1
|
Xie Y, Cai N, Liu X, He L, Ma Y, Yan C, Liang J, Ouyang SH, Luo A, He Y, Lu J, Ao D, Liu J, Ye Z, Liu B, He RR, Li W. SIRT5: a potential target for discovering bioactive natural products. J Nat Med 2025; 79:441-464. [PMID: 39979670 PMCID: PMC12058867 DOI: 10.1007/s11418-024-01871-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/17/2024] [Indexed: 02/22/2025]
Abstract
Silent information regulator 5 (SIRT5) is the fifth member of the sirtuin family, which is mainly expressed in mitochondrial matrix. SIRT5 plays a key role in metabolism and antioxidant responses, and is an important regulator for maintaining intracellular homeostasis. Given its involvement in multiple cellular processes, dysregulation of SIRT5 activity is associated with a variety of diseases. This review explores the structural characteristics of SIRT5 that influence its substrate specificity, highlights recent research advances, and summarizes its four key enzymatic activities along with their corresponding substrates in disease contexts. We also discuss the natural products that modulate SIRT5 activity and identify potential targets of SIRT5 through virtual docking, which may provide new therapeutic avenues. Although the mechanism of SIRT5 in diseases needs to be further elucidated and deglutathionylation activities are still at an early stage, targeting SIRT5 and its substrates holds significant promise for the development of novel therapeutics.
Collapse
Affiliation(s)
- Yuwei Xie
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Nali Cai
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Xiaohua Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Liangliang He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Yiming Ma
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Changyu Yan
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Juan Liang
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Shu-Hua Ouyang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China
| | - Ao Luo
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yingzhi He
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jun Lu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Dang Ao
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Jia Liu
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Zhonglv Ye
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Bin Liu
- Laboratory of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility, Jinan University, Guangzhou, 510632, China.
| | - Wen Li
- Department of Pediatrics, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China.
| |
Collapse
|
2
|
Kumar J, Uppulapu SK, Kumari S, Sharma K, Paradee W, Yadav RP, Kumar V, Kumar S. p66Shc Mediates SUMO2-induced Endothelial Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.01.24.577109. [PMID: 38328241 PMCID: PMC10849724 DOI: 10.1101/2024.01.24.577109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Background Sumoylation is a post-translational modification that can regulate different physiological functions. Increased sumoylation, specifically conjugation of SUMO2/3 (small ubiquitin-like modifier 2/3), is detrimental to vascular health. However, the molecular mechanism mediating this effect is poorly understood. Methods We used cell-based assays and mass spectrometry to show that p66Shc is a direct target of SUMO2 and SUMO2 regulates p66Shc function via lysine-81 modification. To determine the effects of SUMO2-p66ShcK81 on vascular function, we generated p66ShcK81R knockin mice and crossbred to LDLr -/- mice to induce hyperlipidemia. Next, to determine p66ShcK81-SUMO2ylation-induced changes in endothelial cell signaling, we performed mass spectrometry followed by Ingenuity Pathway Analysis. Results Our data reveal that p66Shc mediates the effects of SUMO2 on endothelial cells. Mass spectrometry identified that SUMO2 modified lysine-81 in the unique collagen homology-2 domain of p66Shc. SUMO2ylation of p66Shc increased phosphorylation at serine-36, causing it to translocate to the mitochondria, a step critical for oxidative function of p66Shc. Notably, sumoylation-deficient p66Shc (p66ShcK81R) was resistant to SUMO2-induced p66ShcS36 phosphorylation and mitochondrial translocation. P66ShcK81R knockin mice were resistant to endothelial dysfunction induced by SUMO2ylation and hyperlipidemia. Ingenuity Pathway Analysis revealed multiple signaling pathways regulated by p66ShcK81-SUMO2ylation in endothelial cells, highlighting Rho-GTPase as a major pathway affected by SUMO2-p66ShcK81. Conclusions Collectively, our work reveals SUMO2-p66Shc signaling as a fundamental regulator of vascular endothelial function. We discovered that p66ShcK81 is an upstream modification regulating p66Shc signaling and mediates hyperlipidemia-induced endothelial dysfunction and oxidative stress.
Collapse
|
3
|
Tian C, Huang R, Xiang M. SIRT1: Harnessing multiple pathways to hinder NAFLD. Pharmacol Res 2024; 203:107155. [PMID: 38527697 DOI: 10.1016/j.phrs.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses hepatic steatosis, non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and hepatocellular carcinoma. It is the primary cause of chronic liver disorders, with a high prevalence but no approved treatment. Therefore, it is indispensable to find a trustworthy therapy for NAFLD. Recently, mounting evidence illustrates that Sirtuin 1 (SIRT1) is strongly associated with NAFLD. SIRT1 activation or overexpression attenuate NAFLD, while SIRT1 deficiency aggravates NAFLD. Besides, an array of therapeutic agents, including natural compounds, synthetic compounds, traditional Chinese medicine formula, and stem cell transplantation, alleviates NALFD via SIRT1 activation or upregulation. Mechanically, SIRT1 alleviates NAFLD by reestablishing autophagy, enhancing mitochondrial function, suppressing oxidative stress, and coordinating lipid metabolism, as well as reducing hepatocyte apoptosis and inflammation. In this review, we introduced the structure and function of SIRT1 briefly, and summarized the effect of SIRT1 on NAFLD and its mechanism, along with the application of SIRT1 agonists in treating NAFLD.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Rongrong Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ming Xiang
- Department of Pharmacology, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Dhillon VS, Shahid M, Deo P, Fenech M. Reduced SIRT1 and SIRT3 and Lower Antioxidant Capacity of Seminal Plasma Is Associated with Shorter Sperm Telomere Length in Oligospermic Men. Int J Mol Sci 2024; 25:718. [PMID: 38255792 PMCID: PMC10815409 DOI: 10.3390/ijms25020718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Infertility affects millions of couples worldwide and has a profound impact not only on their families, but also on communities. Telomere attrition has been associated with infertility, DNA damage and fragmentation. Oxidative stress has been shown to affect sperm DNA integrity and telomere length. Sirtuins such as SIRT1 and SIRT3 are involved in aging and oxidative stress response. The aim of the present study is to determine the role of SIRT1 and SIRT3 in regulating oxidative stress, telomere shortening, and their association with oligospermia. Therefore, we assessed the protein levels of SIRT1 and SIRT3, total antioxidant capacity (TAC), superoxide dismutase (SOD), malondialdehyde (MDA) and catalase activity (CAT) in the seminal plasma of 272 patients with oligospermia and 251 fertile men. We also measured sperm telomere length (STL) and leukocyte telomere length (LTL) using a standard real-time quantitative PCR assay. Sperm chromatin and protamine deficiency were also measured as per standard methods. Our results for oligospermic patients demonstrate significant reductions in semen parameters, shorter STL and LTL, lower levels of SOD, TAC, CAT, SIRT1 and SIRT3 levels, and also significant protamine deficiency and higher levels of MDA and DNA fragmentation. We conclude that a shorter TL in sperms and leukocytes is associated with increased oxidative stress that also accounts for high levels of DNA fragmentation in sperms. Our results support the hypothesis that various sperm parameters in the state of oligospermia are associated with or caused by reduced levels of SIRT1 and SIRT3 proteins.
Collapse
Affiliation(s)
- Varinderpal S. Dhillon
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Permal Deo
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| | - Michael Fenech
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide 5000, Australia; (P.D.); (M.F.)
| |
Collapse
|
5
|
Ninova M, Holmes H, Lomenick B, Fejes Tóth K, Aravin AA. Pervasive SUMOylation of heterochromatin and piRNA pathway proteins. CELL GENOMICS 2023; 3:100329. [PMID: 37492097 PMCID: PMC10363806 DOI: 10.1016/j.xgen.2023.100329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 07/27/2023]
Abstract
Genome regulation involves complex protein interactions that are often mediated through post-translational modifications (PTMs). SUMOylation-modification by the small ubiquitin-like modifier (SUMO)-has been implicated in numerous essential processes in eukaryotes. In Drosophila, SUMO is required for viability and fertility, with its depletion from ovaries leading to heterochromatin loss and ectopic transposon and gene activation. Here, we developed a proteomics-based strategy to uncover the Drosophila ovarian "SUMOylome," which revealed that SUMOylation is widespread among proteins involved in heterochromatin regulation and different aspects of the Piwi-interacting small RNA (piRNA) pathway that represses transposons. Furthermore, we show that SUMOylation of several piRNA pathway proteins occurs in a Piwi-dependent manner. Together, these data highlight broad implications of protein SUMOylation in epigenetic regulation and indicate novel roles of this modification in the cellular defense against genomic parasites. Finally, this work provides a resource for the study of SUMOylation in other biological contexts in the Drosophila model.
Collapse
Affiliation(s)
- Maria Ninova
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Hannah Holmes
- Department of Biochemistry, University of California Riverside, 3401 Watkins Drive, Boyce Hall, Riverside, CA 92521, USA
| | - Brett Lomenick
- Proteome Exploration Laboratory of the Beckman Institute, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Katalin Fejes Tóth
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Alexei A. Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
6
|
Sharma K, Menon MB. Decoding post-translational modifications of mammalian septins. Cytoskeleton (Hoboken) 2023; 80:169-181. [PMID: 36797225 DOI: 10.1002/cm.21747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/21/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Septins are cytoskeletal GTPases that form nonpolar filaments and higher-ordered structures and they take part in a wide range of cellular processes. Septins are conserved from yeast to mammals but absent from higher plants. The number of septin genes vary between organisms and they usually form complex heteropolymeric networks. Most septins are known to be capable of GTP hydrolysis which may regulate septin dynamics. Knowledge on regulation of septin function by post-translational modifications is still in its infancy. In this review article, we highlight the post-translational modifications reported for the 13 human septins and discuss their implications on septin functions. In addition to the functionally investigated modifications, we also try to make sense of the complex septin post-translational modification code revealed from large-scale phospho-proteomic datasets. Future studies may determine how these isoform-specific and homology group specific modifications affect septin structure and function.
Collapse
Affiliation(s)
- Khushboo Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Manoj B Menon
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
7
|
Abstract
Post-translational modifications (PTMs) can occur on specific amino acids localized within regulatory domains of target proteins, which control a protein's stability. These regions, called degrons, are often controlled by PTMs, which act as signals to expedite protein degradation (PTM-activated degrons) or to forestall degradation and stabilize a protein (PTM-inactivated degrons). We summarize current knowledge of the regulation of protein stability by various PTMs. We aim to display the variety and breadth of known mechanisms of regulation as well as highlight common themes in PTM-regulated degrons to enhance potential for identifying novel drug targets where druggable targets are currently lacking.
Collapse
|
8
|
Zhang FL, Yang SY, Liao L, Zhang TM, Zhang YL, Hu SY, Deng L, Huang MY, Andriani L, Ma XY, Shao ZM, Li DQ. Dynamic SUMOylation of MORC2 orchestrates chromatin remodelling and DNA repair in response to DNA damage and drives chemoresistance in breast cancer. Theranostics 2023; 13:973-990. [PMID: 36793866 PMCID: PMC9925317 DOI: 10.7150/thno.79688] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/05/2023] [Indexed: 02/04/2023] Open
Abstract
Rationale: SUMOylation regulates a plethora of biological processes, and its inhibitors are currently under investigation in clinical trials as anticancer agents. Thus, identifying new targets with site-specific SUMOylation and defining their biological functions will not only provide new mechanistic insights into the SUMOylation signaling but also open an avenue for developing new strategy for cancer therapy. MORC family CW-type zinc finger 2 (MORC2) is a newly identified chromatin-remodeling enzyme with an emerging role in the DNA damage response (DDR), but its regulatory mechanism remains enigmatic. Methods: In vivo and in vitro SUMOylation assays were used to determine the SUMOylation levels of MORC2. Overexpression and knockdown of SUMO-associated enzymes were used to detect their effects on MORC2 SUMOylation. The effect of dynamic MORC2 SUMOylation on the sensitivity of breast cancer cells to chemotherapeutic drugs was examined through in vitro and in vivo functional assays. Immunoprecipitation, GST pull-down, MNase, and chromatin segregation assays were used to explore the underlying mechanisms. Results: Here, we report that MORC2 is modified by small ubiquitin-like modifier 1 (SUMO1) and SUMO2/3 at lysine 767 (K767) in a SUMO-interacting motif dependent manner. MORC2 SUMOylation is induced by SUMO E3 ligase tripartite motif containing 28 (TRIM28) and reversed by deSUMOylase sentrin-specific protease 1 (SENP1). Intriguingly, SUMOylation of MORC2 is decreased at the early stage of DNA damage induced by chemotherapeutic drugs that attenuate the interaction of MORC2 with TRIM28. MORC2 deSUMOylation induces transient chromatin relaxation to enable efficient DNA repair. At the relatively late stage of DNA damage, MORC2 SUMOylation is restored, and SUMOylated MORC2 interacts with protein kinase CSK21 (casein kinase II subunit alpha), which in turn phosphorylates DNA-PKcs (DNA-dependent protein kinase catalytic subunit), thus promoting DNA repair. Notably, expression of a SUMOylation-deficient mutant MORC2 or administration of SUMO inhibitor enhances the sensitivity of breast cancer cells to DNA-damaging chemotherapeutic drugs. Conclusions: Collectively, these findings uncover a novel regulatory mechanism of MORC2 by SUMOylation and reveal the intricate dynamics of MORC2 SUMOylation important for proper DDR. We also propose a promising strategy to sensitize MORC2-driven breast tumors to chemotherapeutic drugs by inhibition of the SUMO pathway.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shao-Ying Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Li Liao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Tai-Mei Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yin-Ling Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Shu-Yuan Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ling Deng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Min-Ying Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Lisa Andriani
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao-Yan Ma
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhi-Min Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Da-Qiang Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zheng ZY, Jiang T, Huang ZF, Chu B, Gu J, Zhao X, Liu H, Fan J, Yu LP, Jiang SH, Li Q, Hu LP, Kong FQ, Zhang L, Chen Q, Chen J, Zhang HW, Yin GY, Zhao SJ. Fatty acids derived from apoptotic chondrocytes fuel macrophages FAO through MSR1 for facilitating BMSCs osteogenic differentiation. Redox Biol 2022; 53:102326. [PMID: 35525025 PMCID: PMC9093016 DOI: 10.1016/j.redox.2022.102326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 11/15/2022] Open
Abstract
The nonunion following a fracture is associated with severe patient morbidity and economic consequences. Currently, accumulating studies are focusing on the importance of macrophages during fracture repair. However, details regarding the process by which macrophages facilitate endochondral ossification (EO) are largely unknown. In this study, we present evidence that apoptotic chondrocytes (ACs) are not inert corpses awaiting removal, but positively modulate the osteoinductive ability of macrophages. In vivo experiments revealed that fatty acid (FA) metabolic processes up-regulated following EO. In vitro studies further uncovered that FAs derived from ACs are taken up by macrophages mainly through macrophage scavenger receptor 1 (MSR1). Then, our functional experiments confirmed that these exogenous FAs subsequently activate peroxisome proliferator-activated receptor α (PPARα), which further facilitates lipid droplets generation and fatty acid oxidation (FAO). Mechanistically, elevated FAO is involved in up-regulating the osteoinductive effect by generating BMP7 and NAD+/SIRT1/EZH2 axis epigenetically controls BMP7 expression in macrophages cultured with ACs culture medium. Our findings advanced the concept that ACs could promote bone regeneration by regulating metabolic and function reprogram in macrophages and identified macrophage MSR1 represents a valuable target for fracture treatments.
Collapse
|
10
|
Yang Y, Liu Y, Wang Y, Chao Y, Zhang J, Jia Y, Tie J, Hu D. Regulation of SIRT1 and Its Roles in Inflammation. Front Immunol 2022; 13:831168. [PMID: 35359990 PMCID: PMC8962665 DOI: 10.3389/fimmu.2022.831168] [Citation(s) in RCA: 244] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/15/2022] [Indexed: 12/28/2022] Open
Abstract
The silent information regulator sirtuin 1 (SIRT1) protein, a highly conserved NAD+-dependent deacetylase belonging to the sirtuin family, is a post-translational regulator that plays a role in modulating inflammation. SIRT1 affects multiple biological processes by deacetylating a variety of proteins including histones and non-histone proteins. Recent studies have revealed intimate links between SIRT1 and inflammation, while alterations to SIRT1 expression and activity have been linked to inflammatory diseases. In this review, we summarize the mechanisms that regulate SIRT1 expression, including upstream activators and suppressors that operate on the transcriptional and post-transcriptional levels. We also summarize factors that influence SIRT1 activity including the NAD+/NADH ratio, SIRT1 binding partners, and post-translational modifications. Furthermore, we underscore the role of SIRT1 in the development of inflammation by commenting on the proteins that are targeted for deacetylation by SIRT1. Finally, we highlight the potential for SIRT1-based therapeutics for inflammatory diseases.
Collapse
Affiliation(s)
- Yunshu Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yang Liu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yunwei Wang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yongyi Chao
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jinxin Zhang
- Department of Emergency, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yanhui Jia
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Jun Tie
- State Key Laboratory of Cancer Biology and Xijing Hospital of Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
11
|
Khawar MB, Sohail AM, Li W. SIRT1: A Key Player in Male Reproduction. Life (Basel) 2022; 12:318. [PMID: 35207605 PMCID: PMC8880319 DOI: 10.3390/life12020318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 12/23/2022] Open
Abstract
Reproduction is the way to immortality for an individual, and it is essential to the continuation of the species. Sirtuins are involved in cellular homeostasis, energy metabolism, apoptosis, age-related problems, and sexual reproduction. Sirtuin 1 (SIRT1) belongs to the sirtuin family of deacetylases, and it is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase. It removes the acetyl group from a variety of substrates. SIRT1 regulates endocrine/metabolic, reproductive, and placental development by deacetylating histone, different transcription factors, and signal transduction molecules in a variety of cellular processes. It also plays a very important role in the synthesis and secretion of sex hormones via regulating the hypothalamus-pituitary-gonadal (HPG) axis. Moreover, SIRT1 participates in several key stages of spermatogenesis and sperm maturation. The current review will give a thorough overview of SIRT1's functions in male reproductive processes, thus paving the way for more research on restorative techniques and their uses in reproductive medicine.
Collapse
Affiliation(s)
- Muhammad Babar Khawar
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Applied Molecular Biology and Biomedicine Laboratory, Department of Zoology, University of Narowal, Narowal 51600, Pakistan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Abdullah Muhammad Sohail
- Molecular Medicine and Cancer Therapeutics Laboratory, Department of Zoology, Faculty of Sciences, University of Central Punjab, Lahore 54782, Pakistan
| | - Wei Li
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
12
|
Antonio Urrutia G, Ramachandran H, Cauchy P, Boo K, Ramamoorthy S, Boller S, Dogan E, Clapes T, Trompouki E, Torres-Padilla ME, Palvimo JJ, Pichler A, Grosschedl R. ZFP451-mediated SUMOylation of SATB2 drives embryonic stem cell differentiation. Genes Dev 2021; 35:1142-1160. [PMID: 34244292 PMCID: PMC8336893 DOI: 10.1101/gad.345843.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Here, Urrutia et al. set out to study the mechanism that regulates the choice between pluripotency and differentiation in embryonic stem cells (ESCs). Using biochemical and genomic analyses, the authors identify SUMO2 modification of Satb2 by the E3 ligase Zfp451 as a driver of ESC differentiation. The establishment of cell fates involves alterations of transcription factor repertoires and repurposing of transcription factors by post-translational modifications. In embryonic stem cells (ESCs), the chromatin organizers SATB2 and SATB1 balance pluripotency and differentiation by activating and repressing pluripotency genes, respectively. Here, we show that conditional Satb2 gene inactivation weakens ESC pluripotency, and we identify SUMO2 modification of SATB2 by the E3 ligase ZFP451 as a potential driver of ESC differentiation. Mutations of two SUMO-acceptor lysines of Satb2 (Satb2K →R) or knockout of Zfp451 impair the ability of ESCs to silence pluripotency genes and activate differentiation-associated genes in response to retinoic acid (RA) treatment. Notably, the forced expression of a SUMO2-SATB2 fusion protein in either Satb2K →R or Zfp451−/− ESCs rescues, in part, their impaired differentiation potential and enhances the down-regulation of Nanog. The differentiation defect of Satb2K →R ESCs correlates with altered higher-order chromatin interactions relative to Satb2wt ESCs. Upon RA treatment of Satb2wt ESCs, SATB2 interacts with ZFP451 and the LSD1/CoREST complex and gains binding at differentiation genes, which is not observed in RA-treated Satb2K →R cells. Thus, SATB2 SUMOylation may contribute to the rewiring of transcriptional networks and the chromatin interactome of ESCs in the transition of pluripotency to differentiation.
Collapse
Affiliation(s)
- Gustavo Antonio Urrutia
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Haribaskar Ramachandran
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Kyungjin Boo
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Soeren Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Clapes
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | | | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
13
|
Hatakeyama D, Masuda T, Miki R, Ohtsuki S, Kuzuhara T. In-vitro acetylation of SARS-CoV and SARS-CoV-2 nucleocapsid proteins by human PCAF and GCN5. Biochem Biophys Res Commun 2021; 557:273-279. [PMID: 33894414 PMCID: PMC8030717 DOI: 10.1016/j.bbrc.2021.03.173] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022]
Abstract
Recently, the novel coronavirus (SARS-CoV-2), which has spread from China to the world, was declared a global public health emergency, which causes lethal respiratory infections. Acetylation of several proteins plays essential roles in various biological processes, such as viral infections. We reported that the nucleoproteins of influenza virus and Zaire Ebolavirus were acetylated, suggesting that these modifications contributed to the molecular events involved in viral replication. Similar to influenza virus and Ebolavirus, the coronavirus also contains single-stranded RNA, as its viral genome interacts with the nucleocapsid (N) proteins. In this study, we report that SARS-CoV and SARS-CoV-2 N proteins are strongly acetylated by human histone acetyltransferases, P300/CBP-associated factor (PCAF), and general control nonderepressible 5 (GCN5), but not by CREB-binding protein (CBP) in vitro. Liquid chromatography-mass spectrometry analyses identified 2 and 12 acetyl-lysine residues from SARS-CoV and SARS-CoV-2 N proteins, respectively. Particularly in the SARS-CoV-2 N proteins, the acetyl-lysine residues were localized in or close to several functional sites, such as the RNA interaction domains and the M-protein interacting site. These results suggest that acetylation of SARS-CoV-2 N proteins plays crucial roles in their functions.
Collapse
Affiliation(s)
- Dai Hatakeyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Ryosuke Miki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, 862-0973, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| |
Collapse
|
14
|
Paget S, Dubuissez M, Page A, Dehennaut V, Loison I, Spruyt N, Leprince D. Phosphorylation of HIC1 (Hypermethylated in Cancer 1) Ser694 by ATM is essential for DNA repair. Biochem Biophys Res Commun 2021; 553:51-57. [PMID: 33756345 DOI: 10.1016/j.bbrc.2021.03.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
The tumor suppressor gene HIC1 (Hypermethylated in Cancer 1) encodes a transcriptional repressor involved in the DNA-damage response. A SUMOylation increase on HIC1 Lysine314 favors the direct transcriptional repression of SIRT1 and thus the P53-dependent apoptotic response to irreparable DNA double strand breaks (DSBs). HIC1 is also essential for DSBs repair but in a SUMOylation-independent manner. Here, we show that repairable DSBs induced by a 1 h Etoposide treatment results in three specific posttranslational modifications (PTMs) of HIC1. Two of these PTMs, phosphorylation of Serine 694 and Acetylation of Lysine 623 are located in the conserved HIC1 C-terminal region located downstream of the Zinc Finger DNA-binding domain. By contrast, phosphorylation of Serine 285 found in the poorly conserved central region is unique to the human protein. We showed that Ser694 phosphorylation is mediated mainly by the PIKK kinase ATM and is essential for the DNA repair activity of HIC1 as demonstrated by the lack of efficiency of the S694A point mutant in Comet assays. Thus, our results provide the first evidence for a functional role of the conserved HIC1 C-terminal region as a novel ATM substrate that plays an essential role in the cellular HIC1-mediated cellular response to repairable DSBs.
Collapse
Affiliation(s)
- Sonia Paget
- Univ. Lille, CNRS, INSERM, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Marion Dubuissez
- Univ. Lille, CNRS, INSERM, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Adeline Page
- Proteomics Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR7104, Strasbourg University, Illkirch, France
| | - Vanessa Dehennaut
- Univ. Lille, CNRS, INSERM, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Ingrid Loison
- Univ. Lille, CNRS, INSERM, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Nathalie Spruyt
- Univ. Lille, CNRS, INSERM, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France
| | - Dominique Leprince
- Univ. Lille, CNRS, INSERM, UMR9020-UMR-S1277 - Canther - Cancer Heterogeneity, Plasticity and Resistance to Therapies, F-59000, Lille, France.
| |
Collapse
|
15
|
Functions of nuclear receptors SUMOylation. Clin Chim Acta 2021; 516:27-33. [PMID: 33476589 DOI: 10.1016/j.cca.2021.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/18/2022]
Abstract
The nuclear receptor superfamily is a family of ligand-activated transcription factors that play a key role in cell metabolism and human diseases. They can be modified after translation, such as acetylation, ubiquitination, phosphorylation and SUMOylation. Crosstalk between SUMO and ubiquitin, phosphorylation and acetylation regulates a variety of metabolic and physiological activities. Nuclear receptors play an important role in lipid metabolism, inflammation, bile acid homeostasis and autophagy. SUMOylation nuclear receptors can regulate their function and affect cell metabolism. It also provides a potential therapeutic target for atherosclerosis, tumor and other metabolic and inflammation-related diseases. This review focuses on the function of SUMOylation nuclear receptors.
Collapse
|
16
|
Lu W, Wang Q, Xu C, Yuan H, Fan Q, Chen B, Cai R, Wu D, Xu M. SUMOylation is essential for Sirt2 tumor-suppressor function in neuroblastoma. Neoplasia 2020; 23:129-139. [PMID: 33316537 PMCID: PMC7736920 DOI: 10.1016/j.neo.2020.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
SUMOylation is an important post-translational modification that participates in a variety of cellular physiological and pathological processes in eukaryotic cells. Sirt2, a NAD+-dependent deacetylase, usually exerts a tumor-suppressor function. However, the role of SUMOylation in cancer cells is not fully known. In this study, we found that SUMOylation can occur in the Sirt2 protein at both lysine 183 and lysine 340 sites. SUMOylation did not affect Sirt2 localization or stability but was involved in P38-mTORC2-AKT cellular signal transduction via direct deacetylation on a new substrate MAPK/P38. SUMOylation-deficient Sirt2 lost the capability of suppressing tumor processes and showed resistance to the Sirt2-specific inhibitor AK-7 in neuroblastoma cells. Here, we revealed the important function of Sirt2-SUMOylation, which is closely associated with cellular signal transduction and is essential for suppressing tumorigenesis in neuroblastoma.
Collapse
Affiliation(s)
- Wenmei Lu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qian Wang
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ci Xu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihua Yuan
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Fan
- Department of General Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Biying Chen
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Renjie Cai
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danhong Wu
- Department of Neurology, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China.
| | - Ming Xu
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
17
|
Gorski PA, Jang SP, Jeong D, Lee A, Lee P, Oh JG, Chepurko V, Yang DK, Kwak TH, Eom SH, Park ZY, Yoo YJ, Kim DH, Kook H, Sunagawa Y, Morimoto T, Hasegawa K, Sadoshima J, Vangheluwe P, Hajjar RJ, Park WJ, Kho C. Role of SIRT1 in Modulating Acetylation of the Sarco-Endoplasmic Reticulum Ca 2+-ATPase in Heart Failure. Circ Res 2020; 124:e63-e80. [PMID: 30786847 DOI: 10.1161/circresaha.118.313865] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
RATIONALE SERCA2a, sarco-endoplasmic reticulum Ca2+-ATPase, is a critical determinant of cardiac function. Reduced level and activity of SERCA2a are major features of heart failure. Accordingly, intensive efforts have been made to develop efficient modalities for SERCA2a activation. We showed that the activity of SERCA2a is enhanced by post-translational modification with SUMO1 (small ubiquitin-like modifier 1). However, the roles of other post-translational modifications on SERCA2a are still unknown. OBJECTIVE In this study, we aim to assess the role of lysine acetylation on SERCA2a function and determine whether inhibition of lysine acetylation can improve cardiac function in the setting of heart failure. METHODS AND RESULTS The acetylation of SERCA2a was significantly increased in failing hearts of humans, mice, and pigs, which is associated with the reduced level of SIRT1 (sirtuin 1), a class III histone deacetylase. Downregulation of SIRT1 increased the SERCA2a acetylation, which in turn led to SERCA2a dysfunction and cardiac defects at baseline. In contrast, pharmacological activation of SIRT1 reduced the SERCA2a acetylation, which was accompanied by recovery of SERCA2a function and cardiac defects in failing hearts. Lysine 492 (K492) was of critical importance for the regulation of SERCA2a activity via acetylation. Acetylation at K492 significantly reduced the SERCA2a activity, presumably through interfering with the binding of ATP to SERCA2a. In failing hearts, acetylation at K492 appeared to be mediated by p300 (histone acetyltransferase p300), a histone acetyltransferase. CONCLUSIONS These results indicate that acetylation/deacetylation at K492, which is regulated by SIRT1 and p300, is critical for the regulation of SERCA2a activity in hearts. Pharmacological activation of SIRT1 can restore SERCA2a activity through deacetylation at K492. These findings might provide a novel strategy for the treatment of heart failure.
Collapse
Affiliation(s)
- Przemek A Gorski
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Seung Pil Jang
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Dongtak Jeong
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Ahyoung Lee
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Philyoung Lee
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Jae Gyun Oh
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Vadim Chepurko
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Dong Kwon Yang
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | | | - Soo Hyun Eom
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Zee-Yong Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Yung Joon Yoo
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Do Han Kim
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Hyun Kook
- Basic Research Laboratory, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, Korea (H.K.)
| | - Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Japan (Y.S., T.M.)
| | - Koji Hasegawa
- Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, Japan (K.H.)
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark (J.S.)
| | - Peter Vangheluwe
- Department of Cellular and Molecular Medicine, KU Leuven, Belgium (P.V.)
| | - Roger J Hajjar
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| | - Woo Jin Park
- College of Life Sciences, Gwangju Institute of Science and Technology, Korea (S.P.J., D.K.Y., S.H.E., Z.-Y.P., Y.J.Y., D.H.K., W.J.P.)
| | - Changwon Kho
- From the Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (P.A.G., D.J., A.L., P.L., J.G.O., V.C., R.J.H., C.K.)
| |
Collapse
|
18
|
Abstract
Nε-lysine acetylation was discovered more than half a century ago as a post-translational modification of histones and has been extensively studied in the context of transcription regulation. In the past decade, proteomic analyses have revealed that non-histone proteins are frequently acetylated and constitute a major portion of the acetylome in mammalian cells. Indeed, non-histone protein acetylation is involved in key cellular processes relevant to physiology and disease, such as gene transcription, DNA damage repair, cell division, signal transduction, protein folding, autophagy and metabolism. Acetylation affects protein functions through diverse mechanisms, including by regulating protein stability, enzymatic activity, subcellular localization and crosstalk with other post-translational modifications and by controlling protein-protein and protein-DNA interactions. In this Review, we discuss recent progress in our understanding of the scope, functional diversity and mechanisms of non-histone protein acetylation.
Collapse
|
19
|
Song JY, Lee SH, Kim MK, Jeon BN, Cho SY, Lee SH, Kim KS, Hur MW. HIC2, a new transcription activator of SIRT1. FEBS Lett 2019; 593:1763-1776. [PMID: 31127867 DOI: 10.1002/1873-3468.13456] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/03/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
The protein deacetylase SIRT1 is crucial to numerous physiological processes, such as aging, metabolism, and autoimmunity, and is repressed by various transcription factors, including HIC1. Conversely, we found that HIC2, which is highly homologous to HIC1, is a transcriptional activator of SIRT1 due to opposite activity of the intermediate domains of the two homologs. Importantly, this relationship between HIC2 and SIRT1 could be important for cardiac development, where both proteins are implicated. Here, we assessed whether ectopic expression of HIC2, and subsequent upregulation of SIRT1, might decrease apoptosis in H9c2 cardiomyocytes under simulated ischemia/reperfusion (I/R) injury conditions. Our results demonstrate that unlike its structural homolog HIC1, HIC2 is a pivotal transcriptional activator of SIRT1 and, consequently, may protect the heart from I/R injury.
Collapse
Affiliation(s)
- Ji-Yang Song
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Seung-Hyun Lee
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Min-Kyeong Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Bu-Nam Jeon
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Su-Yeon Cho
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Sun-Ho Lee
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Kyung-Sup Kim
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| | - Man-Wook Hur
- Brain Korea 21 Plus Project for Medical Sciences, Severance Biomedical Research Institute, Department of Biochemistry and Molecular Biology, Yonsei University School of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Hypermethylated in cancer 1 (HIC1) mediates high glucose induced ROS accumulation in renal tubular epithelial cells by epigenetically repressing SIRT1 transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:917-927. [DOI: 10.1016/j.bbagrm.2018.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/09/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023]
|
21
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
22
|
Tatone C, Di Emidio G, Barbonetti A, Carta G, Luciano AM, Falone S, Amicarelli F. Sirtuins in gamete biology and reproductive physiology: emerging roles and therapeutic potential in female and male infertility. Hum Reprod Update 2018; 24:267-289. [DOI: 10.1093/humupd/dmy003] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022] Open
Affiliation(s)
- Carla Tatone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Giovanna Di Emidio
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | | | - Gaspare Carta
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Gynecology Unit, Reproductive Service, San Salvatore Hospital, Via Vetoio, 67100 L’Aquila, Italy
| | - Alberto M Luciano
- Department of Health, Animal Science and Food Safety, Reproductive and Developmental Biology Laboratory, University of Milan, 20133 Milan, Italy
| | - Stefano Falone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Fernanda Amicarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Institute of Translational Pharmacology (IFT), CNR, 67100 L’Aquila, Italy
| |
Collapse
|
23
|
Protein inhibitor of activated STAT 4 (PIAS4) regulates pro-inflammatory transcription in hepatocytes by repressing SIRT1. Oncotarget 2018; 7:42892-42903. [PMID: 27285989 PMCID: PMC5189995 DOI: 10.18632/oncotarget.9864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 05/06/2016] [Indexed: 01/07/2023] Open
Abstract
Excessive nutrition promotes the pathogenesis of non-alcoholic steatohepatitis (NASH), characterized by the accumulation of pro-inflammation mediators in the liver. In the present study we investigated the regulation of pro-inflammatory transcription in hepatocytes by protein inhibitor of activated STAT 4 (PIAS4) in this process and the underlying mechanisms. We report that expression of the class III deacetylase SIRT1 was down-regulated in the livers of NASH mice accompanied by a simultaneous increase in the expression and binding activity of PIAS4. Exposure to high glucose stimulated the expression PIAS4 in cultured hepatocytes paralleling SIRT1 repression. Estrogen, a known NASH-protective hormone, ameliorated SIRT1 trans-repression by targeting PIAS4. Over-expression of PIAS4 enhanced, while PIAS4 knockdown alleviated, repression of SIRT1 transcription by high glucose. Lentiviral delivery of short hairpin RNA (shRNA) targeting PIAS4 attenuated hepatic inflammation in NASH mice by restoring SIRT1 expression. Mechanistically, PIAS4 promoted NF-κB-mediated pro-inflammatory transcription in a SIRT1 dependent manner. In conclusion, our study indicates that PIAS4 mediated SIRT1 repression in response to nutrient surplus contributes to the pathogenesis of NASH. Therefore, targeting PIAS4 might provide novel therapeutic strategies in the intervention of NASH.
Collapse
|
24
|
Wang X, Wang Y, Xiao G, Wang J, Zu L, Hao M, Sun X, Fu Y, Hu G, Wang J. Hypermethylated in cancer 1(HIC1) suppresses non-small cell lung cancer progression by targeting interleukin-6/Stat3 pathway. Oncotarget 2017; 7:30350-64. [PMID: 27107418 PMCID: PMC5058685 DOI: 10.18632/oncotarget.8734] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/06/2016] [Indexed: 11/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC), which accounts for more than 80% of lung cancers, is a leading cause of cancer mortality worldwide. However, the mechanism underlying its progression remains unclear. Here we found that HIC1 promoter was heavily methylated in NSCLC cell lines and tissues contributing to its low expression compared to normal controls. Restoring HIC1 expression inhibited migration, invasion and promoted inducible apoptosis of NSCLC cells. Notably, HIC1 is a tumor suppressor through inhibiting the transcription of IL-6 by sequence-specific binding on its promoter. Restoring IL-6 expression could partially rescue these phenotypes induced by HIC1 in vitro and in vivo. Mechanistic analyses show that autocrine secretion of IL-6 induced by loss of HIC1 activated STAT3 through IL-6/JAK pathway and was associated with NSCLC progression. The HIC1/IL-6 axis may serve as a prognostic biomarker and provide an attractive therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiumin Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Xiao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinglong Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lidong Zu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingang Hao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xueqing Sun
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Fu
- Department of Chest Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guohong Hu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jianhua Wang
- Cancer institute, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
25
|
Jiang R, Ding L, Zhou J, Huang C, Zhang Q, Jiang Y, Liu J, Yan Q, Zhen X, Sun J, Yan G, Sun H. Enhanced HOXA10 sumoylation inhibits embryo implantation in women with recurrent implantation failure. Cell Death Discov 2017; 3:17057. [PMID: 29018572 PMCID: PMC5632741 DOI: 10.1038/cddiscovery.2017.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 02/05/2023] Open
Abstract
HOXA10 has emerged as an important molecular marker of endometrial receptivity. Recurrent implantation failure (RIF) after in vitro fertilization-embryo transplantation (IVF-ET) treatment is associated with impaired endometrial receptivity, but the exact underlying mechanism of this phenomenon remains elusive. Here we found that HOXA10 was modified by small ubiquitin like-modifier 1 (SUMO1) at the evolutionarily conserved lysine 164 residue. Sumoylation inhibited HOXA10 protein stability and transcriptional activity without affecting its subcellular localization. SUMO1-modified HOXA10 expression was decreased in estradiol- and progesterone-treated Ishikawa cells. Sumoylation inhibited the accelerant role of HOXA10 in BeWo spheroid and mouse embryo attachment to Ishikawa cells. Importantly, aberrantly high SUMO1-HOXA10 expression was detected in mid-secretory endometria of women with RIF compared with that of the control fertile women. Together, our results suggest that HOXA10 sumoylation impairs the process of embryo implantation in vitro and takes part in the development of RIF.
Collapse
Affiliation(s)
- Ruiwei Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Lijun Ding
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianjun Zhou
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Chenyang Huang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qun Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Yue Jiang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jingyu Liu
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Qiang Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Xin Zhen
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Jianxin Sun
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Guijun Yan
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| | - Haixiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, People’s Republic of China
| |
Collapse
|
26
|
Garvin AJ, Morris JR. SUMO, a small, but powerful, regulator of double-strand break repair. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160281. [PMID: 28847818 PMCID: PMC5577459 DOI: 10.1098/rstb.2016.0281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2017] [Indexed: 12/11/2022] Open
Abstract
The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by Small Ubiquitin-like MOdifier (SUMO) isoforms have also been found to be key to coordination of the response (Morris et al. 2009 Nature462, 886-890 (doi:10.1038/nature08593); Galanty et al. 2009 Nature462, 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Alexander J Garvin
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Joanna R Morris
- Birmingham Centre for Genome Biology and Institute of Cancer and Genomic Sciences, Medical and Dental School, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
27
|
Abstract
Many of the known SUMO substrates are nuclear proteins, which regulate gene expression and chromatin dynamics. Sumoylation, in general, appears to correlate with decreased transcriptional activity, and in many cases modulation of the chromatin template is implicated. Sumoylation of the core histones is associated with transcriptional silencing, and transcription factor sumoylation can decrease gene expression by promoting recruitment of chromatin modifying enzymes. Additionally, sumoylation of transcriptional corepressors and chromatin remodeling enzymes can influence interactions with other transcriptional regulators, and alter their enzymatic activity. In some cases, proteins that are components of transcriptional corepressor complexes have been shown to be SUMO E3 ligases, further emphasizing the integration of sumoylation with the regulation of chromatin remodeling. Despite the evidence suggesting that sumoylation is primarily repressive for access to chromatin, recent analyses suggest that protein sumoylation on the chromatin template may play important roles at highly expressed genes. Elucidating the dynamic interplay of sumoylation with other post-translational modifications of histones and chromatin associated proteins will be key to fully understanding the regulation of access to the chromatin template.
Collapse
|
28
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
29
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
30
|
Brohi RD, Wang L, Hassine NB, Cao J, Talpur HS, Wu D, Huang CJ, Rehman ZU, Bhattarai D, Huo LJ. Expression, Localization of SUMO-1, and Analyses of Potential SUMOylated Proteins in Bubalus bubalis Spermatozoa. Front Physiol 2017; 8:354. [PMID: 28659810 PMCID: PMC5468435 DOI: 10.3389/fphys.2017.00354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Mature spermatozoa have highly condensed DNA that is essentially silent both transcriptionally and translationally. Therefore, post translational modifications are very important for regulating sperm motility, morphology, and for male fertility in general. Protein sumoylation was recently demonstrated in human and rodent spermatozoa, with potential consequences for sperm motility and DNA integrity. We examined the expression and localization of small ubiquitin-related modifier-1 (SUMO-1) in the sperm of water buffalo (Bubalus bubalis) using immunofluorescence analysis. We confirmed the expression of SUMO-1 in the acrosome. We further found that SUMO-1 was lost if the acrosome reaction was induced by calcium ionophore A23187. Proteins modified or conjugated by SUMO-1 in water buffalo sperm were pulled down and analyzed by mass spectrometry. Sixty proteins were identified, including proteins important for sperm morphology and motility, such as relaxin receptors and cytoskeletal proteins, including tubulin chains, actins, and dyneins. Forty-six proteins were predicted as potential sumoylation targets. The expression of SUMO-1 in the acrosome region of water buffalo sperm and the identification of potentially SUMOylated proteins important for sperm function implicates sumoylation as a crucial PTM related to sperm function.
Collapse
Affiliation(s)
- Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | | | - Jing Cao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Zia-Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and ProductsWuhan, China
| |
Collapse
|
31
|
Hao M, Li Y, Wang J, Qin J, Wang Y, Ding Y, Jiang M, Sun X, Zu L, Chang K, Lin G, Du J, Korinek V, Ye DW, Wang J. HIC1 loss promotes prostate cancer metastasis by triggering epithelial-mesenchymal transition. J Pathol 2017; 242:409-420. [PMID: 28466555 DOI: 10.1002/path.4913] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/10/2017] [Accepted: 04/24/2017] [Indexed: 12/31/2022]
Abstract
Metastatic disease is the leading cause of death due to prostate cancer (PCa). Although the hypermethylated in cancer 1 (HIC1) gene has been observed to be epigenetically modified in PCa, its intrinsic role and mechanism in PCa metastasis still remain uncertain. Here, we show that hypermethylation of the HIC1 promoter markedly reduces its suppressive function in metastatic PCa tissues as compared with primary and adjacent normal prostate tissues, and is associated with poor patient survival. PCas in cancer-prone mice homozygous for a prostate-targeted Hic1 conditional knockout showed stronger metastatic behaviour than those in heterozygous mice, as a result of epithelial-mesenchymal transition (EMT). Moreover, impairment of HIC1 expression in PCa cells induced their migration and metastasis through EMT, by enhancing expression of Slug and CXCR4, both of which are critical to PCa metastasis; the CXCL12-CXCR4 axis promotes EMT by activating the extracellular signal-regulated kinase (ERK) 1/2 pathway. Taken together, our results suggest that evaluation of HIC1-CXCR4-Slug signalling may provide a potential predictor for PCa aggressiveness. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yue Li
- Pathology Centre, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinglong Wang
- Pathology Centre, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jun Qin
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yingying Wang
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yufeng Ding
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Min Jiang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xueqing Sun
- Department of Biochemistry and Molecular & Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lidong Zu
- Pathology Centre, Shanghai First People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kun Chang
- Department of Urology, Fudan University Shanghai Cancer Centre, Fudan University, Shanghai, PR China
| | - Guowen Lin
- Department of Urology, Fudan University Shanghai Cancer Centre, Fudan University, Shanghai, PR China
| | - Jiangyuan Du
- Cancer Institute, Fudan University Shanghai Cancer Centre, Fudan University, Shanghai, PR China
| | - Vladimir Korinek
- Department of Cell and Developmental Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Din-Wei Ye
- Department of Urology, Fudan University Shanghai Cancer Centre, Fudan University, Shanghai, PR China
| | - Jianhua Wang
- Cancer Institute, Fudan University Shanghai Cancer Centre, Fudan University, Shanghai, PR China
| |
Collapse
|
32
|
Kim SW, Lee KJ, Kim S, Kim J, Cho K, Ro HS, Park HS. Genetic incorporation of N ε-acetyllysine reveals a novel acetylation-sumoylation switch in yeast. Biochim Biophys Acta Gen Subj 2017; 1861:3030-3037. [PMID: 28188860 DOI: 10.1016/j.bbagen.2017.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/02/2017] [Indexed: 10/20/2022]
Abstract
The lysine acetylation of proteins plays a key role in regulating protein functions, thereby controlling a wide range of cellular processes. Despite the prevalence and significance of lysine acetylation in eukaryotes, however, its systematic study has been challenged by the technical limitations of conventional approaches for selective lysine acetylation in vivo. Here, we report the in vivo study of lysine acetylation via the genetic incorporation of Nε-acetyllysine in yeast. We demonstrate that a newly discovered acetylation-sumoylation switch precisely controls the localization and cellular function of the yeast septin protein, Cdc11, during the cell cycle. This approach should facilitate the comprehensive in vivo study of lysine acetylation across a wide range of proteins in eukaryotic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
Affiliation(s)
- Sang-Woo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyung Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sinil Kim
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jihyo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyukwang Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeon-Su Ro
- Division of Applied Life Science and Research Institute for Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea.
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
33
|
Paget S, Dubuissez M, Dehennaut V, Nassour J, Harmon BT, Spruyt N, Loison I, Abbadie C, Rood BR, Leprince D. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs). Oncotarget 2017; 8:2916-2935. [PMID: 27935866 PMCID: PMC5356852 DOI: 10.18632/oncotarget.13807] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/23/2016] [Indexed: 11/25/2022] Open
Abstract
The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.
Collapse
Affiliation(s)
- Sonia Paget
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Marion Dubuissez
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
- Present Address: Maisonneuve-Rosemont Hospital Research Center, Maisonneuve-Rosemont Hospital, Boulevard l'Assomption Montreal, Canada
| | - Vanessa Dehennaut
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Joe Nassour
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
- Present Address: The Salk Institute for Biological Studies, Molecular and Cell Biology Department, La Jolla, California, USA
| | - Brennan T. Harmon
- Genomics Core, Children's National Medical Center, Washington DC, USA
| | - Nathalie Spruyt
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Ingrid Loison
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Corinne Abbadie
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| | - Brian R. Rood
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington DC, USA
| | - Dominique Leprince
- University Lille, CNRS, Institut Pasteur de Lille, UMR 8161-M3T-Mechanisms of Tumorigenesis and Targeted Therapies, Lille, France
| |
Collapse
|
34
|
Zeng S, Yang Y, Cheng X, Zhou B, Li P, Zhao Y, Kong X, Xu Y. HIC1 epigenetically represses CIITA transcription in B lymphocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:1481-1489. [PMID: 27720955 DOI: 10.1016/j.bbagrm.2016.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 02/06/2023]
Abstract
Differentiation of B lymphocytes into isotope-specific plasma cells represents a hallmark event in adaptive immunity. During B cell maturation, expression of the class II transactivator (CIITA) gene is down-regulated although the underlying epigenetic mechanism is not completely defined. Here we report that hypermethylated in cancer 1 (HIC1) was up-regulated in differentiating B lymphocytes paralleling CIITA repression. Over-expression of HIC1 directly repressed endogenous CIITA transcription in B cells. Reporter assay and chromatin immunoprecipitation (ChIP) assay confirmed that HIC1 bound to the proximal CIITA type III promoter (-545/-113); mutation of a conserved HIC1 site within this region abrogated CIITA trans-repression. More important, depletion of HIC1 with small interfering RNA (siRNA) restored CIITA expression in differentiating B cells. Mechanistically, HIC1 preferentially interacted with and recruited DNMT1 and DNMT3b to the CIITA promoter to synergistically repress CIITA transcription. On the contrary, silencing of DNMT1/DNMT3b or inhibition of DNMT activity with 5-aza-dC attenuated CIITA trans-repression. Therefore, our data identify HIC1 as a novel factor involved in B cell differentiation acting as an epigenetic repressor of CIITA transcription.
Collapse
Affiliation(s)
- Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yuyu Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Xian Cheng
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China; Jiangsu Institute of Nuclear Medicine, Wuxi, China
| | - Bisheng Zhou
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Ping Li
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China; Department of Gastroenterology, Second Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Yuhao Zhao
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiaocen Kong
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China; Department of Endocrinology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
35
|
Le Douce V, Forouzanfar F, Eilebrecht S, Van Driessche B, Ait-Ammar A, Verdikt R, Kurashige Y, Marban C, Gautier V, Candolfi E, Benecke AG, Van Lint C, Rohr O, Schwartz C. HIC1 controls cellular- and HIV-1- gene transcription via interactions with CTIP2 and HMGA1. Sci Rep 2016; 6:34920. [PMID: 27725726 PMCID: PMC5057145 DOI: 10.1038/srep34920] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Among many cellular transcriptional regulators, Bcl11b/CTIP2 and HGMA1 have been described to control the establishment and the persistence of HIV-1 latency in microglial cells, the main viral reservoir in the brain. In this present work, we identify and characterize a transcription factor i.e. HIC1, which physically interacts with both Bcl11b/CTIP2 and HMGA1 to co-regulate specific subsets of cellular genes and the viral HIV-1 gene. Our results suggest that HIC1 represses Tat dependent HIV-1 transcription. Interestingly, this repression of Tat function is linked to HIC1 K314 acetylation status and to SIRT1 deacetylase activity. Finally, we show that HIC1 interacts and cooperates with HGMA1 to regulate Tat dependent HIV-1 transcription. Our results also suggest that HIC1 repression of Tat function happens in a TAR dependent manner and that this TAR element may serve as HIC1 reservoir at the viral promoter to facilitate HIC1/TAT interaction.
Collapse
Affiliation(s)
- Valentin Le Douce
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Faezeh Forouzanfar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Sebastian Eilebrecht
- Institut Universitaire de France, Paris, France.,Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Benoit Van Driessche
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Amina Ait-Ammar
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Roxane Verdikt
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Yoshihito Kurashige
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Céline Marban
- CNRS UMR 7224, Université Pierre et Marie Curie, 7 quai Saint Bernard, 75005 Paris, France
| | - Virginie Gautier
- Institut des Hautes Etudes Scientifiques-Centre National de la Recherche Scientifique, 35 route de Chartres, 91440 Bures sur Yvette, France
| | - Ermanno Candolfi
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France
| | - Arndt G Benecke
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute for Molecular Biology and Medicine (IBMM), 12 rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium.,UCD Centre for Research in Infectious Diseases (CRID) School of Medicine and Medical Science University College Dublin, Ireland
| | - Carine Van Lint
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 242, Heidelberg 69120, Germany
| | - Olivier Rohr
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France.,Inserm UMR 1121 Faculté de Chirurgie Dentaire Pavillon Leriche 1, place de l'Hôpital Strasbourg, France
| | - Christian Schwartz
- University of Strasbourg, EA7292, DHPI, Institut of Parasitology and tropical pathology Strasbourg, France.,University of Strasbourg, IUT Louis Pasteur, Schiltigheim, France
| |
Collapse
|
36
|
Dubuissez M, Loison I, Paget S, Vorng H, Ait-Yahia S, Rohr O, Tsicopoulos A, Leprince D. Protein Kinase C-Mediated Phosphorylation of BCL11B at Serine 2 Negatively Regulates Its Interaction with NuRD Complexes during CD4+ T-Cell Activation. Mol Cell Biol 2016; 36:1881-98. [PMID: 27161321 PMCID: PMC4911745 DOI: 10.1128/mcb.00062-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/16/2016] [Accepted: 05/03/2016] [Indexed: 12/17/2022] Open
Abstract
The transcription factor BCL11B/CTIP2 is a major regulatory protein implicated in various aspects of development, function and survival of T cells. Mitogen-activated protein kinase (MAPK)-mediated phosphorylation and SUMOylation modulate BCL11B transcriptional activity, switching it from a repressor in naive murine thymocytes to a transcriptional activator in activated thymocytes. Here, we show that BCL11B interacts via its conserved N-terminal MSRRKQ motif with endogenous MTA1 and MTA3 proteins to recruit various NuRD complexes. Furthermore, we demonstrate that protein kinase C (PKC)-mediated phosphorylation of BCL11B Ser2 does not significantly impact BCL11B SUMOylation but negatively regulates NuRD recruitment by dampening the interaction with MTA1 or MTA3 (MTA1/3) and RbAp46 proteins. We detected increased phosphorylation of BCL11B Ser2 upon in vivo activation of transformed and primary human CD4(+) T cells. We show that following activation of CD4(+) T cells, BCL11B still binds to IL-2 and Id2 promoters but activates their transcription by recruiting P300 instead of MTA1. Prolonged stimulation results in the direct transcriptional repression of BCL11B by KLF4. Our results unveil Ser2 phosphorylation as a new BCL11B posttranslational modification linking PKC signaling pathway to T-cell receptor (TCR) activation and define a simple model for the functional switch of BCL11B from a transcriptional repressor to an activator during TCR activation of human CD4(+) T cells.
Collapse
Affiliation(s)
- Marion Dubuissez
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Ingrid Loison
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Sonia Paget
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| | - Han Vorng
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Saliha Ait-Yahia
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Olivier Rohr
- University of Strasbourg, IUT Louis Pasteur, EA7292, Dynamic of Host Pathogen Interactions, Institute of Parasitology and Tropical Pathology, Strasbourg, France Institut Universitaire de France, Paris, France
| | - Anne Tsicopoulos
- Université Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019, UMR8204, Center for Infection and Immunity of Lille (CIIL), Lille, France
| | - Dominique Leprince
- Université Lille, CNRS, Institut Pasteur de Lille, UMR 8161, Mechanisms of Tumorigenesis and Targeted Therapies (M3T), Lille, France
| |
Collapse
|
37
|
Transcriptional repression of SIRT1 by protein inhibitor of activated STAT 4 (PIAS4) in hepatic stellate cells contributes to liver fibrosis. Sci Rep 2016; 6:28432. [PMID: 27323886 PMCID: PMC4914937 DOI: 10.1038/srep28432] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 06/06/2016] [Indexed: 02/06/2023] Open
Abstract
Interstitial fibrosis represents a key pathological process in non-alcoholic steatohepatitis (NASH). In the liver, fibrogenesis is primarily mediated by activated hepatic stellate cells (HSCs) transitioning from a quiescent state in response to a host of stimuli. The molecular mechanism underlying HSC activation is not completely understood. Here we report that there was a simultaneous up-regulation of PIAS4 expression and down-regulation of SIRT1 expression accompanying increased hepatic fibrogenesis in an MCD-diet induced mouse model of NASH. In cultured primary mouse HSCs, stimulation with high glucose activated PIAS4 while at the same time repressed SIRT1. Over-expression of PIAS4 directly repressed SIRT1 promoter activity. In contrast, depletion of PIAS4 restored SIRT1 expression in HSCs treated with high glucose. Estrogen, a known NASH-protective hormone, antagonized HSC activation by targeting PIAS4. Lentivirus-mediated delivery of short hairpin RNA (shRNA) targeting PIAS4 in mice ameliorated MCD diet induced liver fibrosis by normalizing SIRT1 expression in vivo. PIAS4 promoted HSC activation in a SIRT1-dependent manner in vitro. Mechanistically, PIAS4 mediated SIRT1 repression led to SMAD3 hyperacetylation and enhanced SMAD3 binding to fibrogenic gene promoters. Taken together, our data suggest SIRT1 trans-repression by PIAS4 plays an important role in HSC activation and liver fibrosis.
Collapse
|
38
|
Karimian A, Ahmadi Y, Yousefi B. Multiple functions of p21 in cell cycle, apoptosis and transcriptional regulation after DNA damage. DNA Repair (Amst) 2016; 42:63-71. [PMID: 27156098 DOI: 10.1016/j.dnarep.2016.04.008] [Citation(s) in RCA: 800] [Impact Index Per Article: 88.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/13/2022]
Abstract
An appropriate control over cell cycle progression depends on many factors. Cyclin-dependent kinase (CDK) inhibitor p21 (also known as p21(WAF1/Cip1)) is one of these factors that promote cell cycle arrest in response to a variety of stimuli. The inhibitory effect of P21 on cell cycle progression correlates with its nuclear localization. P21 can be induced by both p53-dependent and p53-independent mechanisms. Some other important functions attributed to p21 include transcriptional regulation, modulation or inhibition of apoptosis. These functions are largely dependent on direct p21/protein interactions and also on p21 subcellular localizations. In addition, p21 can play a role in DNA repair by interacting with proliferating cell nuclear antigen (PCNA). In this review, we will focus on the multiple functions of p21 in cell cycle regulation, apoptosis and gene transcription after DNA damage and briefly discuss the pathways and factors that have critical roles in p21 expression and activity.
Collapse
Affiliation(s)
- Ansar Karimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yasin Ahmadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
39
|
Yuan Y, Cruzat VF, Newsholme P, Cheng J, Chen Y, Lu Y. Regulation of SIRT1 in aging: Roles in mitochondrial function and biogenesis. Mech Ageing Dev 2016; 155:10-21. [DOI: 10.1016/j.mad.2016.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/13/2022]
|
40
|
Zhang ZB, Ruan CC, Chen DR, Zhang K, Yan C, Gao PJ. Activating transcription factor 3 SUMOylation is involved in angiotensin II-induced endothelial cell inflammation and dysfunction. J Mol Cell Cardiol 2016; 92:149-57. [PMID: 26850942 DOI: 10.1016/j.yjmcc.2016.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/12/2016] [Accepted: 02/01/2016] [Indexed: 12/13/2022]
Abstract
Activating transcription factor 3 (ATF3) is an adaptive-response protein induced by various environmental stresses and is implicated in the pathogenesis of many disease states. However, the role of ATF3 SUMOylation in hypertension-induced vascular injury remains poorly understood. Here we investigated the function of ATF3 SUMOylation in vascular endothelial cells (ECs). The expression of ATF3 and small ubiquitin-like modifier 1 (SUMO1) was increased in angiotensin II (Ang II)-induced human umbilical vein endothelial cells (HUVECs). Microscopic analyses further revealed that the expression of ATF3 and SUMO1 is upregulated and colocalized in the endothelium of thoracic aortas from Ang II-induced hypertensive mice. However, Ang II-induced upregulation of ATF3 and SUMO1 in vitro and in vivo was blocked by Ang II type I receptor antagonist olmesartan. Moreover, Ang II induced ATF3 SUMOylation at lysine 42, which is SUMO1 dependent. ATF3 SUMOylation attenuated ATF3 ubiquitination and in turn promoted ATF3 protein stability. ATF3 or SUMO1 knockdown inhibited Ang II-induced expression of inflammatory molecules such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8. Wild type ATF3 but not ATF3-K42R (SUMOylation defective mutant) reduced the production of nitric oxide (NO), a key indicator of EC function. Consistently, ginkgolic acid, an inhibitor of SUMOylation, increased NO production in HUVECs and significantly improved vasodilatation of aorta from Ang II-induced hypertensive mice. Our findings demonstrated that ATF3 SUMOylation is involved in Ang II-induced EC inflammation and dysfunction in vitro and in vivo through inhibiting ATF3 ubiquitination and increasing ATF3 protein stability.
Collapse
Affiliation(s)
- Ze-Bei Zhang
- Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Dong-Rui Chen
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ke Zhang
- Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yan
- Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Hypertension, Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai JiaoTong University School of Medicine, Shanghai, China.
| |
Collapse
|
41
|
Beauclair G, Bridier-Nahmias A, Zagury JF, Saïb A, Zamborlini A. JASSA: a comprehensive tool for prediction of SUMOylation sites and SIMs. Bioinformatics 2015; 31:3483-91. [PMID: 26142185 DOI: 10.1093/bioinformatics/btv403] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 06/25/2015] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) proteins, a process termed SUMOylation, is involved in many fundamental cellular processes. SUMO proteins are conjugated to a protein substrate, creating an interface for the recruitment of cofactors harboring SUMO-interacting motifs (SIMs). Mapping both SUMO-conjugation sites and SIMs is required to study the functional consequence of SUMOylation. To define the best candidate sites for experimental validation we designed JASSA, a Joint Analyzer of SUMOylation site and SIMs. RESULTS JASSA is a predictor that uses a scoring system based on a Position Frequency Matrix derived from the alignment of experimental SUMOylation sites or SIMs. Compared with existing web-tools, JASSA displays on par or better performances. Novel features were implemented towards a better evaluation of the prediction, including identification of database hits matching the query sequence and representation of candidate sites within the secondary structural elements and/or the 3D fold of the protein of interest, retrievable from deposited PDB files. AVAILABILITY AND IMPLEMENTATION JASSA is freely accessible at http://www.jassa.fr/. Website is implemented in PHP and MySQL, with all major browsers supported. CONTACT guillaume.beauclair@inserm.fr SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Guillaume Beauclair
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis
| | - Antoine Bridier-Nahmias
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, Laboratoire PVM, Conservatoire national des arts et métiers (Cnam) and
| | - Jean-François Zagury
- Laboratoire Génomique, Bioinformatique, et Applications, EA4627, Chaire de bioinformatique, Conservatoire national des arts et métiers (Cnam), Paris, France
| | - Ali Saïb
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, Laboratoire PVM, Conservatoire national des arts et métiers (Cnam) and
| | - Alessia Zamborlini
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d'Hématologie, Hôpital St Louis, Université Paris Diderot, Sorbonne Paris Cité, Hôpital St Louis, Laboratoire PVM, Conservatoire national des arts et métiers (Cnam) and
| |
Collapse
|
42
|
Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardivillé S, Hoedt E, Lefebvre T, Pierce A. Modification by SUMOylation Controls Both the Transcriptional Activity and the Stability of Delta-Lactoferrin. PLoS One 2015; 10:e0129965. [PMID: 26090800 PMCID: PMC4474976 DOI: 10.1371/journal.pone.0129965] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 05/14/2015] [Indexed: 11/18/2022] Open
Abstract
Delta-lactoferrin is a transcription factor, the expression of which is downregulated or silenced in case of breast cancer. It possesses antitumoral activities and when it is re-introduced in mammary epithelial cancer cell lines, provokes antiproliferative effects. It is posttranslationally modified and our earlier investigations showed that the O-GlcNAcylation/phosphorylation interplay plays a major role in the regulation of both its stability and transcriptional activity. Here, we report the covalent modification of delta-lactoferrin with the small ubiquitin-like modifier SUMO-1. Mutational and reporter gene analyses identified five different lysine residues at K13, K308, K361, K379 and K391 as SUMO acceptor sites. The SUMOylation deficient M5S mutant displayed enhanced transactivation capacity on a delta-lactoferrin responsive promoter, suggesting that SUMO-1 negatively regulates the transactivation function of delta-lactoferrin. K13, K308 and K379 are the main SUMO sites and among them, K308, which is located in a SUMOylation consensus motif of the NDSM-like type, is a key SUMO site involved in repression of delta-lactoferrin transcriptional activity. K13 and K379 are both targeted by other posttranslational modifications. We demonstrated that K13 is the main acetylation site and that favoring acetylation at K13 reduced SUMOylation and increased delta-lactoferrin transcriptional activity. K379, which is either ubiquitinated or SUMOylated, is a pivotal site for the control of delta-lactoferrin stability. We showed that SUMOylation competes with ubiquitination and protects delta-lactoferrin from degradation by positively regulating its stability. Collectively, our results indicate that multi-SUMOylation occurs on delta-lactoferrin to repress its transcriptional activity. Reciprocal occupancy of K13 by either SUMO-1 or an acetyl group may contribute to the establishment of finely regulated mechanisms to control delta-lactoferrin transcriptional activity. Moreover, competition between SUMOylation and ubiquitination at K379 coordinately regulates the stability of delta-lactoferrin toward proteolysis. Therefore SUMOylation of delta-lactoferrin is a novel mechanism controlling both its activity and stability.
Collapse
Affiliation(s)
- Adelma Escobar-Ramirez
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Anne-Sophie Vercoutter-Edouart
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Marlène Mortuaire
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Isabelle Huvent
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Stephan Hardivillé
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Esthelle Hoedt
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Tony Lefebvre
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| | - Annick Pierce
- Unité de Glycobiologie Structurale et Fonctionnelle, UMR 8576 CNRS, Université des Sciences et Technologies de Lille, FR3688 CNRS FRABio, Villeneuve d'Ascq, France
| |
Collapse
|
43
|
Tatemichi Y, Shibazaki M, Yasuhira S, Kasai S, Tada H, Oikawa H, Suzuki Y, Takikawa Y, Masuda T, Maesawa C. Nucleus accumbens associated 1 is recruited within the promyelocytic leukemia nuclear body through SUMO modification. Cancer Sci 2015; 106:848-56. [PMID: 25891951 PMCID: PMC4520636 DOI: 10.1111/cas.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 03/31/2015] [Accepted: 04/14/2015] [Indexed: 01/25/2023] Open
Abstract
Nucleus accumbens associated 1 (NACC1) is a cancer-associated BTB/POZ (pox virus and zinc finger/bric-a-brac tramtrack broad complex) gene, and is involved in several cellular functions in neurons, cancer and stem cells. Some of the BTB/POZ proteins associated with cancer biology are SUMOylated, which appears to play an important role in transcription regulation. We show that NACC1 is SUMOylated on a phylogenetically conserved lysine (K167) out of three consensus SUMOylation motif sites. Amino acid substitution in the SIM sequence (SIM/M) within the BTB/POZ domain partially reduced K167 SUMOylation activity of NACC1. Overexpression of GFP-NACC1 fusion protein leads to formation of discrete nuclear foci similar to promyelocytic leukemia nuclear bodies (PML-NB), which colocalized with SUMO paralogues (SUMO1/2/3). Both NACC1 nuclear body formation and colocalization with SUMO paralogues were completely suppressed in the GFP-NACC1-SIM/M mutant, whereas they were partially maintained in the NACC1 K167R mutant. Confocal immunofluorescence analysis showed that endogenous and exogenous NACC1 proteins colocalized with endogenous PML protein. A pull-down assay revealed that the consensus motifs of the SUMO acceptor site at K167 and the SIM within the BTB/POZ domain were both necessary for efficient binding to PML protein. Our study demonstrates that NACC1 can be modified by SUMO paralogues, and cooperates with PML protein.
Collapse
Affiliation(s)
- Yoshinori Tatemichi
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan.,Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Masahiko Shibazaki
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Shinji Yasuhira
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Shuya Kasai
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Hiroshi Tada
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| | - Hiroki Oikawa
- Department of Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yuji Suzuki
- Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Yasuhiro Takikawa
- Department of Internal Medicine, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Tomoyuki Masuda
- Department of Pathology, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Chihaya Maesawa
- Department of Tumor Biology, Institute of Biomedical Sciences, Iwate Medical University, Yahaba-cho, Japan
| |
Collapse
|
44
|
Dali-Youcef N, Froelich S, Moussallieh FM, Chibbaro S, Noël G, Namer IJ, Heikkinen S, Auwerx J. Gene expression mapping of histone deacetylases and co-factors, and correlation with survival time and 1H-HRMAS metabolomic profile in human gliomas. Sci Rep 2015; 5:9087. [PMID: 25791281 PMCID: PMC4367156 DOI: 10.1038/srep09087] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/19/2015] [Indexed: 01/12/2023] Open
Abstract
Primary brain tumors are presently classified based on imaging and histopathological
techniques, which remains unsatisfaying. We profiled here by quantitative real time
PCR (qRT-PCR) the transcripts of eighteen histone deacetylases (HDACs) and a subset
of transcriptional co-factors in non-tumoral brain samples from 15 patients operated
for epilepsia and in brain tumor samples from 50 patients diagnosed with grade II
oligodendrogliomas (ODII, n = 9), grade III oligodendrogliomas (ODIII, n = 22) and
glioblastomas (GL, n = 19). Co-factor transcripts were significantly different in
tumors as compared to non-tumoral samples and distinguished different molecular
subgroups of brain tumors, regardless of tumor grade. Among all patients studied,
the expression of HDAC1 and HDAC3 was inversely correlated with
survival, whereas the expression of HDAC4, HDAC5, HDAC6,
HDAC11 and SIRT1 was significantly and positively correlated with
survival time of patients with gliomas. 1H-HRMAS technology revealed
metabolomically distinct groups according to the expression of HDAC1, HDAC4 and
SIRT1, suggesting that these genes may play an important role in regulating brain
tumorigenesis and cancer progression. Our study hence identified different molecular
fingerprints for subgroups of histopathologically similar brain tumors that may
enable the prediction of outcome based on the expression level of co-factor genes
and could allow customization of treatment.
Collapse
Affiliation(s)
- Nassim Dali-Youcef
- 1] Laboratoire de Biochimie et Biologie Moléculaire, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, 1 place de l'hôpital, 67091 Strasbourg Cedex, France [2] Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS UMR 7104/INSERM U 964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Sébastien Froelich
- Department of Neurosurgery, Hôpitaux Universitaires de Strasbourg, avenue Molière, 67085 Strasbourg Cedex, France
| | - François-Marie Moussallieh
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, CHU de Hautepierre, avenue Molière, 67200 Strasbourg Cedex, France
| | - Salvatore Chibbaro
- Department of Neurosurgery, Hôpitaux Universitaires de Strasbourg, avenue Molière, 67085 Strasbourg Cedex, France
| | - Georges Noël
- Centre Paul Strauss, 3 rue de la porte de l'Hôpital 67065 Strasbourg, Cedex, France
| | - Izzie J Namer
- Department of Biophysics and Nuclear Medicine, Hôpitaux Universitaires de Strasbourg, CHU de Hautepierre, avenue Molière, 67200 Strasbourg Cedex, France
| | - Sami Heikkinen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS UMR 7104/INSERM U 964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Johan Auwerx
- 1] Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)/CNRS UMR 7104/INSERM U 964/Université de Strasbourg, 1 rue Laurent Fries, 67404 Illkirch, France [2] Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| |
Collapse
|
45
|
Fogg PCM, O'Neill JS, Dobrzycki T, Calvert S, Lord EC, McIntosh RLL, Elliott CJH, Sweeney ST, Hastings MH, Chawla S. Class IIa histone deacetylases are conserved regulators of circadian function. J Biol Chem 2014; 289:34341-8. [PMID: 25271152 PMCID: PMC4256363 DOI: 10.1074/jbc.m114.606392] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 09/23/2014] [Indexed: 11/06/2022] Open
Abstract
Class IIa histone deacetylases (HDACs) regulate the activity of many transcription factors to influence liver gluconeogenesis and the development of specialized cells, including muscle, neurons, and lymphocytes. Here, we describe a conserved role for class IIa HDACs in sustaining robust circadian behavioral rhythms in Drosophila and cellular rhythms in mammalian cells. In mouse fibroblasts, overexpression of HDAC5 severely disrupts transcriptional rhythms of core clock genes. HDAC5 overexpression decreases BMAL1 acetylation on Lys-537 and pharmacological inhibition of class IIa HDACs increases BMAL1 acetylation. Furthermore, we observe cyclical nucleocytoplasmic shuttling of HDAC5 in mouse fibroblasts that is characteristically circadian. Mutation of the Drosophila homolog HDAC4 impairs locomotor activity rhythms of flies and decreases period mRNA levels. RNAi-mediated knockdown of HDAC4 in Drosophila clock cells also dampens circadian function. Given that the localization of class IIa HDACs is signal-regulated and influenced by Ca(2+) and cAMP signals, our findings offer a mechanism by which extracellular stimuli that generate these signals can feed into the molecular clock machinery.
Collapse
Affiliation(s)
- Paul C M Fogg
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - John S O'Neill
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tomasz Dobrzycki
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Shaun Calvert
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Emma C Lord
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Rebecca L L McIntosh
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | | | - Sean T Sweeney
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| | - Michael H Hastings
- the Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sangeeta Chawla
- From the Department of Biology, University of York, York YO10 5DD, United Kingdom and
| |
Collapse
|
46
|
Beketaev I, Kim EY, Zhang Y, Yu W, Qian L, Wang J. Potentiation of Tbx5-mediated transactivation by SUMO conjugation and protein inhibitor of activated STAT 1 (PIAS1). Int J Biochem Cell Biol 2014; 50:82-92. [DOI: 10.1016/j.biocel.2014.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 01/30/2014] [Accepted: 02/11/2014] [Indexed: 12/18/2022]
|
47
|
Lin YM, Wang CM, Jeng JC, Leprince D, Shih HM. HIC1 interacts with and modulates the activity of STAT3. Cell Cycle 2014; 12:2266-76. [PMID: 24067369 DOI: 10.4161/cc.25365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
HIC1 (hypermethylated in cancer 1) is a tumor suppressor gene, expression of which is frequently suppressed in human cancers. Very little is known about the molecular basis of HIC1 in antagonizing oncogenic pathways. Here, we report that HIC1 forms complexes with the signal transducers and activators of transcription 3 (STAT3) and attenuates STAT3-mediated transcription. STAT3 was identified as a HIC1-interacting protein by affinity capture and followed by mass spectrometry analysis. Overexpression or depletion of HIC1 resulted in decreased or increased levels of interleukin-6 (IL-6)/oncostatin M (OSM)-induced STAT3-mediated reporter activity and expression of target genes such as VEGF and c-Myc, respectively. Furthermore, HIC1 suppressing the VEGF and c-Myc promoter activity and the colony formation of MDA-MB 231 cells were STAT3-dependent. Further studies showed that HIC1 interacts with the DNA binding domain of STAT3 and suppresses the binding of STAT3 to its target gene promoters. Domain mapping study revealed that HIC1 C-terminal domain binds to STAT3. HIC1 mutant defective in STAT3 interaction reduced its repressive effect on STAT3 DNA binding activity, the reporter activity and gene expression of the VEGF and c-Myc genes, and cell growth in MDA-MB 231 cells. Altogether, our findings not only provide a novel role of HIC1 in antagonizing STAT3-mediated activation of VEGF and c-Myc gene expression and cell growth, but also elucidate a molecular basis underlying the inhibitory effect of HIC1 on STAT3 transcriptional potential.
Collapse
Affiliation(s)
- Ying-Mei Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
48
|
Filtz TM, Vogel WK, Leid M. Regulation of transcription factor activity by interconnected post-translational modifications. Trends Pharmacol Sci 2013; 35:76-85. [PMID: 24388790 DOI: 10.1016/j.tips.2013.11.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/20/2013] [Accepted: 11/25/2013] [Indexed: 01/03/2023]
Abstract
Transcription factors comprise just over 7% of the human proteome and serve as gatekeepers of cellular function, integrating external signal information into gene expression programs that reconfigure cellular physiology at the most basic levels. Surface-initiated cell signaling pathways converge on transcription factors, decorating these proteins with an array of post-translational modifications (PTMs) that are often interdependent, being linked in time, space, and combinatorial function. These PTMs orchestrate every activity of a transcription factor over its entire lifespan--from subcellular localization to protein-protein interactions, sequence-specific DNA binding, transcriptional regulatory activity, and protein stability--and play key roles in the epigenetic regulation of gene expression. The multitude of PTMs of transcription factors also offers numerous potential points of intervention for development of therapeutic agents to treat a wide spectrum of diseases. We review PTMs most commonly targeting transcription factors, focusing on recent reports of sequential and linked PTMs of individual factors.
Collapse
Affiliation(s)
- Theresa M Filtz
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA.
| | - Walter K Vogel
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Mark Leid
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR 97331, USA; Department of Integrative Biosciences, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
49
|
Cheng G, Sun X, Wang J, Xiao G, Wang X, Fan X, Zu L, Hao M, Qu Q, Mao Y, Xue Y, Wang J. HIC1 silencing in triple-negative breast cancer drives progression through misregulation of LCN2. Cancer Res 2013; 74:862-72. [PMID: 24295734 DOI: 10.1158/0008-5472.can-13-2420] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The tumor suppressor gene HIC1 is frequently deleted or epigenetically silenced in human cancer, where its restoration may improve cancer prognosis. Here, we report results illuminating how HIC1 silencing alters effect or signals in triple-negative breast cancer (TNBC), which are crucial for its pathogenesis. HIC1 expression was silenced only in TNBC compared with other molecular subtypes of breast cancer. Restoring HIC1 expression in TNBC cells reduced cell migration, invasion, and metastasis, whereas RNAi-mediated silencing of HIC1 in untransformed human breast cells increased their invasive capabilities. Mechanistic investigations identified the small-secreted protein lipocalin-2 (LCN2), as a critical downstream target of HIC1 in TNBC cells. Elevating LCN2 expression in cells expressing HIC1 partially rescued its suppression of cell invasion and metastasis. Notably, autocrine secretion of LCN2 induced by loss of HIC1 activated the AKT pathway through the neutrophil gelatinase-associated lipocalin receptor, which is associated with TNBC progression. Taken together, our findings revealed that the HIC1-LCN2 axis may serve as a subtype-specific prognostic biomarker, providing an appealing candidate target for TNBC therapy.
Collapse
Affiliation(s)
- Guangcun Cheng
- Authors' Affiliations: Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine; and Comprehensive Breast Health Center, Rui Jin Hospital, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Posttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.
Collapse
Affiliation(s)
- Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH, Heidelberg D-69120, Germany.
| | | |
Collapse
|