream effectors of TOR signaling have evolved considerable diversity in these separate lineages. Here, I focus on the roles of exaptation and adaptation in the evolution of novel signaling axes in the TOR network in multicellular eukaryotes, concentrating especially on amino acid sensing, cell-cell signaling, and cell differentiation.
Collapse
Affiliation(s)
- Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research Service, Albany, CA 94710, USA; Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
40
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
41
|
Laribee RN, Weisman R. Nuclear Functions of TOR: Impact on Transcription and the Epigenome. Genes (Basel) 2020; 11:E641. [PMID: 32532005 PMCID: PMC7349558 DOI: 10.3390/genes11060641] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022] Open
Abstract
The target of rapamycin (TOR) protein kinase is at the core of growth factor- and nutrient-dependent signaling pathways that are well-known for their regulation of metabolism, growth, and proliferation. However, TOR is also involved in the regulation of gene expression, genomic and epigenomic stability. TOR affects nuclear functions indirectly through its activity in the cytoplasm, but also directly through active nuclear TOR pools. The mechanisms by which TOR regulates its nuclear functions are less well-understood compared with its cytoplasmic activities. TOR is an important pharmacological target for several diseases, including cancer, metabolic and neurological disorders. Thus, studies of the nuclear functions of TOR are important for our understanding of basic biological processes, as well as for clinical implications.
Collapse
Affiliation(s)
- R. Nicholas Laribee
- Department of Pathology and Laboratory Medicine, College of Medicine and Center for Cancer Research, University of Tennessee Health Science Center, 19 South Manassas, Cancer Research Building Rm 318, Memphis, TN 38163, USA
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, University Road 1, Ra’anana 4353701, Israel
| |
Collapse
|
42
|
Rodríguez-López M, Gonzalez S, Hillson O, Tunnacliffe E, Codlin S, Tallada VA, Bähler J, Rallis C. The GATA Transcription Factor Gaf1 Represses tRNAs, Inhibits Growth, and Extends Chronological Lifespan Downstream of Fission Yeast TORC1. Cell Rep 2020; 30:3240-3249.e4. [PMID: 32160533 PMCID: PMC7068653 DOI: 10.1016/j.celrep.2020.02.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/17/2019] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
Target of Rapamycin Complex 1 (TORC1) signaling promotes growth and aging. Inhibition of TORC1 leads to reduced protein translation, which promotes longevity. TORC1-dependent post-transcriptional regulation of protein translation has been well studied, while analogous transcriptional regulation is less understood. Here we screen fission yeast mutants for resistance to Torin1, which inhibits TORC1 and cell growth. Cells lacking the GATA factor Gaf1 (gaf1Δ) grow normally even in high doses of Torin1. The gaf1Δ mutation shortens the chronological lifespan of non-dividing cells and diminishes Torin1-mediated longevity. Expression profiling and genome-wide binding experiments show that upon TORC1 inhibition, Gaf1 directly upregulates genes for small-molecule metabolic pathways and indirectly represses genes for protein translation. Surprisingly, Gaf1 binds to and downregulates the tRNA genes, so it also functions as a transcription factor for RNA polymerase III. Thus, Gaf1 controls the transcription of both protein-coding and tRNA genes to inhibit translation and growth downstream of TORC1.
Collapse
Affiliation(s)
- María Rodríguez-López
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Suam Gonzalez
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Olivia Hillson
- School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK
| | - Edward Tunnacliffe
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Sandra Codlin
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK
| | - Victor A Tallada
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC, 41013 Sevilla, Spain
| | - Jürg Bähler
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK.
| | - Charalampos Rallis
- Institute of Healthy Ageing and Department of Genetics, Evolution & Environment, University College London, London WC1E 6BT, UK; School of Health, Sport and Bioscience, University of East London, Stratford Campus, London E14 4LZ, UK; School of Life Sciences, University of Essex, Wivenhoe Park, Colchester CO4 3SQ, UK.
| |
Collapse
|
43
|
A regulatory circuit between lncRNA and TOR directs amino acid uptake in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118680. [PMID: 32081726 DOI: 10.1016/j.bbamcr.2020.118680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 01/09/2023]
Abstract
Long non coding RNAs (lncRNAs) have emerged as crucial players of several central cellular processes across eukaryotes. Target of Rapamycin (TOR) is a central regulator of myriad of fundamental cellular processes including amino acid transport under diverse environmental conditions. Here we investigated the role of lncRNA in TOR regulated amino acid uptake in S. cerevisiae. Transcription of lncRNA regulates local gene expression in eukaryotes. In silico analysis of many genome wide studies in S. cerevisiae revealed that transcriptome includes conditional expression of numerous lncRNAs in proximity to amino acid transporters (AATs). Considering regulatory role of these lncRNAs, we selected highly conserved TOR regulated locus of a pair of AATs present in tandem BAP2 and TAT1. We observed that the expression of antisense lncRNA XUT_2F-154 (TBRT) and AATs BAP2 and TAT1 depends on activities of TOR signaling pathway. The expression of TBRT is induced, while that of BAP2 TAT1 is repressed upon TOR inhibition by Torin2. Notably, upon TOR inhibition loss of TBRT contributed to enhanced activities of Bap2 and Tat1 leading to improved growth. Interestingly, nucleosome scanning assay reveal that TOR signaling pathway governs chromatin remodeling at BAP2 biphasic promoter to control the antagonism of TBRT and BAP2 expression. Further TBRT also reprograms local chromatin landscapes to decrease the transcription of TAT1. The current work demonstrates a functional correlation between lncRNA production and TOR governed amino acid uptake in yeast. Thus this work brings forth a novel avenue for identification of potential regulators for therapeutic interventions against TOR mediated diseases.
Collapse
|
44
|
Rapamycin induces morphological and physiological changes without increase in lipid content in Ustilago maydis. Arch Microbiol 2020; 202:1211-1221. [PMID: 32088730 DOI: 10.1007/s00203-020-01833-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/19/2022]
Abstract
The evolutionarily conserved serine/threonine kinase TOR recruits different subunits to assemble the Target of Rapamycin Complex 1 (TORC1), which is inhibited by rapamycin and regulates ribosome biogenesis, autophagy, and lipid metabolism by regulating the expression of lipogenic genes. In addition, TORC1 participates in the cell cycle, increasing the length of the G2 phase. In the present work, we investigated the effect of rapamycin on cell growth, cell morphology and neutral lipid metabolism in the phytopathogenic fungus Ustilago maydis. Inhibition of TORC1 by rapamycin induced the formation of septa that separate the nuclei that were formed after mitosis. Regarding neutral lipid metabolism, a higher accumulation of triacylglycerols was not detected, but the cells did contain large lipid bodies, which suggests that small lipid bodies became fused into big lipid droplets. Vacuoles showed a similar behavior as the lipid bodies, and double labeling with Blue-CMAC and BODIPY indicates that vacuoles and lipid bodies were independent organelles. The results suggest that TORC1 has a role in cell morphology, lipid metabolism, and vacuolar physiology in U. maydis.
Collapse
|
45
|
Meiotic gene silencing complex MTREC/NURS recruits the nuclear exosome to YTH-RNA-binding protein Mmi1. PLoS Genet 2020; 16:e1008598. [PMID: 32012158 PMCID: PMC7018101 DOI: 10.1371/journal.pgen.1008598] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 02/13/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022] Open
Abstract
Accurate target recognition in transcript degradation is crucial for regulation of gene expression. In the fission yeast Schizosaccharomyces pombe, a number of meiotic transcripts are recognized by a YTH-family RNA-binding protein, Mmi1, and selectively degraded by the nuclear exosome during mitotic growth. Mmi1 forms nuclear foci in mitotically growing cells, and the nuclear exosome colocalizes to such foci. However, it remains elusive how Mmi1 and the nuclear exosome are connected. Here, we show that a complex called MTREC (Mtl1-Red1 core) or NURS (nuclear RNA silencing) that consists of a zinc-finger protein, Red1, and an RNA helicase, Mtl1, is required for the recruitment of the nuclear exosome to Mmi1 foci. Physical interaction between Mmi1 and the nuclear exosome depends on Red1. Furthermore, a chimeric protein involving Mmi1 and Rrp6, which is a nuclear-specific component of the exosome, suppresses the ectopic expression phenotype of meiotic transcripts in red1Δ cells and mtl1 mutant cells. These data indicate that the primary function of MTREC/NURS in meiotic transcript elimination is to link Mmi1 to the nuclear exosome physically. Since abnormal gene expression is detrimental to proliferation, cells possess a number of mechanisms to regulate gene expression at transcriptional and post-transcriptional levels. In particular, expression of meiotic genes is rigorously repressed in somatic cells because their aberrant expression causes severe cellular defects including genome instability and tumorigenesis. In the fission yeast Schizosaccharomyces pombe, selective degradation of meiotic transcripts is employed to prevent their deleterious expression during mitotic growth. Meiotic transcripts are recognized by a YTH-family RNA-binding protein, Mmi1. Mmi1 then induces their selective degradation by the nuclear exosome, which is a highly conserved exonuclease complex. However, little is known how Mmi1 cooperates with the nuclear exosome. Here, we demonstrate that the interaction of Mmi1 with the nuclear exosome is mediated by a complex termed MTREC/NURS that is composed of a conserved zinc-finger protein, Red1, and an RNA helicase, Mtl1. Our findings shed light on the target recognition mechanisms of post-transcriptional regulation.
Collapse
|
46
|
Reidman S, Cohen A, Kupiec M, Weisman R. The cytosolic form of aspartate aminotransferase is required for full activation of TOR complex 1 in fission yeast. J Biol Chem 2019; 294:18244-18255. [PMID: 31641022 DOI: 10.1074/jbc.ra119.010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
The evolutionarily conserved TOR complex 1 (TORC1) activates cell growth and proliferation in response to nutritional signals. In the fission yeast Schizosaccharomyces pombe, TORC1 is essential for vegetative growth, and its activity is regulated in response to nitrogen quantity and quality. Yet, how TORC1 senses nitrogen is poorly understood. Rapamycin, a specific TOR inhibitor, inhibits growth in S. pombe only under conditions in which the activity of TORC1 is compromised. In a genetic screen for rapamycin-sensitive mutations, we isolated caa1-1, a loss-of-function mutation of the cytosolic form of aspartate aminotransferase (Caa1). We demonstrate that loss of caa1 + partially mimics loss of TORC1 activity and that Caa1 is required for full TORC1 activity. Disruption of caa1 + resulted in aspartate auxotrophy, a finding that prompted us to assess the role of aspartate in TORC1 activation. We found that the amino acids glutamine, asparagine, arginine, aspartate, and serine activate TORC1 most efficiently following nitrogen starvation. The glutamine synthetase inhibitor l-methionine sulfoximine abolished the ability of asparagine, arginine, aspartate, or serine, but not that of glutamine, to induce TORC1 activity, consistent with a central role for glutamine in activating TORC1. Neither addition of aspartate nor addition of glutamine restored TORC1 activity in caa1-deleted cells or in cells carrying a Caa1 variant with a catalytic site substitution, suggesting that the catalytic activity of Caa1 is required for TORC1 activation. Taken together, our results reveal the contribution of the key metabolic enzyme Caa1 to TORC1 activity in S. pombe.
Collapse
Affiliation(s)
- Sophie Reidman
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Adiel Cohen
- Department of Natural and Life Sciences, the Open University of Israel, University Road 1, 4353701 Ra'anana, Israel
| | - Martin Kupiec
- School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv 69977801, Tel Aviv, Israel
| | - Ronit Weisman
- Department of Natural and Life Sciences, the Open University of Israel, University Road 1, 4353701 Ra'anana, Israel.
| |
Collapse
|
47
|
Morigasaki S, Chin LC, Hatano T, Emori M, Iwamoto M, Tatebe H, Shiozaki K. Modulation of TOR complex 2 signaling by the stress-activated MAPK pathway in fission yeast. J Cell Sci 2019; 132:jcs.236133. [PMID: 31477575 DOI: 10.1242/jcs.236133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/28/2019] [Indexed: 01/27/2023] Open
Abstract
Sin1 is a substrate-binding subunit of target of rapamycin complex 2 (TORC2), an evolutionarily conserved protein kinase complex. In fission yeast, Sin1 has also been identified as a protein that interacts with Spc1 (also known as Sty1) in the stress-activated protein kinase (SAPK) pathway. Therefore, this study examined the relationship between TORC2 and Spc1 signaling. We found that the common docking (CD) domain of Spc1 interacts with a cluster of basic amino acid residues in Sin1. Although diminished TORC2 activity in the absence of the functional Spc1 cascade suggests positive regulation of TORC2 by Spc1, such regulation appears to be independent of the Sin1-Spc1 interaction. Hyperosmotic stress transiently inhibits TORC2, and its swift recovery is dependent on Spc1, the transcription factor Atf1, and the glycelrol-3-phosphate dehydrogenase Gpd1, whose expression is induced upon osmostress by the Spc1-Atf1 pathway. Thus, cellular adaptation to osmostress seems important for TORC2 reactivation, though Spc1 and Atf1 contribute to TORC2 activation also in the absence of osmostress. These results indicate coordinated actions of the SAPK and TORC2 pathways, both of which are essential for fission yeast cells to survive environmental stress.
Collapse
Affiliation(s)
- Susumu Morigasaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.,Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Lit Chein Chin
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Tomoyuki Hatano
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Midori Emori
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Mika Iwamoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Hisashi Tatebe
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Kazuhiro Shiozaki
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan .,Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA
| |
Collapse
|
48
|
Ohtsuka H, Kato T, Sato T, Shimasaki T, Kojima T, Aiba H. Leucine depletion extends the lifespans of leucine-auxotrophic fission yeast by inducing Ecl1 family genes via the transcription factor Fil1. Mol Genet Genomics 2019; 294:1499-1509. [PMID: 31456006 DOI: 10.1007/s00438-019-01592-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 06/28/2019] [Indexed: 11/30/2022]
Abstract
Many studies show that lifespans of various model organisms can be extended by limiting the quantities of nutrients that are necessary for proliferation. In Schizosaccharomyces pombe, the Ecl1 family genes have been associated with lifespan control and are necessary for cell responses to nutrient depletion, but their functions and mechanisms of action remain uncharacterized. Herein, we show that leucine depletion extends the chronological lifespan (CLS) of leucine-auxotrophic cells. Furthermore, depletion of leucine extended CLS and caused cell miniaturization and cell cycle arrest at the G1 phase, and all of these processes depended on Ecl1 family genes. Although depletion of leucine raises the expression of ecl1+ by about 100-fold in leucine-auxotrophic cells, these conditions did not affect ecl1+ expression in leucine-auxotrophic fil1 mutants that were isolated in deletion set screens using 79 mutants disrupting a transcription factor. Fil1 is a GATA-type zinc finger transcription factor that reportedly binds directly to the upstream regions of ecl1+ and ecl2+. Accordingly, we suggest that Ecl1 family genes are induced in response to environmental stresses, such as oxidative stress and heat stress, or by nutritional depletion of nitrogen or sulfur sources or the amino acid leucine. We also propose that these genes play important roles in the maintenance of cell survival until conditions that favor proliferation are restored.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takanori Kato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Teppei Sato
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
49
|
Andreadis C, Hulme L, Wensley K, Liu JL. The TOR pathway modulates cytoophidium formation in Schizosaccharomyces pombe. J Biol Chem 2019; 294:14686-14703. [PMID: 31431504 PMCID: PMC6779450 DOI: 10.1074/jbc.ra119.009913] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/09/2019] [Indexed: 12/30/2022] Open
Abstract
CTP synthase (CTPS) has been demonstrated to form evolutionarily-conserved filamentous structures termed cytoophidia whose exact cellular functions remain unclear, but they may play a role in intracellular compartmentalization. We have previously shown that the mammalian target of rapamycin complex 1 (mTORC1)-S6K1 pathway mediates cytoophidium assembly in mammalian cells. Here, using the fission yeast Schizosaccharomyces pombe as a model of a unicellular eukaryote, we demonstrate that the target of rapamycin (TOR)-signaling pathway regulates cytoophidium formation (from the S. pombe CTPS ortholog Cts1) also in S. pombe Conducting a systematic analysis of all viable single TOR subunit-knockout mutants and of several major downstream effector proteins, we found that Cts1 cytoophidia are significantly shortened and often dissociate when TOR is defective. We also found that the activities of the downstream effector kinases of the TORC1 pathway, Sck1, Sck2, and Psk1 S6, as well as of the S6K/AGC kinase Gad8, the major downstream effector kinase of the TORC2 pathway, are necessary for proper cytoophidium filament formation. Interestingly, we observed that the Crf1 transcriptional corepressor for ribosomal genes is a strong effector of Cts1 filamentation. Our findings connect TOR signaling, a major pathway required for cell growth, with the compartmentalization of the essential nucleotide synthesis enzyme CTPS, and we uncover differences in the regulation of its filamentation among higher multicellular and unicellular eukaryotic systems.
Collapse
Affiliation(s)
- Christos Andreadis
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China
| | - Lydia Hulme
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Katherine Wensley
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ji-Long Liu
- School of Life Sciences and Technology, ShanghaiTech University, 201210 Shanghai, China .,MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| |
Collapse
|
50
|
Oya E, Durand-Dubief M, Cohen A, Maksimov V, Schurra C, Nakayama JI, Weisman R, Arcangioli B, Ekwall K. Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence. Epigenetics Chromatin 2019; 12:45. [PMID: 31315658 PMCID: PMC6636030 DOI: 10.1186/s13072-019-0292-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/10/2019] [Indexed: 11/16/2022] Open
Abstract
Background Cellular quiescence is a reversible differentiation state during which cells modify their gene expression program to inhibit metabolic functions and adapt to a new cellular environment. The epigenetic changes accompanying these alterations are not well understood. We used fission yeast cells as a model to study the regulation of quiescence. When these cells are starved for nitrogen, the cell cycle is arrested in G1, and the cells enter quiescence (G0). A gene regulatory program is initiated, including downregulation of thousands of genes—for example, those related to cell proliferation—and upregulation of specific genes—for example, autophagy genes—needed to adapt to the physiological challenge. These changes in gene expression are accompanied by a marked alteration of nuclear organization and chromatin structure. Results Here, we investigated the role of Leo1, a subunit of the conserved RNA polymerase-associated factor 1 (Paf1) complex, in the quiescence process using fission yeast as the model organism. Heterochromatic regions became very dynamic in fission yeast in G0 during nitrogen starvation. The reduction of heterochromatin in early G0 was correlated with reduced target of rapamycin complex 2 (TORC2) signaling. We demonstrated that cells lacking Leo1 show reduced survival in G0. In these cells, heterochromatic regions, including subtelomeres, were stabilized, and the expression of many genes, including membrane transport genes, was abrogated. TOR inhibition mimics the effect of nitrogen starvation, leading to the expression of subtelomeric genes, and this effect was suppressed by genetic deletion of leo1. Conclusions We identified a protein, Leo1, necessary for survival during quiescence. Leo1 is part of a conserved protein complex, Paf1C, linked to RNA polymerase II. We showed that Leo1, acting downstream of TOR, is crucial for the dynamic reorganization of chromosomes and the regulation of gene expression during cellular quiescence. Genes encoding membrane transporters are not expressed in quiescent leo1 mutant cells, and cells die after 2 weeks of nitrogen starvation. Taken together, our results suggest that Leo1 is essential for the dynamic regulation of heterochromatin and gene expression during cellular quiescence. Electronic supplementary material The online version of this article (10.1186/s13072-019-0292-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eriko Oya
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden
| | - Mickaël Durand-Dubief
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden
| | - Adiel Cohen
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Vladimir Maksimov
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden
| | - Catherine Schurra
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Jun-Ichi Nakayama
- Division of Chromatin Regulation, National Institute for Basic Biology, Okazaki, Japan
| | - Ronit Weisman
- Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, Israel
| | - Benoit Arcangioli
- Unite Dynamique du Génome, Département Génomes et Génétique, Pasteur Institute, Paris, France
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, NEO Building, 141 83, Huddinge, Sweden.
| |
Collapse
|