1
|
Picavet LW, Samat AAK, Calis J, Nijhuis L, Scholman R, Mokry M, Tough DF, Prinjha RK, Vastert SJ, van Loosdregt J. CBP/P300 Inhibition Impairs CD4+ T Cell Activation: Implications for Autoimmune Disorders. Biomedicines 2024; 12:1344. [PMID: 38927552 PMCID: PMC11202127 DOI: 10.3390/biomedicines12061344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
T cell activation is critical for an effective immune response against pathogens. However, dysregulation contributes to the pathogenesis of autoimmune diseases, including Juvenile Idiopathic Arthritis (JIA). The molecular mechanisms underlying T cell activation are still incompletely understood. T cell activation promotes the acetylation of histone 3 at Lysine 27 (H3K27ac) at enhancer and promoter regions of proinflammatory cytokines, thereby increasing the expression of these genes which is essential for T cell function. Co-activators E1A binding protein P300 (P300) and CREB binding protein (CBP), collectively known as P300/CBP, are essential to facilitate H3K27 acetylation. Presently, the role of P300/CBP in human CD4+ T cells activation remains incompletely understood. To assess the function of P300/CBP in T cell activation and autoimmune disease, we utilized iCBP112, a selective inhibitor of P300/CBP, in T cells obtained from healthy controls and JIA patients. Treatment with iCBP112 suppressed T cell activation and cytokine signaling pathways, leading to reduced expression of many proinflammatory cytokines, including IL-2, IFN-γ, IL-4, and IL-17A. Moreover, P300/CBP inhibition in T cells derived from the inflamed synovium of JIA patients resulted in decreased expression of similar pathways and preferentially suppressed the expression of disease-associated genes. This study underscores the regulatory role of P300/CBP in regulating gene expression during T cell activation while offering potential insights into the pathogenesis of autoimmune diseases. Our findings indicate that P300/CBP inhibition could potentially be leveraged for the treatment of autoimmune diseases such as JIA in the future.
Collapse
Affiliation(s)
- Lucas Wilhelmus Picavet
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Anoushka A. K. Samat
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Jorg Calis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Lotte Nijhuis
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Rianne Scholman
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| | - Michal Mokry
- Department of Experimental Cardiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;
| | - David F. Tough
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Rabinder K. Prinjha
- Immunology Research Unit, Medicines Research Centre, GlaxoSmithKline, Stevenage SG1 2NY, UK; (D.F.T.); (R.K.P.)
| | - Sebastiaan J. Vastert
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
- Department of Pediatric Rheumatology and Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jorg van Loosdregt
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (L.W.P.); (A.A.K.S.); (J.C.); (L.N.); (R.S.); (S.J.V.)
| |
Collapse
|
2
|
Kwesi-Maliepaard EM, Jacobs H, van Leeuwen F. Signals for antigen-independent differentiation of memory CD8 + T cells. Cell Mol Life Sci 2021; 78:6395-6408. [PMID: 34398252 PMCID: PMC8558200 DOI: 10.1007/s00018-021-03912-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/23/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
Conventional CD8+ memory T cells develop upon stimulation with foreign antigen and provide increased protection upon re-challenge. Over the past two decades, new subsets of CD8+ T cells have been identified that acquire memory features independently of antigen exposure. These antigen-inexperienced memory T cells (TAIM) are described under several names including innate memory, virtual memory, and memory phenotype. TAIM cells exhibit characteristics of conventional or true memory cells, including antigen-specific responses. In addition, they show responsiveness to innate stimuli and have been suggested to provide additional levels of protection toward infections and cancer. Here, we discuss the current understanding of TAIM cells, focusing on extrinsic and intrinsic molecular conditions that favor their development, their molecular definitions and immunological properties, as well as their transcriptional and epigenetic regulation.
Collapse
Affiliation(s)
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066CX, Amsterdam, The Netherlands.
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, 1105AZ, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Daniel L, Tassery M, Lateur C, Thierry A, Herbelin A, Gombert JM, Barbarin A. Allotransplantation Is Associated With Exacerbation of CD8 T-Cell Senescence: The Particular Place of the Innate CD8 T-Cell Component. Front Immunol 2021; 12:674016. [PMID: 34367138 PMCID: PMC8334557 DOI: 10.3389/fimmu.2021.674016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/30/2021] [Indexed: 12/21/2022] Open
Abstract
Immunosenescence is a physiological process that is associated with changes in the immune system, particularly among CD8 T-cells. Recent studies have hypothesized that senescent CD8 T-cells are produced with chronologic age by chronic stimulation, leading to the acquisition of hallmarks of innate-like T-cells. While conventional CD8 T-cells are quite well characterized, CD8 T-cells sharing features of NK cells and memory CD8 T-cells, are a newly described immune cell population. They can be distinguished from conventional CD8 T-cells by their combined expression of panKIR/NKG2A and Eomesodermin (E), a unique phenotype closely associated with IFN-γ production in response to innate stimulation. Here, we first provided new evidence in favor of the innate character of panKIR/NKG2A(+) E(+) CD8 T-cells in normal subjects, documenting their position at an intermediate level in the innateness gradient in terms of both innate IFN-γ production and diminished mitochondrial mass. We also revealed that CD8 E(+) panKIR/NKG2A(+) T-cells, hereafter referred to as Innate E(+) CD8 T-cells, exhibit increased senescent (CD27(-) CD28(-)) phenotype, compared to their conventional memory counterparts. Surprisingly, this phenomenon was not dependent on age. Given that inflammation related to chronic viral infection is known to induce NK-like marker expression and a senescence phenotype among CD8 T-cells, we hypothesized that innate E(+) CD8 T-cells will be preferentially associated with exacerbated cellular senescence in response to chronic alloantigen exposure or CMV infection. Accordingly, in a pilot cohort of stable kidney allotransplant recipients, we observed an increased frequency of the Innate E(+) CD8 T-cell subset, together with an exacerbated senescent phenotype. Importantly, this phenotype cannot be explained by age alone, in clear contrast to their conventional memory counterparts. The senescent phenotype in CD8 T-cells was further increased in cytomegalovirus (CMV) positive serology transplant recipients, suggesting that transplantation and CMV, rather than aging by itself, may promote an exacerbated senescent phenotype of innate CD8 T-cells. In conclusion, we proposed that kidney transplantation, via the setting of inflammatory stimuli of alloantigen exposure and CMV infection, may exogenously age the CD8 T-cell compartment, especially its innate component. The physiopathological consequences of this change in the immune system remain to be elucidated.
Collapse
Affiliation(s)
- Lauren Daniel
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Marion Tassery
- Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - Clara Lateur
- Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Antoine Thierry
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service de Néphrologie, Hémodialyse et Transplantation, CHU de Poitiers, Poitiers, France
| | - André Herbelin
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France
| | - Jean-Marc Gombert
- Inserm U1082, Poitiers, France.,Université de Poitiers, Poitiers, France.,Service d'Immunologie et Inflammation, CHU de Poitiers, Poitiers, France
| | - Alice Barbarin
- Inserm U1082, Poitiers, France.,CHU de Poitiers, Poitiers, France
| |
Collapse
|
4
|
Chiara VD, Daxinger L, Staal FJT. The Route of Early T Cell Development: Crosstalk between Epigenetic and Transcription Factors. Cells 2021; 10:1074. [PMID: 33946533 PMCID: PMC8147249 DOI: 10.3390/cells10051074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hematopoietic multipotent progenitors seed the thymus and then follow consecutive developmental stages until the formation of mature T cells. During this process, phenotypic changes of T cells entail stage-specific transcriptional programs that underlie the dynamic progression towards mature lymphocytes. Lineage-specific transcription factors are key drivers of T cell specification and act in conjunction with epigenetic regulators that have also been elucidated as crucial players in the establishment of regulatory networks necessary for proper T cell development. In this review, we summarize the activity of transcription factors and epigenetic regulators that together orchestrate the intricacies of early T cell development with a focus on regulation of T cell lineage commitment.
Collapse
Affiliation(s)
- Veronica Della Chiara
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Lucia Daxinger
- Department of Human Genetics, Leiden University Medical Centre (LUMC), 2300 RC Leiden, The Netherlands; (V.D.C.); (L.D.)
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Abstract
T cell development involves stepwise progression through defined stages that give rise to multiple T cell subtypes, and this is accompanied by the establishment of stage-specific gene expression. Changes in chromatin accessibility and chromatin modifications accompany changes in gene expression during T cell development. Chromatin-modifying enzymes that add or reverse covalent modifications to DNA and histones have a critical role in the dynamic regulation of gene expression throughout T cell development. As each chromatin-modifying enzyme has multiple family members that are typically all coexpressed during T cell development, their function is sometimes revealed only when two related enzymes are concurrently deleted. This work has also revealed that the biological effects of these enzymes often involve regulation of a limited set of targets. The growing diversity in the types and sites of modification, as well as the potential for a single enzyme to catalyze multiple modifications, is also highlighted.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA; ,
| | | |
Collapse
|
6
|
White AJ, Lucas B, Jenkinson WE, Anderson G. Invariant NKT Cells and Control of the Thymus Medulla. THE JOURNAL OF IMMUNOLOGY 2019; 200:3333-3339. [PMID: 29735644 DOI: 10.4049/jimmunol.1800120] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 02/20/2018] [Indexed: 12/29/2022]
Abstract
Most αβ T cells that form in the thymus are generated during mainstream conventional thymocyte development and involve the generation and selection of a diverse αβ TCR repertoire that recognizes self-peptide/MHC complexes. Additionally, the thymus also supports the production of T cell subsets that express αβ TCRs but display unique developmental and functional features distinct from conventional αβ T cells. These include multiple lineages of CD1d-restricted invariant NKT (iNKT) cells that express an invariant αβ TCR, branch off from mainstream thymocytes at the CD4+CD8+ stage, and are potent producers of polarizing cytokines. Importantly, and despite their differences, iNKT cells and conventional αβ T cells share common requirements for thymic epithelial microenvironments during their development. Moreover, emerging evidence suggests that constitutive cytokine production by iNKT cells influences both conventional thymocyte development and the intrathymic formation of additional innate CD8+ αβ T cells with memory-like properties. In this article, we review evidence for an intrathymic innate lymphocyte network in which iNKT cells play key roles in multiple aspects of thymus function.
Collapse
Affiliation(s)
- Andrea J White
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Beth Lucas
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - William E Jenkinson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Graham Anderson
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Medical School, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
7
|
Piccirillo AR, Cattley RT, D'Cruz LM, Hawse WF. Histone acetyltransferase CBP is critical for conventional effector and memory T-cell differentiation in mice. J Biol Chem 2018; 294:2397-2406. [PMID: 30573679 DOI: 10.1074/jbc.ra118.006977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/13/2018] [Indexed: 12/21/2022] Open
Abstract
Compared with naïve T cells, memory CD8+ T cells have a transcriptional landscape and proteome that are optimized to generate a more rapid and robust response to secondary infection. Additionally, rewired kinase signal transduction pathways likely contribute to the superior recall response of memory CD8+ T cells, but this idea has not been experimentally confirmed. Herein, we utilized an MS approach to identify proteins that are phosphorylated on tyrosine residues in response to Listeria-induced T-cell receptor (TCR) stimulation in both naïve and memory CD8+ T cells from mice and separated by fluorescence- and flow cytometry-based cell sorting. This analysis identified substantial differences in tyrosine kinase signaling networks between naïve and memory CD8+ T cells. We also observed that an important axis in memory CD8+ T cells couples Janus kinase 2 (JAK2) hyperactivation to the phosphorylation of CREB-binding protein (CBP). Functionally, JAK2-catalyzed phosphorylation enabled CBP to bind with higher affinity to acetylated histone peptides, indicating a potential epigenetic mechanism that could contribute to rapid initiation of transcriptional programs in memory CD8+ T cells. Moreover, we found that CBP itself is essential for conventional effector and memory CD8+ T-cell formation. These results indicate how signaling pathways are altered to promote CD8+ memory cell formation and rapid responses to and protection from repeat infections.
Collapse
Affiliation(s)
- Ann R Piccirillo
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Richard T Cattley
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Louise M D'Cruz
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - William F Hawse
- From the Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
8
|
Foreign antigen-independent memory-phenotype CD4 + T cells: a new player in innate immunity? Nat Rev Immunol 2018; 18:1. [PMID: 29480288 DOI: 10.1038/nri.2018.13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Kwon DI, Lee YJ. Lineage Differentiation Program of Invariant Natural Killer T Cells. Immune Netw 2017; 17:365-377. [PMID: 29302250 PMCID: PMC5746607 DOI: 10.4110/in.2017.17.6.365] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023] Open
Abstract
Invariant natural killer T (iNKT) cells are innate T cells restricted by CD1d molecules. They are positively selected in the thymic cortex and migrate to the medullary area, in which they differentiate into 3 different lineages. Promyelocytic leukemia zinc finger (PLZF) modulates this process, and PLZFhigh, PLZFintermediate, and PLZFlow iNKT cells are designated as NKT2, NKT17, and NKT1 cells, respectively. Analogous to conventional helper CD4 T cells, each subset expresses distinct combinations of transcription factors and produces different cytokines. In lymphoid organs, iNKT subsets have unique localizations, which determine their cytokine responses upon antigenic challenge. The lineage differentiation programs of iNKT cells are differentially regulated in various mice strains in a cell-intrinsic manner, and BALB/c mice contain a high frequency of NKT2 cells. In the thymic medulla, steady state IL-4 from NKT2 cells directly conditions CD8 T cells to become memory-like cells expressing Eomesodermin, which function as premade memory effectors. The genetic signature of iNKT cells is more similar to that of γδ T cells and innate lymphoid cells (ILCs) than of conventional helper T cells, suggesting that ILCs and innate T cells share common developmental programs.
Collapse
Affiliation(s)
- Dong-Il Kwon
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| | - You Jeong Lee
- Academy of Immunology and Microbiology, Institute for Basic Science, Pohang 37673, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
10
|
White JT, Cross EW, Kedl RM. Antigen-inexperienced memory CD8 + T cells: where they come from and why we need them. Nat Rev Immunol 2017; 17:391-400. [PMID: 28480897 DOI: 10.1038/nri.2017.34] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory-phenotype CD8+ T cells exist in substantial numbers within hosts that have not been exposed to either foreign antigen or overt lymphopenia. These antigen-inexperienced memory-phenotype T cells can be divided into two major subsets: 'innate memory' T cells and 'virtual memory' T cells. Although these two subsets are nearly indistinguishable by surface markers alone, notable developmental and functional differences exist between the two subsets, which suggests that they represent distinct populations. In this Opinion article, we review the available literature on each subset, highlighting the key differences between these populations. Furthermore, we suggest a unifying model for the categorization of antigen-inexperienced memory-phenotype CD8+ T cells.
Collapse
Affiliation(s)
- Jason T White
- Department of Microbiology and Immunology, The Peter Doherty Institute, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Eric W Cross
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, School of Medicine, Mail Stop 8333, Room P18-8115, 12800 East 19th Avenue, Aurora, Colorado 80045-2537, USA
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado Denver at Anschutz Medical Campus, School of Medicine, Mail Stop 8333, Room P18-8115, 12800 East 19th Avenue, Aurora, Colorado 80045-2537, USA
| |
Collapse
|
11
|
Zhang J, Vlasevska S, Wells VA, Nataraj S, Holmes AB, Duval R, Meyer SN, Mo T, Basso K, Brindle PK, Hussein S, Dalla-Favera R, Pasqualucci L. The CREBBP Acetyltransferase Is a Haploinsufficient Tumor Suppressor in B-cell Lymphoma. Cancer Discov 2017; 7:322-337. [PMID: 28069569 DOI: 10.1158/2159-8290.cd-16-1417] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/05/2017] [Accepted: 01/06/2017] [Indexed: 01/12/2023]
Abstract
Inactivating mutations of the CREBBP acetyltransferase are highly frequent in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma (FL), the two most common germinal center (GC)-derived cancers. However, the role of CREBBP inactivation in lymphomagenesis remains unclear. Here, we show that CREBBP regulates enhancer/super-enhancer networks with central roles in GC/post-GC cell fate decisions, including genes involved in signal transduction by the B-cell receptor and CD40 receptor, transcriptional control of GC and plasma cell development, and antigen presentation. Consistently, Crebbp-deficient B cells exhibit enhanced response to mitogenic stimuli and perturbed plasma cell differentiation. Although GC-specific loss of Crebbp was insufficient to initiate malignant transformation, compound Crebbp-haploinsufficient/BCL2-transgenic mice, mimicking the genetics of FL and DLBCL, develop clonal lymphomas recapitulating the features of the human diseases. These findings establish CREBBP as a haploinsufficient tumor-suppressor gene in GC B cells and provide insights into the mechanisms by which its loss contributes to lymphomagenesis.Significance: Loss-of-function mutations of CREBBP are common and early lesions in FL and DLBCL, suggesting a prominent role in lymphoma initiation. Our studies identify the cellular program by which reduced CREBBP dosage facilitates malignant transformation, and have direct implications for targeted lymphoma therapy based on drugs affecting CREBBP-mediated chromatin acetylation. Cancer Discov; 7(3); 322-37. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 235.
Collapse
Affiliation(s)
- Jiyuan Zhang
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Sofija Vlasevska
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Victoria A Wells
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Sarah Nataraj
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Antony B Holmes
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Romain Duval
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Tongwei Mo
- Institute for Cancer Genetics, Columbia University, New York, New York
| | - Katia Basso
- Institute for Cancer Genetics, Columbia University, New York, New York.,Department of Pathology and Cell Biology, Columbia University, New York, New York
| | - Paul K Brindle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Shafinaz Hussein
- Department of Pathology and Laboratory Medicine, NorthWell Health, Staten Island University Hospital, Staten Island, New York
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Columbia University, New York, New York.,Department of Pathology and Cell Biology, Columbia University, New York, New York.,Department of Genetics and Development, Columbia University, New York, New York.,Department of Microbiology and Immunology, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Columbia University, New York, New York. .,Department of Pathology and Cell Biology, Columbia University, New York, New York.,Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York
| |
Collapse
|
12
|
Pachulec E, Neitzke-Montinelli V, Viola JPB. NFAT2 Regulates Generation of Innate-Like CD8 + T Lymphocytes and CD8 + T Lymphocytes Responses. Front Immunol 2016; 7:411. [PMID: 27766099 PMCID: PMC5052263 DOI: 10.3389/fimmu.2016.00411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 09/22/2016] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor of activated T cells (NFAT) 2 null mutant mice die in utero of cardiac failure, precluding analysis of the role of NFAT2 in lymphocyte responses. Only the NFAT2-/-/Rag-1-/- chimeric mice model gave insight into the role of NFAT2 transcription factor in T lymphocyte development, activation, and differentiation. As reports are mainly focused on the role of NFAT2 in CD4+ T lymphocytes activation and differentiation, we decided to investigate NFAT2's impact on CD8+ T lymphocyte responses. We report that NFAT2 is phosphorylated and inactive in the cytoplasm of naive CD8+ T cells, and upon TCR stimulation, it is dephosphorylated and translocated into the nucleus. To study the role of NFAT2 in CD8+ T responses, we employed NFAT2fl/flCD4-Cre mice with NFAT2 deletion specifically in T cells. Interestingly, the absence of NFAT2 in T cells resulted in increased percentage of non-conventional innate-like CD8+ T cells. These cells were CD122+, rapid producer of interferon gamma (IFN-γ) and had characteristics of conventional memory CD8+ T cells. We also observed an expansion of PLZF+ expressing CD3+ thymocyte population in the absence of NFAT2 and increased IL-4 production. Furthermore, we found that CD8+ T lymphocytes deficient in NFAT2 had reduced activation, proliferation, and IFN-γ and IL-2 production at suboptimal TCR strength. NFAT2 absence did not significantly influence differentiation of CD8+ T cells into cytotoxic effector cells but reduced their IFN-γ production. This work documents NFAT2 as a negative regulator of innate-like CD8+ T cells development. NFAT2 is required for complete CD8+ T cell responses at suboptimal TCR stimulation and regulates IFN-γ production by cytotoxic CD8+ T cells in vitro.
Collapse
Affiliation(s)
- Emilia Pachulec
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | | | - João P B Viola
- Program of Cellular Biology, Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
13
|
Tripathi P, Morris SC, Perkins C, Sholl A, Finkelman FD, Hildeman DA. IL-4 and IL-15 promotion of virtual memory CD8 + T cells is determined by genetic background. Eur J Immunol 2016; 46:2333-2339. [PMID: 27457412 DOI: 10.1002/eji.201646404] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/07/2016] [Accepted: 07/21/2016] [Indexed: 02/03/2023]
Abstract
Virtual memory (VM) CD8+ T cells are present in unimmunized mice, yet possess T-cell receptors specific for foreign antigens. To date, VM cells have only been characterized in C57BL/6 mice. Here, we assessed the cytokine requirements for VM cells in C57BL/6 and BALB/c mice. As reported previously, VM cells in C57BL/6 mice rely mostly on IL-15 and marginally on IL-4. In stark contrast, VM cells in BALB/c mice rely substantially on IL-4 and marginally on IL-15. Further, NKT cells are the likely source of IL-4, because CD1d-deficient mice on a BALB/c background have significantly fewer VM cells. Notably, this NKT/IL-4 axis contributes to appropriate effector and memory T-cell responses to infection in BALB/c mice, but not in C57BL/6 mice. However, the effects of IL-4 are manifest prior to, rather than during, infection. Thus, cytokine-mediated control of the precursor population affects the development of virus-specific CD8+ T-cell memory. Depending upon the genetic background, different cytokines encountered before infection may influence the subsequent ability to mount primary and memory anti-viral CD8+ T-cell responses.
Collapse
Affiliation(s)
- Pulak Tripathi
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Suzanne C Morris
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA.,Departments of Medicine and Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Charles Perkins
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH, USA.,Departments of Medicine and Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Allyson Sholl
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Fred D Finkelman
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA. .,Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, USA. .,Departments of Medicine and Research, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, USA.
| | - David A Hildeman
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH, USA. .,Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
14
|
Carow B, Gao Y, Coquet J, Reilly M, Rottenberg ME. lck-Driven Cre Expression Alters T Cell Development in the Thymus and the Frequencies and Functions of Peripheral T Cell Subsets. THE JOURNAL OF IMMUNOLOGY 2016; 197:2261-8. [PMID: 27503210 DOI: 10.4049/jimmunol.1600827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
Abstract
Conditional gene targeting using the bacteriophage-derived Cre recombinase is widely applied for functional gene studies in mice. Mice transgenic for Cre under the control of the lck gene promoter are used to study the role of loxP-targeted genes in T cell development and function. In this article, we show a striking 65% reduction in cellularity, preferential development of γδ versus αβ T cells, and increased expression of IL-7R in the thymus of mice expressing Cre under the proximal lck promoter (lck-cre(+) mice). The transition from CD4/CD8 double-negative to double-positive cells was blocked, and lck-cre(+) double-positive cells were more prone to apoptosis and showed higher levels of Cre expression. Importantly, numbers of naive T cells were reduced in spleens and lymph nodes of lck-cre(+) mice. In contrast, frequencies of γδ T cells, CD44(+)CD62L(-) effector T cells, and Foxp3(+) regulatory T cells were elevated, as was the frequency of IFN-γ-secreting CD4(+) and CD8(+) T cells. A literature survey of 332 articles that used lck-cre(+) mice for deletion of floxed genes indicated that results are statistically influenced by the control used (lck-cre(+) or lck-cre(-)), more frequently resembling the lck-cre(+) phenotype described in this article if lck-cre(-) controls were used. Altogether, care should be taken when interpreting published results and to properly control targeted gene deletions using the lck-cre(+) strain.
Collapse
Affiliation(s)
- Berit Carow
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| | - Yu Gao
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| | - Jonathan Coquet
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| | - Marie Reilly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, S 171 77 Stockholm, Sweden
| | - Martin E Rottenberg
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, S 171 77 Stockholm, Sweden; and
| |
Collapse
|
15
|
Lee A, Park SP, Park CH, Kang BH, Park SH, Ha SJ, Jung KC. IL-4 Induced Innate CD8+ T Cells Control Persistent Viral Infection. PLoS Pathog 2015; 11:e1005193. [PMID: 26452143 PMCID: PMC4599894 DOI: 10.1371/journal.ppat.1005193] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 09/06/2015] [Indexed: 12/20/2022] Open
Abstract
Memory-like CD8+ T cells expressing eomesodermin are a subset of innate T cells initially identified in a number of genetically modified mice, and also exist in wild mice and human. The acquisition of memory phenotype and function by these T cells is dependent on IL–4 produced by PLZF+ innate T cells; however, their physiologic function is still not known. Here we found that these IL-4-induced innate CD8+ T cells are critical for accelerating the control of chronic virus infection. In CIITA-transgenic mice, which have a substantial population of IL-4-induced innate CD8+ T cells, this population facilitated rapid control of viremia and induction of functional anti-viral T-cell responses during infection with chronic form of lymphocytic choriomeningitis virus. Characteristically, anti-viral innate CD8+ T cells accumulated sufficiently during early phase of infection. They produced a robust amount of IFN-γ and TNF-α with enhanced expression of a degranulation marker. Furthermore, this finding was confirmed in wild-type mice. Taken together, the results from our study show that innate CD8+ T cells works as an early defense mechanism against chronic viral infection. Over the course of viral infection there may be a limited time period during which the host system can eliminate the virus. When viruses are not eliminated within this period of time, virus can establish persistent infection. Here, we show that IL-4-induced innate CD8+ T cells are able to effectively control chronic virus infection. Innate T cells are heterogeneous population of T cells that acquire effector/memory phenotype as a result of their maturation process in thymus, unlike conventional T cells that differentiate into memory cells after antigen encounter in periphery. Previous data suggest that innate T cells might serve as a first-line of defense against certain bacterial pathogens. IL-4-induced innate CD8+ T cells are a unique subset of innate T cells that were recently identified in both mouse and human. We found that IL-4-induced innate CD8+ T cells immediately accumulated after viral infection and produced a robust amount of effector cytokines. Thereby, IL-4-induced innate CD8+ T cells provide an effective barrier to the establishment of persistent infection via effective virus control during the early phase of viral infection. Collectively our data show that IL-4-induced innate CD8+ T cells works as an early defense mechanism against chronic viral infection.
Collapse
Affiliation(s)
- Ara Lee
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Seung Pyo Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Hee Park
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
| | - Byung Hyun Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Hoe Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science & Biotechnology, Yonsei University, Seoul, Korea
- * E-mail: (SJH); (KCJ)
| | - Kyeong Cheon Jung
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- * E-mail: (SJH); (KCJ)
| |
Collapse
|
16
|
Kang BH, Park HJ, Yum HI, Park SP, Park JK, Kang EH, Lee JI, Lee EB, Park CG, Jung KC, Park SH. Thymic low affinity/avidity interaction selects natural Th1 cells. THE JOURNAL OF IMMUNOLOGY 2015; 194:5861-71. [PMID: 25972479 DOI: 10.4049/jimmunol.1401628] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 04/15/2015] [Indexed: 12/13/2022]
Abstract
Identification of intrathymic eomesodermin(+) (Eomes(+)) CD4 T cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. Promyelocytic leukemia zinc finger protein(+) T cells and natural Th17 cells are known to be generated by sensing a high and persistent TCR strength, whereas this is not the case for Eomes(+) CD4 T cells. These cells go through low-level signal during the entire maturation pathway, which subsequently leads to induction of high susceptibility to cytokine IL-4. This event seems to be a major determinant for the generation of this type of cell. These T cells are functionally equivalent to Th1 cells that are present in the periphery, and this event takes place both in transgenic and in wild-type mice. There is additional evidence that this type of Eomes(+) innate CD4 T cell is also present in human cord blood.
Collapse
Affiliation(s)
- Byung Hyun Kang
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Hyo Jin Park
- Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University Bundang Hospital, SungNam 463-707, Korea
| | - Hye In Yum
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Seung Pyo Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Jin Kyun Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Eun Ha Kang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Bundang Hospital, SungNam 463-707, Korea
| | - Jae-Il Lee
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea
| | - Eun Bong Lee
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 110-799, Korea; Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul 110-744, Korea
| | - Chung-Gyu Park
- Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Translational Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; and
| | - Kyeong Cheon Jung
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea; Department of Pathology, Seoul National University Hospital, Seoul 110-744, Korea
| | - Seong Hoe Park
- Graduate School of Immunology, Seoul National University College of Medicine, Seoul 110-799, Korea; Transplantation Research Institute, Medical Research Center, Seoul National University College of Medicine, Seoul 110-799, Korea;
| |
Collapse
|
17
|
Abstract
The multiple lineages and differentiation states that constitute the T-cell compartment all derive from a common thymic precursor. These distinct transcriptional states are maintained both in time and after multiple rounds of cell division by the concerted actions of a small set of lineage-defining transcription factors that act in conjunction with a suite of chromatin-modifying enzymes to activate, repress, and fine-tune gene expression. These chromatin modifications collectively provide an epigenetic code that allows the stable and heritable maintenance of the T-cell phenotype. Recently, it has become apparent that the epigenetic code represents a therapeutic target for a variety of immune cell disorders, including lymphoma and acute and chronic inflammatory diseases. Here, we review the recent advances in epigenetic regulation of gene expression, particularly as it relates to the T-cell differentiation and function.
Collapse
Affiliation(s)
- Rhys S Allan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Vic., Australia; Department of Medical Biology, The University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
18
|
Abstract
Memory T cells are usually considered to be a feature of a successful immune response against a foreign antigen, and such cells can mediate potent immunity. However, in mice, alternative pathways have been described, through which naïve T cells can acquire the characteristics and functions of memory T cells without encountering specific foreign antigen or the typical signals required for conventional T cell differentiation. Such cells reflect a response to the internal rather the external environment, and hence such cells are called innate memory T cells. In this review, we describe how innate memory subsets were identified, the signals that induce their generation and their functional properties and potential role in the normal immune response. The existence of innate memory T cells in mice raises questions about whether parallel populations exist in humans, and we discuss the evidence for such populations during human T cell development and differentiation.
Collapse
Affiliation(s)
- Stephen C Jameson
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| | - You Jeong Lee
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Kristin A Hogquist
- Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.
| |
Collapse
|
19
|
Hirose S, Touma M, Go R, Katsuragi Y, Sakuraba Y, Gondo Y, Abe M, Sakimura K, Mishima Y, Kominami R. Bcl11b prevents the intrathymic development of innate CD8 T cells in a cell intrinsic manner. Int Immunol 2014; 27:205-15. [PMID: 25422283 DOI: 10.1093/intimm/dxu104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
If Bcl11b activity is compromised, CD4(+)CD8(+) double-positive (DP) thymocytes produce a greatly increased fraction of innate CD8(+) single-positive (SP) cells highly producing IFN-γ, which are also increased in mice deficient of genes such as Itk, Id3 and NF-κB1 that affect TCR signaling. Of interest, the increase in the former two is due to the bystander effect of IL-4 that is secreted by promyelocytic leukemia zinc finger-expressing NKT and γδT cells whereas the increase in the latter is cell intrinsic. Bcl11b zinc-finger proteins play key roles in T cell development and T cell-mediated immune response likely through TCR signaling. We examined thymocytes at and after the DP stage in Bcl11b (F/S826G) CD4cre, Bcl11b (F/+) CD4cre and Bcl11b (+/S826G) mice, carrying the allele that substituted serine for glycine at the position of 826. Here we show that Bcl11b impairment leads to an increase in the population of TCRαβ(high)CD44(high)CD122(high) innate CD8SP thymocytes, together with two different developmental abnormalities: impaired positive and negative selection accompanying a reduction in the number of CD8SP cells, and developmental arrest of NKT cells at multiple steps. The innate CD8SP thymocytes express Eomes and secrete IFN-γ after stimulation with PMA and ionomycin, and in this case their increase is not due to a bystander effect of IL-4 but cell intrinsic. Those results indicate that Bcl11b regulates development of different thymocyte subsets at multiple stages and prevents an excess of innate CD8SP thymocytes.
Collapse
Affiliation(s)
- Satoshi Hirose
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Maki Touma
- Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181, Japan
| | - Rieka Go
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshinori Katsuragi
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Yoshiyuki Sakuraba
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaragi 305-0074, Japan
| | - Yoichi Gondo
- Mutagenesis and Genomics Team, RIKEN BioResource Center, Ibaragi 305-0074, Japan
| | - Manabu Abe
- Basic Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| | - Kenji Sakimura
- Basic Neuroscience Branch, Brain Research Institute, Niigata University, Niigata 951-8510, Japan
| | - Yukio Mishima
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| | - Ryo Kominami
- Division of Molecular Biology, Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
| |
Collapse
|
20
|
Carty SA, Koretzky GA, Jordan MS. Interleukin-4 regulates eomesodermin in CD8+ T cell development and differentiation. PLoS One 2014; 9:e106659. [PMID: 25207963 PMCID: PMC4160212 DOI: 10.1371/journal.pone.0106659] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 08/08/2014] [Indexed: 11/19/2022] Open
Abstract
Interleukin (IL)-4 is a cytokine classically associated with CD4(+) T helper type 2 differentiation, but has been recently shown to also be required for the development of CD8(+) innate-like lymphocytes. CD8(+) innate-like lymphocytes are non-conventional lymphocytes that exhibit characteristics typically associated with memory CD8(+) T cells, including expression of the T-box transcription factor Eomesodermin (Eomes). Here we investigate the signaling pathways required for IL-4 induction of Eomes and CD8(+) innate-like lymphocyte markers in murine CD8SP thymocytes and peripheral CD8(+) T cells. We demonstrate that IL-4 is sufficient to drive Eomes expression and the CD8(+) innate-like lymphocyte phenotype through cooperation between STAT6- and Akt-dependent pathways. Furthermore, we show that while IL-4 has little effect on the induction of Eomes in the setting of robust T cell receptor (TCR) activation, this cytokine promotes Eomes in the setting of attenuated TCR stimulation in mature CD8(+) T cells suggesting that cytokine signaling pathways may direct cell fate when TCR signals are limiting.
Collapse
Affiliation(s)
- Shannon A. Carty
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary A. Koretzky
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Martha S. Jordan
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
21
|
Two histone/protein acetyltransferases, CBP and p300, are indispensable for Foxp3+ T-regulatory cell development and function. Mol Cell Biol 2014; 34:3993-4007. [PMID: 25154413 DOI: 10.1128/mcb.00919-14] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-regulatory (Treg) cells are important to immune homeostasis, and Treg cell deficiency or dysfunction leads to autoimmune disease. A histone/protein acetyltransferase (HAT), p300, was recently found to be important for Treg function and stability, but further insights into the mechanisms by which p300 or other HATs affect Treg biology are needed. Here we show that CBP, a p300 paralog, is also important in controlling Treg function and stability. Thus, while mice with Treg-specific deletion of CBP or p300 developed minimal autoimmune disease, the combined deletion of CBP and p300 led to fatal autoimmunity by 3 to 4 weeks of age. The effects of CBP and p300 deletion on Treg development are dose dependent and involve multiple mechanisms. CBP and p300 cooperate with several key Treg transcription factors that act on the Foxp3 promoter to promote Foxp3 production. CBP and p300 also act on the Foxp3 conserved noncoding sequence 2 (CNS2) region to maintain Treg stability in inflammatory environments by regulating pCREB function and GATA3 expression, respectively. Lastly, CBP and p300 regulate the epigenetic status and function of Foxp3. Our findings provide insights into how HATs orchestrate multiple aspects of Treg development and function and identify overlapping but also discrete activities for p300 and CBP in control of Treg cells.
Collapse
|
22
|
Jarid2 is induced by TCR signalling and controls iNKT cell maturation. Nat Commun 2014; 5:4540. [PMID: 25105474 DOI: 10.1038/ncomms5540] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/26/2014] [Indexed: 01/08/2023] Open
Abstract
Jarid2 is a reported component of three lysine methyltransferase complexes, polycomb repressive complex 2 (PRC2) that methylates histone 3 lysine 27 (H3K27), and GLP-G9a and SETDB1 complexes that methylate H3K9. Here we show that Jarid2 is upregulated upon TCR stimulation and during positive selection in the thymus. Mice lacking Jarid2 in T cells display an increase in the frequency of IL-4-producing promyelocytic leukemia zinc finger (PLZF)(hi) immature invariant natural killer T (iNKT) cells and innate-like CD8(+) cells; Itk-deficient mice, which have a similar increase of innate-like CD8(+) cells, show blunted upregulation of Jarid2 during positive selection. Jarid2 binds to the Zbtb16 locus, which encodes PLZF, and thymocytes lacking Jarid2 show increased PLZF and decreased H3K9me3 levels. Jarid2-deficient iNKT cells perturb Th17 differentiation, leading to reduced Th17-driven autoimmune pathology. Our results establish Jarid2 as a novel player in iNKT cell maturation that regulates PLZF expression by modulating H3K9 methylation.
Collapse
|
23
|
Kasper LH, Fukuyama T, Brindle PK. T-cells null for the MED23 subunit of mediator express decreased levels of KLF2 and inefficiently populate the peripheral lymphoid organs. PLoS One 2014; 9:e102076. [PMID: 25054639 PMCID: PMC4108324 DOI: 10.1371/journal.pone.0102076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/13/2014] [Indexed: 01/23/2023] Open
Abstract
MED23, a subunit of the Mediator coactivator complex, is important for the expression of a subset of MAPK/ERK pathway-responsive genes, the constituents of which vary between cell types for reasons that are not completely clear. MAPK/ERK pathway-dependent processes are essential for T-cell development and function, but whether MED23 has a role in this context is unknown. We generated Med23 conditional knockout mice and induced Med23 deletion in early T-cell development using the lineage specific Lck-Cre transgene. While the total cell number and distribution of cell populations in the thymuses of Med23flox/flox;Lck-Cre mice were essentially normal, MED23 null T-cells failed to efficiently populate the peripheral lymphoid organs. MED23 null thymocytes displayed decreased expression of the MAPK/ERK-responsive genes Egr1, Egr2, as well as of the membrane glycoprotein Cd52 (CAMPATH-1). MED23 null CD4 single-positive thymocytes also showed decreased expression of KLF2 (LKLF), a T-cell master regulatory transcription factor. Indeed, similarities between the phenotypes of mice lacking MED23 or KLF2 in T-cells suggest that KLF2 deficiency in MED23 null T-cells is one of their key defects. Mechanistic experiments using MED23 null MEFs further suggest that MED23 is required for full activity of the MAPK-responsive transcription factor MEF2, which has previously been shown to mediate Klf2 expression. In summary, our data indicate that MED23 has critical roles in enabling T-cells to populate the peripheral lymphoid organs, possibly by potentiating MEF2-dependent expression of the T-cell transcription factor KLF2.
Collapse
Affiliation(s)
- Lawryn H. Kasper
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (LHK); (PKB)
| | - Tomofusa Fukuyama
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Paul K. Brindle
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (LHK); (PKB)
| |
Collapse
|
24
|
Prince AL, Kraus Z, Carty SA, Ng C, Yin CC, Jordan MS, Schwartzberg PL, Berg LJ. Development of innate CD4+ and CD8+ T cells in Itk-deficient mice is regulated by distinct pathways. THE JOURNAL OF IMMUNOLOGY 2014; 193:688-99. [PMID: 24943215 DOI: 10.4049/jimmunol.1302059] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
T cell development in the thymus produces multiple lineages of cells, including innate T cells such as γδ TCR(+) cells, invariant NKT cells, mucosal-associated invariant T cells, and H2-M3-specific cells. Although innate cells are generally a minor subset of thymocytes, in several strains of mice harboring mutations in T cell signaling proteins or transcriptional regulators, conventional CD8(+) T cells develop as innate cells with characteristics of memory T cells. Thus, in Itk-deficient mice, mature CD4(-)CD8(+) (CD8 single-positive [SP]) thymocytes express high levels of the transcription factor eomesodermin (Eomes) and are dependent on IL-4 being produced in the thymic environment by a poorly characterized subset of CD4(+) thymocytes expressing the transcriptional regulator promyelocytic leukemia zinc finger. In this study, we show that a sizeable proportion of mature CD4(+)CD8(-) (CD4SP) thymocytes in itk(-/-) mice also develop as innate Eomes-expressing T cells. These cells are dependent on MHC class II and IL-4 signaling for their development, indicating that they are conventional CD4(+) T cells that have been converted to an innate phenotype. Surprisingly, neither CD4SP nor CD8SP innate Eomes(+) thymocytes in itk(-/-) or SLP-76(Y145F) mice are dependent on γδ T cells for their development. Instead, we find that the predominant population of Eomes(+) innate itk(-/-) CD4SP thymocytes is largely absent in mice lacking CD1d-specific invariant NKT cells, with no effect on innate itk(-/-) CD8SP thymocytes. In contrast, both subsets of innate Eomes(+)itk(-/-) T cells require the presence of a novel promyelocytic leukemia zinc finger-expressing, SLAM family receptor adapter protein-dependent thymocyte population that is essential for the conversion of conventional CD4(+) and CD8(+) T cells into innate T cells with a memory phenotype.
Collapse
Affiliation(s)
- Amanda L Prince
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Zachary Kraus
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Shannon A Carty
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Caleb Ng
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Catherine C Yin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Martha S Jordan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Pamela L Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655;
| |
Collapse
|
25
|
Huang W, Qi Q, Hu J, Huang F, Laufer TM, August A. Dendritic cell-MHC class II and Itk regulate functional development of regulatory innate memory CD4+ T cells in bone marrow transplantation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:3435-3441. [PMID: 24610010 PMCID: PMC4033297 DOI: 10.4049/jimmunol.1303176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
MHC class II (MHCII)-influenced CD4(+) T cell differentiation and function play critical roles in regulating the development of autoimmunity. The lack of hematopoietic MHCII causes autoimmune disease that leads to severe wasting in syngeneic recipients. Using murine models of bone marrow transplantation (BMT), we find that MHCII(-/-)→wild-type BMT developed disease, with defective development of innate memory phenotype (IMP, CD44(hi)/CD62L(lo)) CD4(+) T cells. Whereas conventional regulatory T cells are unable to suppress pathogenesis, IMP CD4(+) T cells, which include conventional regulatory T cells, can suppress pathogenesis in MHCII(-/-)→wild-type chimeras. The functional development of IMP CD4(+) T cells requires hematopoietic but not thymic MHCII. B cells and hematopoietic CD80/86 regulate the population size, whereas MHCII expression by dendritic cells is sufficient for IMP CD4(+) T cell functional development and prevention of pathogenesis. Furthermore, the absence of Tec kinase IL-2-inducible T cell kinase in MHCII(-/-) donors leads to preferential development of IMP CD4(+) T cells and partially prevents pathogenesis. We conclude that dendritic cells-MHCII and IL-2-inducible T cell kinase regulate the functional development of IMP CD4(+) T cells, which suppresses the development of autoimmune disorder in syngeneic BMTs.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology & Immunology and Program in Infection & Pathobiology, Cornell University, Ithaca, NY, USA
| | - Qian Qi
- Department of Microbiology & Immunology and Program in Infection & Pathobiology, Cornell University, Ithaca, NY, USA
- Huck Institutes of The Life Sciences and Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, USA
| | - Jianfang Hu
- Huck Institutes of The Life Sciences and Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA, USA
| | - Fei Huang
- Department of Microbiology & Immunology and Program in Infection & Pathobiology, Cornell University, Ithaca, NY, USA
| | - Terri M. Laufer
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Avery August
- Department of Microbiology & Immunology and Program in Infection & Pathobiology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
26
|
Engel I, Kronenberg M. Transcriptional control of the development and function of Vα14i NKT cells. Curr Top Microbiol Immunol 2014; 381:51-81. [PMID: 24839184 DOI: 10.1007/82_2014_375] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The majority of T lymphocytes, sometimes referred to as as mainstream or conventional T cells, are characterized by a diverse T cell antigen receptor (TCR) repertoire. They require antigen priming in order to become memory cells capable of mounting a rapid effector response. It has become established, however, that there are several distinct T cell lineages that exhibit a memory phenotype in the absence of antigen priming, even as they differentiate in the thymus. These lymphocytes typically express a markedly restricted TCR repertoire and their rapid response kinetics has led to their being described as innate-like T cells. In addition, several of these subsets typically express surface markers commonly found on natural killer cells, which has led to the moniker natural killer T cells (NKT cells). This review will describe our current understanding of the unique ways whereby transcription factors control the development and function of an abundant and widely studied lineage of NKT cells that recognizes glycolipid antigens.
Collapse
Affiliation(s)
- Isaac Engel
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | |
Collapse
|
27
|
The role of BTB-zinc finger transcription factors during T cell development and in the regulation of T cell-mediated immunity. Curr Top Microbiol Immunol 2014; 381:21-49. [PMID: 24850219 DOI: 10.1007/82_2014_374] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proper regulation of the development and function of peripheral helper and cytotoxic T cell lineages is essential for T cell-mediated adaptive immunity. Progress made during the last 10-15 years led to the identification of several transcription factors and transcription factor networks that control the development and function of T cell subsets. Among the transcription factors identified are also several members of the so-called BTB/POZ domain containing zinc finger (ZF) transcription factor family (BTB-ZF), and important roles of BTB-ZF factors have been described. In this review, we will provide an up-to-date overview about the role of BTB-ZF factors during T cell development and in peripheral T cells.
Collapse
|
28
|
Kasper LH, Fukuyama T, Lerach S, Chang Y, Xu W, Wu S, Boyd KL, Brindle PK. Genetic interaction between mutations in c-Myb and the KIX domains of CBP and p300 affects multiple blood cell lineages and influences both gene activation and repression. PLoS One 2013; 8:e82684. [PMID: 24340053 PMCID: PMC3858336 DOI: 10.1371/journal.pone.0082684] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 10/28/2013] [Indexed: 02/06/2023] Open
Abstract
Adult blood cell production or definitive hematopoiesis requires the transcription factor c-Myb. The closely related KAT3 histone acetyltransferases CBP (CREBBP) and p300 (EP300) bind c-Myb through their KIX domains and mice homozygous for a p300 KIX domain mutation exhibit multiple blood defects. Perplexingly, mice homozygous for the same KIX domain mutation in CBP have normal blood. Here we test the hypothesis that the CBP KIX domain contributes subordinately to hematopoiesis via a genetic interaction with c-Myb. We assessed hematopoiesis in mice bearing compound mutations of c-Myb and/or the KIX domains of CBP and p300, and measured the effect of KIX domain mutations on c-Myb-dependent gene expression. We found that in the context of a p300 KIX mutation, the CBP KIX domain mutation affects platelets, B cells, T cells, and red cells. Gene interaction (epistasis) analysis provides mechanistic evidence that blood defects in KIX mutant mice are consistent with reduced c-Myb and KIX interaction. Lastly, we demonstrated that the CBP and p300 KIX domains contribute to both c-Myb-dependent gene activation and repression. Together these results suggest that the KIX domains of CBP, and especially p300, are principal mediators of c-Myb-dependent gene activation and repression that is required for definitive hematopoiesis.
Collapse
Affiliation(s)
- Lawryn H. Kasper
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Tomofusa Fukuyama
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Stephanie Lerach
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Yunchao Chang
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Wu Xu
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Song Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Kelli L. Boyd
- Veterinary Pathology Core, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Paul K. Brindle
- Department of Biochemistry, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| |
Collapse
|
29
|
Knoechel B, Lohr JG. Genomics of lymphoid malignancies reveal major activation pathways in lymphocytes. J Autoimmun 2013; 45:15-23. [PMID: 23880067 DOI: 10.1016/j.jaut.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/21/2023]
Abstract
Breakdown of tolerance leads to autoimmunity due to emergence of autoreactive T or B cell clones. Autoimmune diseases predispose to lymphoid malignancies and lymphoid malignancies, conversely, can manifest as autoimmune diseases. While it has been clear for a long time that a competitive advantage and uncontrolled growth of lymphocytes contribute to the pathogenesis of both lymphoid malignancies as well as autoimmune diseases, the overlap of the underlying mechanisms has been less well described. Next generation sequencing has led to massive expansion of the available genomic data in many diseases over the last five years. These data allow for comparison of the molecular pathogenesis between autoimmune diseases and lymphoid malignancies. Here, we review the similarities between autoimmune diseases and lymphoid malignancies: 1) Both, autoimmune diseases and lymphoid malignancies are characterized by activation of the same T and B cell signaling pathways, and dysregulation of these pathways can occur through genetic or epigenetic events. 2) In both scenarios, clonal and subclonal evolution of lymphocytes contribute to disease. 3) Development of both diseases not only depends on T or B cell intrinsic factors, such as germline or somatic mutations, but also on environmental factors. These include infections, the presence of other immune cells in the microenvironment, and the cytokine milieu. A better mechanistic understanding of the parallels between lymphomagenesis and autoimmunity may help the development of precision treatment strategies with rationally designed therapeutic agents.
Collapse
Affiliation(s)
- Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
30
|
Constantinides MG, Bendelac A. Transcriptional regulation of the NKT cell lineage. Curr Opin Immunol 2013; 25:161-7. [PMID: 23402834 PMCID: PMC3647452 DOI: 10.1016/j.coi.2013.01.003] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 01/08/2013] [Accepted: 01/09/2013] [Indexed: 12/21/2022]
Abstract
How expression of canonical semi-invariant TCRs leads to innate-like effector differentiation is a central enigma of NKT cell development. NKT thymic precursors undergo elevated TCR signals leading to increased Egr2, which directly induces their signature transcription factor, PLZF. PLZF is necessary and sufficient to induce a multipotent, unbiased effector program that precedes terminal differentiation into T-bet(high) NK1.1(+) (NKT1) cells and recently identified NKT2 and NKT17 sublineages. Major variations in polarized NKT sublineages have been uncovered in different mouse strains and in several mutants, with direct impact on NKT cell function but also, unexpectedly, on the development and function of conventional T cells.
Collapse
Affiliation(s)
- Michael G Constantinides
- Committee on Immunology and Department of Pathology, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
31
|
Huang W, Hu J, August A. Cutting edge: innate memory CD8+ T cells are distinct from homeostatic expanded CD8+ T cells and rapidly respond to primary antigenic stimuli. THE JOURNAL OF IMMUNOLOGY 2013; 190:2490-4. [PMID: 23408840 DOI: 10.4049/jimmunol.1202988] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Innate memory phenotype (IMP) CD8(+) T cells are nonconventional αβ T cells exhibiting features of innate immune cells and are significantly increased in the absence of ITK. Their developmental path and function are not clear. In this study, we show hematopoietic MHC class I (MHCI)-dependent generation of Ag-specific IMP CD8(+) T cells using bone marrow chimeras. Wild-type bone marrow gives rise to IMP CD8(+) T cells in MHCI(-/-) recipients, resembling those in Itk(-/-) mice, but distinct from those derived via homeostatic proliferation, and independent of recipient thymus. In contrast, MHCI(-/-) bone marrow does not lead to IMP CD8(+) T cells in wild-type recipients. OTI IMP CD8(+) T cells generated via this method exhibited enhanced early response to Ag without prior primary stimulation. Our findings suggest a method to generate Ag-specific "naive" CD8(+) IMP T cells, as well as demonstrate that they are not homeostatic proliferation cells and can respond promptly in an Ag-specific fashion.
Collapse
Affiliation(s)
- Weishan Huang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
32
|
Nayar R, Enos M, Prince A, Shin H, Hemmers S, Jiang JK, Klein U, Thomas CJ, Berg LJ. TCR signaling via Tec kinase ITK and interferon regulatory factor 4 (IRF4) regulates CD8+ T-cell differentiation. Proc Natl Acad Sci U S A 2012; 109:E2794-802. [PMID: 23011795 PMCID: PMC3478592 DOI: 10.1073/pnas.1205742109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CD8(+) T-cell development in the thymus generates a predominant population of conventional naive cells, along with minor populations of "innate" T cells that resemble memory cells. Recent studies analyzing a variety of KO or knock-in mice have indicated that impairments in the T-cell receptor (TCR) signaling pathway produce increased numbers of innate CD8(+) T cells, characterized by their high expression of CD44, CD122, CXCR3, and the transcription factor, Eomesodermin (Eomes). One component of this altered development is a non-CD8(+) T cell-intrinsic role for IL-4. To determine whether reduced TCR signaling within the CD8(+) T cells might also contribute to this pathway, we investigated the role of the transcription factor, IFN regulatory factor 4 (IRF4). IRF4 is up-regulated following TCR stimulation in WT T cells; further, this up-regulation is impaired in T cells treated with a small-molecule inhibitor of the Tec family tyrosine kinase, IL-2 inducible T-cell kinase (ITK). In contrast to WT cells, activation of IRF4-deficient CD8(+) T cells leads to rapid and robust expression of Eomes, which is further enhanced by IL-4 stimulation. In addition, inhibition of ITK together with IL-4 increases Eomeso up-regulation. These data indicate that ITK signaling promotes IRF4 up-regulation following CD8(+) T-cell activation and that this signaling pathway normally suppresses Eomes expression, thereby regulating the differentiation pathway of CD8(+) T cells.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cells, Cultured
- Female
- Flow Cytometry
- Forkhead Transcription Factors/genetics
- Forkhead Transcription Factors/immunology
- Forkhead Transcription Factors/metabolism
- Gene Expression/drug effects
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Interferon Regulatory Factors/metabolism
- Interleukin-4/pharmacology
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Thymocytes/immunology
- Thymocytes/metabolism
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
Collapse
Affiliation(s)
- Ribhu Nayar
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Megan Enos
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Amanda Prince
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - HyunMu Shin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| | - Saskia Hemmers
- Department of Immunology, Memorial Sloan–Kettering Cancer Center, New York, NY 10065
| | - Jian-kang Jiang
- Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850
| | - Ulf Klein
- Department of Microbiology and Immunology, Columbia University, New York, NY 10032; and
| | - Craig J. Thomas
- Chemical Genomics Center, National Institutes of Health, Rockville, MD 20850
| | - Leslie J. Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
33
|
Bedford DC, Brindle PK. Is histone acetylation the most important physiological function for CBP and p300? Aging (Albany NY) 2012; 4:247-55. [PMID: 22511639 PMCID: PMC3371760 DOI: 10.18632/aging.100453] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein lysine acetyltransferases (HATs or PATs) acetylate histones and other proteins, and are principally modeled as transcriptional coactivators. CREB binding protein (CBP, CREBBP) and its paralog p300 (EP300) constitute the KAT3 family of HATs in mammals, which has mostly unique sequence identity compared to other HAT families. Although studies in yeast show that many histone mutations cause modest or specific phenotypes, similar studies are impractical in mammals and it remains uncertain if histone acetylation is the primary physiological function for CBP/p300. Nonetheless, CBP and p300 mutations in humans and mice show that these coactivators have important roles in development, physiology, and disease, possibly because CBP and p300 act as network “hubs” with more than 400 described protein interaction partners. Analysis of CBP and p300 mutant mouse fibroblasts reveals CBP/p300 are together chiefly responsible for the global acetylation of histone H3 residues K18 and K27, and contribute to other locus-specific histone acetylation events. CBP/p300 can also be important for transcription, but the recruitment of CBP/p300 and their associated histone acetylation marks do not absolutely correlate with a requirement for gene activation. Rather, it appears that target gene context (e.g. DNA sequence) influences the extent to which CBP and p300 are necessary for transcription.
Collapse
Affiliation(s)
- David C Bedford
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
34
|
Sharma A, Chen Q, Nguyen T, Yu Q, Sen JM. T cell factor-1 and β-catenin control the development of memory-like CD8 thymocytes. THE JOURNAL OF IMMUNOLOGY 2012; 188:3859-68. [PMID: 22492686 DOI: 10.4049/jimmunol.1103729] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Innate memory-like CD8 thymocytes develop and acquire effector function during maturation in the absence of encounter with Ags. In this study, we demonstrate that enhanced function of transcription factors T cell factor (TCF)-1 and β-catenin regulate the frequency of promyelocytic leukemia zinc finger (PLZF)-expressing, IL-4-producing thymocytes that promote the generation of eomesodermin-expressing memory-like CD8 thymocytes in trans. In contrast, TCF1-deficient mice do not have PLZF-expressing thymocytes and eomesodermin-expressing memory-like CD8 thymocytes. Generation of TCF1 and β-catenin-dependent memory-like CD8 thymocytes is non-cell-intrinsic and requires the expression of IL-4 and IL-4R. CD8 memory-like thymocytes migrate to the peripheral lymphoid organs, and the memory-like CD8 T cells rapidly produce IFN-γ. Thus, TCF1 and β-catenin regulate the generation of PLZF-expressing thymocytes and thereby facilitate the generation of memory-like CD8 T cells in the thymus.
Collapse
Affiliation(s)
- Archna Sharma
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
35
|
Akue AD, Lee JY, Jameson SC. Derivation and maintenance of virtual memory CD8 T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2516-23. [PMID: 22308307 DOI: 10.4049/jimmunol.1102213] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Memory CD8(+) T cells are an important component of the adaptive immune response against many infections, and understanding how Ag-specific memory CD8(+) T cells are generated and maintained is crucial for the development of vaccines. We recently reported the existence of memory-phenotype, Ag-specific CD8(+) T cells in unimmunized mice (virtual memory or VM cells). However, it was not clear when and where these cells are generated during normal development, nor the factors required for their production and maintenance. This issue is especially pertinent given recent data showing that memory-like CD8 T cells can be generated in the thymus, in a bystander response to IL-4. In this study, we show that the size of the VM population is reduced in IL-4R-deficient animals. However, the VM population appears first in the periphery and not the thymus of normal animals, suggesting this role of IL-4 is manifest following thymic egress. We also show that the VM pool is durable, showing basal proliferation and long-term maintenance in normal animals, and also being retained during responses to unrelated infection.
Collapse
Affiliation(s)
- Adovi D Akue
- Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55414, USA
| | | | | |
Collapse
|
36
|
Beaulieu AM, Sant'Angelo DB. The BTB-ZF family of transcription factors: key regulators of lineage commitment and effector function development in the immune system. THE JOURNAL OF IMMUNOLOGY 2011; 187:2841-7. [PMID: 21900183 DOI: 10.4049/jimmunol.1004006] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Successful immunity depends upon the activity of multiple cell types. Commitment of pluripotent precursor cells to specific lineages, such as T or B cells, is obviously fundamental to this process. However, it is also becoming clear that continued differentiation and specialization of lymphoid cells is equally important for immune system integrity. Several members of the BTB-ZF family have emerged as critical factors that control development of specific lineages and also of specific effector subsets within these lineages. For example, BTB-ZF genes have been shown to control T cell versus B cell commitment and CD4 versus CD8 lineage commitment. Others, such as PLZF for NKT cells and Bcl-6 for T follicular helper cells, are necessary for the acquisition of effector functions. In this review, we summarize current findings concerning the BTB-ZF family members with a reported role in the immune system.
Collapse
Affiliation(s)
- Aimee M Beaulieu
- Immunology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
37
|
Rafei M, Hardy MP, Williams P, Vanegas JR, Forner KA, Dulude G, Labrecque N, Galipeau J, Perreault C. Development and function of innate polyclonal TCRalphabeta+ CD8+ thymocytes. THE JOURNAL OF IMMUNOLOGY 2011; 187:3133-44. [PMID: 21844388 DOI: 10.4049/jimmunol.1101097] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Innate CD8 T cells are found in mutant mouse models, but whether they are produced in a normal thymus remains controversial. Using the RAG2p-GFP mouse model, we found that ∼10% of TCRαβ(+) CD4(-)CD8(+) thymocytes were innate polyclonal T cells (GFP(+)CD44(hi)). Relative to conventional T cells, innate CD8 thymocytes displayed increased cell surface amounts of B7-H1, CD2, CD5, CD38, IL-2Rβ, and IL-4Rα and downmodulation of TCRβ. Moreover, they overexpressed several transcripts, including T-bet, Id3, Klf2, and, most of all, Eomes. Innate CD8 thymocytes were positively selected, mainly by nonhematopoietic MHCIa(+) cells. They rapidly produced high levels of IFN-γ upon stimulation and readily proliferated in response to IL-2 and IL-4. Furthermore, low numbers of innate CD8 thymocytes were sufficient to help conventional CD8 T cells expand and secrete cytokine following Ag recognition. This helper effect depended on CD44-mediated interactions between innate and conventional CD8 T cells. We concluded that innate TCRαβ(+) CD8 T cells represent a sizeable proportion of normal thymocytes whose development and function differ in many ways from those of conventional CD8 T cells.
Collapse
Affiliation(s)
- Moutih Rafei
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lai D, Zhu J, Wang T, Hu-Li J, Terabe M, Berzofsky JA, Clayberger C, Krensky AM. KLF13 sustains thymic memory-like CD8(+) T cells in BALB/c mice by regulating IL-4-generating invariant natural killer T cells. ACTA ACUST UNITED AC 2011; 208:1093-103. [PMID: 21482696 PMCID: PMC3092346 DOI: 10.1084/jem.20101527] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Transcription factor KLF13 regulates the elevated numbers of iNKT cells in the BALB/c versus C57BL/6 thymus that results in production of sufficient levels of IL-4 to generate memory-like CD8+ T cells. “Memory-like T cells” are a subset of thymic cells that acquire effector function through the maturation process rather than interaction with specific antigen. Disruption of genes encoding T cell signaling proteins or transcription factors have provided insights into the differentiation of such cells. In this study, we show that in BALB/c, but not C57BL/6, mice, a large portion of thymic CD4-CD8+ T cells exhibit a memory-like phenotype. In BALB/c mice, IL-4 secreted by invariant natural killer T (iNKT) cells is both essential and sufficient for the generation of memory-like T cells. In C57BL/6 mice, iNKT cells are less abundant, producing IL-4 that is insufficient to induce thymic memory-like CD8+ T cells. BALB/c mice deficient in the transcription factor Kruppel-like factor (KLF) 13 have comparable numbers of iNKT cells to C57BL/6 mice and extremely low levels of thymic memory-like CD8+ T cells. This work documents the impact of a small number of KLF13-dependent iNKT cells on the generation of memory-like CD8+ T cells.
Collapse
Affiliation(s)
- Dazhi Lai
- Laboratory of Cellular and Molecular Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Min HS, Lee YJ, Jeon YK, Kim EJ, Kang BH, Jung KC, Chang CH, Park SH. MHC class II-restricted interaction between thymocytes plays an essential role in the production of innate CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:5749-57. [PMID: 21478404 DOI: 10.4049/jimmunol.1002825] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently shown that MHC class II-dependent thymocyte-thymocyte (T-T) interaction successfully generates CD4(+) T cells (T-T CD4(+) T cells), and that T-T CD4(+) T cells expressing promyelocytic leukemia zinc finger protein (PLZF) show an innate property both in mice and humans. In this article, we report that the thymic T-T interaction is essential for the conversion of CD8(+) T cells into innate phenotype in the physiological condition. CD8(+) T cells developed in the presence of PLZF(+) CD4(+) T cells showed marked upregulation of eomesodermin (Eomes), activation/memory phenotype, and rapid production of IFN-γ on ex vivo stimulation. Their development was highly dependent on the PLZF expression in T-T CD4(+) T cells and the IL-4 secreted by PLZF(+) T-T CD4(+) T cells. The same events may take place in humans, as a substantial number of Eomes expressing innate CD8(+) T cells were found in human fetal thymi and spleens. It suggests that PLZF(+) T-T CD4(+) T cells in combination with Eomes(+) CD8(+) T cells might actively participate in the innate immune response against various pathogens, particularly in human perinatal period.
Collapse
Affiliation(s)
- Hye Sook Min
- Department of Pathology, Seoul National University College of Medicine, 110-799 Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Gordon SM, Carty SA, Kim JS, Zou T, Smith-Garvin J, Alonzo ES, Haimm E, Sant'Angelo DB, Koretzky GA, Reiner SL, Jordan MS. Requirements for eomesodermin and promyelocytic leukemia zinc finger in the development of innate-like CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:4573-8. [PMID: 21383242 DOI: 10.4049/jimmunol.1100037] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Conventional and nonconventional T cell development occur in the thymus. Nonconventional thymocytes that bear characteristics typically associated with innate immune cells are termed innate-like lymphocytes (ILLs). Mice harboring a tyrosine to phenylalanine mutation in the adaptor protein Src homology 2 domain-containing leukocyte protein of 76 kDa at residue 145 (Y145F mice) develop an expanded population of CD8(+)CD122(+)CD44(+) ILLs, typified by expression of the T-box transcription factor eomesodermin. Y145F mice also have an expanded population of γδ T cells that produce copious amounts of IL-4 via a mechanism that is dependent on the BTB-ZF transcription factor promyelocytic leukemia zinc finger. Using mice with T cell-specific deletion of Eomes, we demonstrate that this transcription factor is required for CD8(+) ILL development in Y145F as well as wild-type mice. Moreover, we show that promyelocytic leukemia zinc finger and IL-4 are also required for the generation of this ILL population. Taken together, these data shed light on the cell-intrinsic and cell-extrinsic factors that drive CD8(+) ILL differentiation.
Collapse
Affiliation(s)
- Scott M Gordon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lee YJ, Jameson SC, Hogquist KA. Alternative memory in the CD8 T cell lineage. Trends Immunol 2011; 32:50-6. [PMID: 21288770 DOI: 10.1016/j.it.2010.12.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 12/06/2010] [Accepted: 12/09/2010] [Indexed: 11/30/2022]
Abstract
A prominent population of innate CD8+ T cells develops in the thymus of several gene-deficient mouse strains, including Itk, KLF2, CBP and Id3. These cells have the phenotype and function of memory CD8+ T cells, without previous exposure to antigen. Surprisingly, the cytokine IL-4 plays a key role in their development. As this developmental mechanism was discovered, it came to light that innate CD8+ T cells exist also in normal mice and in humans. In this review, we discuss how these cells develop, compare and contrast them to other CD8 memory cells, and discuss their potential physiological relevance.
Collapse
Affiliation(s)
- You Jeong Lee
- The Department of Laboratory Medicine and Pathology, Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | | | | |
Collapse
|
42
|
Riveros C, Mellor D, Gandhi KS, McKay FC, Cox MB, Berretta R, Vaezpour SY, Inostroza-Ponta M, Broadley SA, Heard RN, Vucic S, Stewart GJ, Williams DW, Scott RJ, Lechner-Scott J, Booth DR, Moscato P. A transcription factor map as revealed by a genome-wide gene expression analysis of whole-blood mRNA transcriptome in multiple sclerosis. PLoS One 2010; 5:e14176. [PMID: 21152067 PMCID: PMC2995726 DOI: 10.1371/journal.pone.0014176] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 10/20/2010] [Indexed: 12/03/2022] Open
Abstract
Background Several lines of evidence suggest that transcription factors are involved in the pathogenesis of Multiple Sclerosis (MS) but complete mapping of the whole network has been elusive. One of the reasons is that there are several clinical subtypes of MS and transcription factors that may be involved in one subtype may not be in others. We investigate the possibility that this network could be mapped using microarray technologies and contemporary bioinformatics methods on a dataset derived from whole blood in 99 untreated MS patients (36 Relapse Remitting MS, 43 Primary Progressive MS, and 20 Secondary Progressive MS) and 45 age-matched healthy controls. Methodology/Principal Findings We have used two different analytical methodologies: a non-standard differential expression analysis and a differential co-expression analysis, which have converged on a significant number of regulatory motifs that are statistically overrepresented in genes that are either differentially expressed (or differentially co-expressed) in cases and controls (e.g., V$KROX_Q6, p-value <3.31E-6; V$CREBP1_Q2, p-value <9.93E-6, V$YY1_02, p-value <1.65E-5). Conclusions/Significance Our analysis uncovered a network of transcription factors that potentially dysregulate several genes in MS or one or more of its disease subtypes. The most significant transcription factor motifs were for the Early Growth Response EGR/KROX family, ATF2, YY1 (Yin and Yang 1), E2F-1/DP-1 and E2F-4/DP-2 heterodimers, SOX5, and CREB and ATF families. These transcription factors are involved in early T-lymphocyte specification and commitment as well as in oligodendrocyte dedifferentiation and development, both pathways that have significant biological plausibility in MS causation.
Collapse
Affiliation(s)
- Carlos Riveros
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Drew Mellor
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- School of Computer Science and Software Engineering, The University of Western Australia, Crawley, Australia
| | - Kaushal S. Gandhi
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Fiona C. McKay
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Mathew B. Cox
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Hunter Medical Research Institute, Newcastle, Australia
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - S. Yahya Vaezpour
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mario Inostroza-Ponta
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile
| | - Simon A. Broadley
- School of Medicine, Griffith University, Brisbane, Australia
- Department of Neurology, Gold Coast Hospital, Southport, Australia
| | - Robert N. Heard
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Stephen Vucic
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Graeme J. Stewart
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | | | - Rodney J. Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - Jeanette Lechner-Scott
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
| | - David R. Booth
- Westmead Millennium Institute, University of Sydney, Westmead, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery & Information-Based Medicine, University of Newcastle, and Hunter Medical Research Institute, Newcastle, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, St Lucia, Australia
- * E-mail:
| | | |
Collapse
|
43
|
CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation. EMBO J 2010; 29:3660-72. [PMID: 20859256 DOI: 10.1038/emboj.2010.235] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 08/30/2010] [Indexed: 11/08/2022] Open
Abstract
It remains uncertain how the DNA sequence of mammalian genes influences the transcriptional response to extracellular signals. Here, we show that the number of CREB-binding sites (CREs) affects whether the related histone acetyltransferases (HATs) CREB-binding protein (CBP) and p300 are required for endogenous gene transcription. Fibroblasts with both CBP and p300 knocked-out had strongly attenuated histone H4 acetylation at CREB-target genes in response to cyclic-AMP, yet transcription was not uniformly inhibited. Interestingly, dependence on CBP/p300 was often different between reporter plasmids and endogenous genes. Transcription in the absence of CBP/p300 correlated with endogenous genes having more CREs, more bound CREB, and more CRTC2 (a non-HAT coactivator of CREB). Indeed, CRTC2 rescued cAMP-inducible expression for certain genes in CBP/p300 null cells and contributed to the CBP/p300-independent expression of other targets. Thus, endogenous genes with a greater local concentration and diversity of coactivators tend to have more resilient-inducible expression. This model suggests how gene expression patterns could be tuned by altering coactivator availability rather than by changing signal input or transcription factor levels.
Collapse
|
44
|
Verykokakis M, Boos MD, Bendelac A, Kee BL. SAP protein-dependent natural killer T-like cells regulate the development of CD8(+) T cells with innate lymphocyte characteristics. Immunity 2010; 33:203-15. [PMID: 20674402 DOI: 10.1016/j.immuni.2010.07.013] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 04/28/2010] [Accepted: 07/09/2010] [Indexed: 01/15/2023]
Abstract
CD8(+) T cells are selected via low-affinity interaction with MHC class I molecules on thymic epithelial cells (TECs). However, compromised T cell receptor signaling was proposed to force CD8(+) T cell selection on hematopoietic cells through a SLAM-associated protein (SAP)-dependent mechanism similar to NKT cells. The outcome is an unconventional CD8(+) T cell with phenotypic and functional characteristics of innate lymphocytes. Here we showed that Id3(-/-) CD8(+) T cells had an innate-like phenotype and required SAP for their development. However, like conventional CD8(+) T cells, Id3(-/-) CD8(+) thymocytes were selected on TECs. The requirement for SAP and the innate-like phenotype was not intrinsic to Id3(-/-) CD8(+) thymocytes. Rather, an expanded population of NKT-like cells induced the innate phenotype on CD8(+) T cells through production of interleukin-4. Our findings reveal that accumulation of NKT-like cells promotes conventional CD8(+) thymocytes to acquire innate lymphocyte characteristics.
Collapse
|
45
|
T cells expressing the transcription factor PLZF regulate the development of memory-like CD8+ T cells. Nat Immunol 2010; 11:709-16. [PMID: 20601952 PMCID: PMC3051359 DOI: 10.1038/ni.1898] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Accepted: 05/28/2010] [Indexed: 12/13/2022]
Abstract
Several gene deficiency models promote the development of “innate CD8+ T cells” that have diverse TCRs, but display a memory phenotype and rapidly produce cytokines. We here demonstrate that similar cells develop in Kruppel-Like Factor 2 (KLF2) deficient mice. However, this is not due to intrinsic deficiency in KLF2, but rather to interleukin 4 (IL-4) produced by an expanded population of T cells expressing the PLZF transcription factor. The development of innate CD8+ T cells in ITK and CBP transcription factor deficient mice is also attributable to this IL-4-dependent mechanism. Finally, we show that the same mechanism drives innate CD8+ T cell differentiation in BALB/c mice. These findings reveal a novel mechanism of regulation of CD8+ T cells via PLZF+ T cell production of IL-4.
Collapse
|
46
|
Bedford DC, Kasper LH, Fukuyama T, Brindle PK. Target gene context influences the transcriptional requirement for the KAT3 family of CBP and p300 histone acetyltransferases. Epigenetics 2010; 5:9-15. [PMID: 20110770 DOI: 10.4161/epi.5.1.10449] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
One general principle of gene regulation is that DNA-binding transcription factors modulate transcription by recruiting cofactors that modify histones and chromatin structure. A second implicit principle is that a particular cofactor is necessary at all the target genes where the cofactor is recruited. Increasingly, these principles do not appear to be absolute, as experimentally defined relationships between transcription, cofactors and chromatin modification grow in complexity. The KAT3 histone acetyltransferases CREB binding protein (CBP) and p300 have at least 400 interacting protein partners, thereby acting as hubs in gene regulatory networks. Studies using mutant primary cells indicate that the occurrence of CBP and p300 at any given target gene sometimes correlates with, rather than dictates transcription. This suggests that there are unexpected levels of redundancy between CBP/p300 and other unrelated coactivators, or that CBP/p300 recruitment may sometimes be coincidental. A transcription factor may therefore recruit the same group of coactivators as part of its "toolbox", but it is the characteristics of the individual target gene that determine which coactivation "tools" are required for its transcription.
Collapse
Affiliation(s)
- David C Bedford
- Department of Biochemistry, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | | | |
Collapse
|