1
|
Sapehia D, Mahajan A, Singh P, Kaur J. Enrichment of trimethyl histone 3 lysine 4 in the Dlk1 and Grb10 genes affects pregnancy outcomes due to dietary manipulation of excess folic acid and low vitamin B12. Biol Res 2024; 57:85. [PMID: 39543691 PMCID: PMC11562088 DOI: 10.1186/s40659-024-00557-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024] Open
Abstract
The aberrant expression of placental imprinted genes due to epigenetic alterations during pregnancy can impact fetal development. We investigated the impact of dietary modification of low vitamin B12 with varying doses of folic acid on the epigenetic control of imprinted genes and fetal development using a transgenerational model of C57BL/6J mice. The animals were kept on four distinct dietary combinations based on low vitamin B12 levels and modulated folic acid, mated in the F0 generation within each group. In the F1 generation, each group of mice is split into two subgroups; the sustained group was kept on the same diet, while the transient group was fed a regular control diet. After mating, maternal placenta (F1) and fetal tissues (F2) were isolated on day 20 of gestation. We observed a generation-wise opposite promoter CpG methylation and gene expression trend of the two developmental genes Dlk1 and Grb10, with enhanced gene expression in both the sustained and transient experimental groups in F1 placentae. When fetal development characteristics and gene expression were correlated, there was a substantial negative association between placental weight and Dlk1 expression (r = - 0.49, p < 0.05) and between crown-rump length and Grb10 expression (r = - 0.501, p < 0.05) in fetuses of the F2 generation. Consistent with these results, we also found that H3K4me3 at the promoter level of these genes is negatively associated with all fetal growth parameters. Overall, our findings suggest that balancing vitamin B12 and folic acid levels is important for maintaining the transcriptional status of imprinted genes and fetal development.
Collapse
Affiliation(s)
- Divika Sapehia
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Aatish Mahajan
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parampal Singh
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
Morgan RK, Wang K, Svoboda LK, Rygiel CA, Lalancette C, Cavalcante R, Bartolomei MS, Prasasya R, Neier K, Perera BP, Jones TR, Colacino JA, Sartor MA, Dolinoy DC. Effects of Developmental Lead and Phthalate Exposures on DNA Methylation in Adult Mouse Blood, Brain, and Liver: A Focus on Genomic Imprinting by Tissue and Sex. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:67003. [PMID: 38833407 PMCID: PMC11166413 DOI: 10.1289/ehp14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Maternal exposure to environmental chemicals can cause adverse health effects in offspring. Mounting evidence supports that these effects are influenced, at least in part, by epigenetic modifications. It is unknown whether epigenetic changes in surrogate tissues such as the blood are reflective of similar changes in target tissues such as cortex or liver. OBJECTIVE We examined tissue- and sex-specific changes in DNA methylation (DNAm) associated with human-relevant lead (Pb) and di(2-ethylhexyl) phthalate (DEHP) exposure during perinatal development in cerebral cortex, blood, and liver. METHODS Female mice were exposed to human relevant doses of either Pb (32 ppm ) via drinking water or DEHP (5 mg / kg-day ) via chow for 2 weeks prior to mating through offspring weaning. Whole genome bisulfite sequencing (WGBS) was utilized to examine DNAm changes in offspring cortex, blood, and liver at 5 months of age. Metilene and methylSig were used to identify differentially methylated regions (DMRs). Annotatr and ChIP-enrich were used for genomic annotations and gene set enrichment tests of DMRs, respectively. RESULTS The cortex contained the majority of DMRs associated with Pb (66%) and DEHP (57%) exposure. The cortex also contained the greatest degree of overlap in DMR signatures between sexes (n = 13 and 8 DMRs with Pb and DEHP exposure, respectively) and exposure types (n = 55 and 39 DMRs in males and females, respectively). In all tissues, detected DMRs were preferentially found at genomic regions associated with gene expression regulation (e.g., CpG islands and shores, 5' UTRs, promoters, and exons). An analysis of GO terms associated with DMR-containing genes identified imprinted genes to be impacted by both Pb and DEHP exposure. Of these, Gnas and Grb10 contained DMRs across tissues, sexes, and exposures, with some signatures replicated between target and surrogate tissues. DMRs were enriched in the imprinting control regions (ICRs) of Gnas and Grb10, and we again observed a replication of DMR signatures between blood and target tissues. Specifically, we observed hypermethylation of the Grb10 ICR in both blood and liver of Pb-exposed male animals. CONCLUSIONS These data provide preliminary evidence that imprinted genes may be viable candidates in the search for epigenetic biomarkers of toxicant exposure in target tissues. Additional research is needed on allele- and developmental stage-specific effects, as well as whether other imprinted genes provide additional examples of this relationship. https://doi.org/10.1289/EHP14074.
Collapse
Affiliation(s)
- Rachel K. Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Christine A. Rygiel
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Claudia Lalancette
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Raymond Cavalcante
- Epigenomics Core, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Marisa S. Bartolomei
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rexxi Prasasya
- Department of Cell and Developmental Biology, Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kari Neier
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Bambarendage P.U. Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Tamara R. Jones
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Justin A. Colacino
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Maureen A. Sartor
- Department of Computational Medicine and Bioinformatics, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Dana C. Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Ren LL, Wang ZW, Sen R, Dai ZT, Liao XH, Shen LJ. GRB10 is a novel factor associated with gastric cancer proliferation and prognosis. Aging (Albany NY) 2023; 15:3394-3409. [PMID: 37179120 PMCID: PMC10449302 DOI: 10.18632/aging.204603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 05/15/2023]
Abstract
GRB10 and its family members GRB7 and GRB14 were important adaptor proteins. They regulated many cellular functions by interacting with various tyrosine kinase receptors and other phosphorus-containing amino acid proteins. More and more studies have shown that the abnormal expression of GRB10 is closely related to the occurrence and development of cancer. In our current research, expression data for 33 cancers from the TCGA database was downloaded for analysis. It was found that GRB10 was up-regulated in cholangiocarcinoma, colon adenocarcinoma, head and neck squamous carcinoma, renal chromophobe, clear renal carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma, gastric adenocarcinoma and thyroid carcinoma. Especially in gastric cancer, the high GRB10 expression was closely associated with poorer overall survival. Further research showed that the knockdown of GRB10 inhibited proliferation and migration ability in gastric cancer. Also, there was a potential binding site for miR-379-5p on the 3'UTR of GRB10. Overexpression of miR-379-5p in gastric cancer cells reduced GRB10-regulated gastric cancer proliferation and migration capacity. In addition, we found that tumor growth was slower in a mice xenograft model with knock down of GRB10 expression. These findings suggested that miR-379-5p suppresses gastric cancer development by downregulating GRB10 expression. Therefore, miR-379-5p and GRB10 were expected to be potential targets for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Li-Li Ren
- School of Food and Drug, Shenzhen Polytechnic, Guangdong 518055, China
| | - Zhi-Wen Wang
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Ren Sen
- Clinical Academy, Changsha Health Vocational College, Hunan 410100, China
| | - Zhou-Tong Dai
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing-Hua Liao
- Institute of Biology and Medicine, College of Life and Health Sciences, Wuhan University of Science and Technology, Hubei 430081, China
| | - Li-Juan Shen
- Longgang District People's Hospital of Shenzhen, Guangdong 518172, China
| |
Collapse
|
4
|
Claxton M, Pulix M, Seah MKY, Bernardo R, Zhou P, Aljuraysi S, Liloglou T, Arnaud P, Kelsey G, Messerschmidt DM, Plagge A. Variable allelic expression of imprinted genes at the Peg13, Trappc9, Ago2 cluster in single neural cells. Front Cell Dev Biol 2022; 10:1022422. [PMID: 36313557 PMCID: PMC9596773 DOI: 10.3389/fcell.2022.1022422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.
Collapse
Affiliation(s)
- Michael Claxton
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michela Pulix
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michelle K. Y. Seah
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ralph Bernardo
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peng Zhou
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sultan Aljuraysi
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Triantafillos Liloglou
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Daniel M. Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Antonius Plagge
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
5
|
Prickett AR, Montibus B, Barkas N, Amante SM, Franco MM, Cowley M, Puszyk W, Shannon MF, Irving MD, Madon-Simon M, Ward A, Schulz R, Baldwin HS, Oakey RJ. Imprinted Gene Expression and Function of the Dopa Decarboxylase Gene in the Developing Heart. Front Cell Dev Biol 2021; 9:676543. [PMID: 34239874 PMCID: PMC8258389 DOI: 10.3389/fcell.2021.676543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Dopa decarboxylase (DDC) synthesizes serotonin in the developing mouse heart where it is encoded by Ddc_exon1a, a tissue-specific paternally expressed imprinted gene. Ddc_exon1a shares an imprinting control region (ICR) with the imprinted, maternally expressed (outside of the central nervous system) Grb10 gene on mouse chromosome 11, but little else is known about the tissue-specific imprinted expression of Ddc_exon1a. Fluorescent immunostaining localizes DDC to the developing myocardium in the pre-natal mouse heart, in a region susceptible to abnormal development and implicated in congenital heart defects in human. Ddc_exon1a and Grb10 are not co-expressed in heart nor in brain where Grb10 is also paternally expressed, despite sharing an ICR, indicating they are mechanistically linked by their shared ICR but not by Grb10 gene expression. Evidence from a Ddc_exon1a gene knockout mouse model suggests that it mediates the growth of the developing myocardium and a thinning of the myocardium is observed in a small number of mutant mice examined, with changes in gene expression detected by microarray analysis. Comparative studies in the human developing heart reveal a paternal expression bias with polymorphic imprinting patterns between individual human hearts at DDC_EXON1a, a finding consistent with other imprinted genes in human.
Collapse
Affiliation(s)
- Adam R. Prickett
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Bertille Montibus
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Nikolaos Barkas
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Samuele M. Amante
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Maurício M. Franco
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Michael Cowley
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - William Puszyk
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Matthew F. Shannon
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - Melita D. Irving
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
- Department of Clinical Genetics, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Marta Madon-Simon
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Andrew Ward
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| | - H. Scott Baldwin
- Department of Pediatrics (Cardiology), Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rebecca J. Oakey
- Department of Medical and Molecular Genetics, King’s College London, London, United Kingdom
| |
Collapse
|
6
|
The relationship between the mTOR signaling pathway and ovarian aging in peak-phase and late-phase laying hens. Poult Sci 2020; 100:334-347. [PMID: 33357698 PMCID: PMC7772700 DOI: 10.1016/j.psj.2020.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 11/23/2022] Open
Abstract
The molecular mechanisms underlying reproductive aging in avian species are poorly understood. Previous studies have shown the importance of mechanistic target of rapamycin (mTOR) signaling pathway in aging. In this study, we investigated the relationship between the mTOR signaling pathway and ovarian aging in the peak phase and late phase of egg production in laying hens. The egg production rate and egg quality were tracked for 5 consecutive weeks in 30-week-old and 70-week-old Dawu Jinfeng hens (N = 30/group). During the peak phase (week 35) and late phase (week 75), antioxidant and immune indicators were detected by enzyme-linked immunosorbent assay, and mTOR signaling-related genes (CLIP-170, GRB10, LIPIN-1, ATG1, 4E-BP1, S6K, PKC, RHO, and SGK1) were detected in the follicles by quantitative reverse transcription-PCR technology. The protein expression of key genes (mTOR, PKC, 4EBP1) was evaluated by Western blot analysis. The egg production rate and the antioxidant indexes superoxide dismutase and glutathione peroxidase and the levels of total antioxidant capacity and immunoglobulins (IgM and IgG) were significantly higher at week 35 than those at week 75 (P < 0.01), while malondialdehyde levels were significantly lower (P < 0.01). At week 75, there were fewer follicles in the different stages of development than were detected at week 35. The number of white follicles (large and small) and primary follicles were significantly higher at week 75 than those detected at week 35 (P < 0.01). The mRNA expression of avTOR, CLIP-170, GRB10, LIPIN-1, 4E-BP1, S6K, RHO, and SGK genes in small white follicles (SWF), large white follicles (LWF), F3, F1, and ovary at week 75 was lower than that in the hens at week 35 (P < 0.05). The mRNA expression in small yellow follicle (SYF) was significantly higher than that at week 35 (P < 0.05), while the mRNA expression of ULK1 in SWF, LWF, F3, F1, and ovary at week 75 was higher than that of hens at week 35 (P<0.01), and SYF was lower (P < 0.05). Treatment of chicken granulosa cells with the mTOR agonist MHY1485 significantly enhanced granulocyte proliferation (P < 0.01) and inhibited apoptosis (P < 0.01) and significantly increased avTOR, S6K, 4E-BP1, and PKC gene expression (P < 0.01). The protein expression levels of mTOR, S6K, p-mTOR, and p-S6K were consistent with mRNA expression levels. The mTOR activity is age-specific, and a compensatory enhancement of the mTOR signaling cascade can regulate ovarian follicular development in aged laying hens.
Collapse
|
7
|
Edwards CA, Takahashi N, Corish JA, Ferguson-Smith AC. The origins of genomic imprinting in mammals. Reprod Fertil Dev 2020; 31:1203-1218. [PMID: 30615843 DOI: 10.1071/rd18176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 10/01/2018] [Indexed: 12/13/2022] Open
Abstract
Genomic imprinting is a process that causes genes to be expressed according to their parental origin. Imprinting appears to have evolved gradually in two of the three mammalian subclasses, with no imprinted genes yet identified in prototheria and only six found to be imprinted in marsupials to date. By interrogating the genomes of eutherian suborders, we determine that imprinting evolved at the majority of eutherian specific genes before the eutherian radiation. Theories considering the evolution of imprinting often relate to resource allocation and recently consider maternal-offspring interactions more generally, which, in marsupials, places a greater emphasis on lactation. In eutherians, the imprint memory is retained at least in part by zinc finger protein 57 (ZFP57), a Kruppel associated box (KRAB) zinc finger protein that binds specifically to methylated imprinting control regions. Some imprints are less dependent on ZFP57invivo and it may be no coincidence that these are the imprints that are found in marsupials. Because marsupials lack ZFP57, this suggests another more ancestral protein evolved to regulate imprints in non-eutherian subclasses, and contributes to imprinting control in eutherians. Hence, understanding the mechanisms acting at imprinting control regions across mammals has the potential to provide valuable insights into our understanding of the origins and evolution of genomic imprinting.
Collapse
Affiliation(s)
- Carol A Edwards
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Nozomi Takahashi
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Jennifer A Corish
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Anne C Ferguson-Smith
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
8
|
Laukoter S, Pauler FM, Beattie R, Amberg N, Hansen AH, Streicher C, Penz T, Bock C, Hippenmeyer S. Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex. Neuron 2020; 107:1160-1179.e9. [PMID: 32707083 PMCID: PMC7523403 DOI: 10.1016/j.neuron.2020.06.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.
Collapse
Affiliation(s)
- Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Beattie
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
9
|
Zhou X, Yan B, Xu X, Yu XL, Fu XF, Cai YF, Xu YY, Tang YG, Zhang XZ, Wang HY. Risk and mechanism of glucose metabolism disorder in the offspring conceived by female fertility maintenance technology. Cryobiology 2020; 96:68-75. [PMID: 32771331 DOI: 10.1016/j.cryobiol.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Although female fertility maintenance technology (FFMT) provides an effective option for preserving fertility in patients with cancer suffering from fertility loss due to cancer treatment, previous studies have shown that the technique has certain potential risks and requires an assessment of the health status of the offspring since FFMT may lead to glucose metabolism disorder in offspring mice. The present animal study examined the glucose metabolism of adult mice offspring born from ovarian tissue cryopreservation and orthotopic allotransplantation. The mice were divided into three groups: normal, fresh ovary transplantation, and cryopreserved ovary transplantation. We recorded fasting blood glucose, glucose tolerance, and fasting serum insulin level for six months. Liver DNA, RNA, and proteins were extracted to detect the interaction between DNA methylation and Grb10 expression and insulin signaling pathway factors such as P-IGF1R, P-IRS2, P-AKT, and Grb10. Female recipient mice that received FFMT could successfully give birth after mating. The average litter size and total litter size of the cryopreserved and fresh groups showed marked differences compared with the normal group. Compared with the normal group, the fasting blood glucose and fasting serum insulin levels were higher in the cryopreserved and fresh groups. The mRNA and protein expressions of Grb10 were higher in the fresh and cryopreserved groups. Compared with the normal group, the DNA methylation status of four of the 11 sites of the Grb10 promoter was lower in the cryopreserved group. Grb10 overexpression inhibited the downstream phosphorylation protein factor expression (p-IGF-1R, p-IRS2, and p-Akt) of the IGF-1R signaling pathway. Female fertility maintenance technology (FFMT), including ovarian tissue cryopreservation (OTC), and orthotopic allotransplantation techniques might lead to glucose metabolism disorders in offspring mice.
Collapse
Affiliation(s)
- Xue Zhou
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750001, China; Center for Clinical Research and Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, PR China
| | - Bei Yan
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750001, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Xian Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Xiao-Li Yu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Xu-Feng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Yu-Fang Cai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Yan-Yan Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China
| | - Yun-Ge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, 510600, China
| | - Xin-Zong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, 510600, China.
| | - Hong-Yan Wang
- Ningxia Human Sperm Bank, General Hospital of Ningxia Medical University, Yinchuan, 750001, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
10
|
Yin Z, Zhang X, Li J, Jiao Y, Kong Q, Mu Y. Identification of Imprinted Genes and Their Differentially Methylated Regions in Porcine. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795419120135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
|
12
|
Thamban T, Agarwaal V, Khosla S. Role of genomic imprinting in mammalian development. J Biosci 2020; 45:20. [PMID: 31965998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Non-mendelian inheritance refers to the group of phenomena and observations related to the inheritance of genetic information that cannot be merely explained by Mendel's laws of inheritance. Phenomenon including Genomic imprinting, X-chromosome Inactivation, Paramutations are some of the best studied examples of non-mendelian inheritance. Genomic imprinting is a process that reversibly marks one of the two homologous loci, chromosome or chromosomal sets during development, resulting in functional non-equivalence of gene expression. Genomic imprinting is known to occur in a few insect species, plants, and placental mammals. Over the years, studies on imprinted genes have contributed immensely to highlighting the role of epigenetic modifications and the epigenetic circuitry during gene expression and development. In this review, we discuss the phenomenon of genomic imprinting in mammals and the role it plays especially during fetoplacental growth and early development.
Collapse
Affiliation(s)
- Thushara Thamban
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Hyderabad, India
| | | | | |
Collapse
|
13
|
Lee HJ, Choi NY, Lee SW, Lee Y, Ko K, Kim GJ, Hwang HS, Ko K. Alteration of Genomic Imprinting Status of Human Parthenogenetic Induced Pluripotent Stem Cells during Neural Lineage Differentiation. Int J Stem Cells 2019; 12:31-42. [PMID: 30836722 PMCID: PMC6457707 DOI: 10.15283/ijsc18084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 11/19/2018] [Accepted: 12/29/2018] [Indexed: 12/16/2022] Open
Abstract
Background and Objectives Genomic imprinting modulates growth and development in mammals and is associated with genetic disorders. Although uniparental embryonic stem cells have been used to study genomic imprinting, there is an ethical issue associated with the destruction of human embryos. In this study, to investigate the genomic imprinting status in human neurodevelopment, we used human uniparental induced pluripotent stem cells (iPSCs) that possessed only maternal alleles and differentiated into neural cell lineages. Methods Human somatic iPSCs (hSiPSCs) and human parthenogenetic iPSCs (hPgiPSCs) were differentiated into neural stem cells (NSCs) and named hSi-NSCs and hPgi-NSCs respectively. DNA methylation and gene expression of imprinted genes related neurodevelopment was analyzed during reprogramming and neural lineage differentiation. Results The DNA methylation and expression of imprinted genes were altered or maintained after differentiation into NSCs. The imprinting status in NSCs were maintained after terminal differentiation into neurons and astrocytes. In contrast, gene expression was differentially presented in a cell type-specific manner. Conclusions This study suggests that genomic imprinting should be determined in each neural cell type because the genomic imprinting status can differ in a cell type-specific manner. In addition, the in vitro model established in this study would be useful for verifying the epigenetic alteration of imprinted genes which can be differentially changed during neurodevelopment in human and for screening novel imprinted genes related to neurodevelopment. Moreover, the confirmed genomic imprinting status could be used to find out an abnormal genomic imprinting status of imprinted genes related with neurogenetic disorders according to uniparental genotypes.
Collapse
Affiliation(s)
- Hye Jeong Lee
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Na Young Choi
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Seung-Wong Lee
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Yukyeong Lee
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea
| | - Kisung Ko
- Departments of Medicine, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Gwang Jun Kim
- Departments of Obstetrics and Gynecology, College of Medicine, Chung-Ang University, Seoul, Korea
| | - Han Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University School of Medicine, Seoul, Korea
| | - Kinarm Ko
- Departement of Stem Cell Biology, Konkuk University School of Medicine, Seoul, Korea.,Center for Stem Cell Research, Institute of Advanced Biomedical Science, Konkuk University, Seoul, Korea.,Research Institute of Medical Science, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Yao J, Geng L, Huang R, Peng W, Chen X, Jiang X, Yu M, Li M, Huang Y, Yang X. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction 2018; 154:97-105. [PMID: 28696244 DOI: 10.1530/rep-16-0480] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 04/21/2017] [Accepted: 06/02/2017] [Indexed: 12/13/2022]
Abstract
Vitrification of embryos is a routine procedure in IVF (in vitro fertilization) laboratories. In the present study, we aimed to investigate the effect of vitrification on mouse preimplantation embryo development in vitro, and effect on the epigenetic status of imprinted gene Grb10 in mouse embryos. The blastocyst formation rate for vitrified 8-cell embryos was similar to the non-vitrified 8-cell embryos, whereas the blastocyst hatching rate was lower than that of the non-vitrified group. The expression level of Grb10 major-type transcript decreased significantly in vitrified blastocysts compared with non-vitrified and in vivo blastocysts. Moreover, the global DNA methylation level in 8-cell embryos and blastocysts, and the DNA methylation at CpG island 1 (CGI1) of Grb10 in blastocysts were also significantly decreased after vitrification. In vitro culture condition had no adverse effect, except for on the DNA methylation in Grb10 CGI1. These results suggest that vitrification may reduce the in vitro development of mouse 8-cell embryos and affect the expression and DNA methylation of imprinted gene Grb10.
Collapse
Affiliation(s)
- Jianfeng Yao
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Lixia Geng
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Rongfu Huang
- The Second Affiliated HospitalFujian Medical University, Quanzhou, People's Republic of China
| | - Weilin Peng
- Quanzhou Maternity and Child Health Care HospitalQuanZhou, People's Republic of China
| | - Xuan Chen
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Xiaohong Jiang
- Fuzhou Center for Disease Control and PreventionFuzhou, People's Republic of China
| | - Miao Yu
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ming Li
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yanfang Huang
- The First Affiliated HospitalFujian Medical University, Fuzhou, People's Republic of China
| | - Xiaoyu Yang
- College of Preclinical Medicine, Fujian Medical University, Fuzhou, People's Republic of China.,The Affiliated Fuzhou First HospitalFujian Medical University, Fuzhou, People's Republic of China.,Fuzhou Maternity and Child Health Care HospitalFuzhou, People's Republic of China
| |
Collapse
|
15
|
Evaluation of vitrification protocol of mouse ovarian tissue by effect of DNA methyltransferase-1 and paternal imprinted growth factor receptor-binding protein 10 on signaling pathways. Cryobiology 2017; 80:89-95. [PMID: 29180273 DOI: 10.1016/j.cryobiol.2017.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 10/18/2022]
Abstract
Transplantation of cryopreserved ovarian tissue has been considered as a promising way of fertility preservation for women. however, this cryopreservation method is prone to post-resuscitation follicle proliferation and oocyte development stagnation, affecting late transplant survival. To evaluate current vitrification works, we investigated the critical pathway alternations in vitrified-warmed juvenile 10-day-old mouse ovary. We showed a significant decrease of protein kinase B (Akt) and Mitogen-activated protein kinase (Mapk) phosphorylation, during which serine/threonine kinases play central roles in coordinating follicle and oocyte development and stress response. Inhibition of Akt and Mapk activity were associated with one of the imprinted insulin pathway negative regulatory genes, Growth factor receptor-binding protein 10 (Grb10) which remarkably increased in vitrified-warmed juvenile mouse ovary than that of fresh group (p < 0.05). RNAi-induced Grb10 down-regulation reversed the decrease in Akt and Mapk phosphorylation. The increase of Grb10 expression was partially caused by the hyper-methylation of the promoter region, associated with the decrease of follicular DNA methyltransferase (Dnmt) 1 protein in different stages of vitrified-warmed group, compared to fresh group (p < 0.05). The mRNA and protein expression of Dnmt1 in ovary of vitrified-warmed juvenile mouse were remarkably lower than those in fresh group (p < 0.05). Dnmt1 overexpression dramatically reversed Grb10 up-regulation and Akt and Mapk phosphorylation reduction. Taken together, our findings suggest that Grb10 expression might be helpful in evaluation of effectiveness of vitrification, and considered as a potential target for further vitrification protocols improvement in the future.
Collapse
|
16
|
Inoue A, Jiang L, Lu F, Suzuki T, Zhang Y. Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature 2017; 547:419-424. [PMID: 28723896 PMCID: PMC9674007 DOI: 10.1038/nature23262] [Citation(s) in RCA: 313] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/01/2017] [Indexed: 12/22/2022]
Abstract
Mammalian sperm and oocytes have different epigenetic landscapes and are organized in different fashion. Following fertilization, the initially distinct parental epigenomes become largely equalized with the exception of certain loci including imprinting control regions (ICRs). How parental chromatin becomes equalized and how ICRs escape from this reprogramming is largely unknown. Here we profiled parental allele-specific DNase I hypersensitive sites (DHSs) in mouse zygotes and morula embryos, and investigated the epigenetic mechanisms underlying allelic DHSs. Integrated analyses of DNA methylome and H3K27me3 ChIP-seq data sets revealed 76 genes with paternal allele-specific DHSs that are devoid of DNA methylation but harbor maternal allele-specific H3K27me3. Interestingly, these genes are paternally expressed in preimplantation embryos, and ectopic removal of H3K27me3 induces maternal allele expression. H3K27me3-dependent imprinting is largely lost in the embryonic cell lineage, but at least 5 genes maintain their imprinting in the extra-embryonic cell lineage. The 5 genes include all previously identified DNA methylation-independent imprinted autosomal genes. Thus, our study identifies maternal H3K27me3 as a DNA methylation-independent imprinting mechanism.
Collapse
|
17
|
Perez JD, Rubinstein ND, Dulac C. New Perspectives on Genomic Imprinting, an Essential and Multifaceted Mode of Epigenetic Control in the Developing and Adult Brain. Annu Rev Neurosci 2016; 39:347-84. [PMID: 27145912 DOI: 10.1146/annurev-neuro-061010-113708] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian evolution entailed multiple innovations in gene regulation, including the emergence of genomic imprinting, an epigenetic regulation leading to the preferential expression of a gene from its maternal or paternal allele. Genomic imprinting is highly prevalent in the brain, yet, until recently, its central roles in neural processes have not been fully appreciated. Here, we provide a comprehensive survey of adult and developmental brain functions influenced by imprinted genes, from neural development and wiring to synaptic function and plasticity, energy balance, social behaviors, emotions, and cognition. We further review the widespread identification of parental biases alongside monoallelic expression in brain tissues, discuss their potential roles in dosage regulation of key neural pathways, and suggest possible mechanisms underlying the dynamic regulation of imprinting in the brain. This review should help provide a better understanding of the significance of genomic imprinting in the normal and pathological brain of mammals including humans.
Collapse
Affiliation(s)
- Julio D Perez
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Nimrod D Rubinstein
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Harvard University, Howard Hughes Medical Institute, Cambridge, Massachusetts 02138;
| |
Collapse
|
18
|
Guo J, He H, Liu Q, Zhang F, Lv J, Zeng T, Gu N, Wu Q. Identification and Epigenetic Analysis of a Maternally Imprinted Gene Qpct. Mol Cells 2015; 38:859-65. [PMID: 26447138 PMCID: PMC4625067 DOI: 10.14348/molcells.2015.0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/09/2015] [Accepted: 07/13/2015] [Indexed: 11/27/2022] Open
Abstract
Most imprinted genes are concerned with embryonic development, especially placental development. Here, we identified a placenta-specific imprinted gene Qpct. Our results show that Qpct is widely expressed during early embryonic development and can be detected in the telecephalon, midbrain, and rhombencephalon at E9.5b-E11.5. Moreover, Qpct is strikingly expressed in the brain, lung and liver in E15.5. Expression signals for Qpct achieved a peak at E15.5 during placental development and were only detected in the labyrinth layer in E15.5 placenta. ChIP assay results suggest that the modification of histone H3K4me3 can result in maternal activating of Qpct.
Collapse
Affiliation(s)
- Jing Guo
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Hongjuan He
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Qi Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Fengwei Zhang
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Jie Lv
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Tiebo Zeng
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Ning Gu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 150001, Heilongjiang,
China
| |
Collapse
|
19
|
Tissue-specific regulation and function of Grb10 during growth and neuronal commitment. Proc Natl Acad Sci U S A 2014; 112:6841-7. [PMID: 25368187 DOI: 10.1073/pnas.1411254111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Growth-factor receptor bound protein 10 (Grb10) is a signal adapter protein encoded by an imprinted gene that has roles in growth control, cellular proliferation, and insulin signaling. Additionally, Grb10 is critical for the normal behavior of the adult mouse. These functions are paralleled by Grb10's unique tissue-specific imprinted expression; the paternal copy of Grb10 is expressed in a subset of neurons whereas the maternal copy is expressed in most other adult tissues in the mouse. The mechanism that underlies this switch between maternal and paternal expression is still unclear, as is the role for paternally expressed Grb10 in neurons. Here, we review recent work and present complementary data that contribute to the understanding of Grb10 gene regulation and function, with specific emphasis on growth and neuronal development. Additionally, we show that in vitro differentiation of mouse embryonic stem cells into alpha motor neurons recapitulates the switch from maternal to paternal expression observed during neuronal development in vivo. We postulate that this switch in allele-specific expression is related to the functional role of Grb10 in motor neurons and other neuronal tissues.
Collapse
|
20
|
Wei Y, Su J, Liu H, Lv J, Wang F, Yan H, Wen Y, Liu H, Wu Q, Zhang Y. MetaImprint: an information repository of mammalian imprinted genes. Development 2014; 141:2516-23. [DOI: 10.1242/dev.105320] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genomic imprinting is a complex genetic and epigenetic phenomenon that plays important roles in mammalian development and diseases. Mammalian imprinted genes have been identified widely by experimental strategies or predicted using computational methods. Systematic information for these genes would be necessary for the identification of novel imprinted genes and the analysis of their regulatory mechanisms and functions. Here, a well-designed information repository, MetaImprint (http://bioinfo.hrbmu.edu.cn/MetaImprint), is presented, which focuses on the collection of information concerning mammalian imprinted genes. The current version of MetaImprint incorporates 539 imprinted genes, including 255 experimentally confirmed genes, and their detailed research courses from eight mammalian species. MetaImprint also hosts genome-wide genetic and epigenetic information of imprinted genes, including imprinting control regions, single nucleotide polymorphisms, non-coding RNAs, DNA methylation and histone modifications. Information related to human diseases and functional annotation was also integrated into MetaImprint. To facilitate data extraction, MetaImprint supports multiple search options, such as by gene ID and disease name. Moreover, a configurable Imprinted Gene Browser was developed to visualize the information on imprinted genes in a genomic context. In addition, an Epigenetic Changes Analysis Tool is provided for online analysis of DNA methylation and histone modification differences of imprinted genes among multiple tissues and cell types. MetaImprint provides a comprehensive information repository of imprinted genes, allowing researchers to investigate systematically the genetic and epigenetic regulatory mechanisms of imprinted genes and their functions in development and diseases.
Collapse
Affiliation(s)
- Yanjun Wei
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Jianzhong Su
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hongbo Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Lv
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Fang Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Haidan Yan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Yanhua Wen
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Hui Liu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Qiong Wu
- School of Life Science and Technology, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| |
Collapse
|
21
|
Mainigi MA, Olalere D, Burd I, Sapienza C, Bartolomei M, Coutifaris C. Peri-implantation hormonal milieu: elucidating mechanisms of abnormal placentation and fetal growth. Biol Reprod 2014; 90:26. [PMID: 24352558 DOI: 10.1095/biolreprod.113.110411] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Assisted reproductive technologies (ART) have been associated with several adverse perinatal outcomes involving placentation and fetal growth. It is critical to examine each intervention individually in order to assess its relationship to the described adverse perinatal outcomes. One intervention ubiquitously used in ART is superovulation with gonadotropins. Superovulation results in significant changes in the hormonal milieu, which persist during the peri-implantation and early placentation periods. Epidemiologic evidence suggests that the treatment-induced peri-implantation maternal environment plays a critical role in perinatal outcomes. In this study, using the mouse model, we have isolated the exposure to the peri-implantation period, and we examine the effect of superovulation on placentation and fetal growth. We report that the nonphysiologic peri-implantation maternal hormonal environment resulting from gonadotropin stimulation appears to have a direct effect on fetal growth, trophoblast differentiation, and gene expression. This appears to be mediated, at least in part, through trophoblast expansion and invasion. Although the specific molecular and cellular mechanism(s) leading to these observations remain to be elucidated, identifying this modifiable risk factor will not only allow us to improve perinatal outcomes with ART, but help us understand the pathophysiology contributing to these outcomes.
Collapse
Affiliation(s)
- Monica A Mainigi
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | |
Collapse
|
22
|
Leu YW, Huang THM, Hsiao SH. Epigenetic reprogramming of mesenchymal stem cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 754:195-211. [PMID: 22956503 DOI: 10.1007/978-1-4419-9967-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells of mesodermal origin that can be isolated from various sources and induced into different cell types. Although MSCs possess immune privilege and are more easily obtained than embryonic stem cells, their propensity to tumorigenesis has not been fully explored. Epigenomic changes in DNA methylation and chromatin structure have been hypothesized to be critical in the determination of lineage-specific differentiation and tumorigenesis of MSCs, but this has not been formally proven. We applied a targeted DNA methylation method to methylate a Polycomb group protein-governed gene, Trip10, in MSCs, which accelerated the cell fate determination of MSCs. In addition, targeted methylation of HIC1 and RassF1A, both tumor suppressor genes, transformed MSCs into tumor stem cell-like cells. This new method will allow better control of the differentiation of MSCs and their use in downstream applications.
Collapse
Affiliation(s)
- Yu-Wei Leu
- Department of Life Science, National Chung Cheng University, Chia-Yi 621, Taiwan.
| | | | | |
Collapse
|
23
|
Epigenetic modifications and mRNA levels of the imprinted gene Grb10 in serially passaged fibroblast cells. Biochimie 2012; 94:2699-705. [DOI: 10.1016/j.biochi.2012.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/09/2012] [Indexed: 11/18/2022]
|
24
|
Hoekstra EJ, von Oerthel L, van der Linden AJA, Schellevis RD, Scheppink G, Holstege FCP, Groot-Koerkamp MJ, van der Heide LP, Smidt MP. Lmx1a is an activator of Rgs4 and Grb10 and is responsible for the correct specification of rostral and medial mdDA neurons. Eur J Neurosci 2012; 37:23-32. [PMID: 23106268 DOI: 10.1111/ejn.12022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 11/26/2022]
Abstract
The LIM homeodomain transcription factor Lmx1a is a very potent inducer of stem cells towards dopaminergic neurons. Despite several studies on the function of this gene, the exact in vivo role of Lmx1a in mesodiencephalic dopamine (mdDA) neuronal specification is still not understood. To analyse the genes functioning downstream of Lmx1a, we performed expression microarray analysis of LMX1A-overexpressing MN9D dopaminergic cells. Several interesting regulated genes were identified, based on their regulation in other previously generated expression arrays and on their expression pattern in the developing mdDA neuronal field. Post analysis through in vivo expression analysis in Lmx1a mouse mutant (dr/dr) embryos demonstrated a clear decrease in expression of the genes Grb10 and Rgs4, in and adjacent to the rostral and dorsal mdDA neuronal field and within the Lmx1a expression domain. Interestingly, the DA marker Vmat2 was significantly up-regulated as a consequence of increased LMX1A dose, and subsequent analysis on Lmx1a-mutant E14.5 and adult tissue revealed a significant decrease in Vmat2 expression in mdDA neurons. Taken together, microarray analysis of an LMX1A-overexpression cell system resulted in the identification of novel direct or indirect downstream targets of Lmx1a in mdDA neurons: Grb10, Rgs4 and Vmat2.
Collapse
Affiliation(s)
- Elisa J Hoekstra
- Neuroscience and Pharmacology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fedoriw A, Mugford J, Magnuson T. Genomic imprinting and epigenetic control of development. Cold Spring Harb Perspect Biol 2012; 4:a008136. [PMID: 22687277 PMCID: PMC3385953 DOI: 10.1101/cshperspect.a008136] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Epigenetic mechanisms are extensively utilized during mammalian development. Specific patterns of gene expression are established during cell fate decisions, maintained as differentiation progresses, and often augmented as more specialized cell types are required. Much of what is known about these mechanisms comes from the study of two distinct epigenetic phenomena: genomic imprinting and X-chromosome inactivation. In the case of genomic imprinting, alleles are expressed in a parent-of-origin-dependent manner, whereas X-chromosome inactivation in females requires that only one X chromosome is active in each somatic nucleus. As model systems for epigenetic regulation, genomic imprinting and X-chromosome inactivation have identified and elucidated the numerous regulatory mechanisms that function throughout the genome during development.
Collapse
Affiliation(s)
- Andrew Fedoriw
- The University of North Carolina at Chapel Hill School of Medicine, Department of Genetics, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Denise P. Barlow
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria;
| |
Collapse
|
27
|
Lucas-Fernández E, García-Palmero I, Villalobo A. Genomic organization and control of the grb7 gene family. Curr Genomics 2011; 9:60-8. [PMID: 19424485 PMCID: PMC2674303 DOI: 10.2174/138920208783884847] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 02/20/2008] [Accepted: 02/21/2008] [Indexed: 11/22/2022] Open
Abstract
Grb7 and their related family members Grb10 and Grb14 are adaptor proteins, which participate in the functionality of multiple signal transduction pathways under the control of a variety of activated tyrosine kinase receptors and other tyrosine-phosphorylated proteins. They are involved in the modulation of important cellular and organismal functions such as cell migration, cell proliferation, apoptosis, gene expression, protein degradation, protein phosphorylation, angiogenesis, embryonic development and metabolic control. In this short review we shall describe the organization of the genes encoding the Grb7 protein family, their transcriptional products and the regulatory mechanisms implicated in the control of their expression. Finally, the alterations found in these genes and the mechanisms affecting their expression under pathological conditions such as cancer, diabetes and some congenital disorders will be highlighted.
Collapse
Affiliation(s)
- E Lucas-Fernández
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas & Universidad Autónoma de Madrid. Arturo Duperier 4, E-28029 Madrid, Spain
| | | | | |
Collapse
|
28
|
Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR, Ward A. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 2011; 469:534-8. [PMID: 21270893 PMCID: PMC3031026 DOI: 10.1038/nature09651] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 11/04/2010] [Indexed: 02/02/2023]
Abstract
Imprinted genes, defined by their preferential expression of a single parental allele, represent a subset of the mammalian genome and often have key roles in embryonic development, but also postnatal functions including energy homeostasis and behaviour. When the two parental alleles are unequally represented within a social group (when there is sex bias in dispersal and/or variance in reproductive success), imprinted genes may evolve to modulate social behaviour, although so far no such instance is known. Predominantly expressed from the maternal allele during embryogenesis, Grb10 encodes an intracellular adaptor protein that can interact with several receptor tyrosine kinases and downstream signalling molecules. Here we demonstrate that within the brain Grb10 is expressed from the paternal allele from fetal life into adulthood and that ablation of this expression engenders increased social dominance specifically among other aspects of social behaviour, a finding supported by the observed increase in allogrooming by paternal Grb10-deficient animals. Grb10 is, therefore, the first example of an imprinted gene that regulates social behaviour. It is also currently alone in exhibiting imprinted expression from each of the parental alleles in a tissue-specific manner, as loss of the peripherally expressed maternal allele leads to significant fetal and placental overgrowth. Thus Grb10 is, so far, a unique imprinted gene, able to influence distinct physiological processes, fetal growth and adult behaviour, owing to actions of the two parental alleles in different tissues.
Collapse
Affiliation(s)
- Alastair S. Garfield
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Michael Cowley
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Florentia M. Smith
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Kim Moorwood
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Joanne E. Stewart-Cox
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Kerry Gilroy
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sian Baker
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Jing Xia
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
| | - Jeffrey W. Dalley
- Behavioural and Clinical Neuroscience Institute and Department of Experimental Psychology, University of Cambridge, Downing St, Cambridge, CB2 3EB, UK
- Department of Psychiatry, University of Cambridge, Addenbrooke's Hospital, Hill's Road, Cambridge, CB2 2QQ, UK
| | - Laurence D. Hurst
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| | - Lawrence S. Wilkinson
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Anthony R. Isles
- Behavioural Genetics Group, MRC Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Schools of Medicine, and Psychology, Cardiff University, Cardiff, CF14 4XN, UK
| | - Andrew Ward
- University of Bath, Department of Biology & Biochemistry and Centre for Regenerative Medicine, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
29
|
Dnmt3a1 upregulates transcription of distinct genes and targets chromosomal gene clusters for epigenetic silencing in mouse embryonic stem cells. Mol Cell Biol 2011; 31:1577-92. [PMID: 21262766 DOI: 10.1128/mcb.01093-10] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dnmt3a1 and Dnmt3a2 are two de novo DNA methyltransferases expressed in mouse embryonic stem cells (mESCs). They differ in that a 219-amino-acid (aa) amino (N)-terminal noncatalytic domain is present only in Dnmt3a1. Here, we examined the unique functions of Dnmt3a1 in mESCs by targeting the coding sequence of the Dnmt3a1 N-terminal domain tagged with enhanced green fluorescent protein (GFP) for insertion into the mouse Rosa26 locus. Using these targeted cells (GFP-3a1Nter), we showed that Dnmt3a1 was efficiently recruited to the silenced Oct3/4 and activated Vtn (vitronectin) gene promoters via its unique N-terminal domain. This recruitment affected the two genes in contrasting ways, compromising Oct3/4 gene promoter DNA methylation to prevent consolidation of the silent state while significantly reducing Vtn transcription. We used this negative effect of the Dnmt3a1 N-terminal domain to investigate the extent of transcriptional regulation by Dnmt3a1 in mESCs by using microarrays. A small group of all-trans retinoic acid (tRA)-inducible genes had lower transcript levels in GFP-3a1Nter cells than in wild-type mESCs. Intriguingly, this group included genes that are important for fetal nutrition, placenta development, and metabolic functions and is enriched for a distinct set of imprinted genes. We also identified a larger group of genes that showed higher transcript levels in the GFP-3a1Nter-expressing cells than in wild-type mESCs, including pluripotency factors and key regulators of primordial germ cell differentiation. Thus, Dnmt3a1 in mESCs functions primarily as a negative and to a lesser extent as a positive regulator of transcription. Our findings suggest that Dnmt3a1 positively affects transcription of specific genes at the promoter level and targets chromosomal domains to epigenetically silence gene clusters in mESCs.
Collapse
|
30
|
The rhox homeobox gene cluster is imprinted and selectively targeted for regulation by histone h1 and DNA methylation. Mol Cell Biol 2011; 31:1275-87. [PMID: 21245380 DOI: 10.1128/mcb.00734-10] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Histone H1 is an abundant and essential component of chromatin whose precise role in regulating gene expression is poorly understood. Here, we report that a major target of H1-mediated regulation in embryonic stem (ES) cells is the X-linked Rhox homeobox gene cluster. To address the underlying mechanism, we examined the founding member of the Rhox gene cluster-Rhox5-and found that its distal promoter (Pd) loses H1, undergoes demethylation, and is transcriptionally activated in response to loss of H1 genes in ES cells. Demethylation of the Pd is required for its transcriptional induction and we identified a single cytosine in the Pd that, when methylated, is sufficient to inhibit Pd transcription. Methylation of this single cytosine prevents the Pd from binding GA-binding protein (GABP), a transcription factor essential for Pd transcription. Thus, H1 silences Rhox5 transcription by promoting methylation of one of its promoters, a mechanism likely to extend to other H1-regulated Rhox genes, based on analysis of ES cells lacking DNA methyltransferases. The Rhox cluster genes targeted for H1-mediated transcriptional repression are also subject to another DNA methylation-regulated process: Xp imprinting. Remarkably, we found that only H1-regulated Rhox genes are imprinted, not those immune to H1-mediated repression. Together, our results indicate that the Rhox gene cluster is a major target of H1-mediated transcriptional repression in ES cells and that H1 is a candidate to have a role in Xp imprinting.
Collapse
|
31
|
Ma P, Lin S, Bartolomei MS, Schultz RM. Metastasis tumor antigen 2 (MTA2) is involved in proper imprinted expression of H19 and Peg3 during mouse preimplantation development. Biol Reprod 2010; 83:1027-35. [PMID: 20720167 DOI: 10.1095/biolreprod.110.086397] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The epigenetic mechanisms involved in establishing and maintaining genomic imprinting are steadily being unmasked. The nucleosome remodeling and histone deacetylation (NuRD) complex is implicated in regulating DNA methylation and expression of the maternally expressed H19 gene in preimplantation mouse embryos. To dissect further the function of the NuRD complex in genomic imprinting, we employed an RNA interference (RNAi) strategy to deplete the NuRD complex component Metastasis Tumor Antigen 2 (MTA2). We found that Mta2 is the only zygotically expressed Mta gene prior to the blastocyst stage, and that RNAi-mediated knockdown of Mta2 transcript leads to biallelic H19 expression and loss of DNA methylation in the differentially methylated region in blastocysts. In addition, biallelic expression of the paternally expressed Peg3 gene, but not Snrpn, is also observed in blastocysts following Mta2 knockdown. Loss of MTA2 protein does not result in a decrease in abundance of other NuRD components, including methyl-binding-CpG-binding domain protein 3 (MBD3), histone deacetylases 1 and 2 (HDACs 1 and 2), and chromodomain helicase DNA-binding protein 4 (CHD4). Taken together, our results support a role for MTA2 within the NuRD complex in genomic imprinting.
Collapse
Affiliation(s)
- Pengpeng Ma
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA
| | | | | | | |
Collapse
|
32
|
Singh P, Cho J, Tsai SY, Rivas GE, Larson GP, Szabó PE. Coordinated allele-specific histone acetylation at the differentially methylated regions of imprinted genes. Nucleic Acids Res 2010; 38:7974-90. [PMID: 20693536 PMCID: PMC3001058 DOI: 10.1093/nar/gkq680] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting is an epigenetic inheritance system characterized by parental allele-specific gene expression. Allele-specific DNA methylation and chromatin composition are two epigenetic modification systems that control imprinted gene expression. To get a general assessment of histone lysine acetylation at imprinted genes we measured allele-specific acetylation of a wide range of lysine residues, H3K4, H3K18, H3K27, H3K36, H3K79, H3K64, H4K5, H4K8, H4K12, H2AK5, H2BK12, H2BK16 and H2BK46 at 11 differentially methylated regions (DMRs) in reciprocal mouse crosses using multiplex chromatin immunoprecipitation SNuPE assays. Histone acetylation marks generally distinguished the methylation-free alleles from methylated alleles at DMRs in mouse embryo fibroblasts and embryos. Acetylated lysines that are typically found at transcription start sites exhibited stronger allelic bias than acetylated histone residues in general. Maternally methylated DMRs, that usually overlap with promoters exhibited higher levels of acetylation and a 10% stronger allele-specific bias than paternally methylated DMRs that reside in intergenic regions. Along the H19/Igf2 imprinted domain, allele-specific acetylation at each lysine residue depended on functional CTCF binding sites in the imprinting control region. Our results suggest that many different histone acetyltransferase and histone deacetylase enzymes must act in concert in setting up and maintaining reciprocal parental allelic histone acetylation at DMRs.
Collapse
Affiliation(s)
- Purnima Singh
- Department of Molecular and Cellular Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | |
Collapse
|
33
|
Okitsu CY, Hsieh JCF, Hsieh CL. Transcriptional activity affects the H3K4me3 level and distribution in the coding region. Mol Cell Biol 2010; 30:2933-46. [PMID: 20404096 PMCID: PMC2876678 DOI: 10.1128/mcb.01478-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/29/2009] [Accepted: 04/05/2010] [Indexed: 12/16/2022] Open
Abstract
Histone lysine methylation and CpG DNA methylation contribute to transcriptional regulation. We have shown previously that dimethylated and trimethylated forms of histone H3 at lysine 4 (H3K4me2 and H3K4me3) are primarily depleted from CpG-methylated DNA regions by using patch-methylated stable episomes (minichromosomes) in human cells. This effect on H3K4me2 is clearly not linked to the transcriptional activity in the methylated DNA region; however, transcriptional activity may play a role in the presence of H3K4me3. Here, we present clear evidence of the impact of transcriptional activity on the overall level of H3K4me3 in the coding region and the lack of impact on H3K4me2. Our data also demonstrate the influence of transcriptional activity on the distribution of H3K4me3 and H3K4me2, but not that of total H3, in the 5' end of the coding region relative to the 3' end. The nature of the promoter (viral or endogenous) affects H3K4me3 much more than it affects H3K4me2, suggesting a potential fundamental difference in the recruitment of methyltransferase for H3K4 trimethylation.
Collapse
Affiliation(s)
- Cindy Yen Okitsu
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California
| | - John Cheng Feng Hsieh
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California
| | - Chih-Lin Hsieh
- Department of Urology and Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, California
| |
Collapse
|
34
|
Gadd S, Sredni ST, Huang CC, Perlman EJ. Rhabdoid tumor: gene expression clues to pathogenesis and potential therapeutic targets. J Transl Med 2010; 90:724-38. [PMID: 20212451 PMCID: PMC2868345 DOI: 10.1038/labinvest.2010.66] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Rhabdoid tumors (RT) are aggressive tumors characterized by genetic loss of SMARCB1 (SNF5, INI-1), a component of the SWI/SNF chromatin remodeling complex. No effective treatment is currently available. This study seeks to shed light on the SMARCB1-mediated pathogenesis of RT and to discover potential therapeutic targets. Global gene expression of 10 RT was compared with 12 cellular mesoblastic nephromas, 16 clear cell sarcomas of the kidney, and 15 Wilms tumors. In all, 114 top genes were differentially expressed in RT (P<0.001, fold change >2 or <0.5). Among these were downregulation of SMARCB1 and genes previously associated with SMARCB1 (ATP1B1, PTN, DOCK4, NQO1, PLOD1, PTP4A2, PTPRK); 28/114 top differentially expressed genes were involved with neural or neural crest development and were all sharply downregulated. This was confirmed by Gene Set Enrichment Analysis (GSEA). Neural and neural crest stem cell marker proteins SOX10, ID3, CD133, and Musashi were negative by immunohistochemistry, whereas Nestin was positive. Decreased expression of CDKN1A, CDKN1B, CDKN1C, CDKN2A, and CCND1 was identified, while MYC-C was upregulated. GSEA of independent gene sets associated with bivalent histone modification and polycomb group targets in embryonic stem cells showed significant negative enrichment in RT. Several differentially expressed genes were associated with tumor suppression, invasion, and metastasis, including SPP1 (osteopontin), COL18A1 (endostatin), PTPRK, and DOCK4. We conclude that RTs arise within early progenitor cells during a critical developmental window in which loss of SMARCB1 directly results in repression of neural development, loss of cyclin-dependent kinase inhibition, and trithorax/polycomb dysregulation.
Collapse
Affiliation(s)
- Samantha Gadd
- The Department of Pathology, Northwestern University’s Feinberg School of Medicine and the Robert H. Lurie Cancer Center, Chicago IL
| | - Simone Treiger Sredni
- The Department of Pathology, Northwestern University’s Feinberg School of Medicine and the Robert H. Lurie Cancer Center, Chicago IL
| | - Chiang-Ching Huang
- The Department of Preventive Medicine, Northwestern University’s Feinberg School of Medicine and the Robert H. Lurie Cancer Center, Chicago IL
| | - Elizabeth J. Perlman
- The Department of Pathology, Northwestern University’s Feinberg School of Medicine and the Robert H. Lurie Cancer Center, Chicago IL
| | | |
Collapse
|
35
|
McEwen KR, Ferguson-Smith AC. Distinguishing epigenetic marks of developmental and imprinting regulation. Epigenetics Chromatin 2010; 3:2. [PMID: 20180964 PMCID: PMC2841594 DOI: 10.1186/1756-8935-3-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 01/15/2010] [Indexed: 12/14/2022] Open
Abstract
Background The field of epigenetics is developing rapidly, however we are only beginning to comprehend the complexity of its influence on gene regulation. Using genomic imprinting as a model we examine epigenetic profiles associated with different forms of gene regulation. Imprinting refers to the expression of a gene from only one of the chromosome homologues in a parental-origin-specific manner. This is dependent on heritable germline epigenetic control at a cis-acting imprinting control region that influences local epigenetic states. Epigenetic modifications associated with imprinting regulation can be compared to those associated with the more canonical developmental regulation, important for processes such as differentiation and tissue specificity. Here we test the hypothesis that these two mechanisms are associated with different histone modification enrichment patterns. Results Using high-throughput data extraction with subsequent analysis, we have found that particular histone modifications are more likely to be associated with either imprinting repression or developmental repression of imprinted genes. H3K9me3 and H4K20me3 are together enriched at imprinted genes with differentially methylated promoters and do not show a correlation with developmental regulation. H3K27me3 and H3K4me3, however, are more often associated with developmental regulation. We find that imprinted genes are subject to developmental regulation through bivalency with H3K4me3 and H3K27me3 enrichment on the same allele. Furthermore, a specific tri-mark signature comprising H3K4me3, H3K9me3 and H4K20me3 has been identified at all imprinting control regions. Conclusion A large amount of data is produced from whole-genome expression and epigenetic profiling studies of cellular material. We have shown that such publicly available data can be mined and analysed in order to generate novel findings for categories of genes or regulatory elements. Comparing two types of gene regulation, imprinting and developmental, our results suggest that different histone modifications associate with these distinct processes. This form of analysis is therefore a useful tool to elucidate the complex epigenetic code associated with genome function and to determine the underlying features conferring epigenetic states.
Collapse
Affiliation(s)
- Kirsten R McEwen
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
36
|
|
37
|
Monk D, Arnaud P, Frost J, Hills FA, Stanier P, Feil R, Moore GE. Reciprocal imprinting of human GRB10 in placental trophoblast and brain: evolutionary conservation of reversed allelic expression. Hum Mol Genet 2009; 18:3066-74. [DOI: 10.1093/hmg/ddp248] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Dockery L, Gerfen J, Harview C, Rahn-Lee C, Horton R, Park Y, Davis TL. Differential methylation persists at the mouse Rasgrf1 DMR in tissues displaying monoallelic and biallelic expression. Epigenetics 2009; 4:241-7. [PMID: 19502804 DOI: 10.4161/epi.9021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A subset of mammalian genes exhibits genomic imprinting, whereby one parental allele is preferentially expressed. Differential DNA methylation at imprinted loci serves both to mark the parental origin of the alleles and to regulate their expression. In mouse, the imprinted gene Rasgrf1 is associated with a paternally methylated imprinting control region which functions as an enhancer blocker in its unmethylated state. Because Rasgrf1 is imprinted in a tissue-specific manner, we investigated the methylation pattern in monoallelic and biallelic tissues to determine if methylation of this region is required for both imprinted and non-imprinted expression. Our analysis indicates that DNA methylation is restricted to the paternal allele in both monoallelic and biallelic tissues of somatic and extraembryonic lineages. Therefore, methylation serves to mark the paternal Rasgrf1 allele throughout development, but additional factors are required for appropriate tissue-specific regulation of expression at this locus.
Collapse
Affiliation(s)
- Lauren Dockery
- Department of Biology, Bryn Mawr College, Bryn Mawr, PA 19010-2899, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Shiura H, Nakamura K, Hikichi T, Hino T, Oda K, Suzuki-Migishima R, Kohda T, Kaneko-ishino T, Ishino F. Paternal deletion of Meg1/Grb10 DMR causes maternalization of the Meg1/Grb10 cluster in mouse proximal Chromosome 11 leading to severe pre- and postnatal growth retardation. Hum Mol Genet 2009; 18:1424-38. [PMID: 19174477 DOI: 10.1093/hmg/ddp049] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Mice with maternal duplication of proximal Chromosome 11 (MatDp(prox11)), where Meg1/Grb10 is located, exhibit pre- and postnatal growth retardation. To elucidate the responsible imprinted gene for the growth abnormality, we examined the precise structure and regulatory mechanism of this imprinted region and generated novel model mice mimicking the pattern of imprinted gene expression observed in the MatDp(prox11) by deleting differentially methylated region of Meg1/Grb10 (Meg1-DMR). It was found that Cobl and Ddc, the neighboring genes of Meg1/Grb10, also comprise the imprinted region. We also found that the mouse-specific repeat sequence consisting of several CTCF-binding motifs in the Meg1-DMR functions as a silencer, suggesting that the Meg1/Grb10 imprinted region adopted a different regulatory mechanism from the H19/Igf2 region. Paternal deletion of the Meg1-DMR (+/DeltaDMR) caused both upregulation of the maternally expressed Meg1/Grb10 Type I in the whole body and Cobl in the yolk sac and loss of paternally expressed Meg1/Grb10 Type II and Ddc in the neonatal brain and heart, respectively, demonstrating maternalization of the entire Meg1/Grb10 imprinted region. We confirmed that the +/DeltaDMR mice exhibited the same growth abnormalities as the MatDp(prox11) mice. Fetal and neonatal growth was very sensitive to the expression level of Meg1/Grb10 Type I, indicating that the 2-fold increment of the Meg1/Grb10 Type I is one of the major causes of the growth retardation observed in the MatDp(prox11) and +/DeltaDMR mice. This suggests that the corresponding human GRB10 Type I plays an important role in the etiology of Silver-Russell syndrome caused by partial trisomy of 7p11-p13.
Collapse
Affiliation(s)
- Hirosuke Shiura
- Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Post-translational modifications of histones are the subject of intensive investigations with the aim of decoding how they regulate, alone or in combination, chromatin structure, genomic stability, and gene expression. Major epigenetic programming events take place during gametogenesis and fetal development and are thought to have long-lasting consequences on adult health. Epidemiological and experimental studies have pointed toward maternal nutrition as a major player during prenatal development in influencing disease susceptibility later in life. Although the mechanisms underlying such observations are not well elucidated, epigenetic alterations of histones by particular maternal diets might be of central importance. Moreover, as much as dietary sources can influence epigenetic programming during pregnancy, they have started to be implicated in cancer chemoprevention, via the targeting of reversible epigenetic deregulations at the level of the histones.
Collapse
Affiliation(s)
- Barbara Delage
- Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97331-6512, USA
| | | |
Collapse
|
41
|
Schulz R, McCole RB, Woodfine K, Wood AJ, Chahal M, Monk D, Moore GE, Oakey RJ. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet 2008; 18:118-27. [PMID: 18836209 PMCID: PMC2666296 DOI: 10.1093/hmg/ddn322] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
42
|
A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10. EMBO J 2008; 27:2523-32. [PMID: 18650936 DOI: 10.1038/emboj.2008.142] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 06/27/2008] [Indexed: 02/04/2023] Open
Abstract
Genomic imprinting is a developmental mechanism that mediates parent-of-origin-specific expression in a subset of genes. How the tissue specificity of imprinted gene expression is controlled remains poorly understood. As a model to address this question, we studied Grb10, a gene that displays brain-specific expression from the paternal chromosome. Here, we show in the mouse that the paternal promoter region is marked by allelic bivalent chromatin enriched in both H3K4me2 and H3K27me3, from early embryonic stages onwards. This is maintained in all somatic tissues, but brain. The bivalent domain is resolved upon neural commitment, during the developmental window in which paternal expression is activated. Our data indicate that bivalent chromatin, in combination with neuronal factors, controls the paternal expression of Grb10 in brain. This finding highlights a novel mechanism to control tissue-specific imprinting.
Collapse
|
43
|
Keverne EB, Curley JP. Epigenetics, brain evolution and behaviour. Front Neuroendocrinol 2008; 29:398-412. [PMID: 18439660 DOI: 10.1016/j.yfrne.2008.03.001] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 11/30/2007] [Accepted: 03/01/2008] [Indexed: 12/14/2022]
Abstract
Molecular modifications to the structure of histone proteins and DNA (chromatin) play a significant role in regulating the transcription of genes without altering their nucleotide sequence. Certain epigenetic modifications to DNA are heritable in the form of genomic imprinting, whereby subsets of genes are silenced according to parent-of-origin. This form of gene regulation is primarily under matrilineal control and has evolved partly to co-ordinate in-utero development with maternal resource availability. Changes to epigenetic mechanisms in post-mitotic neurons may also be activated during development in response to environmental stimuli such as maternal care and social interactions. This results in long-lasting stable, or short-term dynamic, changes to the neuronal phenotype producing long-term behavioural consequences. Use of evolutionary conserved mechanisms have thus been adapted to modify the control of gene expression and embryonic growth of the brain as well as allowing for plastic changes in the post-natal brain in response to external environmental and social cues.
Collapse
Affiliation(s)
- Eric B Keverne
- Sub-Department of Animal Behaviour, University of Cambridge, Madingley, Cambridge, CB23 8AA, UK.
| | | |
Collapse
|
44
|
Immunity to Growth Factor Receptor–Bound Protein 10, a Signal Transduction Molecule, Inhibits the Growth of Breast Cancer in Mice. Cancer Res 2008; 68:2463-70. [DOI: 10.1158/0008-5472.can-07-5685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Menheniott TR, Woodfine K, Schulz R, Wood AJ, Monk D, Giraud AS, Baldwin HS, Moore GE, Oakey RJ. Genomic imprinting of Dopa decarboxylase in heart and reciprocal allelic expression with neighboring Grb10. Mol Cell Biol 2008; 28:386-96. [PMID: 17967881 PMCID: PMC2223316 DOI: 10.1128/mcb.00862-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/14/2007] [Accepted: 10/08/2007] [Indexed: 11/20/2022] Open
Abstract
By combining a tissue-specific microarray screen with mouse uniparental duplications, we have identified a novel imprinted gene, Dopa decarboxylase (Ddc), on chromosome 11. Ddc_exon1a is a 2-kb transcript variant that initiates from an alternative first exon in intron 1 of the canonical Ddc transcript and is paternally expressed in trabecular cardiomyocytes of the embryonic and neonatal heart. Ddc displays tight conserved linkage with the maternally expressed and methylated Grb10 gene, suggesting that these reciprocally imprinted genes may be coordinately regulated. In Dnmt3L mutant embryos that lack maternal germ line methylation imprints, we show that Ddc is overexpressed and Grb10 is silenced. Their imprinting is therefore dependent on maternal germ line methylation, but the mechanism at Ddc does not appear to involve differential methylation of the Ddc_exon1a promoter region and may instead be provided by the oocyte mark at Grb10. Our analysis of Ddc redefines the imprinted Grb10 domain on mouse proximal chromosome 11 and identifies Ddc_exon1a as the first example of a heart-specific imprinted gene.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- King's College London, Department of Medical and Molecular Genetics, 8th Floor Guy's Tower, London SE1 9RT, England
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Histone lysine methylation and DNA methylation contribute to transcriptional regulation. We have previously shown that acetylated histones are associated with unmethylated DNA and are nearly absent from the methylated DNA regions by using patch-methylated stable episomes in human cells. The present study further demonstrates that DNA methylation immediately downstream from the transcription start site has a dramatic impact on transcription and that DNA methylation has a larger effect on transcription elongation than on initiation. We also show that dimethylated histone H3 at lysine 4 (H3K4me2) is depleted from regions with DNA methylation and that this effect is not linked to the transcriptional activity in the region. This effect is a local one and does not extend even 200 bp from the methylated DNA regions. Although depleted primarily from the methylated DNA regions, the presence of trimethylated histone H3 at lysine 4 (H3K4me3) may be affected by transcriptional activity as well. The data here suggest that DNA methylation at the junction of transcription initiation and elongation is most critical in transcription suppression and that this effect is mechanistically mediated through chromatin structure. The data also strongly support the model in which DNA methylation and not transcriptional activity dictates a closed chromatin structure, which excludes H3K4me2 and H3K4me3 in the region, as one of the pathways that safeguards the silent state of genes.
Collapse
Affiliation(s)
- Cindy Yen Okitsu
- Department of Urology, University of Southern California, Norris Cancer Center, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | | |
Collapse
|