1
|
Hong W, Wang X, Huang X, Chen P, Liu Y, Zheng Z, You X, Chen Y, Xie Z, Zhan G, Huang H. CSNK1E is involved in TGF-β1 induced epithelial mesenchymal transformationas and related to melanoma immune heterogeneity. Front Pharmacol 2025; 15:1501849. [PMID: 39872053 PMCID: PMC11771321 DOI: 10.3389/fphar.2024.1501849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/28/2024] [Indexed: 01/29/2025] Open
Abstract
Introduction Melanoma (MM), the deadliest form of skin cancer, originates from melanocytes. Despite advances in immunotherapy that have somewhat improved the prognosis for MM patients, high levels of resistance to treatment continue to result in poor clinical outcomes. Identifying novel biomarkers and therapeutic targets is critical for improving the prognosis and treatment of MM. Methods In this study, we analyzed the expression patterns of WNT signaling pathway genes in MM and explored their potential mechanisms. Using Cox regression analysis, we identified 19 prognostic-related genes. Consistency clustering was performed to evaluate the potential of these genes as classifiers for prognosis. The Least Absolute Shrinkage and Selection Operator (LASSO) algorithm was then applied to refine the gene set and construct a 13-gene prognostic model. We validated the model at multiple time points to assess its predictive performance. Additionally, correlation analyses were performed to investigate the relationships between key genes and processes, including epithelial-to-mesenchymal transition (EMT) and immune responses. Results We identified that CSNK1E and RAC3 were significantly positively correlated with the EMT process, with CSNK1E showing a similar expression trend to EMT-related genes. Both genes were also negatively correlated with multiple immune cell types and immune checkpoint genes. The 13-gene prognostic model demonstrated excellent predictive performance in MM prognosis. Pan-cancer analysis further revealed heterogeneous expression patterns and prognostic potential of CSNK1E across various cancers. Wet experiments confirmed that CSNK1E promotes MM cell proliferation, invasion, and migration, and enhances malignant progression through the TGF-β signaling pathway. Discussion Our findings suggest that CSNK1E plays a crucial role in MM progression and could serve as a potential therapeutic target. The WNT and TGF-β pathways may work synergistically in regulating the EMT process in MM, highlighting their potential as novel therapeutic targets. These insights may contribute to the development of more effective treatments for MM, particularly for overcoming resistance to current therapies.
Collapse
Affiliation(s)
- Wangbing Hong
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xin Wang
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xinyu Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Pengfei Chen
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yifan Liu
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Ziying Zheng
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Xin You
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Yinghua Chen
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Zengxin Xie
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Gongnan Zhan
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Heping Huang
- Department of Plastic and Cosmetic Surgery, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Mousavi SM, Jalali-Zefrei F, Shourmij M, Tabaghi S, Davari A, Khalili SB, Farzipour S, Salari A. Targeting Wnt Pathways with Small Molecules as New Approach in Cardiovascular Disease. Curr Cardiol Rev 2025; 21:108-122. [PMID: 39482911 PMCID: PMC12060913 DOI: 10.2174/011573403x333038241023153349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
The increasing incidences of morbidity and mortality associated with cardiovascular diseases represent significant difficulties for clinical treatment and have a major impact on patient health. Wnt signaling pathways are highly conserved and are well known for their regulatory roles in embryonic development, tissue regeneration, and adult tissue homeostasis. Wnt signaling is classified into two distinct pathways: canonical Wnt/β-catenin signaling and noncanonical pathways, including planar cell polarity and Wnt/Ca2+ pathways. A growing body of experimental evidence suggests the involvement of both canonical and non-canonical Wnt signaling pathways in the development of cardiovascular diseases, including myocardial hypertrophy, arrhythmias, diabetic cardiomyopathy, arrhythmogenic cardiomyopathy, and myocardial infarction. Thus, to enhance patient quality of life, diagnosing and treating cardiac illnesses may require a thorough understanding of the molecular functions played by the Wnt pathway in these disorders. Many small-molecule inhibitors specifically target various components within the Wnt signaling pathways, such as Frizzled, Disheveled, Porcupine, and Tankyrase. This study aims to present an overview of the latest findings regarding the functions of Wnt signaling in human cardiac disorders and possible inhibitors of Wnt, which could lead to novel approaches for treating cardiac ailments.
Collapse
Affiliation(s)
- Seyed Mehdi Mousavi
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Jalali-Zefrei
- Department of radiology, Faculty of Medicine, Guilan University of Medical Science, Rasht, Iran
| | - Mohammad Shourmij
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shiva Tabaghi
- Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Davari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Saeed Bahador Khalili
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, 43007, Spain
| | - Soghra Farzipour
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Arsalan Salari
- Cardiovascular Diseases Research Center, Department of Cardiology, School of Medicine, Heshmat Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
3
|
Harold RL, Tulsian NK, Narasimamurthy R, Yaitanes N, Ayala Hernandez MG, Lee HW, Crosby P, Tripathi SM, Virshup DM, Partch CL. Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein kinase 1. Proc Natl Acad Sci U S A 2024; 121:e2415567121. [PMID: 39356670 PMCID: PMC11474029 DOI: 10.1073/pnas.2415567121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C termini (XCT), but with marked changes in potential phosphorylation sites. Here, we test whether the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and hydrogen/deuterium exchange mass spectrometry, we show that the δ1 XCT is preferentially phosphorylated by the kinase and the δ1 tail makes more extensive interactions across the kinase domain. Mutation of δ1-specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in the circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion-binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ. These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Collapse
Affiliation(s)
- Rachel L. Harold
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore117543, Singapore
- Merck Sharp & Dohme International GmBH (Singapore), Neuros, Singapore138665, Singapore
| | - Rajesh Narasimamurthy
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore169857, Singapore
| | - Noelle Yaitanes
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Maria G. Ayala Hernandez
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Hsiau-Wei Lee
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Priya Crosby
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - Sarvind M. Tripathi
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-National University of Singapore Medical School, Singapore169857, Singapore
- Department of Pediatrics, Duke University Medical Center, Durham, NC27710
| | - Carrie L. Partch
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA95064
- Center for Circadian Biology, University of California San Diego, La Jolla, CA92093
- HHMI, University of California, Santa Cruz, CA95064
| |
Collapse
|
4
|
Lee J, Kim HW, Shin DY, Han JP, Jang Y, Park JY, Yun SG, Cho EM, Seo YR. The Chronic Toxicity of Endocrine-Disrupting Chemical to Daphnia magna: A Transcriptome and Network Analysis of TNT Exposure. Int J Mol Sci 2024; 25:9895. [PMID: 39337382 PMCID: PMC11432125 DOI: 10.3390/ijms25189895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Endocrine-disrupting chemicals (EDCs) impair growth and development. While EDCs can occur naturally in aquatic ecosystems, they are continuously introduced through anthropogenic activities such as industrial effluents, pharmaceutical production, wastewater, and mining. To elucidate the chronic toxicological effects of endocrine-disrupting chemicals (EDCs) on aquatic organisms, we collected experimental data from a standardized chronic exposure test using Daphnia magna (D. magna), individuals of which were exposed to a potential EDC, trinitrotoluene (TNT). The chronic toxicity effects of this compound were explored through differential gene expression, gene ontology, network construction, and putative adverse outcome pathway (AOP) proposition. Our findings suggest that TNT has detrimental effects on the upstream signaling of Tcf/Lef, potentially adversely impacting oocyte maturation and early development. This study employs diverse bioinformatics approaches to elucidate the gene-level toxicological effects of chronic TNT exposure on aquatic ecosystems. The results provide valuable insights into the molecular mechanisms of the adverse impacts of TNT through network construction and putative AOP proposition.
Collapse
Affiliation(s)
- Jun Lee
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Hyun Woo Kim
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Dong Yeop Shin
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Jun Pyo Han
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Yujin Jang
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Ju Yeon Park
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| | - Seok-Gyu Yun
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul 02173, Republic of Korea
| | - Eun-Min Cho
- Department of Nano, Chemical & Biological Engineering, College of Natural Science and Engineering, Seokyeong University, Seoul 02173, Republic of Korea
| | - Young Rok Seo
- Institute of Environmental Medicine for Green Chemistry, Department of Life Science, Biomedi Campus, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Republic of Korea
| |
Collapse
|
5
|
Harold RL, Tulsian NK, Narasimamurthy R, Yaitanes N, Hernandez MGA, Lee HW, Crosby P, Tripathi SM, Virshup DM, Partch CL. Isoform-specific C-terminal phosphorylation drives autoinhibition of Casein Kinase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.24.538174. [PMID: 39131317 PMCID: PMC11312495 DOI: 10.1101/2023.04.24.538174] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Casein kinase 1 δ (CK1δ) controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ 1 and δ 2 , are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C-termini (XCT), but with marked changes in potential phosphorylation sites. Here we test if the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and HDX-MS, we show that the δ 1 XCT is preferentially phosphorylated by the kinase and the δ 1 tail makes more extensive interactions across the kinase domain. Mutation of δ1 -specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ . These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Collapse
Affiliation(s)
- Rachel L. Harold
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore 117543
- MSD International GmBH (Singapore), Neuros, 8 Biomedical Grove, Singapore, 138665
| | | | - Noelle Yaitanes
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Maria G. Ayala Hernandez
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Hsiau-Wei Lee
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Priya Crosby
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - Sarvind M. Tripathi
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
| | - David M. Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, 169857
- Department of Pediatrics, Duke University Medical Center, Durham, NC 27710
| | - Carrie L. Partch
- Department of Chemistry & Biochemistry, University of California Santa Cruz, Santa Cruz, CA 95064
- Center for Circadian Biology, University of California San Diego, La Jolla, CA 92093
- Lead contact
| |
Collapse
|
6
|
Kikuchi K, Arata M. The interplay between Wnt signaling pathways and microtubule dynamics. In Vitro Cell Dev Biol Anim 2024; 60:502-512. [PMID: 38349554 DOI: 10.1007/s11626-024-00860-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Wnt signaling pathways represent an evolutionarily highly conserved, intricate network of molecular interactions that regulates various aspects of cellular behavior, including embryonic development and tissue homeostasis. Wnt signaling pathways share the β-catenin-dependent (canonical) and the multiple β-catenin-independent (non-canonical) pathways. These pathways collectively orchestrate a wide range of cellular processes through distinct mechanisms of action. Both the β-catenin-dependent and β-catenin-independent pathways are closely intertwined with microtubule dynamics, underscoring the complex crosstalk between Wnt signaling and the cellular cytoskeleton. This interplay involves several mechanisms, including how the components of Wnt signaling can influence the stability, organization, and distribution of microtubules. The modulation of microtubule dynamics by Wnt signaling plays a crucial role in coordinating cellular behaviors and responses to external signals. In this comprehensive review, we discussed the current understanding of how Wnt signaling and microtubule dynamics intersect in various aspects of cellular behavior. This study provides insights into our understanding of these crucial cellular processes.
Collapse
Affiliation(s)
- Koji Kikuchi
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-Ku, Kumamoto, 860-0811, Japan.
| | - Masaki Arata
- Division of Embryology, National Institute for Basic Biology, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
7
|
Jagannathan C, Waddington R, Nishio Ayre W. Nanoparticle and Nanotopography-Induced Activation of the Wnt Pathway in Bone Regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:270-283. [PMID: 37795571 DOI: 10.1089/ten.teb.2023.0108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Background and Aims: Recent research has focused on developing nanoparticle and nanotopography-based technologies for bone regeneration. The Wingless-related integration site (Wnt) signaling pathway has been shown to play a vital role in this process, in particular in osteogenic differentiation and proliferation. The exact mechanisms by which nanoparticles and nanotopographies activate the Wnt signaling pathway, however, are not fully understood. This review aimed to elucidate the mechanisms by which nanoscale technologies activate the Wnt signaling pathway during bone regeneration. Methods: The terms "Wnt," "bone," and "nano*" were searched on PubMed and Ovid with no date limit. Only original research articles related to Wnt signaling and bone regeneration in the context of nanotopographies, nanoparticles, or scaffolds with nanotopographies/nanoparticles were reviewed. Results: The primary mechanism by which nanoparticles activated the Wnt pathway was by internalization through the endocytic pathway or diffusion through the cell membrane, leading to accumulation of nonphosphorylated β-catenin in the cytoplasm and subsequently downstream osteogenic signaling (e.g., upregulation of runt-related transcription factor 2 [RUNX2]). The specific size of the nanoparticles and the process of endocytosis itself has been shown to modulate the Wnt-β-catenin pathway. Nanotopographies were shown to directly activate frizzled receptors, initiating Wnt/β-catenin signaling. Additional studies showed nanotopographies to activate the Wnt/calcium (Wnt/Ca2+)-dependent and Wnt/planar cell polarity pathways through nuclear factor of activated T cells, and α5β1 integrin stimulation. Finally, scaffolds containing nanotopographies/nanoparticles were found to induce Wnt signaling through a combination of ion release (e.g., lithium, boron, lanthanum, and icariin), which inhibited glycogen synthase kinase 3 beta (GSK-3β) activity, and through similar mechanisms to the nanotopographies. Conclusion: This review concludes that nanoparticles and nanotopographies cause Wnt activation through several different mechanisms, specific to the size, shape, and structure of the nanoparticles or nanotopographies. Endocytosis-related mechanisms, integrin signaling and ion release were the major mechanisms identified across nanoparticles, nanotopographies, and scaffolds, respectively. Knowledge of these mechanisms will help develop more effective targeted nanoscale technologies for bone regeneration. Impact statement Nanoparticles and nanotopographies can activate the Wingless-related integration site (Wnt) signaling pathway, which is essential for bone regeneration. This review has identified that activation is due to endocytosis, integrin signaling and ion release, depending on the size, shape, and structure of the nanoparticles or nanotopographies. By identifying and further understanding these mechanisms, more effective nanoscale technologies that target the Wnt signaling pathway can be developed. These technologies can be used for the treatment of nonunion bone fractures, a major clinical challenge, with the potential to improve the quality of life of millions of patients around the world.
Collapse
Affiliation(s)
- Chitra Jagannathan
- Department of Applied Sciences, University of the West of England, Bristol, United Kingdom
| | | | | |
Collapse
|
8
|
Zhang D, Lu C, Zhou Y, Luo X, Guo H, Zhang J, Gao Q, Liu H, Shang C, Cui S. CK1α deficiency impairs mouse uterine adenogenesis by inducing epithelial cell apoptosis through GSK3β pathway and inhibiting Foxa2 expression through p53 pathway†. Biol Reprod 2024; 110:246-260. [PMID: 37944068 DOI: 10.1093/biolre/ioad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023] Open
Abstract
Uterine glands and their secretions are crucial for conceptus survival and implantation in rodents and humans. In mice, the development of uterine gland known as adenogenesis occurs after birth, whereas the adenogenesis in humans initiates from fetal life and completed at puberty. Uterine adenogenesis involves dynamic epithelial cell proliferation, differentiation, and apoptosis. However, it is largely unexplored about the mechanisms governing adenogenesis. CK1α plays important roles in regulating cell division, differentiation, and death, but it is unknown whether CK1α affects adenogenesis. In the current study, uterus-specific CK1α knockout female mice (Csnk1a1d/d) were infertile resulted from lack of uterine glands. Subsequent analysis revealed that CK1α deletion induced massive apoptosis in uterine epithelium by activating GSK3β, which was confirmed by injections of GSK3β inhibitor SB216763 to Csnk1a1d/d females, and the co-treatment of SB216763 and CK1 inhibitor d4476 on cultured epithelial cells. Another important finding was that our results revealed CK1α deficiency activated p53, which then blocked the expression of Foxa2, an important factor for glandular epithelium development and function. This was confirmed by that Foxa2 expression level was elevated in p53 inhibitor pifithrin-α injected Csnk1a1d/d mouse uterus and in vitro dual-luciferase reporter assay between p53 and Foxa2. Collectively, these studies reveal that CK1α is a novel factor regulating uterine adenogenesis by inhibiting epithelial cell apoptosis through GSK3β pathway and regulating Foxa2 expression through p53 pathway. Uncovering the mechanisms of uterine adenogenesis is expected to improve pregnancy success in humans and other mammals.
Collapse
Affiliation(s)
- Di Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Chenyang Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Yewen Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Xuan Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hongzhou Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Jinglin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Qiao Gao
- State Key Laboratory of Agrobiotechnology, College of Biological Science, China Agricultural University, Beijing, People's Republic of China
| | - Hui Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Chongxing Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| | - Sheng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People's Republic of China
- Institute of Reproduction and Metabolism, Yangzhou University, Yangzhou, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
VE-Cadherin modulates β-catenin/TCF-4 to enhance Vasculogenic Mimicry. Cell Death Dis 2023; 14:135. [PMID: 36797281 PMCID: PMC9935922 DOI: 10.1038/s41419-023-05666-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
Vasculogenic Mimicry (VM) refers to the capacity to form a blood network from aggressive cancer cells in an independent way of endothelial cells, to provide nutrients and oxygen leading to enhanced microenvironment complexity and treatment failure. In a previous study, we demonstrated that VE-Cadherin and its phosphorylation at Y658 modulated kaiso-dependent gene expression (CCND1 and Wnt 11) through a pathway involving Focal Adhesion kinase (FAK). In the present research, using a proteomic approach, we have found that β-catenin/TCF-4 is associated with nuclear VE-cadherin and enhances the capacity of malignant melanoma cells to undergo VM in cooperation with VE-Cadherin; in addition, preventing the phosphorylation of Y658 of VE-cadherin upon FAK disabling resulted in VE-Cadherin/β-catenin complex dissociation, increased β-catenin degradation while reducing TCF-4-dependent genes transcription (C-Myc and Twist-1). Uveal melanoma cells knockout for VE-Cadherin loses β-catenin expression while the rescue of VE-Cadherin (but not of the phosphorylation defective VE-Cadherin Y658F mutant) permits stabilization of β-catenin and tumor growth reduction in vivo experiments. In vivo, the concomitant treatment with the FAK inhibitor PF-271 and the anti-angiogenic agent bevacizumab leads to a strong reduction in tumor growth concerning the single treatment. In conclusion, the anomalous expression of VE-Cadherin in metastatic melanoma cells (from both uveal and cutaneous origins), together with its permanent phosphorylation at Y658, favors the induction of the aggressive VM phenotype through the cooperation of β-catenin with VE-Cadherin and by enhancing TCF-4 genes-dependent transcription.
Collapse
|
10
|
Liu DX, Hao SL, Yang WX. Crosstalk Between β-CATENIN-Mediated Cell Adhesion and the WNT Signaling Pathway. DNA Cell Biol 2023; 42:1-13. [PMID: 36399409 DOI: 10.1089/dna.2022.0424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cell adhesion and stable signaling regulation are fundamental ways of maintaining homeostasis. Among them, the Wnt/β-CATENIN signaling plays a key role in embryonic development and maintenance of body dynamic homeostasis. At the same time, the key signaling molecule β-CATENIN in the Wnt signaling can also function as a cytoskeletal linker protein to regulate tissue barriers, cell migration, and morphogenesis. Dysregulation of the balance between Wnt signaling and adherens junctions can lead to disease. How β-CATENIN maintains the independence of these two functions, or mediates the interaction and balance of these two functions, has been explored and debated for a long time. In this study, we will focus on five aspects of β-CATENIN chaperone molecules, phosphorylation of β-CATENIN and related proteins, epithelial mesenchymal transition, β-CATENIN homolog protein γ-CATENIN and disease, thus deepening the understanding of the Wnt/β-CATENIN signaling and the homeostasis between cell adhesion and further addressing related disease problems.
Collapse
Affiliation(s)
- Ding-Xi Liu
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Superresolution microscopy localizes endogenous Dvl2 to Wnt signaling-responsive biomolecular condensates. Proc Natl Acad Sci U S A 2022; 119:e2122476119. [PMID: 35867833 PMCID: PMC9335300 DOI: 10.1073/pnas.2122476119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wnt signaling governs cell fate and tissue polarity across species. The Dishevelled proteins are central to Wnt signaling cascades. Wnt-mediated multiprotein complexes such as the “signalosome” and the “destruction complex” have been proposed to represent biomolecular condensates. These nonmembranous, specialized compartments have been suggested to form through liquid–liquid phase separation and ensure correctly proceeding physiological reactions. Although biomolecular condensates have increasingly been studied, key questions remain regarding, for example, their architecture and physiological regulation. Here, superresolution microscopy after endogenous labeling of Dishevelled-2 gives insights into protein functions and Wnt signaling at physiological levels. It reveals the distinct molecular architecture of endogenous Wnt condensates at single-molecule resolution and illustrates close interactions at the centrosome. During organismal development, homeostasis, and disease, Dishevelled (Dvl) proteins act as key signaling factors in beta-catenin–dependent and beta-catenin–independent Wnt pathways. While their importance for signal transmission has been genetically demonstrated in many organisms, our mechanistic understanding is still limited. Previous studies using overexpressed proteins showed Dvl localization to large, punctate-like cytoplasmic structures that are dependent on its DIX domain. To study Dvl’s role in Wnt signaling, we genome engineered an endogenously expressed Dvl2 protein tagged with an mEos3.2 fluorescent protein for superresolution imaging. First, we demonstrate the functionality and specificity of the fusion protein in beta-catenin–dependent and beta-catenin–independent signaling using multiple independent assays. We performed live-cell imaging of Dvl2 to analyze the dynamic formation of the supramolecular cytoplasmic Dvl2_mEos3.2 condensates. While overexpression of Dvl2_mEos3.2 mimics the previously reported formation of abundant large “puncta,” supramolecular condensate formation at physiological protein levels is only observed in a subset of cells with approximately one per cell. We show that, in these condensates, Dvl2 colocalizes with Wnt pathway components at gamma-tubulin and CEP164-positive centrosomal structures and that the localization of Dvl2 to these condensates is Wnt dependent. Single-molecule localization microscopy using photoactivated localization microscopy (PALM) of mEos3.2 in combination with DNA-PAINT demonstrates the organization and repetitive patterns of these condensates in a cell cycle–dependent manner. Our results indicate that the localization of Dvl2 in supramolecular condensates is coordinated dynamically and dependent on cell state and Wnt signaling levels. Our study highlights the formation of endogenous and physiologically regulated biomolecular condensates in the Wnt pathways at single-molecule resolution.
Collapse
|
12
|
Agajanian MJ, Potjewyd FM, Bowman BM, Solomon S, LaPak KM, Bhatt DP, Smith JL, Goldfarb D, Axtman AD, Major MB. Protein proximity networks and functional evaluation of the casein kinase 1 gamma family reveal unique roles for CK1γ3 in WNT signaling. J Biol Chem 2022; 298:101986. [PMID: 35487243 PMCID: PMC9157009 DOI: 10.1016/j.jbc.2022.101986] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
Aberrant activation or suppression of WNT/β-catenin signaling contributes to cancer initiation and progression, neurodegeneration, and bone disease. However, despite great need and more than 40 years of research, targeted therapies for the WNT pathway have yet to be fully realized. Kinases are considered exceptionally druggable and occupy key nodes within the WNT signaling network, but several pathway-relevant kinases remain understudied and "dark." Here, we studied the function of the casein kinase 1γ (CSNK1γ) subfamily of human kinases and their roles in WNT signaling. miniTurbo-based proximity biotinylation and mass spectrometry analysis of CSNK1γ1, CSNK1γ2, and CSNK1γ3 revealed numerous components of the β-catenin-dependent and β-catenin-independent WNT pathways. In gain-of-function experiments, we found that CSNK1γ3 but not CSNK1γ1 or CSNK1γ2 activated β-catenin-dependent WNT signaling, with minimal effect on other signaling pathways. We also show that within the family, CSNK1γ3 expression uniquely induced low-density lipoprotein receptor-related protein 6 phosphorylation, which mediates downstream WNT signaling transduction. Conversely, siRNA-mediated silencing of CSNK1γ3 alone had no impact on WNT signaling, though cosilencing of all three family members decreased WNT pathway activity. Finally, we characterized two moderately selective and potent small-molecule inhibitors of the CSNK1γ family. We show that these inhibitors and a CSNK1γ3 kinase-dead mutant suppressed but did not eliminate WNT-driven low-density lipoprotein receptor-related protein 6 phosphorylation and β-catenin stabilization. Our data suggest that while CSNK1γ3 expression uniquely drives pathway activity, potential functional redundancy within the family necessitates loss of all three family members to suppress the WNT signaling pathway.
Collapse
Affiliation(s)
- Megan J Agajanian
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Frances M Potjewyd
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Brittany M Bowman
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Smaranda Solomon
- Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Kyle M LaPak
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Dhaval P Bhatt
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA
| | - Jeffery L Smith
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dennis Goldfarb
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Institute for Informatics, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA
| | - Alison D Axtman
- Division of Chemical Biology and Medicinal Chemistry, Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Washington University in St Louis, St Louis, Missouri, USA; Department of Otolaryngology, School of Medicine, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
13
|
Ning J, Sun Q, Su Z, Tan L, Tang Y, Sayed S, Li H, Xue VW, Liu S, Chen X, Lu D. The CK1δ/ϵ-Tip60 Axis Enhances Wnt/β-Catenin Signaling via Regulating β-Catenin Acetylation in Colon Cancer. Front Oncol 2022; 12:844477. [PMID: 35494070 PMCID: PMC9039669 DOI: 10.3389/fonc.2022.844477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Casein kinase 1δ/ϵ (CK1δ/ϵ) are well-established positive modulators of the Wnt/β-catenin signaling pathway. However, the molecular mechanisms involved in the regulation of β-catenin transcriptional activity by CK1δ/ϵ remain unclear. In this study, we found that CK1δ/ϵ could enhance β-catenin-mediated transcription through regulating β-catenin acetylation. CK1δ/ϵ interacted with Tip60 and facilitated the recruitment of Tip60 to β-catenin complex, resulting in increasing β-catenin acetylation at K49. Importantly, Tip60 significantly enhanced the SuperTopFlash reporter activity induced by CK1δ/ϵ or/and β-catenin. Furthermore, a CK1δ/CK1ϵ/β-catenin/Tip60 complex was detected in colon cancer cells. Simultaneous knockdown of CK1δ and CK1ϵ significantly attenuated the interaction between β-catenin and Tip60. Notably, inhibition of CK1δ/ϵ or Tip60, with shRNA or small molecular inhibitors downregulated the level of β-catenin acetylation at K49 in colon cancer cells. Finally, combined treatment with CK1 inhibitor SR3029 and Tip60 inhibitor MG149 had more potent inhibitory effect on β-catenin acetylation, the transcription of Wnt target genes and the viability and proliferation in colon cancer cells. Taken together, our results revealed that the transcriptional activity of β-catenin could be modulated by the CK1δ/ϵ-β-catenin-Tip60 axis, which may be a potential therapeutic target for colon cancer.
Collapse
Affiliation(s)
- Jiong Ning
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China.,Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Yun Tang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Sapna Sayed
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Vivian Weiwen Xue
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Xianxiong Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
14
|
Cullati SN, Chaikuad A, Chen JS, Gebel J, Tesmer L, Zhubi R, Navarrete-Perea J, Guillen RX, Gygi SP, Hummer G, Dötsch V, Knapp S, Gould KL. Kinase domain autophosphorylation rewires the activity and substrate specificity of CK1 enzymes. Mol Cell 2022; 82:2006-2020.e8. [DOI: 10.1016/j.molcel.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/27/2022] [Accepted: 03/01/2022] [Indexed: 12/01/2022]
|
15
|
Zhu H, Su Z, Ning J, Zhou L, Tan L, Sayed S, Song J, Wang Z, Li H, Sun Q, Liu S, Sha O, Leng F, Chen X, Lu D. Transmembrane protein 97 exhibits oncogenic properties via enhancing LRP6-mediated Wnt signaling in breast cancer. Cell Death Dis 2021; 12:912. [PMID: 34615853 PMCID: PMC8494741 DOI: 10.1038/s41419-021-04211-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Upregulation of transmembrane protein 97 (TMEM97) has been associated with progression and poor outcome in multiple human cancers, including breast cancer. Recent studies suggest that TMEM97 may be involved in the activation of the Wnt/β-catenin pathway. However, the molecular mechanism of TMEM97 action on Wnt/β-catenin signaling is completely unclear. In the current study, TMEM97 was identified as an LRP6-interacting protein. TMEM97 could interact with LRP6 intracellular domain and enhance LRP6-mediated Wnt signaling in a CK1δ/ε-dependent manner. The binding of TMEM97 to LRP6 facilitated the recruitment of CK1δ/ε to LRP6 complex, resulting in LRP6 phosphorylation at Ser 1490 and the stabilization of β-catenin. In breast cancer cells, knockout of TMEM97 attenuated the Wnt/β-catenin signaling cascade via regulating LRP6 phosphorylation, leading to a decrease in the expression of Wnt target genes AXIN2, LEF1, and survivin. TMEM97 deficiency also suppressed cell viability, proliferation, colony formation, migration, invasion, and stemness properties in breast cancer cells. Importantly, TMEM97 knockout suppressed tumor growth through downregulating the Wnt/β-catenin signaling pathway in a breast cancer xenograft model. Taken together, our results revealed that TMEM97 is a positive modulator of canonical Wnt signaling. TMEM97-mediated Wnt signaling is implicated in the tumorigenesis of breast cancer, and its targeted inhibition may be a promising therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Huifang Zhu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Zijie Su
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
- Department of Research, The Affiliated Tumor Hospital of Guangxi Medical University, 530021, Nanning, China
| | - Jiong Ning
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Liang Zhou
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Lifeng Tan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Sapna Sayed
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Jiaxing Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Zhongyuan Wang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Huan Li
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Qi Sun
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Shanshan Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Ou Sha
- School of Dentistry, Shenzhen University Health Science Centre, Shenzhen University, 518060, Shenzhen, China
| | - Feng Leng
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892-4255, USA
| | - Xianxiong Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China
| | - Desheng Lu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, 518055, Shenzhen, China.
| |
Collapse
|
16
|
Meling MT, Kiniwa Y, Ogawa E, Sato Y, Okuyama R. Increased expression of secreted protein acidic and rich in cysteine and tissue inhibitor of metalloproteinase-3 in epidermotropic melanoma metastasis. J Dermatol 2021; 48:1772-1779. [PMID: 34459016 DOI: 10.1111/1346-8138.16125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/27/2022]
Abstract
Primary cutaneous melanoma generally arises in the epidermis, followed by invasion into the dermis. Although infrequent, invasive melanoma cells can, alternatively, migrate to the intraepidermal area and form epidermotropic melanoma metastasis (EMM). In this study, we focused on this unique manner of metastasis. To identify the key molecules which affect EMM, gene expression in EMM was compared with that in common skin metastasis (CSM). Polymerase chain reaction (PCR) analysis was performed for genes affecting the extracellular matrix, cellular adhesion, and tumor metastasis on three EMM and three CSM samples as an initial screening. For molecules showing altered expression in the EMM, expression levels were further verified using real-time quantitative PCR (qPCR) and immunohistochemistry. Five molecules showed an expression difference in the initial screening. Among these, secreted protein acidic and rich in cysteine (SPARC) was preferentially expressed in EMM (p = 0.01) by real-time qPCR. Another candidate molecule, tissue inhibitor of metalloproteinase-3 (TIMP3), was not statistically significant (p = 0.07), but showed the tendency of higher expression. These results correlated negatively to expression of N-cadherin and β-catenin. The upregulation of SPARC and TIMP3 may disrupt the continuity of the canonical Wnt pathway. This pathway regulates adhesion activity of melanoma cells to localize within the dermis, which consequently promotes EMM. Our study highlights the potential role of SPARC and TIMP3 as key molecules in EMM, and analysis of EMM may contribute for understanding melanoma invasion between the epidermis and the dermis.
Collapse
Affiliation(s)
- Maureen Tania Meling
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yukiko Kiniwa
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Eisaku Ogawa
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yuki Sato
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryuhei Okuyama
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
17
|
The dual PI3Kδ/CK1ε inhibitor umbralisib exhibits unique immunomodulatory effects on CLL T cells. Blood Adv 2021; 4:3072-3084. [PMID: 32634240 DOI: 10.1182/bloodadvances.2020001800] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023] Open
Abstract
The in-clinic phosphatidylinositol 3-kinase (PI3K) inhibitors idelalisib (CAL-101) and duvelisib (IPI-145) have demonstrated high rates of response and progression-free survival in clinical trials of B-cell malignancies, such as chronic lymphocytic leukemia (CLL). However, a high incidence of adverse events has led to frequent discontinuations, limiting the clinical development of these inhibitors. By contrast, the dual PI3Kδ/casein kinase-1-ε (CK1ε) inhibitor umbralisib (TGR-1202) also shows high rates of response in clinical trials but has an improved safety profile with fewer severe adverse events. Toxicities typical of this class of PI3K inhibitors are largely thought to be immune mediated, but they are poorly characterized. Here, we report the effects of idelalisib, duvelisib, and umbralisib on regulatory T cells (Tregs) on normal human T cells, T cells from CLL patients, and T cells in an Eμ-TCL1 adoptive transfer mouse CLL model. Ex vivo studies revealed differential effects of these PI3K inhibitors; only umbralisib treatment sustained normal and CLL-associated FoxP3+ human Tregs. Further, although all 3 inhibitors exhibit antitumor efficacy in the Eμ-TCL1 CLL model, idelalisib- or duvelisib-treated mice displayed increased immune-mediated toxicities, impaired function, and reduced numbers of Tregs, whereas Treg number and function were preserved in umbralisib-treated CLL-bearing mice. Finally, our studies demonstrate that inhibition of CK1ε can improve CLL Treg number and function. Interestingly, CK1ε inhibition mitigated impairment of CLL Tregs by PI3K inhibitors in combination treatment. These results suggest that the improved safety profile of umbralisib is due to its role as a dual PI3Kδ/CK1ε inhibitor that preserves Treg number and function.
Collapse
|
18
|
Colozza G, Koo BK. Wnt/β-catenin signaling: Structure, assembly and endocytosis of the signalosome. Dev Growth Differ 2021; 63:199-218. [PMID: 33619734 PMCID: PMC8251975 DOI: 10.1111/dgd.12718] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/01/2021] [Accepted: 02/17/2021] [Indexed: 12/12/2022]
Abstract
Wnt/β‐catenin signaling is an ancient pathway that regulates key aspects of embryonic development, cell differentiation, proliferation, and adult stem cell homeostasis. Work from different laboratories has shed light on the molecular mechanisms underlying the Wnt pathway, including structural details of ligand–receptor interactions. One key aspect that has emerged from multiple studies is that endocytosis of the receptor complex plays a crucial role in fine‐tuning Wnt/β‐catenin signaling. Endocytosis is a key process involved in both activation as well as attenuation of Wnt signaling, but how this is regulated is still poorly understood. Importantly, recent findings show that Wnt also regulates central metabolic pathways such as the acquisition of nutrients through actin‐driven endocytic mechanisms. In this review, we propose that the Wnt pathway displays diverse characteristics that go beyond the regulation of gene expression, through a connection with the endocytic machinery.
Collapse
Affiliation(s)
- Gabriele Colozza
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| | - Bon-Kyoung Koo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
19
|
Chandrasekharan B, Montllor-Albalate C, Colin AE, Andersen JL, Jang YC, Reddi AR. Cu/Zn Superoxide Dismutase (Sod1) regulates the canonical Wnt signaling pathway. Biochem Biophys Res Commun 2021; 534:720-726. [PMID: 33218686 PMCID: PMC7785591 DOI: 10.1016/j.bbrc.2020.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/04/2020] [Indexed: 01/20/2023]
Abstract
Cu/Zn Superoxide Dismutase (Sod1) catalyzes the disproportionation of cytotoxic superoxide radicals (O2•-) into oxygen (O2) and hydrogen peroxide (H2O2), a key signaling molecule. In Saccharomyces cerevisiae, we previously discovered that Sod1 participates in an H2O2-mediated redox signaling circuit that links nutrient availability to the control of energy metabolism. In response to glucose and O2, Sod1-derived H2O2 stabilizes a pair of conserved plasma membrane kinases - yeast casein kinase 1 and 2 (Yck1/2) - that signal glycolytic growth and the repression of respiration. The Yck1/2 homolog in humans, casein kinase 1-γ (CK1γ), is an integral component of the Wingless and Int-1 (Wnt) signaling pathway, which is essential for regulating cell fate and proliferation in early development and adult tissue and is dysregulated in many cancers. Herein, we establish the conservation of the SOD1/YCK1 redox signaling axis in humans by finding that SOD1 regulates CK1γ expression in human embryonic kidney 293 (HEK293) cells and is required for canonical Wnt signaling and Wnt-dependent cell proliferation.
Collapse
Affiliation(s)
- Bindu Chandrasekharan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Alyson E Colin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Joshua L Andersen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, 84602, USA
| | - Young C Jang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Amit R Reddi
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA; School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Parker Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
20
|
de Man SMA, van Amerongen R. Zooming in on the WNT/CTNNB1 Destruction Complex: Functional Mechanistic Details with Implications for Therapeutic Targeting. Handb Exp Pharmacol 2021; 269:137-173. [PMID: 34486095 DOI: 10.1007/164_2021_522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
WNT/CTNNB1 signaling is crucial for balancing cell proliferation and differentiation in all multicellular animals. CTNNB1 accumulation is the hallmark of WNT/CTNNB1 pathway activation and the key downstream event in both a physiological and an oncogenic context. In the absence of WNT stimulation, the cytoplasmic and nuclear levels of CTNNB1 are kept low because of its sequestration and phosphorylation by the so-called destruction complex, which targets CTNNB1 for proteasomal degradation. In the presence of WNT proteins, or as a result of oncogenic mutations, this process is impaired and CTNNB1 levels become elevated.Here we discuss recent advances in our understanding of destruction complex activity and inactivation, focusing on the individual components and interactions that ultimately control CTNNB1 turnover (in the "WNT off" situation) and stabilization (in the "WNT on" situation). We especially highlight the insights gleaned from recent quantitative, image-based studies, which paint an unprecedentedly detailed picture of the dynamic events that control destruction protein complex composition and function. We argue that these mechanistic details may reveal new opportunities for therapeutic intervention and could result in the destruction complex re-emerging as a target for therapy in cancer.
Collapse
Affiliation(s)
- Saskia Madelon Ada de Man
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Renée van Amerongen
- Developmental, Stem Cell and Cancer Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Fulcher LJ, Sapkota GP. Functions and regulation of the serine/threonine protein kinase CK1 family: moving beyond promiscuity. Biochem J 2020; 477:4603-4621. [PMID: 33306089 PMCID: PMC7733671 DOI: 10.1042/bcj20200506] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.
Collapse
Affiliation(s)
- Luke J. Fulcher
- Department of Biochemistry, University of Oxford, Oxford, U.K
| | - Gopal P. Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
22
|
Colozza G, Jami-Alahmadi Y, Dsouza A, Tejeda-Muñoz N, Albrecht LV, Sosa EA, Wohlschlegel JA, De Robertis EM. Wnt-inducible Lrp6-APEX2 interacting proteins identify ESCRT machinery and Trk-fused gene as components of the Wnt signaling pathway. Sci Rep 2020; 10:21555. [PMID: 33299006 PMCID: PMC7726150 DOI: 10.1038/s41598-020-78019-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/17/2020] [Indexed: 12/11/2022] Open
Abstract
The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including β-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of β-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/β-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.
Collapse
Affiliation(s)
- Gabriele Colozza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA. .,Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, 1030, Austria.
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Alyssa Dsouza
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Nydia Tejeda-Muñoz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Lauren V Albrecht
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA.,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA
| | - Eric A Sosa
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, 10461, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Edward M De Robertis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, USA. .,Howard Hughes Medical Institute, University of California, Los Angeles, CA, 90095-1662, USA.
| |
Collapse
|
23
|
Vena F, Bayle S, Nieto A, Quereda V, Aceti M, Frydman SM, Sansil SS, Grant W, Monastyrskyi A, McDonald P, Roush WR, Teng M, Duckett D. Targeting Casein Kinase 1 Delta Sensitizes Pancreatic and Bladder Cancer Cells to Gemcitabine Treatment by Upregulating Deoxycytidine Kinase. Mol Cancer Ther 2020; 19:1623-1635. [PMID: 32430484 PMCID: PMC7415672 DOI: 10.1158/1535-7163.mct-19-0997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
Abstract
Although gemcitabine is the cornerstone of care for pancreatic ductal adenocarcinoma (PDA), patients lack durable responses and relapse is inevitable. While the underlying mechanisms leading to gemcitabine resistance are likely to be multifactorial, there is a strong association between activating gemcitabine metabolism pathways and clinical outcome. This study evaluated casein kinase 1 delta (CK1δ) as a potential therapeutic target for PDA and bladder cancer, in which CK1δ is frequently overexpressed. We assessed the antitumor effects of genetically silencing or pharmacologically inhibiting CK1δ using our in-house CK1δ small-molecule inhibitor SR-3029, either alone or in combination with gemcitabine, on the proliferation and survival of pancreatic and bladder cancer cell lines and orthotopic mouse models. Genetic studies confirmed that silencing CK1δ or treatment with SR-3029 induced a significant upregulation of deoxycytidine kinase (dCK), a rate-limiting enzyme in gemcitabine metabolite activation. The combination of SR-3029 with gemcitabine induced synergistic antiproliferative activity and enhanced apoptosis in both pancreatic and bladder cancer cells. Furthermore, in an orthotopic pancreatic tumor model, we observed improved efficacy with combination treatment concomitant with increased dCK expression. This study demonstrates that CK1δ plays a role in gemcitabine metabolism, and that the combination of CK1δ inhibition with gemcitabine holds promise as a future therapeutic option for metastatic PDA as well as other cancers with upregulated CK1δ expression.
Collapse
Affiliation(s)
- Francesca Vena
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Simon Bayle
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Ainhoa Nieto
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - Victor Quereda
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | | | - Sylvia M Frydman
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Samer S Sansil
- Translational Research Core, Moffitt Cancer Center, Tampa, Florida
| | - Wayne Grant
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | | | - Patricia McDonald
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, Florida
| | - William R Roush
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida
| | - Mingxiang Teng
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| | - Derek Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida.
| |
Collapse
|
24
|
He T, Wu D, He L, Wang X, Yang B, Li S, Chen Y, Wang K, Chen R, Liu B, Zhang L, Rong L. Casein kinase 1 epsilon facilitates cartilage destruction in osteoarthritis through JNK pathway. FASEB J 2020; 34:6466-6478. [PMID: 32175635 DOI: 10.1096/fj.201902672r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Osteoarthritis (OA) is a high-morbidity skeletal disease worldwide and the exact mechanisms underlying OA pathogenesis are not fully understood. Casein kinase 1 epsilon (CK1ε) is a serine/threonine protein kinase, but its relationship with OA is still unknown. We demonstrated that CK1ε was upregulated in articular cartilage of human patients with OA and mice with experimentally induced OA. Activity of CK1ε, demonstrated by analysis of phosphorylated substrates, was significantly elevated in interleukin (IL)-1β-induced OA-mimicking chondrocytes. CK1ε inhibitor or CK1ε short hairpin RNA (shRNA) partially blocked matrix metalloproteinase (MMP) expression by primary chondrocytes induced by IL-1β, and also inhibited cartilage destruction in knee joints of experimental OA model mice. Conversely, overexpression of CK1ε promoted chondrocyte catabolism. Previous studies indicated that CK1ε was involved in canonical Wnt/β-catenin signaling and noncanonical Wnt/c-Jun N-terminal kinase (JNK) signaling pathway. Interestingly, the activity of JNK but not β-catenin decreased after CK1ε knockdown in IL-1β-treated chondrocytes in vitro, and JNK inhibition reduced MMP expression in chondrocytes overexpressing CK1ε, which illustrated that CK1ε-mediated OA was based on JNK pathway. In conclusion, our results demonstrate that CK1ε promotes OA development, and inhibition of CK1ε could be a potential strategy for OA treatment in the future.
Collapse
Affiliation(s)
- Tianwei He
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Depeng Wu
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Lei He
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Xuan Wang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Bu Yang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Shangfu Li
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Yuyong Chen
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Kun Wang
- Department of Joint Surgery and Orthopedic Trauma, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China
| | - Ruiqiang Chen
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Bin Liu
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Liangming Zhang
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| | - Limin Rong
- Department of Spine Surgery, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, PR China.,Guangdong Provincial Center for Quality Control of Minimally Invasive Spine Surgery, Guangzhou, PR China.,Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, Guangzhou, PR China
| |
Collapse
|
25
|
García de Herreros A, Duñach M. Intracellular Signals Activated by Canonical Wnt Ligands Independent of GSK3 Inhibition and β-Catenin Stabilization. Cells 2019; 8:cells8101148. [PMID: 31557964 PMCID: PMC6829497 DOI: 10.3390/cells8101148] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/19/2019] [Accepted: 09/21/2019] [Indexed: 12/31/2022] Open
Abstract
In contrast to non-canonical ligands, canonical Wnts promote the stabilization of β-catenin, which is a prerequisite for formation of the TCF4/β-catenin transcriptional complex and activation of its target genes. This pathway is initiated by binding of Wnt ligands to the Frizzled/LRP5/6 receptor complex, and it increases the half-life of β-catenin by precluding the phosphorylation of β-catenin by GSK3 and its binding to the βTrCP1 ubiquitin ligase. Other intercellular signals are also activated by Wnt ligands that do not inhibit GSK3 and increase β-catenin protein but that either facilitate β-catenin transcriptional activity or stimulate other transcriptional factors that cooperate with it. In this review, we describe the layers of complexity of these signals and discuss their crosstalk with β-catenin in activation of transcriptional targets.
Collapse
Affiliation(s)
- Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Unidad Asociada CSIC, and Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, E-08003 Barcelona, Spain.
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
| |
Collapse
|
26
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019. [PMID: 31656861 DOI: 10.12688/wellcomeopenres.15403.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Xiong Y, Zhou L, Su Z, Song J, Sun Q, Liu SS, Xia Y, Wang Z, Lu D. Longdaysin inhibits Wnt/β-catenin signaling and exhibits antitumor activity against breast cancer. Onco Targets Ther 2019; 12:993-1005. [PMID: 30787621 PMCID: PMC6368421 DOI: 10.2147/ott.s193024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background CK1 is involved in regulating Wnt/β-catenin signaling and represents a promising target for the treatment of breast cancer. A purine derivative longdaysin has recently been identified as a novel modulator of cellular circadian rhythms through targeting the protein kinases CK1δ, CK1α, and ERK2. However, the antitumor activity of longdaysin and its underlying mechanisms remain unclear. Methods The inhibitory effect of longdaysin on Wnt/β-catenin signaling was investigated using the SuperTOPFlash reporter system. The levels of phosphorylated LRP6, total LRP6, DVL2, active β-catenin, and total β-catenin were examined by Western blot. The expression of Wnt target genes was determined using real-time PCR. The ability of colony formation of breast cancer cells was measured by colony formation assay. The effects of longdaysin on cancer cell migration and invasion were assessed using transwell assays. The effect of longdaysin on cancer stem cells was tested by sphere formation assay. The in vivo antitumor effect of longdaysin was evaluated using MDA-MB-231 breast cancer xenografts. Results Longdaysin suppressed Wnt/β-catenin signaling through inhibition of CK1δ and CK1ε in HEK293T cells. In breast cancer Hs578T and MDA-MB-231 cells, micromolar concentrations of longdaysin attenuated the phosphorylation of LRP6 and DVL2 and reduced the expression of active β-catenin and total β-catenin, leading to the downregulation of Wnt target genes Axin2, DKK1, LEF1, and Survivin. Furthermore, longdaysin inhibited the colony formation, migration, invasion, and sphere formation of breast cancer cells. In MDA-MB-231 breast cancer xenografts, treatment with longdaysin suppressed tumor growth in association with inhibition of Wnt/β-catenin signaling. Conclusion Longdaysin is a novel inhibitor of the Wnt/β-catenin signaling pathway. It exerts antitumor effect through blocking CK1δ/ε-dependent Wnt signaling.
Collapse
Affiliation(s)
- Yanpeng Xiong
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Liang Zhou
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Zijie Su
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Jiaxing Song
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Qi Sun
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Shan-Shan Liu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Yuqing Xia
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Zhongyuan Wang
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| | - Desheng Lu
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University International Cancer Center, Department of Pharmacology, Shenzhen University Health Science Center, Shenzhen 518060, Guangdong, China, ;
| |
Collapse
|
28
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
29
|
Wu KZL, Jones RA, Tachie-Menson T, Macartney TJ, Wood NT, Varghese J, Gourlay R, Soares RF, Smith JC, Sapkota GP. Pathogenic FAM83G palmoplantar keratoderma mutations inhibit the PAWS1:CK1α association and attenuate Wnt signalling. Wellcome Open Res 2019; 4:133. [PMID: 31656861 PMCID: PMC6798324 DOI: 10.12688/wellcomeopenres.15403.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2019] [Indexed: 02/02/2023] Open
Abstract
Background: Two recessive mutations in the FAM83G gene, causing A34E and R52P amino acid substitutions in the DUF1669 domain of the PAWS1 protein, are associated with palmoplantar keratoderma (PPK) in humans and dogs respectively. We have previously reported that PAWS1 associates with the Ser/Thr protein kinase CK1α through the DUF1669 domain to mediate canonical Wnt signalling. Methods: Co-immunoprecipitation was used to investigate possible changes to PAWS1 interactors caused by the mutations. We also compared the stability of wild-type and mutant PAWS1 in cycloheximide-treated cells. Effects on Wnt signalling were determined using the TOPflash luciferase reporter assay in U2OS cells expressing PAWS1 mutant proteins. The ability of PAWS1 to induce axis duplication in Xenopus embryos was also tested. Finally, we knocked-in the A34E mutation at the native gene locus and measured Wnt-induced AXIN2 gene expression by RT-qPCR. Results: We show that these PAWS1 A34E and PAWS1 R52P mutants fail to interact with CK1α but, like the wild-type protein, do interact with CD2AP and SMAD1. Like cells carrying a PAWS1 F296A mutation, which also abolishes CK1α binding, cells carrying the A34E and R52P mutants respond poorly to Wnt signalling to an extent resembling that observed in FAM83G gene knockout cells. Consistent with this observation, these mutants, in contrast to the wild-type protein, fail to induce axis duplication in Xenopus embryos. We also found that the A34E and R52P mutant proteins are less abundant than the native protein and appear to be less stable, both when overexpressed in FAM83G-knockout cells and when knocked-in at the native FAM83G locus. Ala 34 of PAWS1 is conserved in all FAM83 proteins and mutating the equivalent residue in FAM83H (A31E) also abolishes interaction with CK1 isoforms. Conclusions: We propose that mutations in PAWS1 cause PPK pathogenesis through disruption of the CK1α interaction and attenuation of Wnt signalling.
Collapse
Affiliation(s)
- Kevin Z L Wu
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Theresa Tachie-Menson
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Nicola T Wood
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Joby Varghese
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Robert Gourlay
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Renata F Soares
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council, Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| |
Collapse
|
30
|
Tumor promoter TPA activates Wnt/β-catenin signaling in a casein kinase 1-dependent manner. Proc Natl Acad Sci U S A 2018; 115:E7522-E7531. [PMID: 30038030 PMCID: PMC6094128 DOI: 10.1073/pnas.1802422115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The phorbol ester 12-O-tetra-decanoylphorbol-13-acetate (TPA) is a well-known tumor promoter in two-stage mouse skin carcinogenesis, but the exact mechanism by which TPA promotes tumorigenesis remains elusive. This study discovered that TPA could stabilize CK1ε, enhance its kinase activity, and induce phosphorylation of LRP6, resulting in the formation of CK1ε–LRP6–axin1 complex, which may bypass the requirement of Wnt–Fzd–Dvl complex. TPA also increased the interaction between β-catenin and TCF4E in a CK1ε/δ-dependent way, and finally led to activation of the Wnt/β-catenin pathway. Our findings reveal a pathway by which TPA activates the Wnt/β-catenin signaling cascade. This pathway may represent a common mechanism for the tumor-promoting activity of some carcinogenic agents. The tumor promoter 12-O-tetra-decanoylphorbol-13-acetate (TPA) has been defined by its ability to promote tumorigenesis on carcinogen-initiated mouse skin. Activation of Wnt/β-catenin signaling has a decisive role in mouse skin carcinogenesis, but it remains unclear how TPA activates Wnt/β-catenin signaling in mouse skin carcinogenesis. Here, we found that TPA could enhance Wnt/β-catenin signaling in a casein kinase 1 (CK1) ε/δ-dependent manner. TPA stabilized CK1ε and enhanced its kinase activity. TPA further induced the phosphorylation of LRP6 at Thr1479 and Ser1490 and the formation of a CK1ε–LRP6–axin1 complex, leading to an increase in cytosolic β-catenin. Moreover, TPA increased the association of β-catenin with TCF4E in a CK1ε/δ-dependent way, resulting in the activation of Wnt target genes. Consistently, treatment with a selective CK1ε/δ inhibitor SR3029 suppressed TPA-induced skin tumor formation in vivo, probably through blocking Wnt/β-catenin signaling. Taken together, our study has identified a pathway by which TPA activates Wnt/β-catenin signaling.
Collapse
|
31
|
Bozatzi P, Dingwell KS, Wu KZ, Cooper F, Cummins TD, Hutchinson LD, Vogt J, Wood NT, Macartney TJ, Varghese J, Gourlay R, Campbell DG, Smith JC, Sapkota GP. PAWS1 controls Wnt signalling through association with casein kinase 1α. EMBO Rep 2018; 19:e44807. [PMID: 29514862 PMCID: PMC5891436 DOI: 10.15252/embr.201744807] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/17/2022] Open
Abstract
The BMP and Wnt signalling pathways determine axis specification during embryonic development. Our previous work has shown that PAWS1 (also known as FAM83G) interacts with SMAD1 and modulates BMP signalling. Here, surprisingly, we show that overexpression of PAWS1 in Xenopus embryos activates Wnt signalling and causes complete axis duplication. Consistent with these observations in Xenopus, Wnt signalling is diminished in U2OS osteosarcoma cells lacking PAWS1, while BMP signalling is unaffected. We show that PAWS1 interacts and co-localises with the α isoform of casein kinase 1 (CK1), and that PAWS1 mutations incapable of binding CK1 fail both to activate Wnt signalling and to elicit axis duplication in Xenopus embryos.
Collapse
Affiliation(s)
- Polyxeni Bozatzi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Kevin Zl Wu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Timothy D Cummins
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Luke D Hutchinson
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Janis Vogt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Nicola T Wood
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Thomas J Macartney
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Joby Varghese
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - Robert Gourlay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | - David G Campbell
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| | | | - Gopal P Sapkota
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Dundee, UK
| |
Collapse
|
32
|
Billot K, Coquil C, Villiers B, Josselin-Foll B, Desban N, Delehouzé C, Oumata N, Le Meur Y, Boletta A, Weimbs T, Grosch M, Witzgall R, Saunier S, Fischer E, Pontoglio M, Fautrel A, Mrug M, Wallace D, Tran PV, Trudel M, Bukanov N, Ibraghimov-Beskrovnaya O, Meijer L. Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. Am J Physiol Renal Physiol 2018. [PMID: 29537311 DOI: 10.1152/ajprenal.00489.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.
Collapse
Affiliation(s)
- Katy Billot
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | | | | | - Béatrice Josselin-Foll
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nathalie Desban
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Claire Delehouzé
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nassima Oumata
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | - Yannick Le Meur
- Service de Néphrologie, Centre Hospitalier Universitaire La Cavale Blanche, Rue Tanguy Prigent, Brest Cedex, France
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, DIBIT San Raffaele Scientific Institute , Milan , Italy
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California
| | - Melanie Grosch
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | - Ralph Witzgall
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | | | - Evelyne Fischer
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Marco Pontoglio
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Alain Fautrel
- Université de Rennes 1, H2P2 Histopathology Core Facility, Rennes Cedex, France
| | - Michal Mrug
- Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Darren Wallace
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas
| | - Pamela V Tran
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas.,University of Kansas Medical Center, Department of Anatomy and Cell Biology , Kansas City, Kansas
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Montreal, Quebec , Canada
| | - Nikolay Bukanov
- Sanofi Genzyme, Rare Renal and Bone Diseases, Framingham, Massachusetts
| | | | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| |
Collapse
|
33
|
Curto J, Del Valle-Pérez B, Villarroel A, Fuertes G, Vinyoles M, Peña R, García de Herreros A, Duñach M. CK1ε and p120-catenin control Ror2 function in noncanonical Wnt signaling. Mol Oncol 2018; 12:611-629. [PMID: 29465811 PMCID: PMC5928365 DOI: 10.1002/1878-0261.12184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 12/31/2022] Open
Abstract
Canonical and noncanonical Wnt pathways share some common elements but differ in the responses they evoke. Similar to Wnt ligands acting through the canonical pathway, Wnts that activate the noncanonical signaling, such as Wnt5a, promote Disheveled (Dvl) phosphorylation and its binding to the Frizzled (Fz) Wnt receptor complex. The protein kinase CK1ε is required for Dvl/Fz association in both canonical and noncanonical signaling. Here we show that differently to its binding to canonical Wnt receptor complex, CK1ε does not require p120‐catenin for the association with the Wnt5a co‐receptor Ror2. Wnt5a promotes the formation of the Ror2–Fz complex and enables the activation of Ror2‐bound CK1ε by Fz‐associated protein phosphatase 2A. Moreover, CK1ε also regulates Ror2 protein levels; CK1ε association stabilizes Ror2, which undergoes lysosomal‐dependent degradation in the absence of this kinase. Although p120‐catenin is not required for CK1ε association with Ror2, it also participates in this signaling pathway as p120‐catenin binds and maintains Ror2 at the plasma membrane; in p120‐depleted cells, Ror2 is rapidly internalized through a clathrin‐dependent mechanism. Accordingly, downregulation of p120‐catenin or CK1ε affects late responses to Wnt5a that are also sensitive to Ror2, such as SIAH2 transcription, cell invasion, or cortical actin polarization. Our results explain how CK1ε is activated by noncanonical Wnt and identify p120‐catenin and CK1ε as two critical factors controlling Ror2 function.
Collapse
Affiliation(s)
- Josué Curto
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Beatriz Del Valle-Pérez
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Villarroel
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Guillem Fuertes
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Meritxell Vinyoles
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain.,Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Raúl Peña
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències, Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Mireia Duñach
- Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
34
|
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A, Blankesteijn WM. WNT Signaling in Cardiac and Vascular Disease. Pharmacol Rev 2018; 70:68-141. [PMID: 29247129 PMCID: PMC6040091 DOI: 10.1124/pr.117.013896] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
WNT signaling is an elaborate and complex collection of signal transduction pathways mediated by multiple signaling molecules. WNT signaling is critically important for developmental processes, including cell proliferation, differentiation and tissue patterning. Little WNT signaling activity is present in the cardiovascular system of healthy adults, but reactivation of the pathway is observed in many pathologies of heart and blood vessels. The high prevalence of these pathologies and their significant contribution to human disease burden has raised interest in WNT signaling as a potential target for therapeutic intervention. In this review, we first will focus on the constituents of the pathway and their regulation and the different signaling routes. Subsequently, the role of WNT signaling in cardiovascular development is addressed, followed by a detailed discussion of its involvement in vascular and cardiac disease. After highlighting the crosstalk between WNT, transforming growth factor-β and angiotensin II signaling, and the emerging role of WNT signaling in the regulation of stem cells, we provide an overview of drugs targeting the pathway at different levels. From the combined studies we conclude that, despite the sometimes conflicting experimental data, a general picture is emerging that excessive stimulation of WNT signaling adversely affects cardiovascular pathology. The rapidly increasing collection of drugs interfering at different levels of WNT signaling will allow the evaluation of therapeutic interventions in the pathway in relevant animal models of cardiovascular diseases and eventually in patients in the near future, translating the outcomes of the many preclinical studies into a clinically relevant context.
Collapse
Affiliation(s)
- Sébastien Foulquier
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Evangelos P Daskalopoulos
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Gentian Lluri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Kevin C M Hermans
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - Arjun Deb
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Maastricht University, Maastricht, The Netherlands (S.F., K.C.M.H., W.M.B.); Recherche Cardiovasculaire (CARD), Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain, Brussels, Belgium (E.P.D.); Department of Medicine, Division of Cardiology, David Geffen School of Medicine (G.L., A.D.); and Department of Molecular Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, California (A.D.)
| |
Collapse
|
35
|
Morgenstern Y, Das Adhikari U, Ayyash M, Elyada E, Tóth B, Moor A, Itzkovitz S, Ben-Neriah Y. Casein kinase 1-epsilon or 1-delta required for Wnt-mediated intestinal stem cell maintenance. EMBO J 2017; 36:3046-3061. [PMID: 28963394 DOI: 10.15252/embj.201696253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 01/01/2023] Open
Abstract
The intestinal epithelium holds an immense regenerative capacity mobilized by intestinal stem cells (ISCs), much of it supported by Wnt pathway activation. Several unique regulatory mechanisms ensuring optimal levels of Wnt signaling have been recognized in ISCs. Here, we identify another Wnt signaling amplifier, CKIε, which is specifically upregulated in ISCs and is essential for ISC maintenance, especially in the absence of its close isoform CKIδ. Co-ablation of CKIδ/ε in the mouse gut epithelium results in rapid ISC elimination, with subsequent growth arrest, crypt-villous shrinking, and rapid mouse death. Unexpectedly, Wnt activation is preserved in all CKIδ/ε-deficient enterocyte populations, with the exception of Lgr5+ ISCs, which exhibit Dvl2-dependent Wnt signaling attenuation. CKIδ/ε-depleted gut organoids cease proliferating and die rapidly, yet survive and resume self-renewal upon reconstitution of Dvl2 expression. Our study underscores a unique regulation mode of the Wnt pathway in ISCs, possibly providing new means of stem cell enrichment for regenerative medicine.
Collapse
Affiliation(s)
- Yael Morgenstern
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Upasana Das Adhikari
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Muneef Ayyash
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ela Elyada
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Beáta Tóth
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Moor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yinon Ben-Neriah
- The Lautenberg Center for Immunology, Institute of Medical Research, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
36
|
Guo Y, Chen L, Sun C, Yu C. MicroRNA-500a promotes migration and invasion in hepatocellular carcinoma by activating the Wnt/β-catenin signaling pathway. Biomed Pharmacother 2017; 91:13-20. [PMID: 28437633 DOI: 10.1016/j.biopha.2017.04.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Increased expression of microRNA-500a (miR-500a) has been reported in the serum of hepatocellular carcinoma (HCC) patients. However, the biological effects and mechanisms of miR-500a in hepatoma cells remain unclear. In this study, we found that miR-500a expression was up-regulated in HCC cell lines and tissues, and that high levels of miR-500a was associated with poor prognosis. We found that miR-500a upregulation promoted migration and invasion in two hepatoma cell lines, HCCLM3 and SMMC7721, while miR-500a downregulation had the opposite effect. We demonstrated that miR-500a activates the Wnt/β-catenin signaling pathway by directly binding to the 3'-untranslated region (UTR) of SFRP2 and GSK-3β mRNA. In conclusion, our results indicate miR-500a promotes HCC migration and invasion through activating Wnt/β-catenin signaling by directly binding to SFPR2 and GSK-3β.
Collapse
Affiliation(s)
- Yuntao Guo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou, China.
| | - Liwen Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou, China.
| | - Chengyi Sun
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou, China.
| | - Chao Yu
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004 Guizhou, China.
| |
Collapse
|
37
|
Duñach M, Del Valle-Pérez B, García de Herreros A. p120-catenin in canonical Wnt signaling. Crit Rev Biochem Mol Biol 2017; 52:327-339. [PMID: 28276699 DOI: 10.1080/10409238.2017.1295920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Canonical Wnt signaling controls β-catenin protein stabilization, its translocation to the nucleus and the activation of β-catenin/Tcf-4-dependent transcription. In this review, we revise and discuss the recent results describing actions of p120-catenin in different phases of this pathway. More specifically, we comment its involvement in four different steps: (i) the very early activation of CK1ɛ, essential for Dvl-2 binding to the Wnt receptor complex; (ii) the internalization of GSK3 and Axin into multivesicular bodies, necessary for a complete stabilization of β-catenin; (iii) the activation of Rac1 small GTPase, required for β-catenin translocation to the nucleus; and (iv) the release of the inhibitory action caused by Kaiso transcriptional repressor. We integrate these new results with the previously known action of other elements in this pathway, giving a particular relevance to the responses of the Wnt pathway not required for β-catenin stabilization but for β-catenin transcriptional activity. Moreover, we discuss the possible future implications, suggesting that the two cellular compartments where β-catenin is localized, thus, the adherens junction complex and the Wnt signalosome, are more physically connected that previously thought.
Collapse
Affiliation(s)
- Mireia Duñach
- a Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Beatriz Del Valle-Pérez
- a Departament de Bioquímica i Biologia Molecular, CEB, Facultat de Medicina , Universitat Autònoma de Barcelona , Bellaterra , Spain
| | - Antonio García de Herreros
- b Programa de Recerca en Càncer , Institut Hospital del Mar d'Investigacions Mèdiques (IMIM) , Barcelona , Spain.,c Departament de Ciències Experimentals i de la Salut , Universitat Pompeu Fabra , Barcelona , Spain
| |
Collapse
|
38
|
Sinnberg T, Wang J, Sauer B, Schittek B. Casein kinase 1α has a non-redundant and dominant role within the CK1 family in melanoma progression. BMC Cancer 2016; 16:594. [PMID: 27488834 PMCID: PMC4973074 DOI: 10.1186/s12885-016-2643-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Accepted: 06/15/2016] [Indexed: 01/08/2023] Open
Abstract
Background We previously identified CK1α as a novel tumor suppressor in melanoma and reported that the loss of CK1α leads to increased proliferation and invasive growth of melanoma cells by strong activation of the Wnt/β-catenin signaling pathway. Methods In this study we analyzed expression and the functional effects of the dominantly expressed CK1- isoforms α, δ and ε in melanoma cells by quantitative real-time PCR, western blot and immunohistochemistry. We down-regulated CK1 kinase activity with isoform specific siRNAs and small molecule inhibitors. Vice versa we overexpressed the CK1 isoforms α, δ and ε using viral vectors and tested the biological effects on melanoma cell proliferation, migration and invasion. Results We show that protein expression of all three CK1-isoforms is downregulated in metastatic melanoma cells compared to benign melanocytic cells. Furthermore, the CK1δ and ε isoforms are able to negatively regulate expression of each other, whereas CK1α expression is independently regulated in melanoma cells. Inhibition of the expression and activity of CK1δ or CK1ε by specific inhibitors or siRNAs had no significant effect on the growth and survival of metastatic melanoma cells. Moreover, the over-expression of CK1δ or CK1ε in melanoma cells failed to induce cell death and cell cycle arrest although p53 signaling was activated. This is in contrast to the effects of CK1α where up-regulated expression induces cell death and apoptosis in metastatic melanoma cells. Conclusion These data indicate that CK1α has a dominant and non-redundant function in melanoma cells and that the CK1δ and ε isoforms are not substantially involved in melanoma progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2643-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tobias Sinnberg
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Jun Wang
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Birgit Sauer
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-University Tübingen, Liebermeisterstr 25, D-72076, Tübingen, Germany.
| |
Collapse
|
39
|
Activation of CK1ɛ by PP2A/PR61ɛ is required for the initiation of Wnt signaling. Oncogene 2016; 36:429-438. [PMID: 27321178 DOI: 10.1038/onc.2016.209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 03/18/2016] [Accepted: 05/08/2016] [Indexed: 12/21/2022]
Abstract
Canonical Wnt signaling induces the stabilization of β-catenin, its translocation to the nucleus and the activation of target promoters. This pathway is initiated by the binding of Wnt ligands to the Frizzled receptor, the association of the LRP5/6 co-receptor and the formation of a complex comprising Dvl-2, Axin and protein kinases CK1α, ɛ, γ and GSK3. Among these, activation of CK1ɛ, constitutively bound to LRP5/6 through p120-catenin, is required for the association of the rest of the components. We describe here that CK1ɛ is activated by the PP2A/PR61ɛ phosphatase. Binding of Wnt ligands promotes the interaction of LRP5/6-associated CK1ɛ with Frizzled-bound PR61ɛ regulatory subunit, facilitating the access of PP2A catalytic subunit to CK1ɛ and its activation, what enables the recruitment of Dvl-2 to the receptor complex and the initiation of the Wnt pathway. Our results uncover the mechanism of activation of the canonical Wnt pathway by its ligands.
Collapse
|
40
|
Li T, Lai Q, Wang S, Cai J, Xiao Z, Deng D, He L, Jiao H, Ye Y, Liang L, Ding Y, Liao W. MicroRNA-224 sustains Wnt/β-catenin signaling and promotes aggressive phenotype of colorectal cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:21. [PMID: 26822534 PMCID: PMC4731927 DOI: 10.1186/s13046-016-0287-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/07/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Growing evidence suggests that Wnt/β-catenin pathway plays an important role in CRC development, progression and metastasis. Aberrant miR-224 expression has been reported in CRC. However, the mechanism of miR-224 promotes both proliferation and metastatic ability largely remains unclear. METHODS Real-time PCR was used to quantify miR-224 expression. Luciferase reporter assays were conducted to confirm the activity of Wnt/β-catenin pathway and target gene associations, and immunofluorescence staining assay was performed to observe the nuclear translocation of β-catenin. Bioinformatics analysis combined with in vivo and vitro functional assays showed the potential target genes, GSK3β and SFRP2, of miR-224. Specimens from forty patients with CRC were analyzed for the expression of miR-224 and the relationship with GSK3β/SFRP2 by real-time PCR and western blot. RESULTS Bioinformatics and cell luciferase function studies verified the direct regulation of miR-224 on the 3'-UTR of the GSK3β and SFRP2 genes, which leads to the activation of Wnt/β-catenin signaling and the nuclear translocation of β-catenin. In addition, knockdown of miR-224 significantly recovered the expression of GSK3β and SFRP2 and attenuated Wnt/β-catenin-mediated cell metastasis and proliferation. The ectopic upregulation of miR-224 dramatically inhibited the expression of GSK3β/SFRP2 and enhanced CRC proliferation and invasion. CONCLUSION Our research showed mechanistic links between miR-224 and Wnt/β-catenin in the pathogenesis of CRC through modulation of GSK3β and SFRP2.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Qiuhua Lai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Shuyang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Juanjuan Cai
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Zhiyuan Xiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Danling Deng
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Liuqing He
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Hongli Jiao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Yaping Ye
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| | - Wenting Liao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China. .,Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China. .,State Key Laboratory of Oncology in Southern China, Department of Experimental, Guangzhou, Guangdong, China.
| |
Collapse
|
41
|
Dynamic conformational ensembles regulate casein kinase-1 isoforms: Insights from molecular dynamics and molecular docking studies. Comput Biol Chem 2016; 61:39-46. [PMID: 26788877 DOI: 10.1016/j.compbiolchem.2015.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 10/24/2015] [Accepted: 11/10/2015] [Indexed: 11/20/2022]
Abstract
Casein kinase-1 (CK1) isoforms actively participate in the down-regulation of canonical Wnt signaling pathway; however recent studies have shown their active roles in oncogenesis of various tissues through this pathway. Functional loss of two isoforms (CK1-α/ε) has been shown to activate the carcinogenic pathway which involves the stabilization of of cytoplasmic β-catenin. Development of anticancer therapeutics is very laborious task and depends upon the structural and conformational details of the target. This study focuses on, how the structural dynamics and conformational changes of two CK1 isoforms are synchronized in carcinogenic pathway. The conformational dynamics in kinases is the responsible for their action as has been supported by the molecular docking experiments.
Collapse
|
42
|
Abstract
The disproportional enlargement of the neocortex through evolution has been instrumental in the success of vertebrates, in particular mammals. The neocortex is a multilayered sheet of neurons generated from a simple proliferative neuroepithelium through a myriad of mechanisms with substantial evolutionary conservation. This developing neuroepithelium is populated by progenitors that can generate additional progenitors as well as post-mitotic neurons. Subtle alterations in the production of progenitors vs. differentiated cells during development can result in dramatic differences in neocortical size. This review article will examine how cadherin adhesion proteins, in particular α-catenin and N-cadherin, function in regulating the neural progenitor microenvironment, cell proliferation, and differentiation in cortical development.
Collapse
Key Words
- APC, Adenomatous polyposis coli.
- CBD, catenin binding domain
- CK1, Casein kinase 1
- GSK3β, glycogen synthase kinase 3β
- Hh, Hedgehog
- JMD, juxtamembrane domain
- N-cadherin
- PCP, planar cell polarity
- PI3K, phosphatidylinositol 3-kinase
- PTEN, phosphatase and tensin homolog
- SHH, sonic hedgehog
- SNP, short neural precursor
- VZ, ventricular zone
- adherens junction
- differentiation
- proliferation
- wnt
- α-catenin
- β-catenin
Collapse
Affiliation(s)
- Adam M Stocker
- a Molecular Neurobiology Laboratory ; The Salk Institute ; La Jolla , CA USA
| | | |
Collapse
|
43
|
Hong JY, Oh IH, McCrea PD. Phosphorylation and isoform use in p120-catenin during development and tumorigenesis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:102-14. [PMID: 26477567 DOI: 10.1016/j.bbamcr.2015.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
P120-catenin is essential to vertebrate development, modulating cadherin and small-GTPase functions, and growing evidence points also to roles in the nucleus. A complexity in addressing p120-catenin's functions is its many isoforms, including optional splicing events, alternative points of translational initiation, and secondary modifications. In this review, we focus upon how choices in the initiation of protein translation, or the earlier splicing of the RNA transcript, relates to primary sequences that harbor established or putative regulatory phosphorylation sites. While certain p120 phosphorylation events arise via known kinases/phosphatases and have defined outcomes, in most cases the functional consequences are still to be established. In this review, we provide examples of p120-isoforms as they relate to phosphorylation events, and thereby to isoform dependent protein-protein associations and downstream functions. We also provide a view of upstream pathways that determine p120's phosphorylation state, and that have an impact upon development and disease. Because other members of the p120 subfamily undergo similar processing and phosphorylation, as well as related catenins of the plakophilin subfamily, what is learned regarding p120 will by extension have wide relevance in vertebrates.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Division of Cardiology, Department of Medicine, Severance Biomedical Science Institute, Yonsei University College of Medicine, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Il-Hoan Oh
- The Catholic University of Korea, Catholic High Performance Cell Therapy Center, 505 Banpo-dong, Seocho-Ku, Seoul 137-701, Republic of Korea
| | - Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center, University of Texas Graduate School of Biomedical Science, Houston, TX 77030, USA.
| |
Collapse
|
44
|
Zhang X, Hao J. Development of anticancer agents targeting the Wnt/β-catenin signaling. Am J Cancer Res 2015; 5:2344-2360. [PMID: 26396911 PMCID: PMC4568771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/04/2015] [Indexed: 06/05/2023] Open
Abstract
Wnt/β-catenin signaling plays indispensable roles in both embryonic development and adult homeostasis. Abnormal regulation of this pathway is implicated in many types of cancer. Consequently, substantial efforts have made to develop therapeutic agents as anticancer drugs by specifically targeting the Wnt/β-catenin pathway. Here we systematically review the potential therapeutic agents that have been developed to date for inhibition of the Wnt/β-catenin cascade as well as current status of clinical trials of some of these agents.
Collapse
Affiliation(s)
- Xiangqian Zhang
- College of Life Science, Yan’an UniversityYan’an 716000, Shaanxi, China
| | - Jijun Hao
- College of Veterinary Medicine, Western University of Health SciencesPomona, CA 91766, USA
- Graduate College of Biomedical Sciences, Western University of Health SciencesPomona, CA, 91766, USA
| |
Collapse
|
45
|
Abstract
The arrival of multicellularity in evolution facilitated cell-cell signaling in conjunction with adhesion. As the ectodomains of cadherins interact with each other directly in trans (as well as in cis), spanning the plasma membrane and associating with multiple other entities, cadherins enable the transduction of "outside-in" or "inside-out" signals. We focus this review on signals that originate from the larger family of cadherins that are inwardly directed to the nucleus, and thus have roles in gene control or nuclear structure-function. The nature of cadherin complexes varies considerably depending on the type of cadherin and its context, and we will address some of these variables for classical cadherins versus other family members. Substantial but still fragmentary progress has been made in understanding the signaling mediators used by varied cadherin complexes to coordinate the state of cell-cell adhesion with gene expression. Evidence that cadherin intracellular binding partners also localize to the nucleus is a major point of interest. In some models, catenins show reduced binding to cadherin cytoplasmic tails favoring their engagement in gene control. When bound, cadherins may serve as stoichiometric competitors of nuclear signals. Cadherins also directly or indirectly affect numerous signaling pathways (e.g., Wnt, receptor tyrosine kinase, Hippo, NFκB, and JAK/STAT), enabling cell-cell contacts to touch upon multiple biological outcomes in embryonic development and tissue homeostasis.
Collapse
Affiliation(s)
- Pierre D McCrea
- Department of Genetics, University of Texas MD Anderson Cancer Center; Program in Genes & Development, Graduate School in Biomedical Sciences, Houston, Texas, USA.
| | - Meghan T Maher
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Cara J Gottardi
- Cellular and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA; Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
46
|
Singh SP, Gupta DK. A comparative study of structural and conformational properties of casein kinase-1 isoforms: insights from molecular dynamics and principal component analysis. J Theor Biol 2015; 371:59-68. [PMID: 25665722 DOI: 10.1016/j.jtbi.2015.01.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/02/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Wnt signaling pathway regulates several developmental processes in human; however recently this pathway has been associated with development of different types of cancers. Casein kinase-1 (CK1) constitutes a family of serine-threonine protein kinase; various members of this family participate in Wnt signal transduction pathway and serve as molecular switch to this pathway. Among the known six isoforms of CK1, in human, at least three isoforms (viz. alpha, delta and epsilon) have been reported as oncogenic. The development of common therapeutics against these kinases is an arduous task; unless we have the detailed information of their tertiary structures and conformational properties. In the present work, the dynamical and conformational properties for each of three isoforms of CK1 are explored through molecular dynamics (MD) simulations. The conformational space distribution of backbone atoms is evaluated using principal component analysis of MD data, which are further validated on the basis of potential energy surface. Based on these analytics, it is suggested that conformational subspace shifts upon binding to ligands and guides the kinase action of CK1 isoforms. Further, this paper as a first effort to concurrently study all the three isoforms of CK1 provides structural basis for development of common anticancer therapeutics against three isoforms of CK1.
Collapse
Affiliation(s)
- Surya Pratap Singh
- Center of Bioinformatics, University of Allahabad, Allahabad 211002, India.
| | - Dwijendra K Gupta
- Department of Biochemistry, University of Allahabad, Allahabad 211002, India.
| |
Collapse
|
47
|
Bowman BM, Sebolt KA, Hoff BA, Boes JL, Daniels DL, Heist KA, Galbán CJ, Patel RM, Zhang J, Beer DG, Ross BD, Rehemtulla A, Galbán S. Phosphorylation of FADD by the kinase CK1α promotes KRASG12D-induced lung cancer. Sci Signal 2015; 8:ra9. [PMID: 25628462 PMCID: PMC4416214 DOI: 10.1126/scisignal.2005607] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Genomic amplification of the gene encoding and phosphorylation of the protein FADD (Fas-associated death domain) is associated with poor clinical outcome in lung cancer and in head and neck cancer. Activating mutations in the guanosine triphosphatase RAS promotes cell proliferation in various cancers. Increased abundance of phosphorylated FADD in patient-derived tumor samples predicts poor clinical outcome. Using immunohistochemistry analysis and in vivo imaging of conditional mouse models of KRAS(G12D)-driven lung cancer, we found that the deletion of the gene encoding FADD suppressed tumor growth, reduced the proliferative index of cells, and decreased the activation of downstream effectors of the RAS-MAPK (mitogen-activated protein kinase) pathway that promote the cell cycle, including retinoblastoma (RB) and cyclin D1. In mouse embryonic fibroblasts, the induction of mitosis upon activation of KRAS required FADD and the phosphorylation of FADD by CK1α (casein kinase 1α). Deleting the gene encoding CK1α in KRAS mutant mice abrogated the phosphorylation of FADD and suppressed lung cancer development. Phosphorylated FADD was most abundant during the G2/M phase of the cell cycle, and mass spectrometry revealed that phosphorylated FADD interacted with kinases that mediate the G2/M transition, including PLK1 (Polo-like kinase 1), AURKA (Aurora kinase A), and BUB1 (budding uninhibited by benzimidazoles 1). This interaction was decreased in cells treated with a CKI-7, a CK1α inhibitor. Therefore, as the kinase that phosphorylates FADD downstream of RAS, CK1α may be a therapeutic target for KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Brittany M Bowman
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katrina A Sebolt
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Benjamin A Hoff
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jennifer L Boes
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Kevin A Heist
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Craig J Galbán
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajiv M Patel
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianke Zhang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - David G Beer
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian D Ross
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA. Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Stefanie Galbán
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
48
|
Laco F, Low JL, Seow J, Woo TL, Zhong Q, Seayad J, Liu Z, Wei H, Reuveny S, Elliott DA, Chai CLL, Oh SKW. Cardiomyocyte differentiation of pluripotent stem cells with SB203580 analogues correlates with Wnt pathway CK1 inhibition independent of p38 MAPK signaling. J Mol Cell Cardiol 2014; 80:56-70. [PMID: 25528965 DOI: 10.1016/j.yjmcc.2014.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 11/16/2014] [Accepted: 12/03/2014] [Indexed: 01/22/2023]
Abstract
Differentiation of human pluripotent stem cells as embryoid bodies (EBs) has been achieved previously with p38alfa MAPK inhibitors such as SB203580 with moderate efficiency of 10-15%. We synthesized and screened 42 compounds that are 2,4,5-trisubstituted azole analogues of SB203580 for efficient cardiomyocyte differentiation. Our screen identified novel compounds that have similar cardiac differentiation activity as SB203580. However, the cardiac differentiation did not correlate with p38alfa MAPK inhibition, indicating an alternative mechanism in cardiac differentiation. Upon profiling several 2,4,5-trisubstituted azole compounds against a panel of 97 kinases we identified several off targets, among them casein kinases 1 (CK1). The cardiomyogenic activities of SB203580 and its analogues showed a correlation with post mesoderm Wnt/beta-catenin pathway inhibition of CK1 epsilon and delta. These findings united the mechanism of 2,4,5-trisubstituted azole with the current theory of Wnt/beta-catenin regulated pathway of cardiac differentiation. Consequently an efficient cardiomyocyte protocol was developed with Wnt activator CHIR99021 and 2,4,5-trisubstituted azoles to give high yields of 50-70% cardiomyocytes and a 2-fold increase in growth.
Collapse
Affiliation(s)
- Filip Laco
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Joo-Leng Low
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Jasmin Seow
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Tsung Liang Woo
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - Qixing Zhong
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Jayasree Seayad
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore
| | - Zhenfeng Liu
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore; Cardiovascular & Metabolic Disorders Program, DUKE-NUS Graduate Medical School Singapore, Singapore
| | - Heiming Wei
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Shaul Reuveny
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore
| | - David A Elliott
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Flemington Road, Parkville, Melbourne, Australia
| | - Christina L L Chai
- Institute of Chemical and Engineering Sciences, 8 Biomedical Grove, Neuros #07-01, Singapore 138665, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - Steve K W Oh
- Bioprocessing Technology Institute, 20 Biopolis Way, Centros #06-01, Singapore 138668, Singapore.
| |
Collapse
|
49
|
Biological functions of casein kinase 1 isoforms and putative roles in tumorigenesis. Mol Cancer 2014; 13:231. [PMID: 25306547 PMCID: PMC4201705 DOI: 10.1186/1476-4598-13-231] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 09/26/2014] [Indexed: 12/13/2022] Open
Abstract
Isoforms of the casein kinase 1 (CK1) family have been shown to phosphorylate key regulatory molecules involved in cell cycle, transcription and translation, the structure of the cytoskeleton, cell-cell adhesion and receptor-coupled signal transduction. They regulate key signaling pathways known to be critically involved in tumor progression. Recent results point to an altered expression or activity of different CK1 isoforms in tumor cells. This review summarizes the expression and biological function of CK1 family members in normal and malignant cells and the evidence obtained so far about their role in tumorigenesis.
Collapse
|
50
|
Cruciat CM. Casein kinase 1 and Wnt/β-catenin signaling. Curr Opin Cell Biol 2014; 31:46-55. [PMID: 25200911 DOI: 10.1016/j.ceb.2014.08.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 08/21/2014] [Indexed: 12/12/2022]
Abstract
Casein kinase 1 (CK1) members play a critical and evolutionary conserved role in Wnt/β-catenin signaling. They phosphorylate several pathway components and exert a dual function, acting as both Wnt activators and Wnt inhibitors. Recent discoveries suggest that CK1 members act in a coordinated manner to regulate early responses to Wnt and notably that their enzymatic activity is regulated. Here, I provide a brief update of CK1 function and regulation in Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany.
| |
Collapse
|