1
|
Fay CX, Zunica ERM, Awad E, Bradley W, Church C, Liu J, Liu H, Crossman DK, Mobley JA, Kirwan JP, Axelrod CL, Westin E, Kesterson RA, Wallis D. Global proteomics and affinity mass spectrometry analysis of human Schwann cells indicates that variation in and loss of neurofibromin (NF1) alters protein expression and cellular and mitochondrial metabolism. Sci Rep 2025; 15:3883. [PMID: 39890807 PMCID: PMC11785952 DOI: 10.1038/s41598-024-84493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 12/24/2024] [Indexed: 02/03/2025] Open
Abstract
In efforts to evaluate potential biomarkers and drug targets for Neurofibromatosis Type I (NF1) we utilized affinity mass spectrometry and global proteomics to investigate how variation within and loss of NF1 affect immortalized human Schwann cells. We used Strep tagged mNf1 cDNAs (both wild type (WT) and variant) to affinity purity NF1 Protein-Protein interactors (PPIs) from the Schwann cells. We were able to identify 98 PPIs and show that some of these PPIs bind differentially to variant proteins. Next, we evaluated global proteomes. We identified over 1900 proteins in immortalized human Schwann cells both with and without NF1 expression. We identified 148 proteins with differential expression levels based on genotype. Following Ingenuity Pathway analysis (IPA) we found multiple pathways were altered including decreases in "oxidative phosphorylation," increases in "mitochondrial dysfunction", and "glycolysis", as well as changes in "Myelination Signaling Pathway." When we evaluated the proteome of NF1 null cells stably transfected with tagged mNf1 cDNAs we again identified an overall trend of metabolic differences pertaining to "oxidative phosphorylation", "mitochondria dysfunction", and "glycolysis" in the variant cDNA expressing cells. We then validated differential expression of the following proteins: LAMC1, CYB5R3, and SOD2 that are observed in the altered pathways. Finally, consistent with our proteomics findings, we show that NF1 is required to maintain mitochondrial respiratory function in Schwann cells by stabilizing NADH-linked oxidative phosphorylation and electron transfer. Taken together, these data indicate that NF1 plays a significant role in mitochondrial metabolism that results in proteomic changes in Schwann cells and may serve as a future drug target.
Collapse
Affiliation(s)
- Christian X Fay
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | | | - Elias Awad
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - William Bradley
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Cameron Church
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jian Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Hui Liu
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - David K Crossman
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - James A Mobley
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - John P Kirwan
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Erik Westin
- Pennington Biomedical Research Center, Baton Rouge, LA, 70808, USA
| | | | - Deeann Wallis
- Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Yang E, Fan X, Ye H, Sun X, Ji Q, Ding Q, Zhong S, Zhao S, Xuan C, Fang M, Ding X, Cao J. Exploring the role of ubiquitin regulatory X domain family proteins in cancers: bioinformatics insights, mechanisms, and implications for therapy. J Transl Med 2024; 22:157. [PMID: 38365777 PMCID: PMC10870615 DOI: 10.1186/s12967-024-04890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/13/2024] [Indexed: 02/18/2024] Open
Abstract
UBXD family (UBXDF), a group of proteins containing ubiquitin regulatory X (UBX) domains, play a crucial role in the imbalance of proliferation and apoptotic in cancer. In this study, we summarised bioinformatics proof on multi-omics databases and literature on UBXDF's effects on cancer. Bioinformatics analysis revealed that Fas-associated factor 1 (FAF1) has the largest number of gene alterations in the UBXD family and has been linked to survival and cancer progression in many cancers. UBXDF may affect tumour microenvironment (TME) and drugtherapy and should be investigated in the future. We also summarised the experimental evidence of the mechanism of UBXDF in cancer, both in vitro and in vivo, as well as its application in clinical and targeted drugs. We compared bioinformatics and literature to provide a multi-omics insight into UBXDF in cancers, review proof and mechanism of UBXDF effects on cancers, and prospect future research directions in-depth. We hope that this paper will be helpful for direct cancer-related UBXDF studies.
Collapse
Affiliation(s)
- Enyu Yang
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaowei Fan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Haihan Ye
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Xiaoyang Sun
- School of Biological Sciences, The University of Hong Kong, Hong Kong , 999077, Special Administrative Region, China
| | - Qing Ji
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Qianyun Ding
- Department of 'A', The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shulian Zhong
- Zhejiang Sci-Tech University Hospital, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuo Zhao
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Cheng Xuan
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Meiyu Fang
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Xianfeng Ding
- School of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Jun Cao
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Department of Head and Neck and Rare Oncology, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Michaelis AC, Brunner AD, Zwiebel M, Meier F, Strauss MT, Bludau I, Mann M. The social and structural architecture of the yeast protein interactome. Nature 2023; 624:192-200. [PMID: 37968396 PMCID: PMC10700138 DOI: 10.1038/s41586-023-06739-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/11/2023] [Indexed: 11/17/2023]
Abstract
Cellular functions are mediated by protein-protein interactions, and mapping the interactome provides fundamental insights into biological systems. Affinity purification coupled to mass spectrometry is an ideal tool for such mapping, but it has been difficult to identify low copy number complexes, membrane complexes and complexes that are disrupted by protein tagging. As a result, our current knowledge of the interactome is far from complete, and assessing the reliability of reported interactions is challenging. Here we develop a sensitive high-throughput method using highly reproducible affinity enrichment coupled to mass spectrometry combined with a quantitative two-dimensional analysis strategy to comprehensively map the interactome of Saccharomyces cerevisiae. Thousand-fold reduced volumes in 96-well format enabled replicate analysis of the endogenous GFP-tagged library covering the entire expressed yeast proteome1. The 4,159 pull-downs generated a highly structured network of 3,927 proteins connected by 31,004 interactions, doubling the number of proteins and tripling the number of reliable interactions compared with existing interactome maps2. This includes very-low-abundance epigenetic complexes, organellar membrane complexes and non-taggable complexes inferred by abundance correlation. This nearly saturated interactome reveals that the vast majority of yeast proteins are highly connected, with an average of 16 interactors. Similar to social networks between humans, the average shortest distance between proteins is 4.2 interactions. AlphaFold-Multimer provided novel insights into the functional roles of previously uncharacterized proteins in complexes. Our web portal ( www.yeast-interactome.org ) enables extensive exploration of the interactome dataset.
Collapse
Affiliation(s)
| | - Andreas-David Brunner
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Drug Discovery Sciences, Boehringer Ingelheim Pharma, Biberach Riss, Germany
| | | | - Florian Meier
- Max-Planck Institute of Biochemistry, Martinsried, Germany
- Functional Proteomics, Jena University Hospital, Jena, Germany
| | | | - Isabell Bludau
- Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Matthias Mann
- Max-Planck Institute of Biochemistry, Martinsried, Germany.
- NNF Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Báez-Flores J, Rodríguez-Martín M, Lacal J. The therapeutic potential of neurofibromin signaling pathways and binding partners. Commun Biol 2023; 6:436. [PMID: 37081086 PMCID: PMC10119308 DOI: 10.1038/s42003-023-04815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
Neurofibromin controls many cell processes, such as growth, learning, and memory. If neurofibromin is not working properly, it can lead to health problems, including issues with the nervous, skeletal, and cardiovascular systems and cancer. This review examines neurofibromin's binding partners, signaling pathways and potential therapeutic targets. In addition, it summarizes the different post-translational modifications that can affect neurofibromin's interactions with other molecules. It is essential to investigate the molecular mechanisms that underlie neurofibromin variants in order to provide with functional connections between neurofibromin and its associated proteins for possible therapeutic targets based on its biological function.
Collapse
Affiliation(s)
- Juan Báez-Flores
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Mario Rodríguez-Martín
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain
| | - Jesus Lacal
- Laboratory of Functional Genetics of Rare Diseases, Department of Microbiology and Genetics, University of Salamanca (USAL), 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca (IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
5
|
Geng T, Yang D, Lin T, Cahoon JG, Wang P. UBXN3B Controls Immunopathogenesis of Arthritogenic Alphaviruses by Maintaining Hematopoietic Homeostasis. mBio 2022; 13:e0268722. [PMID: 36377866 PMCID: PMC9765034 DOI: 10.1128/mbio.02687-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Ubiquitin regulatory X domain-containing proteins (UBXN) might be involved in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. We recently showed that UBXN3B positively regulated stimulator-of-interferon-genes (STING)-mediated innate immune responses to DNA viruses. Herein, we reported the essential role of UBXN3B in the control of infection and immunopathogenesis of two arthritogenic RNA viruses, Chikungunya (CHIKV) and O'nyong'nyong (ONNV) viruses. Ubxn3b deficient (Ubxn3b-/-) mice presented higher viral loads, more severe foot swelling and immune infiltrates, and slower clearance of viruses and resolution of inflammation than the Ubxn3b+/+ littermates. While the serum cytokine levels were intact, the virus-specific immunoglobulin G and neutralizing antibody levels were lower in the Ubxn3b-/- mice. The Ubxn3b-/- mice had more neutrophils and macrophages, but much fewer B cells in the ipsilateral feet. Of note, this immune dysregulation was also observed in the spleens and blood of uninfected Ubxn3b-/- mice. UBXN3B restricted CHIKV replication in a cell-intrinsic manner but independent of type I IFN signaling. These results demonstrated a dual role of UBXN3B in the maintenance of immune homeostasis and control of RNA virus replication. IMPORTANCE The human genome encodes 13 ubiquitin regulatory X (UBX) domain-containing proteins (UBXN) that might participate in diverse cellular processes. However, their in vivo physiological functions remain largely elusive. Herein, we reported an essential role of UBXN3B in the control of infection and immunopathogenesis of arthritogenic alphaviruses, including Chikungunya virus (CHIKV), which causes acute and chronic crippling arthralgia, long-term neurological disorders, and poses a significant public health problem in the tropical and subtropical regions worldwide. However, there are no approved vaccines or specific antiviral drugs. This was partly due to a poor understanding of the protective and detrimental immune responses elicited by CHIKV. We showed that UBXN3B was critical for the control of CHIKV replication in a cell-intrinsic manner in the acute phase and persistent immunopathogenesis in the post-viremic stage. Mechanistically, UBXN3B was essential for the maintenance of hematopoietic homeostasis during viral infection and in steady-state.
Collapse
Affiliation(s)
- Tingting Geng
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Duomeng Yang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Tao Lin
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Jason G. Cahoon
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Penghua Wang
- Department of Immunology, School of Medicine, the University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
6
|
Identification of Germinal Neurofibromin Hotspots. Biomedicines 2022; 10:biomedicines10082044. [PMID: 36009591 PMCID: PMC9405573 DOI: 10.3390/biomedicines10082044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 11/29/2022] Open
Abstract
Neurofibromin is engaged in many cellular processes and when the proper protein functioning is impaired, it causes neurofibromatosis type 1 (NF1), one of the most common inherited neurological disorders. Recent advances in sequencing and screening of the NF1 gene have increased the number of detected variants. However, the correlation of these variants with the clinic remains poorly understood. In this study, we analyzed 4610 germinal NF1 variants annotated in ClinVar and determined on exon level the mutational spectrum and potential pathogenic regions. Then, a binomial and sliding windows test using 783 benign and 938 pathogenic NF1 variants were analyzed against functional and structural regions of neurofibromin. The distribution of synonymous, missense, and frameshift variants are statistically significant in certain regions of neurofibromin suggesting that the type of variant and its associated phenotype may depend on protein disorder. Indeed, there is a negative correlation between the pathogenic fraction prediction and the disorder data, suggesting that the higher an intrinsically disordered region is, the lower the pathogenic fraction is and vice versa. Most pathogenic variants are associated to NF1 and our analysis suggests that GRD, CSRD, TBD, and Armadillo1 domains are hotspots in neurofibromin. Knowledge about NF1 genotype–phenotype correlations can provide prognostic guidance and aid in organ-specific surveillance.
Collapse
|
7
|
Cai X, Xiang S, He W, Tang M, Zhang S, Chen D, Zhang X, Liu C, Li G, Xing J, Li Y, Chen X, Nie Y. Deubiquitinase Ubp3 regulates ribophagy and deubiquitinates Smo1 for appressorium-mediated infection by Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:832-844. [PMID: 35220670 PMCID: PMC9104258 DOI: 10.1111/mpp.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The Ubp family of deubiquitinating enzymes has been found to play important roles in plant-pathogenic fungi, but their regulatory mechanisms are still largely unknown. In this study, we revealed the regulatory mechanism of the deubiquitinating enzyme Ubp3 during the infection process of Magnaporthe oryzae. AUBP3 deletion mutant was severely defective in appressorium turgor accumulation, leading to the impairment of appressorial penetration. During appressorium formation, the mutant was also defective in glycogen and lipid metabolism. Interestingly, we found that nitrogen starvation and rapamycin treatment induced the ribophagy process in M. oryzae, which is closely dependent on Ubp3. In the ∆ubp3 mutant, the ribosome proteins and rRNAs were not well degraded on nitrogen starvation and rapamycin treatment. We also found that Ubp3 interacted with the GTPase-activating protein Smo1 and regulated its de-ubiquitination. Ubp3-dependent de-ubiquitination of Smo1 may be required for Smo1 to coordinate Ras signalling. Taken together, our results showed at least two roles of Ubp3 in M. oryzae: it regulates the ribophagy process and it regulates de-ubiquitination of GTPase-activating protein Smo1 for appressorium-mediated infection.
Collapse
Affiliation(s)
- Xuan Cai
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shikun Xiang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenhui He
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mengxi Tang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shimei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deng Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yunfeng Li
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanfang Nie
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- College of Materials and EnergySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
8
|
Chang SC, Zhang BX, Ding JL. E2-E3 ubiquitin enzyme pairing - partnership in provoking or mitigating cancers. Biochim Biophys Acta Rev Cancer 2022; 1877:188679. [DOI: 10.1016/j.bbcan.2022.188679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
|
9
|
Ershov P, Kaluzhskiy L, Mezentsev Y, Yablokov E, Gnedenko O, Ivanov A. Enzymes in the Cholesterol Synthesis Pathway: Interactomics in the Cancer Context. Biomedicines 2021; 9:biomedicines9080895. [PMID: 34440098 PMCID: PMC8389681 DOI: 10.3390/biomedicines9080895] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
A global protein interactome ensures the maintenance of regulatory, signaling and structural processes in cells, but at the same time, aberrations in the repertoire of protein-protein interactions usually cause a disease onset. Many metabolic enzymes catalyze multistage transformation of cholesterol precursors in the cholesterol biosynthesis pathway. Cancer-associated deregulation of these enzymes through various molecular mechanisms results in pathological cholesterol accumulation (its precursors) which can be disease risk factors. This work is aimed at systematization and bioinformatic analysis of the available interactomics data on seventeen enzymes in the cholesterol pathway, encoded by HMGCR, MVK, PMVK, MVD, FDPS, FDFT1, SQLE, LSS, DHCR24, CYP51A1, TM7SF2, MSMO1, NSDHL, HSD17B7, EBP, SC5D, DHCR7 genes. The spectrum of 165 unique and 21 common protein partners that physically interact with target enzymes was selected from several interatomic resources. Among them there were 47 modifying proteins from different protein kinases/phosphatases and ubiquitin-protein ligases/deubiquitinases families. A literature search, enrichment and gene co-expression analysis showed that about a quarter of the identified protein partners was associated with cancer hallmarks and over-represented in cancer pathways. Our results allow to update the current fundamental view on protein-protein interactions and regulatory aspects of the cholesterol synthesis enzymes and annotate of their sub-interactomes in term of possible involvement in cancers that will contribute to prioritization of protein targets for future drug development.
Collapse
|
10
|
Multi-omics analysis of glucose-mediated signaling by a moonlighting Gβ protein Asc1/RACK1. PLoS Genet 2021; 17:e1009640. [PMID: 34214075 PMCID: PMC8282090 DOI: 10.1371/journal.pgen.1009640] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/15/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022] Open
Abstract
Heterotrimeric G proteins were originally discovered through efforts to understand the effects of hormones, such as glucagon and epinephrine, on glucose metabolism. On the other hand, many cellular metabolites, including glucose, serve as ligands for G protein-coupled receptors. Here we investigate the consequences of glucose-mediated receptor signaling, and in particular the role of a Gα subunit Gpa2 and a non-canonical Gβ subunit, known as Asc1 in yeast and RACK1 in animals. Asc1/RACK1 is of particular interest because it has multiple, seemingly unrelated, functions in the cell. The existence of such “moonlighting” operations has complicated the determination of phenotype from genotype. Through a comparative analysis of individual gene deletion mutants, and by integrating transcriptomics and metabolomics measurements, we have determined the relative contributions of the Gα and Gβ protein subunits to glucose-initiated processes in yeast. We determined that Gpa2 is primarily involved in regulating carbohydrate metabolism while Asc1 is primarily involved in amino acid metabolism. Both proteins are involved in regulating purine metabolism. Of the two subunits, Gpa2 regulates a greater number of gene transcripts and was particularly important in determining the amplitude of response to glucose addition. We conclude that the two G protein subunits regulate distinct but complementary processes downstream of the glucose-sensing receptor, as well as processes that lead ultimately to changes in cell growth and metabolism. Despite the societal importance of glucose fermentation in yeast, the mechanisms by which these cells detect and respond to glucose have remained obscure. Glucose detection requires a cell surface receptor coupled to a G protein that is comprised of two subunits, rather than the more typical heterotrimer: an α subunit Gpa2 and the β subunit Asc1 (or RACK1 in humans). Asc1/RACK1 also serves as a subunit of the ribosome, where it regulates the synthesis of proteins involved in glucose fermentation. This manuscript uses global metabolomics and transcriptomics to demonstrate the distinct roles of each G protein subunit in transmitting the glucose signal. Whereas Gpa2 is primarily involved in the metabolism of carbohydrates, Asc1/RACK1 contributes to production of amino acids necessary for protein synthesis and cell division. These findings reveal the initial steps of glucose signaling and several unique and complementary functions of the G protein subunits. More broadly, the integrated approach used here is likely to guide efforts to determine the topology of complex G protein and metabolic signaling networks in humans.
Collapse
|
11
|
Peterson PP, Liu Z. Identification and Characterization of Rapidly Accumulating sch9Δ Suppressor Mutations in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2021; 11:6254187. [PMID: 33901283 DOI: 10.1093/g3journal/jkab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/14/2021] [Indexed: 01/30/2023]
Abstract
Nutrient sensing is important for cell growth, aging, and longevity. In Saccharomyces cerevisiae, Sch9, an AGC-family protein kinase, is a major nutrient sensing kinase homologous to mammalian Akt and S6 kinase. Sch9 integrates environmental cues with cell growth by functioning downstream of TORC1 and in parallel with the Ras/PKA pathway. Mutations in SCH9 lead to reduced cell growth in dextrose medium; however, reports on the ability of sch9Δ mutants to utilize non-fermentable carbon sources are inconsistent. Here we show that sch9Δ mutant strains cannot grow on non-fermentable carbon sources and rapidly accumulate suppressor mutations, which reverse growth defects of sch9Δ mutants. sch9Δ induces gene expression of three transcription factors required for utilization of non-fermentable carbon sources, Cat8, Adr1, and Hap4, while sch9Δ suppressor mutations, termed sns1 and sns2, strongly decrease the gene expression of those transcription factors. Despite the genetic suppression interactions, both sch9Δ and sns1 (or sns2) homozygous mutants have severe defects in meiosis. By screening mutants defective in sporulation, we identified additional sch9Δ suppressor mutants with mutations in GPB1, GPB2, and MCK1. Using library complementation and genetic analysis, we identified SNS1 and SNS2 to be IRA2 and IRA1, respectively. Furthermore, we discovered that lifespan extension in sch9Δ mutants is dependent on IRA2 and that PKA inactivation greatly increases basal expression of CAT8, ADR1, and HAP4. Our results demonstrate that sch9Δ leads to complete loss of growth on non-fermentable carbon sources and mutations in MCK1 or genes encoding negative regulators of the Ras/PKA pathway reverse sch9Δ mutant phenotypes.
Collapse
Affiliation(s)
- Patricia P Peterson
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
12
|
Neira JL, Vega S, Martínez-Rodríguez S, Velázquez-Campoy A. The isolated GTPase-activating-protein-related domain of neurofibromin-1 has a low conformational stability in solution. Arch Biochem Biophys 2021; 700:108767. [PMID: 33476564 DOI: 10.1016/j.abb.2021.108767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 11/28/2022]
Abstract
Neurofibromin-1 (NF1) is a large, multidomain tumour suppressor encoded by the NF1 gene. The gene is mutated in neurofibromatosis type I, a disease characterized by malignant tumours of the nervous system and benign neurofibromas. The best-known activity of NF1 is the down-regulation of the mitogen-activated protein kinase pathway via its three-hundred-residue-long GTPase-activating protein (GAP) domain (the so-called GAP-related domain (NF1-GRD)). The NF1-GRD stimulates Ras GTPase activity in turning off signalling. Despite this activity, NF1-GRD has been demonstrated to bind to other different proteins, such as SPRED1 or MC1R. We have embarked on the biophysical and conformational characterization of NF1-GRD in solution by using several spectroscopic (namely fluorescence and circular dichroism (CD)) and biophysical techniques (namely size exclusion chromatography (SEC) and differential scanning calorimetry (DSC)). This biophysical characterization is crucial in deciphering NF1-GRD interactome and in finding biochemical features, modulating possible protein interactions. The native-like structure of NF1-GRD (as monitored by intrinsic fluorescence and far-UV CD) was strongly pH-dependent showing a pH-titration causing a substantial increase in its helicity. NF1-GRD had a low conformational stability, as concluded from DSC experiments and thermal denaturations followed by intrinsic and ANS fluorescence, and CD. Chemical denaturations showed that NF1-GRD unfolded through an intermediate which has a substantial amount of solvent-exposed hydrophobic patches.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain.
| | - Sonia Vega
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain
| | - Sergio Martínez-Rodríguez
- Laboratorio de Estudios Cristalográficos, CSIC, 18100, Armilla, Granada, Spain; Dpto. Bioquímica y Biología Molecular III e Inmunología, Facultad de Medicina, Universidad de Granada, 18071, Granada, Spain.
| | - Adrián Velázquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos, Joint Units IQFR-CSIC-BIFI, and GBsC-CSIC-BIFI, Universidad de Zaragoza, 50009, Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009, Zaragoza, Spain; Fundación ARAID, Government of Aragón, 50009, Zaragoza, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009, Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28006, Madrid, Spain
| |
Collapse
|
13
|
Bergoug M, Doudeau M, Godin F, Mosrin C, Vallée B, Bénédetti H. Neurofibromin Structure, Functions and Regulation. Cells 2020; 9:cells9112365. [PMID: 33121128 PMCID: PMC7692384 DOI: 10.3390/cells9112365] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022] Open
Abstract
Neurofibromin is a large and multifunctional protein encoded by the tumor suppressor gene NF1, mutations of which cause the tumor predisposition syndrome neurofibromatosis type 1 (NF1). Over the last three decades, studies of neurofibromin structure, interacting partners, and functions have shown that it is involved in several cell signaling pathways, including the Ras/MAPK, Akt/mTOR, ROCK/LIMK/cofilin, and cAMP/PKA pathways, and regulates many fundamental cellular processes, such as proliferation and migration, cytoskeletal dynamics, neurite outgrowth, dendritic-spine density, and dopamine levels. The crystallographic structure has been resolved for two of its functional domains, GRD (GAP-related (GTPase-activating protein) domain) and SecPH, and its post-translational modifications studied, showing it to be localized to several cell compartments. These findings have been of particular interest in the identification of many therapeutic targets and in the proposal of various therapeutic strategies to treat the symptoms of NF1. In this review, we provide an overview of the literature on neurofibromin structure, function, interactions, and regulation and highlight the relationships between them.
Collapse
|
14
|
Nuclear Isoforms of Neurofibromin Are Required for Proper Spindle Organization and Chromosome Segregation. Cells 2020; 9:cells9112348. [PMID: 33114250 PMCID: PMC7690890 DOI: 10.3390/cells9112348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/30/2022] Open
Abstract
Mitotic spindles are highly organized, microtubule (MT)-based, transient structures that serve the fundamental function of unerring chromosome segregation during cell division and thus of genomic stability during tissue morphogenesis and homeostasis. Hence, a multitude of MT-associated proteins (MAPs) regulates the dynamic assembly of MTs in preparation for mitosis. Some tumor suppressors, normally functioning to prevent tumor development, have now emerged as significant MAPs. Among those, neurofibromin, the product of the Neurofibromatosis-1 gene (NF1), a major Ras GTPase activating protein (RasGAP) in neural cells, controls also the critical function of chromosome congression in astrocytic cellular contexts. Cell type- and development-regulated splicings may lead to the inclusion or exclusion of NF1exon51, which bears a nuclear localization sequence (NLS) for nuclear import at G2; yet the functions of the produced NLS and ΔNLS neurofibromin isoforms have not been previously addressed. By using a lentiviral shRNA system, we have generated glioblastoma SF268 cell lines with conditional knockdown of NLS or ΔNLS transcripts. In dissecting the roles of NLS or ΔNLS neurofibromins, we found that NLS-neurofibromin knockdown led to increased density of cytosolic MTs but loss of MT intersections, anastral spindles featuring large hollows and abnormal chromosome positioning, and finally abnormal chromosome segregation and increased micronuclei frequency. Therefore, we propose that NLS neurofibromin isoforms exert prominent mitotic functions.
Collapse
|
15
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020; 295:1105-1119. [PMID: 31836666 PMCID: PMC6983858 DOI: 10.1074/jbc.ra119.010934] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/10/2019] [Indexed: 12/28/2022] Open
Abstract
Neurofibromin is a tumor suppressor encoded by the NF1 gene, which is mutated in Rasopathy disease neurofibromatosis type I. Defects in NF1 lead to aberrant signaling through the RAS-mitogen-activated protein kinase pathway due to disruption of the neurofibromin GTPase-activating function on RAS family small GTPases. Very little is known about the function of most of the neurofibromin protein; to date, biochemical and structural data exist only for its GAP domain and a region containing a Sec-PH motif. To better understand the role of this large protein, here we carried out a series of biochemical and biophysical experiments, including size-exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray and neutron scattering, and analytical ultracentrifugation, indicating that full-length neurofibromin forms a high-affinity dimer. We observed that neurofibromin dimerization also occurs in human cells and likely has biological and clinical implications. Analysis of purified full-length and truncated neurofibromin variants by negative-stain EM revealed the overall architecture of the dimer and predicted the potential interactions that contribute to the dimer interface. We could reconstitute structures resembling high-affinity full-length dimers by mixing N- and C-terminal protein domains in vitro The reconstituted neurofibromin was capable of GTPase activation in vitro, and co-expression of the two domains in human cells effectively recapitulated the activity of full-length neurofibromin. Taken together, these results suggest how neurofibromin dimers might form and be stabilized within the cell.
Collapse
Affiliation(s)
- Mukul Sherekar
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Sae-Won Han
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
- Department of Internal Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Matthew Drew
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Dana Rabara
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Timothy Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Puneet Juneja
- Robert P. Apkarian Integrated Electron Microscopy Core, Emory University, Atlanta, Georgia 30322
| | - Hugh O'Neill
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
| | | | | | | | - Sriram Subramaniam
- Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Department of Biochemistry, Life Sciences Center, University of British Columbia, Vancouver, British Columbia V6T1Z3, Canada
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
- Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702
| |
Collapse
|
16
|
Sherekar M, Han SW, Ghirlando R, Messing S, Drew M, Rabara D, Waybright T, Juneja P, O'Neill H, Stanley CB, Bhowmik D, Ramanathan A, Subramaniam S, Nissley DV, Gillette W, McCormick F, Esposito D. Biochemical and structural analyses reveal that the tumor suppressor neurofibromin (NF1) forms a high-affinity dimer. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49919-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
17
|
Affinity Purification of NF1 Protein-Protein Interactors Identifies Keratins and Neurofibromin Itself as Binding Partners. Genes (Basel) 2019; 10:genes10090650. [PMID: 31466283 PMCID: PMC6770187 DOI: 10.3390/genes10090650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 12/23/2022] Open
Abstract
Neurofibromatosis Type 1 (NF1) is caused by pathogenic variants in the NF1 gene encoding neurofibromin. Definition of NF1 protein–protein interactions (PPIs) has been difficult and lacks replication, making it challenging to define binding partners that modulate its function. We created a novel tandem affinity purification (TAP) tag cloned in frame to the 3’ end of the full-length murine Nf1 cDNA (mNf1). We show that this cDNA is functional and expresses neurofibromin, His-Tag, and can correct p-ERK/ERK ratios in NF1 null HEK293 cells. We used this affinity tag to purify binding partners with Strep-Tactin®XT beads and subsequently, identified them via mass spectrometry (MS). We found the tagged mNf1 can affinity purify human neurofibromin and vice versa, indicating that neurofibromin oligomerizes. We identify 21 additional proteins with high confidence of interaction with neurofibromin. After Metacore network analysis of these 21 proteins, eight appear within the same network, primarily keratins regulated by estrogen receptors. Previously, we have shown that neurofibromin levels negatively regulate keratin expression. Here, we show through pharmacological inhibition that this is independent of Ras signaling, as the inhibitors, selumetinib and rapamycin, do not alter keratin expression. Further characterization of neurofibromin oligomerization and binding partners could aid in discovering new neurofibromin functions outside of Ras regulation, leading to novel drug targets.
Collapse
|
18
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
19
|
Jain P, Sethi SC, Pratyusha VA, Garai P, Naqvi N, Singh S, Pawar K, Puri N, Komath SS. Ras signaling activates glycosylphosphatidylinositol (GPI) anchor biosynthesis via the GPI- N-acetylglucosaminyltransferase (GPI-GnT) in Candida albicans. J Biol Chem 2018; 293:12222-12238. [PMID: 29907567 DOI: 10.1074/jbc.ra117.001225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/17/2018] [Indexed: 01/08/2023] Open
Abstract
The ability of Candida albicans to switch between yeast to hyphal form is a property that is primarily associated with the invasion and virulence of this human pathogenic fungus. Several glycosylphosphatidylinositol (GPI)-anchored proteins are expressed only during hyphal morphogenesis. One of the major pathways that controls hyphal morphogenesis is the Ras-signaling pathway. We examine the cross-talk between GPI anchor biosynthesis and Ras signaling in C. albicans. We show that the first step of GPI biosynthesis is activated by Ras in C. albicans This is diametrically opposite to what is reported in Saccharomyces cerevisiae Of the two C. albicans Ras proteins, CaRas1 alone activates GPI-GnT activity; activity is further stimulated by constitutively activated CaRas1. CaRas1 localized to the cytoplasm or endoplasmic reticulum (ER) is sufficient for GPI-GnT activation. Of the six subunits of the GPI-N-acetylglucosaminyltransferase (GPI-GnT) that catalyze the first step of GPI biosynthesis, CaGpi2 is the key player involved in activating Ras signaling and hyphal morphogenesis. Activation of Ras signaling is independent of the catalytic competence of GPI-GnT. This too is unlike what is observed in S. cerevisiae where multiple subunits were identified as inhibiting Ras2. Fluorescence resonance energy transfer (FRET) studies indicate a specific physical interaction between CaRas1 and CaGpi2 in the ER, which would explain the ability of CaRas1 to activate GPI-GnT. CaGpi2, in turn, promotes activation of the Ras-signaling pathway and hyphal morphogenesis. The Cagpi2 mutant is also more susceptible to macrophage-mediated killing, and macrophage cells show better survival when co-cultured with Cagpi2.
Collapse
Affiliation(s)
- Priyanka Jain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | | - Pramita Garai
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Nilofer Naqvi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sonali Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Kalpana Pawar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Niti Puri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Sneha Sudha Komath
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110 067, India.
| |
Collapse
|
20
|
Ras hyperactivation versus overexpression: Lessons from Ras dynamics in Candida albicans. Sci Rep 2018; 8:5248. [PMID: 29588468 PMCID: PMC5869725 DOI: 10.1038/s41598-018-23187-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/06/2018] [Indexed: 12/25/2022] Open
Abstract
Ras signaling in response to environmental cues is critical for cellular morphogenesis in eukaryotes. This signaling is tightly regulated and its activation involves multiple players. Sometimes Ras signaling may be hyperactivated. In C. albicans, a human pathogenic fungus, we demonstrate that dynamics of hyperactivated Ras1 (Ras1G13V or Ras1 in Hsp90 deficient strains) can be reliably differentiated from that of normal Ras1 at (near) single molecule level using fluorescence correlation spectroscopy (FCS). Ras1 hyperactivation results in significantly slower dynamics due to actin polymerization. Activating actin polymerization by jasplakinolide can produce hyperactivated Ras1 dynamics. In a sterol-deficient hyperfilamentous GPI mutant of C. albicans too, Ras1 hyperactivation results from Hsp90 downregulation and causes actin polymerization. Hyperactivated Ras1 co-localizes with G-actin at the plasma membrane rather than with F-actin. Depolymerizing actin with cytochalasin D results in faster Ras1 dynamics in these and other strains that show Ras1 hyperactivation. Further, ergosterol does not influence Ras1 dynamics.
Collapse
|
21
|
KRH1 and KRH2 are functionally non-redundant in signaling for pseudohyphal differentiation in Saccharomyces cerevisiae. Curr Genet 2017; 63:851-859. [PMID: 28247024 DOI: 10.1007/s00294-017-0684-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/31/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
Diploid cells of Saccharomyces cerevisiae undergo pseudohyphal differentiation in response to nutrient depletion. Although this dimorphic transition occurs due to signals originating from carbon and nitrogen limitation, how these signals are coordinated and integrated is not understood. Results of this study indicate that the pseudohyphal defect of the mep2∆ mutant is overcome upon disruption of KRH2/GPB1 but not KRH1/GPB2. Further, the agar invasion defect observed in a mep2 mutant strain is suppressed only by deleting KRH2 and not KRH1. Thus, the results presented indicate that MEP2 functions by inhibiting KRH2 to trigger filamentation response when glucose becomes limiting. Biochemical data and phenotypic response to glucose replenishment reveal that KRH1 and KRH2 are differentially regulated by glucose and ammonium to induce pseudohyphae formation via the cAMP-PKA pathway. In contrast to the current view, this study clearly demonstrates that, KRH1 and KRH2 are not functionally redundant.
Collapse
|
22
|
Rezvani K. UBXD Proteins: A Family of Proteins with Diverse Functions in Cancer. Int J Mol Sci 2016; 17:ijms17101724. [PMID: 27754413 PMCID: PMC5085755 DOI: 10.3390/ijms17101724] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 09/24/2016] [Accepted: 10/08/2016] [Indexed: 12/15/2022] Open
Abstract
The UBXD family is a diverse group of UBX (ubiquitin-regulatory X) domain-containing proteins in mammalian cells. Members of this family contain a UBX domain typically located at the carboxyl-terminal of the protein. In contrast to the UBX domain shared by all members of UBXD family, the amino-terminal domains are diverse and appear to carry out different roles in a subcellular localization-dependent manner. UBXD proteins are principally associated with the endoplasmic reticulum (ER), where they positively or negatively regulate the ER-associated degradation machinery (ERAD). The distinct protein interaction networks of UBXD proteins allow them to have specific functions independent of the ERAD pathway in a cell type- and tissue context-dependent manner. Recent reports have illustrated that a number of mammalian members of the UBXD family play critical roles in several proliferation and apoptosis pathways dysregulated in selected types of cancer. This review covers recent advances that elucidate the therapeutic potential of selected members of the UBXD family that can contribute to tumor growth.
Collapse
Affiliation(s)
- Khosrow Rezvani
- Division of Basic Biomedical Sciences, Sanford School of Medicine, The University of South Dakota, 414 E. Clark Street, Lee Medical Building, Vermillion, SD 57069, USA.
| |
Collapse
|
23
|
A plant alkaloid, veratridine, potentiates cancer chemosensitivity by UBXN2A-dependent inhibition of an oncoprotein, mortalin-2. Oncotarget 2016; 6:23561-81. [PMID: 26188124 PMCID: PMC4695137 DOI: 10.18632/oncotarget.4452] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/30/2015] [Indexed: 12/11/2022] Open
Abstract
Veratridine (VTD), an alkaloid derived from the Liliaceae plant shows anti-tumor effects; however, its molecular targets have not been thoroughly studied. Using a high-throughput drug screen, we found that VTD enhances transactivation of UBXN2A, resulting in upregulation of UBXN2A in the cytoplasm, where UBXN2A binds and inhibits the oncoprotein mortalin-2 (mot-2). VTD-treated cancer cells undergo cell death in UBXN2A- and mot-2-dependent manners. The cytotoxic function of VTD is grade-dependent, and the combined treatment with a sub-optimal dose of the standard chemotherapy, 5-Fluorouracil (5-FU) and etoposide, demonstrated a synergistic effect, resulting in higher therapeutic efficacy. VTD influences the CD44+ stem cells, possibly through UBXN2A-dependent inhibition of mot-2. The VTD-dependent expression of UBXN2A is a potential candidate for designing novel strategies for colon cancer treatment because: 1) In 50% of colon cancer patients, UBXN2A protein levels in tumor tissues are significantly lower than those in the adjacent normal tissues. 2) Cytoplasmic expression of the mot-2 protein is very low in non-cancerous cells; thus, VTD can produce tumor-specific toxicity while normal cells remain intact. 3) Finally, VTD or its modified analogs offer a valuable adjuvant chemotherapy strategy to improve the efficacy of 5-FU-based chemotherapy for colon cancer patients harboring WT-p53.
Collapse
|
24
|
Taylor MB, Phan J, Lee JT, McCadden M, Ehrenreich IM. Diverse genetic architectures lead to the same cryptic phenotype in a yeast cross. Nat Commun 2016; 7:11669. [PMID: 27248513 PMCID: PMC4895441 DOI: 10.1038/ncomms11669] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 04/18/2016] [Indexed: 01/09/2023] Open
Abstract
Cryptic genetic variants that do not typically influence traits can interact epistatically with each other and mutations to cause unexpected phenotypes. To improve understanding of the genetic architectures and molecular mechanisms that underlie these interactions, we comprehensively dissected the genetic bases of 17 independent instances of the same cryptic colony phenotype in a yeast cross. In eight cases, the phenotype resulted from a genetic interaction between a de novo mutation and one or more cryptic variants. The number and identities of detected cryptic variants depended on the mutated gene. In the nine remaining cases, the phenotype arose without a de novo mutation due to two different classes of higher-order genetic interactions that only involve cryptic variants. Our results may be relevant to other species and disease, as most of the mutations and cryptic variants identified in our study reside in components of a partially conserved and oncogenic signalling pathway. Cryptic genetic variants may not individually show discernible phenotypic effects, but collectively, these polymorphisms can lead to unexpected, genetically complex traits that might be relevant to evolution and disease. Here, the authors use large yeast populations to comprehensively dissect the genetic bases of 17 independent occurrences of a phenotype that arises due to combinations of epistatically interacting cryptic variants.
Collapse
Affiliation(s)
- Matthew B Taylor
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Joann Phan
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Jonathan T Lee
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Madelyn McCadden
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Ian M Ehrenreich
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
25
|
Ras GTPase activating protein CoIra1 is involved in infection-related morphogenesis by regulating cAMP and MAPK signaling pathways through CoRas2 in Colletotrichum orbiculare. PLoS One 2014; 9:e109045. [PMID: 25275394 PMCID: PMC4183519 DOI: 10.1371/journal.pone.0109045] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/29/2014] [Indexed: 11/19/2022] Open
Abstract
Colletotrichum orbiculare is the causative agent of anthracnose disease on cucurbitaceous plants. Several signaling pathways, including cAMP–PKA and mitogen-activating protein kinase (MAPK) pathways are involved in the infection-related morphogenesis and pathogenicity of C. orbiculare. However, upstream regulators of these pathways for this species remain unidentified. In this study, CoIRA1, encoding RAS GTPase activating protein, was identified by screening the Agrobacterium tumefaciens-mediated transformation (AtMT) mutant, which was defective in the pathogenesis of C. orbiculare. The coira1 disrupted mutant showed an abnormal infection-related morphogenesis and attenuated pathogenesis. In Saccharomyces cerevisiae, Ira1/2 inactivates Ras1/2, which activates adenylate cyclase, leading to the synthesis of cAMP. Increase in the intracellular cAMP levels in coira1 mutants and dominant active forms of CoRAS2 introduced transformants indicated that CoIra1 regulates intracellular cAMP levels through CoRas2. Moreover, the phenotypic analysis of transformants that express dominant active form CoRAS2 in the comekk1 mutant or a dominant active form CoMEKK1 in the coras2 mutant indicated that CoRas2 regulates the MAPK CoMekk1–Cmk1 signaling pathway. The CoRas2 localization pattern in vegetative hyphae of the coira1 mutant was similar to that of the wild-type, expressing a dominant active form of RFP–CoRAS2. Moreover, we demonstrated that bimolecular fluorescence complementation (BiFC) signals between CoIra1 and CoRas2 were detected in the plasma membrane of vegetative hyphae. Therefore, it is likely that CoIra1 negatively regulates CoRas2 in vegetative hyphae. Furthermore, cytological analysis of the localization of CoIraI and CoRas2 revealed the dynamic cellular localization of the proteins that leads to proper assembly of F-actin at appressorial pore required for successful penetration peg formation through the pore. Thus, our results indicated that CoIra1 is involved in infection-related morphogenesis and pathogenicity by proper regulation of cAMP and MAPK signaling pathways through CoRas2.
Collapse
|
26
|
Galello F, Moreno S, Rossi S. Interacting proteins of protein kinase A regulatory subunit in Saccharomyces cerevisiae. J Proteomics 2014; 109:261-75. [DOI: 10.1016/j.jprot.2014.07.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/20/2014] [Accepted: 07/09/2014] [Indexed: 12/16/2022]
|
27
|
Abstract
For centuries yeast species have been popular hosts for classical biotechnology processes, such as baking, brewing, and wine making, and more recently for recombinant proteins production, thanks to the advantages of unicellular organisms (i.e., ease of genetic manipulation and rapid growth) together with the ability to perform eukaryotic posttranslational modifications. Moreover, yeast cells have been used for few decades as a tool for identifying the genes and pathways involved in basic cellular processes such as the cell cycle, aging, and stress response. In the budding yeast S. cerevisiae the Ras/cAMP/PKA pathway is directly involved in the regulation of metabolism, cell growth, stress resistance, and proliferation in response to the availability of nutrients and in the adaptation to glucose, controlling cytosolic cAMP levels and consequently the cAMP-dependent protein kinase (PKA) activity. Moreover, Ras signalling has been identified in several pathogenic yeasts as a key controller for virulence, due to its involvement in yeast morphogenesis. Nowadays, yeasts are still useful for Ras-like proteins investigation, both as model organisms and as a test tube to study variants of heterologous Ras-like proteins.
Collapse
Affiliation(s)
- Renata Tisi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | | | | |
Collapse
|
28
|
Sullivan K, El-Hoss J, Quinlan KGR, Deo N, Garton F, Seto JTC, Gdalevitch M, Turner N, Cooney GJ, Kolanczyk M, North KN, Little DG, Schindeler A. NF1 is a critical regulator of muscle development and metabolism. Hum Mol Genet 2013; 23:1250-9. [PMID: 24163128 DOI: 10.1093/hmg/ddt515] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
There is emerging evidence for reduced muscle function in children with neurofibromatosis type 1 (NF1). We have examined three murine models featuring NF1 deficiency in muscle to study the effect on muscle function as well as any underlying pathophysiology. The Nf1(+/-) mouse exhibited no differences in overall weight, lean tissue mass, fiber size, muscle weakness as measured by grip strength or muscle atrophy-recovery with limb disuse, although this model lacks many other characteristic features of the human disease. Next, muscle-specific knockout mice (Nf1muscle(-/-)) were generated and they exhibited a failure to thrive leading to neonatal lethality. Intramyocellular lipid accumulations were observed by electron microscopy and Oil Red O staining. More mature muscle specimens lacking Nf1 expression taken from the limb-specific Nf1Prx1(-/-) conditional knockout line showed a 10-fold increase in muscle triglyceride content. Enzyme assays revealed a significant increase in the activities of oxidative metabolism enzymes in the Nf1Prx1(-/-) mice. Western analyses showed increases in the expression of fatty acid synthase and the hormone leptin, as well as decreased expression of a number of fatty acid transporters in this mouse line. These data support the hypothesis that NF1 is essential for normal muscle function and survival and are the first to suggest a direct link between NF1 and mitochondrial fatty acid metabolism.
Collapse
|
29
|
Li Y, Wang Y. Ras protein/cAMP-dependent protein kinase signaling is negatively regulated by a deubiquitinating enzyme, Ubp3, in yeast. J Biol Chem 2013; 288:11358-65. [PMID: 23476013 DOI: 10.1074/jbc.m112.449751] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Ras proteins and cAMP-dependent protein kinase (protein kinase A, PKA) are important components of a nutrient signaling pathway that mediates cellular responses to glucose in yeast. The molecular mechanisms that regulate Ras/PKA-mediated signaling remain to be fully understood. Here, we provide evidence that Ras/PKA signaling is negatively regulated by a deubiquitinating enzyme, Ubp3. Disrupting the activity of Ubp3 leads to hyperactivation of PKA, as evidenced by much enhanced phosphorylation of PKA substrates, decreased accumulation of glycogen, larger cell size, and increased sensitivity to heat shock. Levels of intracellular cAMP and the active forms of Ras proteins are also elevated in the ubp3Δ mutant. Consistent with a possibility that the increased cAMP is responsible for the abnormal signaling behavior of the ubp3Δ mutant, overexpressing PDE2, which encodes a phosphodiesterase that hydrolyzes cAMP, significantly relieves the cell size increase and heat shock sensitivity of the mutant. Further analysis reveals that Ubp3 interacts with a Ras GTPase-accelerating protein, Ira2, and regulates its level of ubiquitination. Together, our data indicate that Ubp3 is a new regulator of the Ras/PKA signaling pathway and suggest that Ubp3 regulates this pathway by controlling the ubiquitination of Ras GTPase-accelerating protein Ira2.
Collapse
Affiliation(s)
- Yang Li
- Department of Biology, Saint Louis University, St. Louis, Missouri 63103, USA
| | | |
Collapse
|
30
|
Gaytán BD, Loguinov AV, Lantz SR, Lerot JM, Denslow ND, Vulpe CD. Functional profiling discovers the dieldrin organochlorinated pesticide affects leucine availability in yeast. Toxicol Sci 2013; 132:347-58. [PMID: 23358190 PMCID: PMC3595527 DOI: 10.1093/toxsci/kft018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Exposure to organochlorinated pesticides such as dieldrin has been linked to Parkinson’s and Alzheimer’s diseases, endocrine disruption, and cancer, but the cellular and molecular mechanisms of toxicity behind these effects remain largely unknown. Here we demonstrate, using a functional genomics approach in the model eukaryote Saccharomyces cerevisiae, that dieldrin alters leucine availability. This model is supported by multiple lines of congruent evidence: (1) mutants defective in amino acid signaling or transport are sensitive to dieldrin, which is reversed by the addition of exogenous leucine; (2) dieldrin sensitivity of wild-type or mutant strains is dependent upon leucine concentration in the media; (3) overexpression of proteins that increase intracellular leucine confer resistance to dieldrin; (4) leucine uptake is inhibited in the presence of dieldrin; and (5) dieldrin induces the amino acid starvation response. Additionally, we demonstrate that appropriate negative regulation of the Ras/protein kinase A pathway, along with an intact pyruvate dehydrogenase complex, is required for dieldrin tolerance. Many yeast genes described in this study have human orthologs that may modulate dieldrin toxicity in humans.
Collapse
Affiliation(s)
- Brandon D Gaytán
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
31
|
Olzmann JA, Richter CM, Kopito RR. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc Natl Acad Sci U S A 2013; 110:1345-50. [PMID: 23297223 PMCID: PMC3557085 DOI: 10.1073/pnas.1213738110] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
UBXD8 is a membrane-embedded recruitment factor for the p97/VCP segregase that has been previously linked to endoplasmic reticulum (ER)-associated degradation and to the control of triacylglycerol synthesis in the ER. UBXD8 also has been identified as a component of cytoplasmic lipid droplets (LDs), but neither the mechanisms that control its trafficking between the ER and LDs nor its functions in the latter organelle have been investigated previously. Here we report that association of UBXD8 with the ER-resident rhomboid pseudoprotease UBAC2 specifically restricts trafficking of UBXD8 to LDs, and that the steady-state partitioning of UBXD8 between the ER and LDs can be experimentally manipulated by controlling the relative expression of these two proteins. We exploit this interaction to show that UBXD8-mediated recruitment of p97/VCP to LDs increases LD size by inhibiting the activity of adipose triglyceride lipase (ATGL), the rate-limiting enzyme in triacylglycerol hydrolysis. Our findings show that UBXD8 binds directly to ATGL and promotes dissociation of its endogenous coactivator, CGI-58. These data indicate that UBXD8 and p97/VCP play central integrative roles in cellular energy homeostasis.
Collapse
Affiliation(s)
| | | | - Ron R. Kopito
- Department of Biology, Stanford University, Stanford, CA 94305
| |
Collapse
|
32
|
Abstract
Filamentous growth is a nutrient-regulated growth response that occurs in many fungal species. In pathogens, filamentous growth is critical for host-cell attachment, invasion into tissues, and virulence. The budding yeast Saccharomyces cerevisiae undergoes filamentous growth, which provides a genetically tractable system to study the molecular basis of the response. Filamentous growth is regulated by evolutionarily conserved signaling pathways. One of these pathways is a mitogen activated protein kinase (MAPK) pathway. A remarkable feature of the filamentous growth MAPK pathway is that it is composed of factors that also function in other pathways. An intriguing challenge therefore has been to understand how pathways that share components establish and maintain their identity. Other canonical signaling pathways-rat sarcoma/protein kinase A (RAS/PKA), sucrose nonfermentable (SNF), and target of rapamycin (TOR)-also regulate filamentous growth, which raises the question of how signals from multiple pathways become integrated into a coordinated response. Together, these pathways regulate cell differentiation to the filamentous type, which is characterized by changes in cell adhesion, cell polarity, and cell shape. How these changes are accomplished is also discussed. High-throughput genomics approaches have recently uncovered new connections to filamentous growth regulation. These connections suggest that filamentous growth is a more complex and globally regulated behavior than is currently appreciated, which may help to pave the way for future investigations into this eukaryotic cell differentiation behavior.
Collapse
|
33
|
Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett 2012; 586:1409-18. [PMID: 22673505 DOI: 10.1016/j.febslet.2012.03.017] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 03/09/2012] [Accepted: 03/13/2012] [Indexed: 01/23/2023]
Abstract
FBW7 (F-box and WD repeat domain-containing 7) has been characterized as an onco-suppressor protein in human cancers. Recent studies have also shown that FBW7 exerts its anti-tumor function primarily by promoting the degradation of various oncoproteins, through which FBW7 regulates cellular proliferation, differentiation and causes genetic instability. In this review, we will discuss the role of FBW7 downstream substrates and how dysregulation of Fbw7-mediated proteolysis of these substrates contributes to tumorigenesis. Additionally, we will also summarize the currently available various Fbw7-knockout mouse models that support Fbw7 as a tumor suppressor gene in the development and progression of human malignancies.
Collapse
|
34
|
|
35
|
Suzuki M, Otsuka T, Ohsaki Y, Cheng J, Taniguchi T, Hashimoto H, Taniguchi H, Fujimoto T. Derlin-1 and UBXD8 are engaged in dislocation and degradation of lipidated ApoB-100 at lipid droplets. Mol Biol Cell 2012; 23:800-10. [PMID: 22238364 PMCID: PMC3290640 DOI: 10.1091/mbc.e11-11-0950] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Apolipoprotein B-100 after lipidation is dislocated from the ER lumen to the cytoplasmic surface of lipid droplets for proteasomal degradation. UBXD8 in lipid droplets and Derlin-1 in the ER membrane interact with each other and with ApoB and are engaged in the pre- and postdislocation steps, respectively. Apolipoprotein B-100 (ApoB) is the principal component of very low density lipoprotein. Poorly lipidated nascent ApoB is extracted from the Sec61 translocon and degraded by proteasomes. ApoB lipidated in the endoplasmic reticulum (ER) lumen is also subjected to proteasomal degradation, but where and how it dislocates to the cytoplasm remain unknown. In the present study, we demonstrate that ApoB after lipidation is dislocated to the cytoplasmic surface of lipid droplets (LDs) and accumulates as ubiquitinated ApoB in Huh7 cells. Depletion of UBXD8, which is almost confined to LDs in this cell type, decreases recruitment of p97 to LDs and causes an increase of both ubiquitinated ApoB on the LD surface and lipidated ApoB in the ER lumen. In contrast, abrogation of Derlin-1 function induces an accumulation of lipidated ApoB in the ER lumen but does not increase ubiquitinated ApoB on the LD surface. UBXD8 and Derlin-1 bind with each other and with lipidated ApoB and show colocalization around LDs. These results indicate that ApoB after lipidation is dislocated from the ER lumen to the LD surface for proteasomal degradation and that Derlin-1 and UBXD8 are engaged in the predislocation and postdislocation steps, respectively.
Collapse
Affiliation(s)
- Michitaka Suzuki
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Inclusion body myopathy with Paget disease of the bone and frontotemporal dementia (IBMPFD) is a multisystem degenerative disorder caused by mutations in the valosin-containing protein (VCP) gene. How missense mutations in this abundant, ubiquitously expressed, multifunctional protein lead to the degeneration of disparate tissues is unclear. VCP participates in diverse cellular functions by associating with an expanding collection of substrates and cofactors that dictate its functionality. In this issue of the JCI, Wang and colleagues have further expanded the VCP interactome by identifying neurofibromin-1 (NF1) as a novel VCP interactor in the CNS. IBMPFD-associated mutations disrupt binding of VCP to NF1, resulting in reduced synaptogenesis. Thus, aberrant interactions between VCP and NF1 may explain the dementia phenotype and cognitive delay observed in patients with IBMPFD and neurofibromatosis type 1.
Collapse
Affiliation(s)
- Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA.
| |
Collapse
|
37
|
SAG/RBX2/ROC2 E3 ubiquitin ligase is essential for vascular and neural development by targeting NF1 for degradation. Dev Cell 2011; 21:1062-76. [PMID: 22118770 DOI: 10.1016/j.devcel.2011.09.014] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 06/09/2011] [Accepted: 09/26/2011] [Indexed: 11/21/2022]
Abstract
SAG/RBX2/ROC2 protein is an essential RING component of SCF E3 ubiquitin ligase. The role of SAG during embryogenesis remains unknown. We report a critical role for SAG in controlling vascular and neural development by modulating RAS activity via promoting degradation of neurofibromatosis type 1 (NF1). Mice mutant for Sag died at embryonic day 11.5-12.5 with severe abnormalities in vascular and nervous system. Sag inactivation caused Nf1 accumulation and Ras inhibition, which blocks embryonic stem (ES) cells from undergoing endothelial differentiation and inhibits angiogenesis and proliferation in teratomas. Simultaneous Nf1 deletion fully rescues the differentiation defects in Sag(-/-) ES cells and partially rescues vascular and neural defects in Sag(-/-) embryos, suggesting that the effects of Sag deletion may not be solely explained by Nf1 misregulation. Collectively, our study identifies NF1 as a physiological substrate of SAG-CUL1-FBXW7 E3 ligase and establishes a ubiquitin-dependent regulatory mechanism for the NF1-RAS pathway during embryogenesis.
Collapse
|
38
|
Abstract
Since the study of yeast RAS and adenylate cyclase in the early 1980s, yeasts including budding and fission yeasts contributed significantly to the study of Ras signaling. First, yeast studies provided insights into how Ras activates downstream signaling pathways. Second, yeast studies contributed to the identification and characterization of GAP and GEF proteins, key regulators of Ras. Finally, the study of yeast provided many important insights into the understanding of C-terminal processing and membrane association of Ras proteins.
Collapse
Affiliation(s)
- Fuyuhiko Tamanoi
- Department of Microbiology, Immunology & Molecular Genetics, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| |
Collapse
|
39
|
Abstract
Ever since their discovery as cellular counterparts of viral oncogenes more than 25 years ago, much progress has been made in understanding the complex networks of signal transduction pathways activated by oncogenic Ras mutations in human cancers. The activity of Ras is regulated by nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), and much emphasis has been put into the biochemical and structural analysis of the Ras/GAP complex. The mechanisms by which GAPs catalyze Ras-GTP hydrolysis have been clarified and revealed that oncogenic Ras mutations confer resistance to GAPs and remain constitutively active. However, it is yet unclear how cells coordinate the large and divergent GAP protein family to promote Ras inactivation and ensure a certain biological response. Different domain arrangements in GAPs to create differential protein-protein and protein-lipid interactions are probably key factors determining the inactivation of the 3 Ras isoforms H-, K-, and N-Ras and their effector pathways. In recent years, in vitro as well as cell- and animal-based studies examining GAP activity, localization, interaction partners, and expression profiles have provided further insights into Ras inactivation and revealed characteristics of several GAPs to exert specific and distinct functions. This review aims to summarize knowledge on the cell biology of RasGAP proteins that potentially contributes to differential regulation of spatiotemporal Ras signaling.
Collapse
Affiliation(s)
- Thomas Grewal
- Faculty of Pharmacy, University of Sydney, Sydney, NSW, Australia
| | | | | | | |
Collapse
|
40
|
de la Vega M, Burrows JF, Johnston JA. Ubiquitination: Added complexity in Ras and Rho family GTPase function. Small GTPases 2011; 2:192-201. [PMID: 22145091 DOI: 10.4161/sgtp.2.4.16707] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/08/2011] [Accepted: 07/08/2011] [Indexed: 12/17/2022] Open
Abstract
The regulation of the small GTPases leading to their membrane localization has long been attributed to processing of their C-terminal CAAX box. As deregulation of many of these GTPases have been implicated in cancer and other disorders, prenylation and methylation of this CAAX box has been studied in depth as a possibility for drug targeting, but unfortunately, to date no drug has proved clinically beneficial. However, these GTPases also undergo other modifications that may be important for their regulation. Ubiquitination has long been demonstrated to regulate the fate of numerous cellular proteins and recently it has become apparent that many GTPases, along with their GAPs, GeFs and GDis, undergo ubiquitination leading to a variety of fates such as re-localization or degradation. in this review we focus on the recent literature demonstrating that the regulation of small GTPases by ubiquitination, either directly or indirectly, plays a considerable role in controlling their function and that targeting these modifications could be important for disease treatment.
Collapse
Affiliation(s)
- Michelle de la Vega
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University; Belfast, UK
| | | | | |
Collapse
|
41
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
42
|
Welti S, Kühn S, D'Angelo I, Brügger B, Kaufmann D, Scheffzek K. Structural and biochemical consequences of NF1 associated nontruncating mutations in the Sec14-PH module of neurofibromin. Hum Mutat 2011; 32:191-7. [PMID: 21089070 DOI: 10.1002/humu.21405] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/26/2010] [Indexed: 11/06/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder caused by alterations in the tumor suppressor gene NF1. Clinical manifestations include various neural crest derived tumors, pigmentation anomalies, bone deformations, and learning disabilities. NF1 encodes the Ras specific GTPase activating protein (RasGAP) neurofibromin, of which the central RasGAP related domain as well as a Sec14-like (residues 1560-1699) and a tightly interacting pleckstrin homology (PH)-like (1713-1818) domain are currently well defined. However, patient-derived nontruncating mutations have been reported along the whole NF1 gene, suggesting further essential protein functions. Focusing on the Sec14-PH module, we have engineered such nontruncating mutations and analyzed their implications on protein function and structure using lipid binding assays, CD spectroscopy and X-ray crystallography. Although lipid binding appears to be preserved among most nontruncating mutants, we see major structural changes for two of the alterations. Judging from these changes and our biochemical data, we suggest the presence of an intermolecular contact surface in the lid-lock region of the protein.
Collapse
Affiliation(s)
- Stefan Welti
- European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
43
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
44
|
Budhwar R, Lu A, Hirsch JP. Nutrient control of yeast PKA activity involves opposing effects on phosphorylation of the Bcy1 regulatory subunit. Mol Biol Cell 2010; 21:3749-58. [PMID: 20826609 PMCID: PMC2965690 DOI: 10.1091/mbc.e10-05-0388] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Kelch repeat proteins Gpb1 and Gpb2 control yeast PKA activity in response to nutrients by stimulating phosphorylation of the Bcy1 regulatory subunit. Gpb1 and Gpb2 function by blocking inhibition of Bcy1 phosphorylation by PKA catalytic subunits. Phosphorylated Bcy1 is more stable and is a more effective inhibitor of PKA activity. GPB1 and GPB2 encode kelch repeat-containing proteins that regulate protein kinase A (PKA) in yeast by a cAMP-independent process. Here we show that Gpb1 and Gpb2 stimulate phosphorylation of PKA regulatory subunit Bcy1 in low glucose concentrations, thereby promoting the inhibitory function of Bcy1 when nutrients are scarce and PKA activity is expected to be low. Gpb1 and Gpb2 stimulate Bcy1 phosphorylation at an unknown site, and this modification stabilizes Bcy1 that has been phosphorylated by PKA catalytic subunits at serine-145. The BCY1S145A mutation eliminates the effect of gpb1Δ gpb2Δ on Bcy1 stability but maintains their effect on phosphorylation and signaling, indicating that modulation of PKA activity by Gpb1 and Gpb2 is not solely due to increased levels of Bcy1. Inhibition of PKA catalytic subunits that are ATP analog-sensitive causes increased Bcy1 phosphorylation at the unknown site in high glucose. When PKA is inhibited, gpb1Δ gpb2Δ mutations have no effect on Bcy1 phosphorylation. Therefore, Gpb1 and Gpb2 oppose PKA activity by blocking the ability of PKA to inhibit Bcy1 phosphorylation at a site other than serine-145. Stimulation of Bcy1 phosphorylation by Gpb1 and Gpb2 produces a form of Bcy1 that is more stable and is a more effective PKA inhibitor.
Collapse
Affiliation(s)
- Roli Budhwar
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
45
|
Haines DS. p97-containing complexes in proliferation control and cancer: emerging culprits or guilt by association? Genes Cancer 2010; 1:753-763. [PMID: 21103003 PMCID: PMC2983488 DOI: 10.1177/1947601910381381] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
p97 (also called VCP in metazoans and CDC48 in yeast) is a highly conserved, abundant and essential type II ATPase that functions in numerous ubiquitin signaling dependent processes. p97/Cd48 activities require a growing number of adaptor or accessory proteins that promote interactions with ubiquitinated proteins. p97 has human disease relevance as it is mutated in familial cases of inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). There is also increasing evidence suggesting that p97 and/or some of its adaptors play a role in cancer. This review will summarize our existing knowledge of the biochemical, molecular and cellular activities of p97-containing complexes, with an ending focus on their potential role in malignancy.
Collapse
Affiliation(s)
- Dale S Haines
- Fels Institute for Cancer Research and Molecular Biology and Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania, 19140, USA
| |
Collapse
|