1
|
Amegashie EA, Sikeola RO, Tagoe EA, Paintsil E, Torpey K, Quaye O. Oxidative Stress in People Living With HIV: Are Diverse Supplement Sources the Solution? Health Sci Rep 2025; 8:e70824. [PMID: 40330761 PMCID: PMC12054717 DOI: 10.1002/hsr2.70824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/18/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025] Open
Abstract
Background and Aim Antiretroviral therapy (ART) has reduced human immunodeficiency virus (HIV)/AIDS to a manageable chronic condition even though no cure exists. Despite ART control, latent HIV infection results in failed memory CD4 T-cell responses, immune overactivation, inflammation, oxidative stress, genomic instability, deoxyribonucleic acid (DNA) damage, and premature CD4 T-cell ageing. Overproduction of reactive oxygen species during oxidative stress can cause mitochondrial DNA damage, cancer, neurodegenerative and cardiovascular diseases, and premature aging in people living with HIV (PLWH). This review outlines current knowledge in oxidative stress among PLWH. Methods Google Scholar, Scopus, PubMed, and Science Direct were searched for literature conforming with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines from studies published from January 2013 to December 2023. A total of 75 studies from 22 countries were identified, with 52 studies carried out in human participants, 17 studies in cell lines, and 6 studies in animal models to assess oxidative stress levels. Results An increased oxidative stress with no changes in antioxidant levels was reported in HIV-positive smokers, and those on substance abuse. Long-term ART usage showed high levels of oxidative protein products and low levels of antioxidants when compared to short-term ART usage. The use of supplements such as N-acetylcysteine, selenium, and silibinin in animal models and cell lines showed increased cell viability, reduced reactive oxygen species, and increased antioxidant levels, which are promising therapeutic interventions that should be studied in PLWH to further help improve their disease outcomes. Conclusions Identifying extracts from natural and synthetic products with antioxidant effects will improve the general well-being of PLWH.
Collapse
Affiliation(s)
- Esimebia Adjovi Amegashie
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGreater Accra RegionGhana
| | - Ruth Oyawole Sikeola
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGreater Accra RegionGhana
| | - Emmanuel Ayitey Tagoe
- Department of Medical Laboratory SciencesSchool of Biomedical and Allied Health Sciences, University of GhanaAccraGreater Accra RegionGhana
| | - Elijah Paintsil
- Department of PediatricsBoston University Chobanian & Avedisian School of MedicineBostonUSA
| | - Kwasi Torpey
- Department of Population, Family and Reproductive HealthSchool of Public Health, University of GhanaAccraGreater Accra RegionGhana
| | - Osbourne Quaye
- West African Center for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular BiologyUniversity of GhanaAccraGreater Accra RegionGhana
| |
Collapse
|
2
|
Li H, Kelley J, Ye Y, Ye ZW, Townsend DM, Zhang J, Wu Y. REDOX Imbalance and Oxidative Stress in the Intervertebral Disc: The Effect of Mechanical Stress and Cigarette Smoking on ER Stress and Mitochondrial Dysfunction. Cells 2025; 14:613. [PMID: 40277939 PMCID: PMC12025608 DOI: 10.3390/cells14080613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Low back pain is a widespread condition that significantly impacts quality of life, with intervertebral disc degeneration (IDD) being a major contributing factor. However, the underlying mechanisms of IDD remain poorly understood, necessitating further investigation. Environmental risk factors, such as mechanical stress and cigarette smoke, elevate reactive oxygen species levels from both endogenous and exogenous sources, leading to redox imbalance and oxidative stress. The endoplasmic reticulum (ER) and mitochondria, two key organelles responsible for protein folding and energy production, respectively, are particularly vulnerable to oxidative stress. Under oxidative stress conditions, ER stress and mitochondrial dysfunction occur, resulting in unfolded protein response activation, impaired biosynthetic processes, and disruptions in the tricarboxylic acid cycle and electron transport chain, ultimately compromising energy metabolism. Prolonged and excessive ER stress can further trigger apoptosis through ER-mitochondrial crosstalk. Given the unique microenvironment of the intervertebral disc (IVD)-characterized by hypoxia, glucose starvation, and region-specific cellular heterogeneity-the differential effects of environmental stressors on distinct IVD cell populations require further investigation. This review explores the potential mechanisms through which environmental risk factors alter IVD cell activities, contributing to IDD progression, and discusses future therapeutic strategies aimed at mitigating disc degeneration.
Collapse
Affiliation(s)
- Hui Li
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
| | - Joshua Kelley
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
| | - Yiqing Ye
- Department of Orthopaedics and Physical Medicine & Rehabilitation, Medical University of South Carolina, Charleston, SC 29425, USA
- Academic Magnet High School, North Charleston, SC 29405, USA
| | - Zhi-Wei Ye
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Danyelle M. Townsend
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jie Zhang
- Department of Pharmacology and Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yongren Wu
- Department of Bioengineering, Clemson University, Charleston, SC 29425, USA; (H.L.); (J.K.)
- Department of Orthopaedics and Physical Medicine & Rehabilitation, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
3
|
Zhu L, Liao Y, Jiang B. Role of ROS and autophagy in the pathological process of atherosclerosis. J Physiol Biochem 2024; 80:743-756. [PMID: 39110405 DOI: 10.1007/s13105-024-01039-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/25/2024] [Indexed: 12/29/2024]
Abstract
Activation of autophagy and production of reactive oxygen species occur at various stages of atherosclerosis. To clarify the role and mechanism of autophagy and reactive oxygen species in atherosclerosis is of great significance to the prevention and treatment of atherosclerosis. Recent studies have shown that basal autophagy plays an important role in protecting cells from oxidative stress, reducing apoptosis and enhancing atherosclerotic plaque stability. Autophagy deficiency and excessive accumulation of reactive oxygen species can impair the function of endothelial cells, macrophages and smooth muscle cells, trigger autophagic cell death, and lead to instability and even rupture of plaques. However, the main signaling pathways regulating autophagy, the molecular mechanisms of autophagy and reactive oxygen species interaction, how they are initiated and distributed in plaques, and how they affect atherosclerosis progression, remain to be clarified. At present, there is no autophagy inducer used to treat atherosclerosis clinically. Therefore, it is urgent to clarify the mechanism of autophagy and find new targets for autophagy. Antioxidant agents generally have defects such as low reactive oxygen species scavenging efficiency and high cytotoxicity. Highly potent autophagy inducers and reactive oxygen species scavengers still need to be further developed and validated to provide more possibilities for innovative treatments for atherosclerosis.
Collapse
Affiliation(s)
- Liyuan Zhu
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingnan Liao
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Bo Jiang
- Center of Clinical Pharmacology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Stępniak J, Karbownik-Lewińska M. 17β-Estradiol Stimulates Oxidative Stress Components and Thyroid Specific Genes in Porcine Thyroid Follicular Cells: Potential Differences Between Sexes. Cells 2024; 13:1769. [PMID: 39513876 PMCID: PMC11545819 DOI: 10.3390/cells13211769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
17β-estradiol plays a crucial role in regulating cellular processes in both reproductive and non-reproductive tissues, including the thyroid gland. It modulates oxidative stress and contributes to sexual dimorphism in thyroid diseases, with ROS production, particularly H2O2, generated by NOX/DUOX enzymes. This study aimed to investigate the effects of 17β-estradiol (10 nM or 100 nM) on the expression of NOX/DUOX, thyroid-specific genes, and endoplasmic reticulum (ER) stress-related genes in male and female porcine thyroid follicular cells. Expression of the studied genes was evaluated by RT-PCR before and after treatment with 17β-estradiol alone or with the addition of NOX4 inhibitor (GKT-136901). Additionally, the level of ROS was measured by flow cytometry analysis. Our results show that 17β-estradiol significantly upregulates thyroid-specific genes, particularly TPO, and stimulates NOX/DUOX expression, affecting the redox state of thyroid cells. It also stimulates ER stress-related genes such as CHOP. In conclusion, estrogen excess may contribute to thyroid disease development via such possible mechanisms as the upregulation of key thyroid-specific genes, particularly TPO, and of genes involved in the cellular response to ER stress, especially CHOP, as well as by the stimulation of the NOX/DUOX system with consequent ROS overproduction. These mechanisms may play a certain role in the higher prevalence of thyroid diseases in women.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, 93-338 Lodz, Poland;
- Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
5
|
Fiadeiro MB, Diogo JC, Silva AA, Kim YS, Cristóvão AC. NADPH Oxidases in Neurodegenerative Disorders: Mechanisms and Therapeutic Opportunities. Antioxid Redox Signal 2024; 41:522-541. [PMID: 38760935 DOI: 10.1089/ars.2023.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Significance: The nicotinamide adenine dinucleotide phosphate oxidase (NOX) enzyme family, located in the central nervous system, is recognized as a source of reactive oxygen species (ROS) in the brain. Despite its importance in cellular processes, excessive ROS generation leads to cell death and is involved in the pathogenesis of neurodegenerative disorders. Recent advances: NOX enzymes contribute to the development of neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and stroke, highlighting their potential as targets for future therapeutic development. This review will discuss NOX's contribution and therapeutic targeting potential in neurodegenerative diseases, focusing on PD, AD, ALS, and stroke. Critical issues: Homeostatic and physiological levels of ROS are crucial for regulating several processes, such as development, memory, neuronal signaling, and vascular homeostasis. However, NOX-mediated excessive ROS generation is deeply involved in the damage of DNA, proteins, and lipids, leading to cell death in the pathogenesis of a wide range of diseases, namely neurodegenerative diseases. Future directions: It is essential to understand the role of NOX homologs in neurodegenerative disorders and the pathological mechanisms undergoing neurodegeneration mediated by increased levels of ROS. This further knowledge will allow the development of new specific NOX inhibitors and their application for neurodegenerative disease therapeutics. Antioxid. Redox Signal. 41, 522-541.
Collapse
Affiliation(s)
- Mariana B Fiadeiro
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - João C Diogo
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Ana A Silva
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| | - Yoon-Seong Kim
- RWJMS Institute for Neurological Therapeutics, Rutgers-Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | - Ana C Cristóvão
- CICS-UBI Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
- NeuroSoV, UBIMedical, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
6
|
Oh SH, Yook JM, Jung HY, Choi JY, Cho JH, Park SH, Kim CD, Kim YL, Lim JH. Autophagy caused by oxidative stress promotes TGF-β1-induced epithelial-to-mesenchymal transition in human peritoneal mesothelial cells. Cell Death Dis 2024; 15:365. [PMID: 38806451 PMCID: PMC11133371 DOI: 10.1038/s41419-024-06753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is one of the main causes of peritoneal fibrosis. However, the pathophysiological mechanisms of EMT, specifically its relationship with autophagy, are still unknown. This study aimed to evaluate the role of autophagy in transforming growth factor-beta 1 (TGF-β1)-induced EMT in human peritoneal mesothelial cells (HPMCs). Primary cultured HPMCs were treated with TGF-β1 (2 and 5 ng/mL) and changes in autophagy markers and the relationship between autophagy and EMT were evaluated. We also identified changes in EMT- and autophagy-related signaling pathways after autophagy and NADPH oxidase 4 (NOX4) inhibition. TGF-β1 increased the generation of NOX4 and reactive oxygen species (ROS) in HPMCs, resulting in mitochondrial damage. Treatment with GKT137831 (20 μM), a NOX1/4 inhibitor, reduced ROS in the mitochondria of HPMC cells and reduced TGF-β1-induced mitochondrial damage. Additionally, the indirect inhibition of autophagy by GKT137831 (20 μM) downregulated TGF-β1-induced EMT, whereas direct inhibition of autophagy using 3-methyladenine (3-MA) (2 mM) or autophagy-related gene 5 (ATG5) gene silencing decreased the TGF-β1-induced EMT in HPMCs. The suppressor of mothers against decapentaplegic 2/3 (Smad2/3), autophagy-related phosphoinositide 3-kinase (PI3K) class III, and protein kinase B (Akt) pathways, and mitogen-activated protein kinase (MAPK) signaling pathways, such as extracellular signal-regulated kinase (ERK) and P38, were involved in TGF-β1-induced EMT. Autophagy and NOX4 inhibition suppressed the activation of these signaling pathways. Direct inhibition of autophagy and its indirect inhibition through the reduction of mitochondrial damage by upstream NOX4 inhibition reduced EMT in HPMCs. These results suggest that autophagy could serve as a therapeutic target for the prevention of peritoneal fibrosis in patients undergoing peritoneal dialysis.
Collapse
Affiliation(s)
- Se-Hyun Oh
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ju-Min Yook
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Hee-Yeon Jung
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Ji-Young Choi
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Jang-Hee Cho
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hee Park
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Chan-Duck Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea
| | - Yong-Lim Kim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| | - Jeong-Hoon Lim
- Division of Nephrology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Cell and Matrix Research Institute, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Stępniak J, Karbownik-Lewińska M. Protective Effects of Melatonin against Carcinogen-Induced Oxidative Damage in the Thyroid. Cancers (Basel) 2024; 16:1646. [PMID: 38730600 PMCID: PMC11083294 DOI: 10.3390/cancers16091646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Melatonin, primarily synthesized in the pineal gland, plays a crucial role in regulating circadian rhythms and possesses significant antioxidative properties. By neutralizing free radicals and reducing oxidative stress, melatonin emerges as a promising agent for the prevention and therapy of many different disorders, including cancer. This paper reviews the relationship between the thyroid gland and melatonin, presenting experimental evidence on the protective effects of this indoleamine against oxidative damage to macromolecules in thyroid tissue caused by documented carcinogens (as classified by the International Agency for Research on Cancer, IARC) or caused by potential carcinogens. Furthermore, the possible influence on cancer therapy in humans and the overall well-being of cancer patients are discussed. The article highlights melatonin's essential role in maintaining thyroid health and its contribution to management strategies in patients with thyroid cancer and other thyroid diseases.
Collapse
Affiliation(s)
- Jan Stępniak
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
| | - Małgorzata Karbownik-Lewińska
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Rzgowska St. 281/289, 93-338 Lodz, Poland;
- Polish Mother’s Memorial Hospital-Research Institute, Rzgowska St. 281/289, 93-338 Lodz, Poland
| |
Collapse
|
8
|
Kim YJ, Han J, Han S. The Interplay Between Endoplasmic Reticulum Stress and Oxidative Stress in Chondrocyte Catabolism. Cartilage 2024:19476035241245803. [PMID: 38641979 PMCID: PMC11569657 DOI: 10.1177/19476035241245803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE Oxidative stress and endoplasmic reticulum (ER) stress play pivotal roles in disrupting the homeostasis of chondrocytes by producing catalytic proteases and enhancing chondrocyte senescence, consequently contributing to the progression of osteoarthritis (OA). Despite their close interaction, the underlying molecular mechanisms remain poorly understood. Here, we show that ER stress and oxidative stress reciprocally modulate each other to promote cartilage degradation. METHODS Primary chondrocytes were obtained from the articular cartilage of 5-day-old C57BL/6J mice by excising distal femur and proximal tibia. Tunicamycin was applied to induce ER stress in primary chondrocytes. Surgical OA was induced in 12-week-old male C57BL/6J mice by destabilizing the medial meniscus (DMM). RESULTS Tunicamycin-induced ER stress led to an increase in the production of reactive oxygen species (ROS) and catalytic proteases, including MMP13 and Adamts5, in primary chondrocytes, and it was primarily dependent on the NADPH oxidase (NOX) system. ER stress directly increased the expression of NOX2, NOX3, NOX4, and p22phox. Specifically, the protein kinase RNA-like ER kinase (PERK) pathway is involved in the expression of NOX4 and p22phox, the inositol-requiring enzyme 1 alpha (IRE1α) pathway in NOX2 and NOX3 expression, and the activating transcription factor 6 (ATF6) pathway influences NOX3 expression in chondrocytes. Conversely, inhibiting NOX function significantly reduced both ER stress sensor-related signaling and chondrocyte catabolism, thereby decelerating the progression of surgically induced OA in vivo. CONCLUSIONS Our findings highlight the positive feedback loop between ER stress and oxidative stress in OA pathogenesis, suggesting that targeting NOX isoforms is a promising therapeutic strategy for OA.
Collapse
Affiliation(s)
- Yu Jung Kim
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
| | - Seungwoo Han
- Laboratory for Arthritis and Cartilage Biology, Research Institute of Aging and Metabolism, Kyungpook National University, Daegu, Republic of Korea
- Division of Rheumatology, Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
9
|
Camargo LL, Wang Y, Rios FJ, McBride M, Montezano AC, Touyz RM. Oxidative Stress and Endoplasmic Reticular Stress Interplay in the Vasculopathy of Hypertension. Can J Cardiol 2023; 39:1874-1887. [PMID: 37875177 DOI: 10.1016/j.cjca.2023.10.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/26/2023] Open
Abstract
Under physiologic conditions, reactive oxygen species (ROS) function as signalling molecules that control cell function. However, in pathologic conditions, increased generation of ROS triggers oxidative stress, which plays a role in vascular changes associated with hypertension, including endothelial dysfunction, vascular reactivity, and arterial remodelling (termed the vasculopathy of hypertension). The major source of ROS in the vascular system is NADPH oxidase (NOX). Increased NOX activity drives vascular oxidative stress in hypertension. Molecular mechanisms underlying vascular damage in hypertension include activation of redox-sensitive signalling pathways, post-translational modification of proteins, and oxidative damage of DNA and cytoplasmic proteins. In addition, oxidative stress leads to accumulation of proteins in the endoplasmic reticulum (ER) (termed ER stress), with consequent activation of the unfolded protein response (UPR). ER stress is emerging as a potential player in hypertension as abnormal protein folding in the ER leads to oxidative stress and dysregulated activation of the UPR promotes inflammation and injury in vascular and cardiac cells. In addition, the ER engages in crosstalk with exogenous sources of ROS, such as mitochondria and NOX, which can amplify redox processes. Here we provide an update of the role of ROS and NOX in hypertension and discuss novel concepts on the interplay between oxidative stress and ER stress.
Collapse
Affiliation(s)
- Livia L Camargo
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada.
| | - Yu Wang
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Francisco J Rios
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Martin McBride
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montréal, Québec, Canada; McGill University, Department of Medicine and Department of Family Medicine, Montréal, Québec, Canada.
| |
Collapse
|
10
|
Leischner C, Marongiu L, Piotrowsky A, Niessner H, Venturelli S, Burkard M, Renner O. Relevant Membrane Transport Proteins as Possible Gatekeepers for Effective Pharmacological Ascorbate Treatment in Cancer. Antioxidants (Basel) 2023; 12:antiox12040916. [PMID: 37107291 PMCID: PMC10135768 DOI: 10.3390/antiox12040916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
Despite the increasing number of newly diagnosed malignancies worldwide, therapeutic options for some tumor diseases are unfortunately still limited. Interestingly, preclinical but also some clinical data suggest that the administration of pharmacological ascorbate seems to respond well, especially in some aggressively growing tumor entities. The membrane transport and channel proteins are highly relevant for the use of pharmacological ascorbate in cancer therapy and are involved in the transfer of active substances such as ascorbate, hydrogen peroxide, and iron that predominantly must enter malignant cells to induce antiproliferative effects and especially ferroptosis. In this review, the relevant conveying proteins from cellular surfaces are presented as an integral part of the efficacy of pharmacological ascorbate, considering the already known genetic and functional features in tumor tissues. Accordingly, candidates for diagnostic markers and therapeutic targets are mentioned.
Collapse
Affiliation(s)
- Christian Leischner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Luigi Marongiu
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Department of Internal Medicine VIII, University Hospital Tuebingen, Otfried-Mueller-Straße 10, 72076 Tuebingen, Germany
| | - Alban Piotrowsky
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Heike Niessner
- Department of Dermatology, Division of Dermatooncology, University of Tuebingen, Liebermeisterstraße 25, 72076 Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image Guided and Functionally Instructed Tumor Therapies", 72076 Tuebingen, Germany
| | - Sascha Venturelli
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
- Institute of Physiology, Department of Vegetative and Clinical Physiology, University of Tuebingen, Wilhelmstraße 56, 72074 Tuebingen, Germany
| | - Markus Burkard
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Olga Renner
- Institute of Nutritional Sciences, Department of Nutritional Biochemistry, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| |
Collapse
|
11
|
Pant T, Uche N, Juric M, Bosnjak ZJ. Clinical Relevance of lncRNA and Mitochondrial Targeted Antioxidants as Therapeutic Options in Regulating Oxidative Stress and Mitochondrial Function in Vascular Complications of Diabetes. Antioxidants (Basel) 2023; 12:antiox12040898. [PMID: 37107272 PMCID: PMC10135521 DOI: 10.3390/antiox12040898] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/29/2023] Open
Abstract
Metabolic imbalances and persistent hyperglycemia are widely recognized as driving forces for augmented cytosolic and mitochondrial reactive oxygen species (ROS) in diabetes mellitus (DM), fostering the development of vascular complications such as diabetic nephropathy, diabetic cardiomyopathy, diabetic neuropathy, and diabetic retinopathy. Therefore, specific therapeutic approaches capable of modulating oxidative milieu may provide a preventative and/or therapeutic benefit against the development of cardiovascular complications in diabetes patients. Recent studies have demonstrated epigenetic alterations in circulating and tissue-specific long non-coding RNA (lncRNA) signatures in vascular complications of DM regulating mitochondrial function under oxidative stress. Intriguingly, over the past decade mitochondria-targeted antioxidants (MTAs) have emerged as a promising therapeutic option for managing oxidative stress-induced diseases. Here, we review the present status of lncRNA as a diagnostic biomarker and potential regulator of oxidative stress in vascular complications of DM. We also discuss the recent advances in using MTAs in different animal models and clinical trials. We summarize the prospects and challenges for the use of MTAs in treating vascular diseases and their application in translation medicine, which may be beneficial in MTA drug design development, and their application in translational medicine.
Collapse
Affiliation(s)
- Tarun Pant
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Nnamdi Uche
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Matea Juric
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - Zeljko J Bosnjak
- Department of Medicine, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
- Department of Physiology, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| |
Collapse
|
12
|
Hu Q, Chen Y, Deng X, Li Y, Ma X, Zeng J, Zhao Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed Pharmacother 2023; 159:114252. [PMID: 36641921 DOI: 10.1016/j.biopha.2023.114252] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the most severe complications of diabetes. However, due to its complex pathological mechanisms, no effective therapeutic methods (other than ACEIs and ARBs) have been applied, which have been used for many years in clinical practice. Recent studies have shown that emerging therapeutics, including novel target-based pharmacotherapy, cell therapies, and dietary regulation, are leading to new hopes for DN management. This review aims to shed new light on the treatment of DN by describing the important pathological mechanisms of DN and by analysing recent advances in clinical treatment, including drug therapy, cell therapy, and dietary regulation. In pathological mechanisms, RAAS activation, AGE accumulation, and EMT are involved in inflammation, cellular stress, apoptosis, pyroptosis, and autophagy. In pharmacotherapy, several new therapeutics, including SGLT2 inhibitors, GLP-1 agonists, and MRAs, are receiving public attention. In addition, stem cell therapies and dietary regulation are also being emphasized. Herein, we highlight the importance of combining therapy and dietary regulation in the treatment of DN and anticipate more basic research or clinical trials to verify novel strategies.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| | - Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jinhao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Yanling Zhao
- Department of Pharmacy, the Fifth Medical Center of PLA General Hospital, Beijing 100039, China.
| |
Collapse
|
13
|
Nabeebaccus AA, Reumiller CM, Shen J, Zoccarato A, Santos CXC, Shah AM. The regulation of cardiac intermediary metabolism by NADPH oxidases. Cardiovasc Res 2023; 118:3305-3319. [PMID: 35325070 PMCID: PMC9847558 DOI: 10.1093/cvr/cvac030] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Accepted: 01/18/2022] [Indexed: 01/25/2023] Open
Abstract
NADPH oxidases (NOXs), enzymes whose primary function is to generate reactive oxygen species, are important regulators of the heart's physiological function and response to pathological insults. The role of NOX-driven redox signalling in pathophysiological myocardial remodelling, including processes such as interstitial fibrosis, contractile dysfunction, cellular hypertrophy, and cell survival, is well recognized. While the NOX2 isoform promotes many detrimental effects, the NOX4 isoform has attracted considerable attention as a driver of adaptive stress responses both during pathology and under physiological states such as exercise. Recent studies have begun to define some of the NOX4-modulated mechanisms that may underlie these adaptive responses. In particular, novel functions of NOX4 in driving cellular metabolic changes have emerged. Alterations in cellular metabolism are a recognized hallmark of the heart's response to physiological and pathological stresses. In this review, we highlight the emerging roles of NOX enzymes as important modulators of cellular intermediary metabolism in the heart, linking stress responses not only to myocardial energetics but also other functions. The novel interplay of NOX-modulated redox signalling pathways and intermediary metabolism in the heart is unravelling a new aspect of the fascinating biology of these enzymes which will inform a better understanding of how they drive adaptive responses. We also discuss the implications of these new findings for therapeutic approaches that target metabolism in cardiac disease.
Collapse
Affiliation(s)
- Adam A Nabeebaccus
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Christina M Reumiller
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Jie Shen
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Anna Zoccarato
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Celio X C Santos
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, King’s College London British Heart Foundation Centre of Excellence, James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
14
|
Qin C, Wang Y, Zhang Y, Zhu Y, Wang Y, Cao F. Transcriptome-wide analysis reveals the molecular mechanisms of cannabinoid type II receptor agonists in cardiac injury induced by chronic psychological stress. Front Genet 2023; 13:1095428. [PMID: 36704356 PMCID: PMC9871316 DOI: 10.3389/fgene.2022.1095428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/27/2022] [Indexed: 01/12/2023] Open
Abstract
Background: Growing evidence has supported that chronic psychological stress would cause heart damage, However the mechanisms involved are not clear and effective interventions are insufficient. Cannabinoid type 2 receptor (CB2R) can be a potential treatment for cardiac injury. This study is aimed to investigate the protective mechanism of CB2R agonist against chronic psychological stress-induced cardiac injury. Methods: A mouse chronic psychological stress model was constructed based on a chronic unpredictable stress pattern. Mice were performed a three-week psychological stress procedure, and cardiac tissues of them were collected for whole-transcriptome sequencing. Overlap analysis was performed on differentially expressed mRNAs (DE-mRNAs) and ER stress-related genes (ERSRGs), and bioinformatic methods were used to predict the ceRNA networks and conduct pathway analysis. The expressions of the DE-ERSRGs were validated by RT-qPCR. Results: In the comparison of DE mRNA in Case group, Control group and Treatment group, three groups of ceRNA networks and ceRNA (circ) networks were constructed. The DE-mRNAs were mainly enriched in chromatid-relevant terms and Hematopoietic cell lineage pathway. Additionally, 13 DE-ERSRGs were obtained by the overlap analysis, which were utilized to establish a ceRNA network with 15 nodes and 14 edges and a ceRNA (circ) network with 23 nodes and 28 edges. Furthermore, four DE-ERSRGs (Cdkn1a, Atf3, Fkbp5, Gabarapl1) in the networks were key, which were mainly enriched in response to extracellular stimulus, response to nutrient levels, cellular response to external stimulus, and FoxO signaling pathway. Finally, the RT-qPCR results showed almost consistent expression patterns of 13 DE-ERSRGs between the transcriptome and tissue samples. Conclusion: The findings of this study provide novel insights into the molecular mechanisms of chronic psychological stress-induced cardiac diseases and reveal novel targets for the cardioprotective effects of CB2R agonists.
Collapse
Affiliation(s)
- Cheng Qin
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yujia Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang Zhang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yan Zhu
- Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Diseases and Second Medical Center of Chinese PLA General Hospital, Beijing, China,Beijing Key Laboratory of Research on Aging and Related Diseases, Beijing, China,*Correspondence: Feng Cao,
| |
Collapse
|
15
|
Protective Effects of Carnosol on Renal Interstitial Fibrosis in a Murine Model of Unilateral Ureteral Obstruction. Antioxidants (Basel) 2022; 11:antiox11122341. [PMID: 36552549 PMCID: PMC9774539 DOI: 10.3390/antiox11122341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Renal fibrosis is a common feature of chronic kidney disease and is a promising therapeutic target. However, there is still limited treatment for renal fibrosis, so the development of new anti-fibrotic agents is urgently needed. Accumulating evidence suggest that oxidative stress and endoplasmic reticulum (ER) stress play a critical role in renal fibrosis. Carnosol (CS) is a bioactive diterpene compound present in rosemary plants and has potent antioxidant and anti-inflammatory properties. In this study, we investigated the potential effects of CS on renal injury and fibrosis in a murine model of unilateral ureteral obstruction (UUO). Male C57BL/6J mice underwent sham or UUO surgery and received intraperitoneal injections of CS (50 mg/kg) daily for 8 consecutive days. CS improved renal function and ameliorated renal tubular injury and interstitial fibrosis in UUO mice. It suppressed oxidative injury by inhibiting pro-oxidant enzymes and activating antioxidant enzymes. Activation of ER stress was also attenuated by CS. In addition, CS inhibited apoptotic and necroptotic cell death in kidneys of UUO mice. Furthermore, cytokine production and immune cell infiltration were alleviated by CS. Taken together, these findings indicate that CS can attenuate renal injury and fibrosis in the UUO model.
Collapse
|
16
|
Hermeling JCW, Herholz M, Baumann L, Cores EC, Zečić A, Hoppe T, Riemer J, Trifunovic A. Mitochondria-originated redox signalling regulates KLF-1 to promote longevity in Caenorhabditis elegans. Redox Biol 2022; 58:102533. [PMID: 36442394 PMCID: PMC9709155 DOI: 10.1016/j.redox.2022.102533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022] Open
Abstract
Alternations of redox metabolism have been associated with the extension of lifespan in roundworm Caenorhabditis elegans, caused by moderate mitochondrial dysfunction, although the underlying signalling cascades are largely unknown. Previously, we identified transcriptional factor Krüppel-like factor-1 (KLF-1) as the main regulator of cytoprotective longevity-assurance pathways in the C. elegans long-lived mitochondrial mutants. Here, we show that KLF-1 translocation to the nucleus and the activation of the signalling cascade is dependent on the mitochondria-derived hydrogen peroxide (H2O2) produced during late developmental phases where aerobic respiration and somatic mitochondrial biogenesis peak. We further show that mitochondrial-inducible superoxide dismutase-3 (SOD-3), together with voltage-dependent anion channel-1 (VDAC-1), is required for the life-promoting H2O2 signalling that is further regulated by peroxiredoxin-3 (PRDX-3). Increased H2O2 release in the cytoplasm activates the p38 MAPK signalling cascade that induces KLF-1 translocation to the nucleus and the activation of transcription of C. elegans longevity-promoting genes, including cytoprotective cytochrome P450 oxidases. Taken together, our results underline the importance of redox-regulated signalling as the key regulator of longevity-inducing pathways in C. elegans, and position precisely timed mitochondria-derived H2O2 in the middle of it.
Collapse
Affiliation(s)
- Johannes CW Hermeling
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Marija Herholz
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Linda Baumann
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Estela Cepeda Cores
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Aleksandra Zečić
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany
| | - Thorsten Hoppe
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Center for Molecular Medicine Cologne (CMMC), Cologne, D-50931, Germany,Institute for Genetics, University of Cologne, Cologne, D-50674, Germany
| | - Jan Riemer
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Biochemistry, University of Cologne, Cologne, D-50931, Germany
| | - Aleksandra Trifunovic
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), Germany,Institute for Mitochondrial Diseases and Ageing, Medical Faculty, University of Cologne, Cologne, D-50931, Germany,Center for Molecular Medicine Cologne (CMMC), Cologne, D-50931, Germany,Corresponding author. CECAD Research CenterUniversity of Cologne, Joseph-Stelzmann-Str. 26, Cologne, D-50931, Germany.
| |
Collapse
|
17
|
Li M, Ren C. Exploring the protective mechanism of baicalin in treatment of atherosclerosis using endothelial cells deregulation model and network pharmacology. BMC Complement Med Ther 2022; 22:257. [PMID: 36192741 PMCID: PMC9527735 DOI: 10.1186/s12906-022-03738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Baicalin is a generally available flavonoid with potent biological activity. The present study aimed to assess the underlying mechanism of baicalin in treatment of atherosclerosis (AS) with the help of network pharmacology, molecular docking and experimental validation. Methods The target genes of baicalin and AS were identified from public databases, and the overlapping results were considered to be baicalin-AS targets. Core target genes of baicalin were obtained through the PPI network and validated by a clinical microarray dataset (GSE132651). Human aortic endothelial cells (HAECs) were treated with Lipopolysaccharide (LPS) to construct an endothelial injury model. The expression of NOX4 was examined by real-time qPCR and western blot. Flow cytometry was used to detect intracellular levels of reactive oxygen species (ROS). Furthermore, HAECs were transfected with NOX4-specific siRNA and then co-stimulated with baicalin and LPS to investigate whether NOX4 was involved in the anti-oxidative stress effects of baicalin. Results In this study, baicalin had 45 biological targets against AS. Functional enrichment analysis demonstrated that most targets were involved in oxidative stress. Using the CytoHubba plug-in, we obtained the top 10 genes in the PPI network ranked by the EPC algorithm. Molecular docking and microarray dataset validation indicated that NOX4 may be an essential target of baicalin, and its expression was significantly suppressed in AS samples compared to controls. In endothelial injury model, intervention of HAECs with baicalin increased the expression levels of NOX4 and NOS3 (eNOS), and decreased LPS-induced ROS generation. After inhibition of NOX4, the anti-ROS-generating effect of baicalin was abolished. Conclusion Collectively, we combined network pharmacology and endothelial injury models to investigate the anti-AS mechanism of baicalin. The results demonstrate that baicalin may exert anti-oxidative stress effects by targeting NOX4, providing new mechanisms and insights to baicalin for the treatment of AS. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03738-3.
Collapse
Affiliation(s)
- Mingshuang Li
- grid.452858.6Taizhou Hospital, Shanghai University of Traditional Chinese Medicine, Taizhou, Zhejiang China ,grid.452858.6Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang China
| | - Conglin Ren
- grid.452858.6Taizhou Hospital, Shanghai University of Traditional Chinese Medicine, Taizhou, Zhejiang China ,grid.452858.6Taizhou Hospital of Traditional Chinese Medicine, Taizhou, Zhejiang China
| |
Collapse
|
18
|
Miyano K, Okamoto S, Kajikawa M, Kiyohara T, Kawai C, Yamauchi A, Kuribayashi F. Regulation of Derlin-1-mediated degradation of NADPH oxidase partner p22 phox by thiol modification. Redox Biol 2022; 56:102479. [PMID: 36122532 PMCID: PMC9486109 DOI: 10.1016/j.redox.2022.102479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1–4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1. Missense mutations in exon 3 of p22phox enhance the binding of p22phox to Derlin-1. Oxidation of the thiol group of p22phox Cys50 suppresses p22phox degradation. Serine substitution of Cys-50 increases the affinity of p22phox for Derlin-1. Stability of the p22phox protein is regulated by redox-sensitive Cys-50.
Collapse
Affiliation(s)
- Kei Miyano
- Department of Natural Sciences, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan; Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan.
| | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Mizuho Kajikawa
- Laboratory of Microbiology, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo, 194-8543, Japan
| | - Takuya Kiyohara
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Chikage Kawai
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, 577 Matsushima Kurashiki, Okayama, 701-0192, Japan
| |
Collapse
|
19
|
Eid SA, Savelieff MG, Eid AA, Feldman EL. Nox, Nox, Are You There? The Role of NADPH Oxidases in the Peripheral Nervous System. Antioxid Redox Signal 2022; 37:613-630. [PMID: 34861780 PMCID: PMC9634986 DOI: 10.1089/ars.2021.0135] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/23/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023]
Abstract
Significance: Reactive oxygen species (ROS) contribute to multiple aspects of peripheral nervous system (PNS) biology ranging from physiological processes (e.g., axonal outgrowth and regeneration) to pathophysiology (e.g., nerve degeneration). Although ROS are derived from multiple sources, NADPH oxidase (Nox) family members are dedicated to ROS generation. Noxs are expressed in the PNS, and their overexpression is associated with detrimental effects on nerve function and contributes, at least in part, to peripheral neuropathies. Recent Advances: Of the seven members, studies mostly focused on Nox1, Nox2, and Nox4, which are expressed in the PNS in a cell-specific manner. We have also recently identified human Nox5 in sural nerve biopsies. When maintained at homeostatic levels, Noxs regulate several aspects of peripheral nerve health, most notably neurite outgrowth and axonal regeneration following nerve lesion. While Nox2 and Nox4 dysregulation is a major source of oxidative stress in PNS disorders, including neuropathic pain and diabetic peripheral neuropathy, recent evidence also implicates Nox1 and Nox5. Critical Issues: Although there is compelling evidence for a direct role of Noxs on nerve function, little is known about their subcellular localization, intercellular regulation, and interaction. These, together with redox signaling, are considered crucial components of nerve redox status. In addition, the lack of isoform-specific inhibitors limits conclusions about the physiological role of Noxs in the PNS and their therapeutic potential in peripheral neuropathies. Future Directions: Future research using isoform-specific genetic and pharmacological approaches are therefore needed to better understand the significance of Nox enzymes in PNS (patho) physiology. Antioxid. Redox Signal. 37, 613-630.
Collapse
Affiliation(s)
- Stéphanie A. Eid
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Masha G. Savelieff
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| | - Assaad A. Eid
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine and Medical Center, American University of Beirut, Beirut, Lebanon
| | - Eva L. Feldman
- Department of Neurology, School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Bathish B, Robertson H, Dillon JF, Dinkova-Kostova AT, Hayes JD. Nonalcoholic steatohepatitis and mechanisms by which it is ameliorated by activation of the CNC-bZIP transcription factor Nrf2. Free Radic Biol Med 2022; 188:221-261. [PMID: 35728768 DOI: 10.1016/j.freeradbiomed.2022.06.226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) represents a global health concern. It is characterised by fatty liver, hepatocyte cell death and inflammation, which are associated with lipotoxicity, endoplasmic reticulum (ER) stress, mitochondrial dysfunction, iron overload and oxidative stress. NF-E2 p45-related factor 2 (Nrf2) is a transcription factor that combats oxidative stress. Remarkably, Nrf2 is downregulated during the development of NASH, which probably accelerates disease, whereas in pre-clinical studies the upregulation of Nrf2 inhibits NASH. We now review the scientific literature that proposes Nrf2 downregulation during NASH involves its increased ubiquitylation and proteasomal degradation, mediated by Kelch-like ECH-associated protein 1 (Keap1) and/or β-transducin repeat-containing protein (β-TrCP) and/or HMG-CoA reductase degradation protein 1 (Hrd1, also called synoviolin (SYVN1)). Additionally, downregulation of Nrf2-mediated transcription during NASH may involve diminished recruitment of coactivators by Nrf2, due to increased levels of activating transcription factor 3 (ATF3) and nuclear factor-kappaB (NF-κB) p65, or competition for promoter binding due to upregulation of BTB and CNC homology 1 (Bach1). Many processes that downregulate Nrf2 are triggered by transforming growth factor-beta (TGF-β), with oxidative stress amplifying its signalling. Oxidative stress may also increase suppression of Nrf2 by β-TrCP through facilitating formation of the DSGIS-containing phosphodegron in Nrf2 by glycogen synthase kinase-3. In animal models, knockout of Nrf2 increases susceptibility to NASH, while pharmacological activation of Nrf2 by inducing agents that target Keap1 inhibits development of NASH. These inducing agents probably counter Nrf2 downregulation affected by β-TrCP, Hrd1/SYVN1, ATF3, NF-κB p65 and Bach1, by suppressing oxidative stress. Activation of Nrf2 is also likely to inhibit NASH by ameliorating lipotoxicity, inflammation, ER stress and iron overload. Crucially, pharmacological activation of Nrf2 in mice in which NASH has already been established supresses liver steatosis and inflammation. There is therefore compelling evidence that pharmacological activation of Nrf2 provides a comprehensive multipronged strategy to treat NASH.
Collapse
Affiliation(s)
- Boushra Bathish
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Cambridge, CB10 1SA, UK
| | - John F Dillon
- Division of Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cellular Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, Scotland, UK.
| |
Collapse
|
21
|
Lee HY, Lee GH, Hoang TH, Park SA, Lee J, Lim J, Sa S, Kim GE, Han JS, Kim J, Chae HJ. d-Allulose Ameliorates Hyperglycemia Through IRE1α Sulfonation-RIDD- Sirt1 Decay Axis in the Skeletal Muscle. Antioxid Redox Signal 2022; 37:229-245. [PMID: 35166127 DOI: 10.1089/ars.2021.0207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aims: The skeletal muscle maintains glucose disposal via insulin signaling and glucose transport. The progression of diabetes and insulin resistance is critically influenced by endoplasmic reticulum (ER) stress. d-Allulose, a low-calorie sugar substitute, has shown crucial physiological activities under conditions involving hyperglycemia and insulin resistance. However, the molecular mechanisms of d-allulose in the progression of diabetes have not been fully elucidated. Here, we evaluated the effect of d-allulose on hyperglycemia-associated ER stress responses in human skeletal myoblasts (HSkM) and db/db diabetic and high-fat diet-fed mice. Results: d-allulose effectively controlled glycemic markers such as insulin and hemoglobin A1c (HbA1c), showing anti-diabetic effects by inhibiting the disruption of insulin receptor substrate (IRS)-1 tyrosine phosphorylation and glucose transporter 4 (GLUT4) expression, in which the phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) pathway is involved. The levels of glucose dysmetabolism-based NADPH oxidase, such as NADPH-dependent oxidoreductase (Nox) 4, were highly increased, and their interaction with IRE1α and the resultant sulfonation-regulated IRE1-dependent decay (RIDD)-Sirt1 decay were also highly increased under diabetic conditions, which were controlled with d-allulose treatment. Skeletal muscle cells grown with a high glucose medium supplemented with d-allulose showed controlled IRE1α sulfonation-RIDD-Sirt1 decay, in which Nox4 was involved. Innovation and Conclusion: The study observations indicate that d-allulose contributes to the muscular glucose disposal in the diabetic state where ER-localized Nox4-induced IRE1α sulfonation results in the decay of Sirt1, a core factor for controlling glucose metabolism. Antioxid. Redox Signal. 37, 229-245.
Collapse
Affiliation(s)
- Hwa-Young Lee
- Department of Pharmacology and Institute of New Drug Development, Jeonbuk National University Medical School, Jeonju, South Korea.,Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea
| | - Geum-Hwa Lee
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea
| | - The-Hiep Hoang
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju, South Korea
| | - Seon-Ah Park
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea
| | - Juwon Lee
- School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Junghyun Lim
- School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| | - Soonok Sa
- Food Biotech R&D Center, Samyang Corp., Seongnam-si, South Korea
| | - Go Eun Kim
- Food Biotech R&D Center, Samyang Corp., Seongnam-si, South Korea
| | - Jung Sook Han
- Food Biotech R&D Center, Samyang Corp., Seongnam-si, South Korea
| | - Junghyun Kim
- Department of Oral Pathology, School of Dentistry, Jeonbuk National University, Jeonju, South Korea
| | - Han-Jung Chae
- Non-Clinical Evaluation Center Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, South Korea.,School of Pharmacy, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
22
|
Wang F, Liu K, Wang J, Sun Y, Xiao S, Xue C. ClNOX1/ClNOXR-mediated MAPK and cAMP-PKA signalling pathways and ROS metabolism are involved in Curvularia lunata sexual reproduction and host infection. Environ Microbiol 2022; 24:4340-4355. [PMID: 35676222 DOI: 10.1111/1462-2920.16089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022]
Abstract
NADPH oxidases (NOXs) and hydrogen peroxide (H2 O2 ) are involved in physiological and pathological processes, and cell fate decisions in organisms. However, regulatory mechanism of NOXs and the role of H2 O2 on fungal sexual reproduction and host infection remain largely unexplored. Here, we identified ROS metabolic genes and key signalling genes of MAPK and cAMP-PKA pathways in Curvularia lunata, which were NOX ClNOX1 and ClNOXR, superoxide dismutase ClSOD1 and catalase ClCAT4, redox-regulated transcription factor ClAP1, Ras small GTPases Clg2P, pheromone-response MAPK ClK1 and cAMP-PKA ClSCHA, and characterized the functions of these genes. The results showed that ClNOX1 localized to the plasma membrane. ClNOX1 and ClNOXR were involved in sexual reproduction and host infection via ClNOX1/ClNOXR-derived H2 O2 as well as MAPK and cAMP-PKA signalling pathways. H2 O2 acted as a signalling molecule to regulate sexual reproduction and host infection in C. lunata.
Collapse
Affiliation(s)
- Fen Wang
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Kexin Liu
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Jiahui Wang
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Yuxin Sun
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Shuqin Xiao
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| | - Chunsheng Xue
- College of Plant Protection, Shenyang Agriculture University, Shenyang, 110161, China
| |
Collapse
|
23
|
GABA and Fermented Curcuma longa L. Extract Enriched with GABA Ameliorate Obesity through Nox4-IRE1α Sulfonation-RIDD-SIRT1 Decay Axis in High-Fat Diet-Induced Obese Mice. Nutrients 2022; 14:nu14081680. [PMID: 35458241 PMCID: PMC9031358 DOI: 10.3390/nu14081680] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a natural amino acid with antioxidant activity and is often considered to have therapeutic potential against obesity. Obesity has long been linked to ROS and ER stress, but the effect of GABA on the ROS-associated ER stress axis has not been thoroughly explored. Thus, in this study, the effect of GABA and fermented Curcuma longa L. extract enriched with GABA (FCLL-GABA) on the ROS-related ER stress axis and inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) sulfonation were examined with the HFD model to determine the underlying anti-obesity mechanism. Here, GABA and FCLL-GABA supplementations significantly inhibited the weight gain in HFD fed mice. The GABA and FCLL-GABA supplementation lowered the expressions of adipogenic transcription factors such as PPAR-γ, C/EBPα, FAS, and SREBP-1c in white adipose tissue (WAT) and liver from HFD-fed mice. The enhanced hyper-nutrient dysmetabolism-based NADPH oxidase (Nox) 4 and the resultant IRE1α sulfonation-RIDD-SIRT1 decay under HFD conditions were controlled with GABA and FCLL-GABA. Notably, GABA and FCLL-GABA administration significantly increased AMPK and sirtuin 1 (SIRT1) levels in WAT of HFD-fed mice. These significant observations indicate that ER-localized Nox4-induced IRE1α sulfonation results in the decay of SIRT1 as a novel mechanism behind the positive implications of GABA on obesity. Moreover, the investigation lays a firm foundation for the development of FCLL-GABA as a functional ingredient.
Collapse
|
24
|
Abstract
Abstract
Viruses completely rely on the energy and metabolic systems of host cells for life activities. Viral infections usually lead to cytopathic effects and host diseases. To date, there are still no specific clinical vaccines or drugs against most viral infections. Therefore, understanding the molecular and cellular mechanisms of viral infections is of great significance to prevent and treat viral diseases. A variety of viral infections are related to the p38 MAPK signalling pathway, and p38 is an important host factor in virus-infected cells. Here, we introduce the different signalling pathways of p38 activation and then summarise how different viruses induce p38 phosphorylation. Finally, we provide a general summary of the effect of p38 activation on virus replication. Our review provides integrated data on p38 activation and viral infections and describes the potential application of targeting p38 as an antiviral strategy.
Collapse
|
25
|
Sun J, Chen W, Li S, Yang S, Zhang Y, Hu X, Qiu H, Wu J, Xu S, Chu T. Nox4 Promotes RANKL-Induced Autophagy and Osteoclastogenesis via Activating ROS/PERK/eIF-2α/ATF4 Pathway. Front Pharmacol 2021; 12:751845. [PMID: 34650437 PMCID: PMC8505706 DOI: 10.3389/fphar.2021.751845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/13/2021] [Indexed: 12/22/2022] Open
Abstract
Receptor activator of nuclear factor-κB ligand (RANKL) has been found to induce osteoclastogenesis and bone resorption. However, the underlying molecular mechanisms remain unclear. Via conducting a series of biochemical experiments with in vitro cell lines, this study investigated the role and mechanism of NADPH oxidase 4 (Nox4) in RANKL-induced autophagy and osteoclastogenesis. In the current study, we found that RANKL dramatically induced autophagy and osteoclastogenesis, inhibition of autophagy with chloroquine (CQ) markedly attenuates RANKL-induced osteoclastogenesis. Interestingly, we found that the protein level of Nox4 was remarkably upregulated by RANKL treatment. Inhibition of Nox4 by 5-O-methyl quercetin or knockdown of Nox4 with specific shRNA markedly attenuated RANKL-induced autophagy and osteoclastogenesis. Furthermore, we found that Nox4 stimulated the production of nonmitochondrial reactive oxygen species (ROS), activating the critical unfolded protein response (UPR)-related signaling pathway PERK/eIF-2α/ATF4, leading to RANKL-induced autophagy and osteoclastogenesis. Blocking the activation of PERK/eIF-2α/ATF4 signaling pathway either by Nox4 shRNA, ROS scavenger (NAC) or PERK inhibitor (GSK2606414) significantly inhibited autophagy during RANKL-induced osteoclastogenesis. Collectively, this study reveals that Nox4 promotes RANKL-induced autophagy and osteoclastogenesis via activating ROS/PERK/eIF-2α/ATF4 pathway, suggesting that the pathway may be a novel potential therapeutic target for osteoclastogenesis-related disease.
Collapse
Affiliation(s)
- Jing Sun
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Wugui Chen
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Songtao Li
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Sizhen Yang
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Ying Zhang
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Xu Hu
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Hao Qiu
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| | - Jigong Wu
- Department of Spinal Surgery, 306 Hospital of PLA, Beijing, China
| | - Shangcheng Xu
- The Center of Laboratory Medicine, The Sixth People's Hospital of Chongqing, Chongqing, China
| | - Tongwei Chu
- Department of Orthopedics, Xinqiao Hospital of Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Buckley S, Byrnes S, Cochrane C, Roche M, Estes JD, Selemidis S, Angelovich TA, Churchill MJ. The role of oxidative stress in HIV-associated neurocognitive disorders. Brain Behav Immun Health 2021; 13:100235. [PMID: 34589750 PMCID: PMC8474476 DOI: 10.1016/j.bbih.2021.100235] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/18/2021] [Accepted: 02/24/2021] [Indexed: 12/02/2022] Open
Abstract
HIV-associated neurocognitive disorders (HAND) are a leading cause of morbidity in up to 50% of individuals living with HIV, despite effective treatment with antiretroviral therapy (ART). Current evidence suggests that chronic inflammation associated with HIV is especially attributed to the dysregulated production of reactive oxygen species (ROS) that contribute to neurodegeneration and poor clinical outcomes. While ROS have beneficial effects in eliciting immune responses to infection, chronic ROS production causes damage to macromolecules such as DNA and lipids that has been linked to altered redox homeostasis associated with antioxidant dysregulation. As a result, this disruption in the balance between antioxidant-dependent mechanisms of ROS inactivation and ROS production by enzymes such as the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family, as well as from the electron transport chain of the mitochondria can result in oxidative stress. This is particularly relevant to the brain, which is exquisitely susceptible to oxidative stress due to its inherently high lipid concentration and ROS levels that have been linked to many neurodegenerative diseases that have similar stages of pathogenesis to HAND. In this review, we discuss the possible role and mechanisms of ROS production leading to oxidative stress that underpin HAND pathogenesis even when HIV is suppressed by current gold-standard antiretroviral therapies. Furthermore, we highlight that pathological ROS can serve as biomarkers for HIV-dependent HAND, and how manipulation of oxidative stress and antioxidant-dependent pathways may facilitate novel strategies for HIV cure. Production of reactive oxygen species has been linked to neurodegenerative diseases. ROS production contributes to HIV-associated neurocognitive disorders. ROS may be used as a biomarker for HIV-associated neurocognitive disorders. Manipulation of antioxidant pathways may present novel HIV cure strategies.
Collapse
Affiliation(s)
- Sarah Buckley
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Sarah Byrnes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Catherine Cochrane
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Michael Roche
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Jacob D Estes
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Vaccine and Gene Therapy Institute, Oregon National Primate Research Centre, Oregon Health & Science University, United States
| | - Stavros Selemidis
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Thomas A Angelovich
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia
| | - Melissa J Churchill
- Chronic Infectious and Inflammatory Diseases Program, School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia.,Life Sciences, Burnet Institute, Melbourne, Australia.,Departments of Microbiology and Medicine, Monash University, Clayton, Australia
| |
Collapse
|
27
|
Herranz-Itúrbide M, Peñuelas-Haro I, Espinosa-Sotelo R, Bertran E, Fabregat I. The TGF-β/NADPH Oxidases Axis in the Regulation of Liver Cell Biology in Health and Disease. Cells 2021; 10:cells10092312. [PMID: 34571961 PMCID: PMC8470857 DOI: 10.3390/cells10092312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/28/2022] Open
Abstract
The Transforming Growth Factor-beta (TGF-β) pathway plays essential roles in liver development and homeostasis and become a relevant factor involved in different liver pathologies, particularly fibrosis and cancer. The family of NADPH oxidases (NOXs) has emerged in recent years as targets of the TGF-β pathway mediating many of its effects on hepatocytes, stellate cells and macrophages. This review focuses on how the axis TGF-β/NOXs may regulate the biology of different liver cells and how this influences physiological situations, such as liver regeneration, and pathological circumstances, such as liver fibrosis and cancer. Finally, we discuss whether NOX inhibitors may be considered as potential therapeutic tools in liver diseases.
Collapse
Affiliation(s)
- Macarena Herranz-Itúrbide
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Irene Peñuelas-Haro
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Rut Espinosa-Sotelo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 08908 Barcelona, Spain; (M.H.-I.); (I.P.-H.); (R.E.-S.); (E.B.)
- Oncology Program, CIBEREHD, National Biomedical Research Institute on Liver and Gastrointestinal Diseases, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain
- Correspondence: ; Tel.: +34-932-607-828
| |
Collapse
|
28
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
29
|
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical Measurements Reveal Reactive Oxygen Species in Stress Granules**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Emily Relton
- Faculty of Health and Medical Sciences School of Biosciences and Medicine University of Surrey Guildford Surrey GU2 7XH UK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences School of Biosciences and Medicine University of Surrey Guildford Surrey GU2 7XH UK
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular Biology University of Gothenburg Kemivägen 10 41296 Gothenburg Sweden
| |
Collapse
|
30
|
Hu K, Relton E, Locker N, Phan NTN, Ewing AG. Electrochemical Measurements Reveal Reactive Oxygen Species in Stress Granules*. Angew Chem Int Ed Engl 2021; 60:15302-15306. [PMID: 33876544 PMCID: PMC8456511 DOI: 10.1002/anie.202104308] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/15/2021] [Indexed: 12/03/2022]
Abstract
Stress granules (SGs) are membrane-less organelles that assemble in the cytoplasm to organize cellular contents and promote rapid adaptation during stress. To understand how SGs contribute to physiological functions, we used electrochemical measurements to detect electroactive species in SGs. With amperometry, we discovered that reactive oxygen species (ROS) are encapsulated inside arsenite-induced SGs, and H2 O2 is the main species. The release kinetics of H2 O2 from single SGs and the number of H2 O2 molecules were quantified. The discovery that SGs contain ROS implicates them as communicators of the cellular stresses rather than a simple endpoint. This may explain how SGs regulate cellular metabolism and stress responses. This may also help better understand their cytoprotective functions in pathological conditions associated with SGs such as neurodegenerative diseases (NDs), cancers and viral infections.
Collapse
Affiliation(s)
- Keke Hu
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Emily Relton
- Faculty of Health and Medical SciencesSchool of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Nicolas Locker
- Faculty of Health and Medical SciencesSchool of Biosciences and MedicineUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Nhu T. N. Phan
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| | - Andrew G. Ewing
- Department of Chemistry and Molecular BiologyUniversity of GothenburgKemivägen 1041296GothenburgSweden
| |
Collapse
|
31
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
32
|
Szekeres FLM, Walum E, Wikström P, Arner A. A small molecule inhibitor of Nox2 and Nox4 improves contractile function after ischemia-reperfusion in the mouse heart. Sci Rep 2021; 11:11970. [PMID: 34099836 PMCID: PMC8184855 DOI: 10.1038/s41598-021-91575-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023] Open
Abstract
The NADPH oxidase enzymes Nox2 and 4, are important generators of Reactive oxygen species (ROS). These enzymes are abundantly expressed in cardiomyocytes and have been implicated in ischemia-reperfusion injury. Previous attempts with full inhibition of their activity using genetically modified animals have shown variable results, suggesting that a selective and graded inhibition could be a more relevant approach. We have, using chemical library screening, identified a new compound (GLX481304) which inhibits Nox 2 and 4 (with IC50 values of 1.25 µM) without general antioxidant effects or inhibitory effects on Nox 1. The compound inhibits ROS production in isolated mouse cardiomyocytes and improves cardiomyocyte contractility and contraction of whole retrogradely (Langendorff) perfused hearts after a global ischemia period. We conclude that a pharmacological and partial inhibition of ROS production by inhibition of Nox 2 and 4 is beneficial for recovery after ischemia reperfusion and might be a promising venue for treatment of ischemic injury to the heart.
Collapse
Affiliation(s)
- Ferenc L M Szekeres
- Division of Genetic Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers Väg 8, 17177, Stockholm, Sweden.
- Division of Biomedicine, Department of Health and Education, University of Skövde, Högskolevägen 1, 541 28, Skövde, Sweden.
| | - Erik Walum
- Glucox Biotech AB, Frälsegårdsvägen 8, 179 97, Färentuna, Sweden
| | - Per Wikström
- Glucox Biotech AB, Frälsegårdsvägen 8, 179 97, Färentuna, Sweden
| | - Anders Arner
- Division of Genetic Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, von Eulers Väg 8, 17177, Stockholm, Sweden
- Department of Clinical Sciences Lund, Thoracic Surgery, Lund University, c/o Igelösa Life Science AB Igelösa 373, 225 94, Lund, Sweden
| |
Collapse
|
33
|
Photobiomodulation of mineralisation in mesenchymal stem cells. Photochem Photobiol Sci 2021; 20:699-714. [PMID: 33945145 DOI: 10.1007/s43630-021-00047-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/22/2021] [Indexed: 02/05/2023]
Abstract
Mesenchymal stem cells (MSCs) and photobiomodulation (PBM) both offer significant therapeutic potential in regenerative medicine. MSCs have the ability to self-renew and differentiate; giving rise to multiple cellular and tissue lineages that are utilised in repair and regeneration of damaged tissues. PBM utilises light energy delivered at a range of wavelengths to promote wound healing. The positive effects of light on MSC proliferation are well documented; and recently, several studies have determined the outcomes of PBM on mineralised tissue differentiation in MSC populations. As PBM effects are biphasic, it is important to understand the underlying cellular regulatory mechanisms, as well as, provide accurate details of the irradiation conditions, to optimise and standardise outcomes. This review article focuses on the use of red, near-infra-red (R/NIR) and blue wavelengths to promote the mineralisation potential of MSCs; and also reports on the possible molecular mechanisms which underpin transduction of these effects. A variety of potential photon absorbers have been identified which are reported to mediate the signalling mechanisms, including respiratory chain enzymes, flavins, and cryptochromes. Studies report that R/NIR and blue light stimulate MSC differentiation by enhancing respiratory chain activity and increasing reactive oxygen species levels; however, currently, there are considerable variations between irradiation parameters reported. We conclude that due to its non-invasive properties, PBM may, following optimisation, provide an efficient therapeutic approach to clinically support MSC-mediated hard tissue repair. However, to optimise application, further studies are required to identify appropriate light delivery parameters, as well as elucidate the photo-signalling mechanisms involved.
Collapse
|
34
|
Jain P, Dvorkin-Gheva A, Mollen E, Malbeteau L, Xie M, Jessa F, Dhavarasa P, Chung S, Brown KR, Jang GH, Vora P, Notta F, Moffat J, Hedley D, Boutros PC, Wouters BG, Koritzinsky M. NOX4 links metabolic regulation in pancreatic cancer to endoplasmic reticulum redox vulnerability and dependence on PRDX4. SCIENCE ADVANCES 2021; 7:7/19/eabf7114. [PMID: 33962950 PMCID: PMC8104867 DOI: 10.1126/sciadv.abf7114] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 05/02/2023]
Abstract
There is an urgent need to identify vulnerabilities in pancreatic ductal adenocarcinoma (PDAC). PDAC cells acquire metabolic changes that augment NADPH production and cytosolic redox homeostasis. Here, we show that high NADPH levels drive activity of NADPH oxidase 4 (NOX4) expressed in the endoplasmic reticulum (ER) membrane. NOX4 produces H2O2 metabolized by peroxiredoxin 4 (PRDX4) in the ER lumen. Using functional genomics and subsequent in vitro and in vivo validations, we find that PDAC cell lines with high NADPH levels are dependent on PRDX4 for their growth and survival. PRDX4 addiction is associated with increased reactive oxygen species, a DNA-PKcs-governed DNA damage response and radiosensitivity, which can be rescued by depletion of NOX4 or NADPH. Hence, this study has identified NOX4 as a protein that paradoxically converts the reducing power of the cytosol to an ER-specific oxidative stress vulnerability in PDAC that may be therapeutically exploited by targeting PRDX4.
Collapse
Affiliation(s)
- Pallavi Jain
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Anna Dvorkin-Gheva
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Erik Mollen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- University of Maastricht, Maastricht, Netherlands
| | - Lucie Malbeteau
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Xie
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Fatima Jessa
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Piriththiv Dhavarasa
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Chung
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Kevin R Brown
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
| | - Gun Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Parth Vora
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Faiyaz Notta
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - David Hedley
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Departments of Human Genetics and Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradly G Wouters
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
35
|
Mustapha S, Mohammed M, Azemi AK, Yunusa I, Shehu A, Mustapha L, Wada Y, Ahmad MH, Ahmad WANW, Rasool AHG, Mokhtar SS. Potential Roles of Endoplasmic Reticulum Stress and Cellular Proteins Implicated in Diabesity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8830880. [PMID: 33995826 PMCID: PMC8099518 DOI: 10.1155/2021/8830880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 03/28/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The role of the endoplasmic reticulum (ER) has evolved from protein synthesis, processing, and other secretory pathways to forming a foundation for lipid biosynthesis and other metabolic functions. Maintaining ER homeostasis is essential for normal cellular function and survival. An imbalance in the ER implied stressful conditions such as metabolic distress, which activates a protective process called unfolded protein response (UPR). This response is activated through some canonical branches of ER stress, i.e., the protein kinase RNA-like endoplasmic reticulum kinase (PERK), inositol-requiring enzyme 1α (IRE1α), and activating transcription factor 6 (ATF6). Therefore, chronic hyperglycemia, hyperinsulinemia, increased proinflammatory cytokines, and free fatty acids (FFAs) found in diabesity (a pathophysiological link between obesity and diabetes) could lead to ER stress. However, limited data exist regarding ER stress and its association with diabesity, particularly the implicated proteins and molecular mechanisms. Thus, this review highlights the role of ER stress in relation to some proteins involved in diabesity pathogenesis and provides insight into possible pathways that could serve as novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Sagir Mustapha
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mustapha Mohammed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800 Penang, Pulau Pinang, Malaysia
- Department of Clinical Pharmacy and Pharmacy Practice, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Ahmad Khusairi Azemi
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Ismaeel Yunusa
- Department of Clinical Pharmacy and Outcomes Sciences, University of South Carolina, College of Pharmacy, Columbia, SC, USA
| | - Aishatu Shehu
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Lukman Mustapha
- Department of Pharmaceutical and Medicinal Chemistry, Kaduna State University, Kaduna, Nigeria
| | - Yusuf Wada
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Department of Zoology, Ahmadu Bello University Zaria, Kaduna, Nigeria
| | - Mubarak Hussaini Ahmad
- Department of Pharmacology and Therapeutics, Ahmadu Bello University Zaria, Kaduna, Nigeria
- School of Pharmacy Technician, Aminu Dabo College of Health Sciences and Technology, Kano, Nigeria
| | - Wan Amir Nizam Wan Ahmad
- Biomedicine Programme, School of Health Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Aida Hanum Ghulam Rasool
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
- Hospital Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| | - Siti Safiah Mokhtar
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
36
|
Yu W, Li S, Wu H, Hu P, Chen L, Zeng C, Tong X. Endothelial Nox4 dysfunction aggravates atherosclerosis by inducing endoplasmic reticulum stress and soluble epoxide hydrolase. Free Radic Biol Med 2021; 164:44-57. [PMID: 33418110 DOI: 10.1016/j.freeradbiomed.2020.12.450] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Our previous findings have demonstrated the protective effect of endothelial Nox4-based NADPH oxidase on atherosclerosis. One of the possible mechanisms is the inhibition of soluble epoxide hydrolase (sEH), a proinflammatory and atherogenic factor. Our goal was to investigate whether in vivo inhibition of sEH by 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) alleviates endothelial Nox4 dysfunction caused atherosclerosis and the regulatory mechanism of endothelial Nox4 on sEH. METHODS & results: We used endothelial human Nox4 dominant-negative (EDN) transgenic mice in ApoE deficient background to mimic the dysfunction of endothelial Nox4 in atherosclerosis-prone conditions. In EDN aortic endothelium, sEH and the inflammatory marker vascular cell adhesion molecule 1 (VCAM1) were upregulated. TPPU reduced atherosclerotic lesions in EDN mice. In EDN endothelial cells (ECs), the endoplasmic reticulum (ER) stress markers (BIP, IRE1α, phosphorylation of PERK, ATF6) were upregulated, and they can be suppressed by ER stress inhibitor 4-phenyl butyric acid (4-PBA). In EDN ECs, 4-PBA downregulated the expression of sEH and VCAM1, suppressed inflammation, and its application in vivo reduced atherosclerotic lesions of EDN mice. CONCLUSIONS Endothelial Nox4 dysfunction upregulated sEH to enhance inflammation, probably by its induction of ER stress. Inhibition of ER stress or sEH is beneficial to alleviate atherosclerosis caused by endothelial Nox4 dysfunction.
Collapse
Affiliation(s)
- Weimin Yu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Siqi Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Haixia Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China
| | - Pingping Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| | - Lili Chen
- Wuhan Easy Diagnosis Biomedicine Co., Ltd, Wuhan, 430075, China
| | - Chunyu Zeng
- Department of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Xiaoyong Tong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
37
|
Konno T, Melo EP, Chambers JE, Avezov E. Intracellular Sources of ROS/H 2O 2 in Health and Neurodegeneration: Spotlight on Endoplasmic Reticulum. Cells 2021; 10:233. [PMID: 33504070 PMCID: PMC7912550 DOI: 10.3390/cells10020233] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Reactive oxygen species (ROS) are produced continuously throughout the cell as products of various redox reactions. Yet these products function as important signal messengers, acting through oxidation of specific target factors. Whilst excess ROS production has the potential to induce oxidative stress, physiological roles of ROS are supported by a spatiotemporal equilibrium between ROS producers and scavengers such as antioxidative enzymes. In the endoplasmic reticulum (ER), hydrogen peroxide (H2O2), a non-radical ROS, is produced through the process of oxidative folding. Utilisation and dysregulation of H2O2, in particular that generated in the ER, affects not only cellular homeostasis but also the longevity of organisms. ROS dysregulation has been implicated in various pathologies including dementia and other neurodegenerative diseases, sanctioning a field of research that strives to better understand cell-intrinsic ROS production. Here we review the organelle-specific ROS-generating and consuming pathways, providing evidence that the ER is a major contributing source of potentially pathologic ROS.
Collapse
Affiliation(s)
- Tasuku Konno
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| | - Eduardo Pinho Melo
- CCMAR—Centro de Ciências do Mar, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal;
| | - Joseph E. Chambers
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, UK;
| | - Edward Avezov
- Department of Clinical Neurosciences, UK Dementia Research Institute, University of Cambridge, Cambridge CB2 0AH, UK
| |
Collapse
|
38
|
Isaguliants M, Bayurova E, Avdoshina D, Kondrashova A, Chiodi F, Palefsky JM. Oncogenic Effects of HIV-1 Proteins, Mechanisms Behind. Cancers (Basel) 2021; 13:305. [PMID: 33467638 PMCID: PMC7830613 DOI: 10.3390/cancers13020305] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 02/08/2023] Open
Abstract
People living with human immunodeficiency virus (HIV-1) are at increased risk of developing cancer, such as Kaposi sarcoma (KS), non-Hodgkin lymphoma (NHL), cervical cancer, and other cancers associated with chronic viral infections. Traditionally, this is linked to HIV-1-induced immune suppression with depletion of CD4+ T-helper cells, exhaustion of lymphopoiesis and lymphocyte dysfunction. However, the long-term successful implementation of antiretroviral therapy (ART) with an early start did not preclude the oncological complications, implying that HIV-1 and its antigens are directly involved in carcinogenesis and may exert their effects on the background of restored immune system even when present at extremely low levels. Experimental data indicate that HIV-1 virions and single viral antigens can enter a wide variety of cells, including epithelial. This review is focused on the effects of five viral proteins: envelope protein gp120, accessory protein negative factor Nef, matrix protein p17, transactivator of transcription Tat and reverse transcriptase RT. Gp120, Nef, p17, Tat, and RT cause oxidative stress, can be released from HIV-1-infected cells and are oncogenic. All five are in a position to affect "innocent" bystander cells, specifically, to cause the propagation of (pre)existing malignant and malignant transformation of normal epithelial cells, giving grounds to the direct carcinogenic effects of HIV-1.
Collapse
Affiliation(s)
- Maria Isaguliants
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
- Department of Research, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ekaterina Bayurova
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Darya Avdoshina
- Gamaleya Research Center for Epidemiology and Microbiology, 123098 Moscow, Russia; (E.B.); (D.A.)
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Alla Kondrashova
- M.P. Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819 Moscow, Russia;
| | - Francesca Chiodi
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden;
| | - Joel M. Palefsky
- Department of Medicine, University of California, San Francisco, CA 94117, USA;
| |
Collapse
|
39
|
Chalcone suppresses tumor growth through NOX4-IRE1α sulfonation-RIDD-miR-23b axis. Redox Biol 2021; 40:101853. [PMID: 33445069 PMCID: PMC7806525 DOI: 10.1016/j.redox.2021.101853] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/01/2021] [Indexed: 01/10/2023] Open
Abstract
Chalcone is a polyphenolic compound found abundantly in natural plant components. They have been acclaimed as potential antitumor compounds in multiple tumor cells. However, not much attention has been paid to elucidate its antitumor mechanism of action. Here, chalcone was demonstrated to trigger endoplasmic reticulum (ER) stress-induced apoptosis through sulfonation of IRE1α by ER-localized NADPH oxidase 4 (NOX4). IRE1α-sulfonation at a cysteine residue was shown to induce "regulated IRE1α-dependent decay" (RIDD) of mRNA rather than specific splicing of XBP1. The IRE1α sulfonation-induced RIDD degraded miR-23b, enhancing the expression of NOX4. The expression of NOX4 was also upregulated in breast, and prostate cancer tissue. In chalcone-administered mice in vivo, tumor growth was regressed by the consistent mechanisms "NOX4-IRE1α sulfonation-RIDD". Similarly, NOX4 activation and IRE1α sulfonation were also highly increased under severe ER stress conditions. Together, these findings suggest chalcone as a lead anticancer compound where it acts through NOX4-IRE1α-RIDD-miR-23b axis providing a promising vision of chalcone derivatives' anticancer mechanism.
Collapse
|
40
|
Abstract
Reactive oxygen species (ROS) are ubiquitous metabolic products and important cellular signaling molecules that contribute to several biological functions. Pathophysiology arises when ROS are generated either in excess or in cell types or subcellular locations that normally do not produce ROS or when non-physiological types of ROS (e.g., superoxide instead of hydrogen peroxide) are formed. In the latter scenario, antioxidants were considered as the apparent remedy but, clinically, have consistently failed and even sometimes induced harm. The obvious reason for that is the non-selective ROS scavenging effects of antioxidants which interfere with both qualities of ROS, physiological and pathological. Therefore, it is essential to overcome this "antidote or neutralizer" strategy. We here review the most promising alternative approach by identifying the disease-relevant enzymatic sources of ROS, target these selectively, but leave physiological ROS signaling through other sources intact. Among all ROS sources, NADPH oxidases (NOX1-5 and DUOX1-2) stand out as their sole function is to produce ROS, whereas most other enzymatic sources only produce ROS as a by-product or upon biochemical uncoupling or damage. This qualifies NOXs as the main potential drug-target candidates in diseases associated with dysfunction in ROS signaling. As a reflection of this, the development of several NOX inhibitors has taken place. Recently, the WHO approved a new stem, "naxib," which refers to NADPH oxidase inhibitors, and thereby recognized NOX inhibitors as a new therapeutic class. This has been announced while clinical trials with the first-in-class compound, setanaxib (initially known as GKT137831) had been initiated. We also review the differences between the seven NOX family members in terms of structure and function in health and disease and then focus on the most advanced NOX inhibitors with an exclusive focus on clinically relevant validations and applications. Therapeutically relevant NADPH oxidase isoforms type 1, 2, 4, and 5 (NOX1, NOX2, NOX4, NOX5). Of note, NOX5 is not present in mice and rats and thus pre-clinically less studied. NOX2, formerly termed gp91phox, has been correlated with many, too many, diseases and is rather relevant as genetic deficiency in chronic granulomatous disease (CGD), treated by gene therapy. Overproduction of ROS through NOX1, NOX4, and NOX5 leads to the indicated diseases states including atherosclerosis (red), a condition where NOX4 is surprisingly protective.
Collapse
Affiliation(s)
- Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | | | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, School of MeHNS, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
41
|
Pathomthongtaweechai N, Chutipongtanate S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy. Biomed Pharmacother 2020; 131:110655. [PMID: 32853909 DOI: 10.1016/j.biopha.2020.110655] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/17/2020] [Indexed: 12/14/2022] Open
Abstract
Disturbance of endoplasmic reticulum (ER) homeostasis triggered by the accumulation of unfolded proteins and advanced glycation end-products (AGEs) plays a major role in pathophysiology of diabetic nephropathy. Activation of receptor for AGEs (RAGE) stimulates NADPH oxidase-mediated reactive oxygen species (ROS) production, leading to ER stress, inflammation, glomerular hypertrophy, podocyte injury, and renal fibrosis. A growing body of evidence indicates that non-coding RNAs (ncRNAs) could rescue ER stress and renal inflammation by the epigenetic modification. This review summarizes ncRNA regulation in AGE/RAGE signaling-mediated ER stress, and discusses the opportunities and challenges of ncRNA-loaded extracellular vesicle therapy in diabetic nephropathy.
Collapse
Affiliation(s)
- Nutthapoom Pathomthongtaweechai
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, 10540, Thailand.
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand; Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
42
|
Bozaykut P, Ekren R, Sezerman OU, Gladyshev VN, Ozer NK. High-throughput profiling reveals perturbation of endoplasmic reticulum stress-related genes in atherosclerosis induced by high-cholesterol diet and the protective role of vitamin E. Biofactors 2020; 46:653-664. [PMID: 32384218 DOI: 10.1002/biof.1635] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/30/2022]
Abstract
Formation of atherosclerotic plaques, called atherogenesis, is a complex process affected by genetic and environmental factors. It was proposed that endoplasmic reticulum (ER) stress is an important factor in the pathogenesis of atherosclerosis and that vitamin E affects atherosclerotic plaque formation via its antioxidant properties. Here, we investigated ER stress-related molecular mechanisms in high-cholesterol diet (HCD, 2%)-induced atherosclerosis model and the role of vitamin E supplementation in it, beyond its antioxidant properties. The consequences of HCD and vitamin E supplementation were examined by determining protein levels of ER stress markers in aortic tissues. As vitamin E supplementation acts on several unfolded protein response (UPR) factors, it decreased ER stress induced by HCD. To elucidate the associated pathways, gene expression profiling was performed, revealing differentially expressed genes enriched in ER stress-related pathways such as the proteasome and the apoptosis pathways. We further assessed the proteasomal activity impaired by HCD in the aorta and showed that vitamin E reversed it to that of control animals. Overall, the study characterized the effects of HCD and vitamin E on ER stress-related gene expression, revealing the role of proteolytic systems during atherogenesis.
Collapse
Affiliation(s)
- Perinur Bozaykut
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ruchan Ekren
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nesrin Kartal Ozer
- Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
43
|
Kubra KT, Akhter MS, Uddin MA, Barabutis N. Unfolded protein response in cardiovascular disease. Cell Signal 2020; 73:109699. [PMID: 32592779 DOI: 10.1016/j.cellsig.2020.109699] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/21/2022]
Abstract
The unfolded protein response (UPR) is a highly conserved molecular machinery, which protects the cells against a diverse variety of stimuli. Activation of this element has been associated with both human health and disease. The purpose of the current manuscript is to provide the most updated information on the involvement of UPR towards the improvement; or deterioration of cardiovascular functions. Since UPR is consisted of three distinct elements, namely the activating transcription factor 6, the protein kinase RNA-like endoplasmic reticulum kinase; and the inositol-requiring enzyme-1α, a highly orchestrated manipulation of those molecular branches may provide new therapeutic possibilities against the severe outcomes of cardiovascular disease.
Collapse
Affiliation(s)
- Khadeja-Tul Kubra
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad S Akhter
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Mohammad A Uddin
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA
| | - Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
44
|
Di Meo S, Venditti P. Evolution of the Knowledge of Free Radicals and Other Oxidants. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:9829176. [PMID: 32411336 PMCID: PMC7201853 DOI: 10.1155/2020/9829176] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 03/31/2020] [Indexed: 12/11/2022]
Abstract
Free radicals are chemical species (atoms, molecules, or ions) containing one or more unpaired electrons in their external orbitals and generally display a remarkable reactivity. The evidence of their existence was obtained only at the beginning of the 20th century. Chemists gradually ascertained the involvement of free radicals in organic reactions and, in the middle of the 20th century, their production in biological systems. For several decades, free radicals were thought to cause exclusively damaging effects . This idea was mainly supported by the finding that oxygen free radicals readily react with all biological macromolecules inducing their oxidative modification and loss of function. Moreover, evidence was obtained that when, in the living organism, free radicals are not neutralized by systems of biochemical defences, many pathological conditions develop. However, after some time, it became clear that the living systems not only had adapted to the coexistence with free radicals but also developed methods to turn these toxic substances to their advantage by using them in critical physiological processes. Therefore, free radicals play a dual role in living systems: they are toxic by-products of aerobic metabolism, causing oxidative damage and tissue dysfunction, and serve as molecular signals activating beneficial stress responses. This discovery also changed the way we consider antioxidants. Their use is usually regarded as helpful to counteract the damaging effects of free radicals but sometimes is harmful as it can block adaptive responses induced by low levels of radicals.
Collapse
Affiliation(s)
- Sergio Di Meo
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| | - Paola Venditti
- Università degli Studi di Napoli Federico II Dipartimento di Biologia, Complesso, Universitario Monte Sant'Angelo, Via Cinthia, I-80126 Napoli, Italy
| |
Collapse
|
45
|
Barabutis N. P53 in RhoA regulation. Cytoskeleton (Hoboken) 2020; 77:197-201. [DOI: 10.1002/cm.21604] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Nektarios Barabutis
- School of Basic Pharmaceutical and Toxicological Sciences, College of PharmacyUniversity of Louisiana Monroe Monroe USA
| |
Collapse
|
46
|
NADPH oxidases and oxidase crosstalk in cardiovascular diseases: novel therapeutic targets. Nat Rev Cardiol 2019; 17:170-194. [PMID: 31591535 DOI: 10.1038/s41569-019-0260-8] [Citation(s) in RCA: 358] [Impact Index Per Article: 59.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/19/2019] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS)-dependent production of ROS underlies sustained oxidative stress, which has been implicated in the pathogenesis of cardiovascular diseases such as hypertension, aortic aneurysm, hypercholesterolaemia, atherosclerosis, diabetic vascular complications, cardiac ischaemia-reperfusion injury, myocardial infarction, heart failure and cardiac arrhythmias. Interactions between different oxidases or oxidase systems have been intensively investigated for their roles in inducing sustained oxidative stress. In this Review, we discuss the latest data on the pathobiology of each oxidase component, the complex crosstalk between different oxidase components and the consequences of this crosstalk in mediating cardiovascular disease processes, focusing on the central role of particular NADPH oxidase (NOX) isoforms that are activated in specific cardiovascular diseases. An improved understanding of these mechanisms might facilitate the development of novel therapeutic agents targeting these oxidase systems and their interactions, which could be effective in the prevention and treatment of cardiovascular disorders.
Collapse
|
47
|
Jiang Y, Xu L, Yu L, Xu X, Feng C, Li J. NOX4 inhibition protects enteric glial cells against Clostridium difficile toxin B toxicity via attenuating oxidative and Endoplasmic reticulum stresses. Free Radic Res 2019; 53:932-940. [PMID: 31370714 DOI: 10.1080/10715762.2019.1649670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Enteric glial cells (EGCs), one main cell population of the enteric nervous system (ENS), play a major role in regulating intestinal barrier function. Clostridium difficile toxin B (TcdB) is the major virulence factor produced by C. difficile and estimated to be toxic to EGCs by inducing cell death, cell cycle arrest, and inflammatory cytokine production; however, the detailed mechanism for such effect is still unclear. In this study, we further evaluated the toxic effect of TcdB on EGCs and the involvement of NADPH oxidases in such process using the rat-transformed EGCs (CRL-2690). The results showed that NOX4 was activated by TcdB in EGCs and functioned as the major factor causing cytotoxicity and cell apoptosis. Mechanically, NOX4-generated H2O2 was the inducer of oxidative stress, Ca2+ homeostasis disorder, and ER stress in EGCs upon TcdB treatment, and NOX4 inhibition protected EGCs against TcdB toxicity via attenuating these dysfunctions. These findings contribute to our understanding of the mechanism by which TcdB affects EGCs and suggest the potential value of NOX4 inhibition for treatment against C. difficile infection.
Collapse
Affiliation(s)
- Yanmin Jiang
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Lan Xu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Lin Yu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Xiang Xu
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Chen Feng
- Department of Endocrinology, Wuxi People's Hospital Affiliated to Nanjing Medical University , Wuxi , China
| | - Jianbo Li
- Department of Endocrinology, the First Affiliated Hospital of Nanjing Medical University , Nanjing , China
| |
Collapse
|
48
|
Burtenshaw D, Kitching M, Redmond EM, Megson IL, Cahill PA. Reactive Oxygen Species (ROS), Intimal Thickening, and Subclinical Atherosclerotic Disease. Front Cardiovasc Med 2019; 6:89. [PMID: 31428618 PMCID: PMC6688526 DOI: 10.3389/fcvm.2019.00089] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/14/2019] [Indexed: 12/14/2022] Open
Abstract
Arteriosclerosis causes significant morbidity and mortality worldwide. Central to this process is the development of subclinical non-atherosclerotic intimal lesions before the appearance of pathologic intimal thickening and advanced atherosclerotic plaques. Intimal thickening is associated with several risk factors, including oxidative stress due to reactive oxygen species (ROS), inflammatory cytokines and lipid. The main ROS producing systems in-vivo are reduced nicotinamide dinucleotide phosphate (NADPH) oxidase (NOX). ROS effects are context specific. Exogenous ROS induces apoptosis and senescence, whereas intracellular ROS promotes stem cell differentiation, proliferation, and migration. Lineage tracing studies using murine models of subclinical atherosclerosis have revealed the contributory role of medial smooth muscle cells (SMCs), resident vascular stem cells, circulating bone-marrow progenitors and endothelial cells that undergo endothelial-mesenchymal-transition (EndMT). This review will address the putative physiological and patho-physiological roles of ROS in controlling vascular cell fate and ROS contribution to vascular regeneration and disease progression.
Collapse
Affiliation(s)
- Denise Burtenshaw
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - Eileen M Redmond
- Department of Surgery, University of Rochester, Rochester, NY, United States
| | - Ian L Megson
- Centre for Health Science, UHI Institute of Health Research and Innovation, Inverness, United Kingdom
| | - Paul A Cahill
- Vascular Biology & Therapeutics, School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
49
|
Meineke R, Rimmelzwaan GF, Elbahesh H. Influenza Virus Infections and Cellular Kinases. Viruses 2019; 11:E171. [PMID: 30791550 PMCID: PMC6410056 DOI: 10.3390/v11020171] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses (IAVs) are a major cause of respiratory illness and are responsible for yearly epidemics associated with more than 500,000 annual deaths globally. Novel IAVs may cause pandemic outbreaks and zoonotic infections with, for example, highly pathogenic avian influenza virus (HPAIV) of the H5N1 and H7N9 subtypes, which pose a threat to public health. Treatment options are limited and emergence of strains resistant to antiviral drugs jeopardize this even further. Like all viruses, IAVs depend on host factors for every step of the virus replication cycle. Host kinases link multiple signaling pathways in respond to a myriad of stimuli, including viral infections. Their regulation of multiple response networks has justified actively targeting cellular kinases for anti-cancer therapies and immune modulators for decades. There is a growing volume of research highlighting the significant role of cellular kinases in regulating IAV infections. Their functional role is illustrated by the required phosphorylation of several IAV proteins necessary for replication and/or evasion/suppression of the innate immune response. Identified in the majority of host factor screens, functional studies further support the important role of kinases and their potential as host restriction factors. PKC, ERK, PI3K and FAK, to name a few, are kinases that regulate viral entry and replication. Additionally, kinases such as IKK, JNK and p38 MAPK are essential in mediating viral sensor signaling cascades that regulate expression of antiviral chemokines and cytokines. The feasibility of targeting kinases is steadily moving from bench to clinic and already-approved cancer drugs could potentially be repurposed for treatments of severe IAV infections. In this review, we will focus on the contribution of cellular kinases to IAV infections and their value as potential therapeutic targets.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Guus F Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine (TiHo), Bünteweg 17, 30559 Hannover, Germany.
| |
Collapse
|
50
|
Foo CHJ, Pervaiz S. gRASping the redox lever to modulate cancer cell fate signaling. Redox Biol 2019; 25:101094. [PMID: 30638892 PMCID: PMC6859584 DOI: 10.1016/j.redox.2018.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/22/2018] [Accepted: 12/26/2018] [Indexed: 01/17/2023] Open
Abstract
RAS proteins are critical regulators of signaling networks controlling diverse cellular functions such as cell proliferation and survival and its mutation are among the most powerful oncogenic drivers in human cancers. Despite intense efforts, direct RAS-targeting strategies remain elusive due to its "undruggable" nature. To that end, bulk of the research efforts has been directed towards targeting upstream and/or downstream of RAS signaling. However, the therapeutic efficacies of these treatments are limited in the long run due to the acquired drug resistance in RAS-driven cancers. Interestingly, recent studies have uncovered a potential role of RAS in redox-regulation as well as the interplay between ROS and RAS-associated signaling networks during process of cancer initiation and progression. More specifically, these studies provide ample evidence to implicate RAS as a redox-rheostat, manipulating ROS levels to provide a redox-milieu conducive for carcinogenesis. Importantly, the understanding of RAS-ROS interplay could provide us with novel targetable vulnerabilities for designing therapeutic strategies. In this review, we provide a brief summary of the advances in the field to illustrate the dual role of RAS in redox-regulation and its implications in RAS signaling outcomes and also emerging redox-based strategies to target RAS-driven cancers.
Collapse
Affiliation(s)
- Chuan Han Jonathan Foo
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore (NUS), Singapore; Medical Science Cluster Cancer Program, YLL School of Medicine, National University of Singapore (NUS), Singapore; NUS Graduate School of Integrative Sciences and Engineering, NUS, Singapore; National University Cancer Institute, NUHS, Singapore.
| |
Collapse
|