1
|
Unaffected Li-Fraumeni Syndrome Carrier Parent Demonstrates Allele-Specific mRNA Stabilization of Wild-Type TP53 Compared to Affected Offspring. Genes (Basel) 2022; 13:genes13122302. [PMID: 36553570 PMCID: PMC9778056 DOI: 10.3390/genes13122302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Li-Fraumeni Syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is inherited by offspring of a carrier parent. p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Unexpectedly, some mutant TP53 carriers remain unaffected, while their children develop cancer early in life. To begin unravelling this paradox, the response of dermal fibroblasts (dFb) isolated from a child with LFS was compared to those from her unaffected father after UV exposure. Phospho-Chk1[S345], a key activator of cell cycle arrest, was increased by UV induction in the LFS patient compared to their unaffected parent dFb. This result, along with previous findings of reduced CDKN1A/p21 UV induction in affected dFb, suggest that cell cycle dysregulation may contribute to cancer onset in the affected LFS subject but not the unaffected parent. Mutant p53 protein and its promoter binding affinity were also higher in dFb from the LFS patient compared to their unaffected parent. These results were as predicted based on decreased mutant TP53 allele-specific mRNA expression previously found in unaffected dFb. Investigation of the potential mechanism regulating this TP53 allele-specific expression found that, while epigenetic promoter methylation was not detectable, TP53 wild-type mRNA was specifically stabilized in the unaffected dFb. Hence, the allele-specific stabilization of wild-type TP53 mRNA may allow an unaffected parent to counteract genotoxic stress by means more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
|
2
|
Kumar KJS, Vani MG, Wang SY. Limonene protects human skin keratinocytes against UVB-induced photodamage and photoaging by activating the Nrf2-dependent antioxidant defense system. ENVIRONMENTAL TOXICOLOGY 2022; 37:2897-2909. [PMID: 36063024 DOI: 10.1002/tox.23646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 08/10/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Long term exposure to solar ultraviolet B (UVB) radiation is one of the primary factors of premature skin aging and is referred to as photoaging. Also, mammalian skin exposed to UVB triggers an increase in production of α-melanocyte-stimulating hormone (α-MSH), which is critically involved in the pathogenesis of hyperpigmentary skin diseases. This study investigated the protective effect of limonene on UVB-induced photodamage and photoaging in immortalized human skin keratinocytes (HaCaT) in vitro. Initially, we determined cell viability and levels of reactive oxygen species (ROS) in UVB-irradiated HaCaT cells. Pretreatment with limonene increased cell viability followed by inhibition of intracellular ROS generation in UVB-irradiated HaCaT cells. Interestingly, the antioxidative activity of limonene was directly correlated with an increase in expression of endogenous antioxidants, including heme oxygenase 1 (HO-1), NAD(P)H:quinone oxidoreductase 1 (NQO-1), and γ-glutamylcysteine synthetase (γ-GCLC), which was associated with enhanced nuclear translocation and activation of NF-E2-related factor-2 (Nrf2). Indeed, Nrf2 knockdown reduced limonene's protective effects. Additionally, we observed that limonene treatment inhibited UVB-induced α-MSH secretion followed by inhibition of proopiomelanocortin (POMC) via suppression of p53 transcriptional activation. Moreover, limonene prevented UVB-mediated depletion of tight junction regulatory proteins, including occludin and zonula occludens-1. On the other hand, limonene treatment significantly decreased matrix metalloproteinase-2 levels in UVB-irradiated HaCaT cells. Based on these results, limonene may have a dermato-protective effect in skin cells by activating the Nrf2-dependent cellular antioxidant defense system.
Collapse
Affiliation(s)
- K J Senthil Kumar
- Bachelor Program of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | - M Gokila Vani
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Li L, Du W, Wang H, Zhao Y, Huang Z, Peng Y, Zeng S, Zhang G. Small-molecule MX-C2/3 suppresses non-small cell lung cancer progression via p53 activation. Chem Biol Interact 2022; 366:110142. [PMID: 36058261 DOI: 10.1016/j.cbi.2022.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/28/2022] [Indexed: 11/30/2022]
Abstract
p53 inactivation is a common feature in non-small cell lung cancer (NSCLC) resulting in NSCLC malignant transformation. Targeting serine 392 phosphorylation to restore p53 anticancer activity has proven to be an effective therapeutic strategy against NSCLC. A synthetic p53 activator, NA-17, has been developed that shows promise in preclinical models of NSCLC. However, NA-17 exhibits limited therapeutic efficacy in oncogene-driven tumors as well as relatively high toxicity to normal cells. It is possible that high efficiency and low toxicity p53 activators can be obtained by optimizing the leading molecule. Here, we performed high-throughput screening of compounds optimized based on NA-17 to identify new p53 activators. Two promising candidates named MX-C2 and MX-C3 were identified, both exhibited considerable therapeutic efficacy in oncogene-driven tumor models. Similar to NA-17, MX-C2/3 induced p53 activation via phosphorylating serine-392 without DNA damage. Both compounds showed broad antitumor activity in NSCLC cells and limited toxicity in normal cell lines. Moreover, MX-C2/3 suppressed tumor progression by arresting the cell cycle at G2/M phase, exhibiting a different mechanism of cell cycle arrest than NA-17. In addition, MX-C2/3 promoted the enrichment of p-p53 (s392) in mitochondria, leading to the conformational activation of Bak for cell apoptosis, which is consistent with NA-17. Finally, we demonstrated that MX-C2 significantly inhibited tumor growth without obvious systemic toxicity in oncogene-driven HCC-827 xenograft models. Collectively, we report two p53 activators with high-efficiency and low-toxicity that target p53 serine 392 phosphorylation for anticancer translational investigation.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wenqing Du
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Hui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yufei Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zetian Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
4
|
Li L, Li P, Ma X, Zeng S, Peng Y, Zhang G. Therapeutic restoring p53 function with small molecule for oncogene-driven non-small cell lung cancer by targeting serine 392 phosphorylation. Biochem Pharmacol 2022; 203:115188. [PMID: 35902040 DOI: 10.1016/j.bcp.2022.115188] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/05/2022] [Accepted: 07/20/2022] [Indexed: 12/01/2022]
Abstract
p53 inactivation by disabling its function is a hallmark in lung carcinomas, emphasizing the significance of restoring p53 function as an attractive therapeutic strategy. However, the clinical efficacy of existing p53 activators is limited due to their inability to effectively activate p53 within the tumors. Here, we established a p53 activator screening assay in EGFR-driven lung cancer cells and identified a small molecular, MX-C4, as a promising candidate. Using high throughput compound screening and combination analyses, we found that MX-C4 effectively promoted the phosphorylation of p53 at serine-392 (s392). It exhibited potent antitumor activity in a variety of cancer cell lines, but only limited toxicity to NCI-H1299 (p53-null) and normal cell lines such as LX2 and HL-7702. Overexpression of p53 in NCI-H1299 cells by a p53 expressing virus vector sensitized cells to MX-C4 treatment, suggesting a p53-dependent anticancer activity. Furthermore, we demonstrated that MX-C4 bound to p53 and exerted its anticancer activity through cell cycle arrest at G2/M phase and apoptosis induction. Mechanistic study indicated that p53 activation regulated cell cycle and cell survival related targets at protein levels. Moreover, p53 activation raised phospho-p53 translocation to mitochondria and subsequently reorganized the Bcl-xl-Bak complex, thus conformationally activating Bak and inducing apoptosis. It is noteworthy that MX-C4 could effectively activate p53 within the tumors in EGFR-driven xenograft models, where tumor was significantly suppressed without obvious toxicity. Our study identified a promising candidate for lung cancer therapy by restoring p53 function.
Collapse
Affiliation(s)
- Liangping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Pingping Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xuesong Ma
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulan Zeng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Yan Peng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Guohai Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
5
|
Li D, Xie L, Qiao Z, Mai S, Zhu J, Zhang F, Chen S, Li L, Shen F, Qin Y, Yao H, He S, Ma F. STING-mediated degradation of IFI16 negatively regulates apoptosis by inhibiting p53 phosphorylation at serine 392. J Biol Chem 2021; 297:100930. [PMID: 34216619 PMCID: PMC8326736 DOI: 10.1016/j.jbc.2021.100930] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Interferon-γ-inducible factor 16 (IFI16) triggers stimulator of interferon (IFN) genes (STING)-dependent type I IFN production during host antiviral immunity and facilitates p53-dependent apoptosis during suppressing tumorigenesis. We have previously reported that STING-mediated IFI16 degradation negatively regulates type I IFN production. However, it is unknown whether STING also suppresses IFI16/p53-dependent apoptosis via degradation of IFI16. Here, our results from flow cytometry apoptosis detection and immunoblot assays show that IFI16 and nutlin-3, a p53 pathway activator, synergistically induce apoptosis in U2OS and A549 cells. Protein kinase R-triggered phosphorylation of p53 at serine 392 is critical for the IFI16-p53-dependent apoptosis. However, overexpression of STING suppresses p53 serine 392 phosphorylation, p53 transcriptional activity, expression of p53 target genes, and p53-dependent mitochondrial depolarization and apoptosis. In summary, our current study demonstrates that STING-mediated IFI16 degradation negatively regulates IFI16-mediated p53-dependent apoptosis in osteosarcoma and non-small cell lung cancer cells, which suggests a protumorigenic role for STING in certain cancer types because of its potent ability to degrade upstream IFI16.
Collapse
Affiliation(s)
- Dapei Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China.
| | - Lifen Xie
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Zigang Qiao
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Sanyue Mai
- Department of Laboratory Medicine, 988 Central Hospital of People's Liberation Army, Zhengzhou, China
| | - Jingfei Zhu
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Fan Zhang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Shengchuan Chen
- Suzhou Institute of Systems Medicine, Suzhou, China; Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liang Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China; Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yanghua Qin
- Department of Laboratory Diagnosis, Changhai Hospital of the Second Military Medical University, Shanghai, China
| | - Haiping Yao
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Sudan He
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Feng Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Suzhou Institute of Systems Medicine, Suzhou, China; Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
6
|
Inferring clonal composition from multiple tumor biopsies. NPJ Syst Biol Appl 2020; 6:27. [PMID: 32843649 PMCID: PMC7447821 DOI: 10.1038/s41540-020-00147-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/15/2020] [Indexed: 01/09/2023] Open
Abstract
Knowledge about the clonal evolution of a tumor can help to interpret the function of its genetic alterations by identifying initiating events and events that contribute to the selective advantage of proliferative, metastatic, and drug-resistant subclones. Clonal evolution can be reconstructed from estimates of the relative abundance (frequency) of subclone-specific alterations in tumor biopsies, which, in turn, inform on its composition. However, estimating these frequencies is complicated by the high genetic instability that characterizes many cancers. Models for genetic instability suggest that copy number alterations (CNAs) can influence mutation-frequency estimates and thus impede efforts to reconstruct tumor phylogenies. Our analysis suggested that accurate mutation frequency estimates require accounting for CNAs—a challenging endeavour using the genetic profile of a single tumor biopsy. Instead, we propose an optimization algorithm, Chimæra, to account for the effects of CNAs using profiles of multiple biopsies per tumor. Analyses of simulated data and tumor profiles suggested that Chimæra estimates are consistently more accurate than those of previously proposed methods and resulted in improved phylogeny reconstructions and subclone characterizations. Our analyses inferred recurrent initiating mutations in hepatocellular carcinomas, resolved the clonal composition of Wilms’ tumors, and characterized the acquisition of mutations in drug-resistant prostate cancers.
Collapse
|
7
|
Muller P, Chan JM, Simoncik O, Fojta M, Lane DP, Hupp T, Vojtesek B. Evidence for allosteric effects on p53 oligomerization induced by phosphorylation. Protein Sci 2017; 27:523-530. [PMID: 29124793 DOI: 10.1002/pro.3344] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/22/2017] [Accepted: 11/07/2017] [Indexed: 11/06/2022]
Abstract
p53 is a tetrameric protein with a thermodynamically unstable deoxyribonucleic acid (DNA)-binding domain flanked by intrinsically disordered regulatory domains that control its activity. The unstable and disordered segments of p53 allow high flexibility as it interacts with binding partners and permits a rapid on/off switch to control its function. The p53 tetramer can exist in multiple conformational states, any of which can be stabilized by a particular modification. Here, we apply the allostery model to p53 to ask whether evidence can be found that the "activating" C-terminal phosphorylation of p53 stabilizes a specific conformation of the protein in the absence of DNA. We take advantage of monoclonal antibodies for p53 that measure indirectly the following conformations: unfolded, folded, and tetrameric. A double antibody capture enzyme linked-immunosorbent assay was used to observe evidence of conformational changes of human p53 upon phosphorylation by casein kinase 2 in vitro. It was demonstrated that oligomerization and stabilization of p53 wild-type conformation results in differential exposure of conformational epitopes PAb1620, PAb240, and DO12 that indicates a reduction in the "unfolded" conformation and increases in the folded conformation coincide with increases in its oligomerization state. These data highlight that the oligomeric conformation of p53 can be stabilized by an activating enzyme and further highlight the utility of the allostery model when applied to understanding the regulation of unstable and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Petr Muller
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Juliana M Chan
- p53 Laboratory (A*STAR), Singapore, 138648, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Oliver Simoncik
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Miroslav Fojta
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, 612 65, Czech Republic
| | - David P Lane
- p53 Laboratory (A*STAR), Singapore, 138648, Singapore
| | - Ted Hupp
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic.,Institute of Genetics and Molecular Medicine, Edinburgh Cancer Research Centre Cell Signaling Unit, University of Edinburgh, Edinburgh, EH4 2XR, United Kingdom
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| |
Collapse
|
8
|
Serine 392 phosphorylation modulates p53 mitochondrial translocation and transcription-independent apoptosis. Cell Death Differ 2017; 25:190-203. [PMID: 28937686 DOI: 10.1038/cdd.2017.143] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
The tumor suppressor p53 is a key regulator of apoptosis induced by various cellular stresses. p53 can induce apoptosis by two mechanisms. First, p53 acts as a transcription factor inducing and repressing pro-apoptotic and anti-apoptotic targets genes, respectively. Second, p53 is able to translocate to the mitochondria, where it interacts with BCL-2 family members to induce membrane permeabilization and cytochrome c release. p53 transcriptional activity is regulated by a set of post-translational modifications that have been well documented. However, how these modifications impact the direct mitochondrial pathway of death remain poorly understood. In this study, we focused on the role of serine 392 phosphorylation in the control of p53-dependent apoptosis. We used CRISPR/Cas9 genome editing to substitute serine 392 by a non-phosphorylatable alanine in HCT-116 colon carcinoma cells. The S392A mutant displayed normal transcriptional activity following genotoxic stress, but markedly impaired ability to localize to mitochondria. The decreased mitochondrial localization of the S392A mutant correlated with a lower ability to induce apoptosis. Confirmatory observations were made following enforced expression of the S392A p53 mutant or a phospho-mimetic S392E mutant in H1299 lung carcinoma cells. Our observations support the premise that serine 392 phosphorylation of p53 influences its mitochondrial translocation and transcription-independent apoptotic function.
Collapse
|
9
|
Buzby JS, Williams SA, Schaffer L, Head SR, Nugent DJ. Allele-specific wild-type TP53 expression in the unaffected carrier parent of children with Li-Fraumeni syndrome. Cancer Genet 2017; 211:9-17. [PMID: 28279309 DOI: 10.1016/j.cancergen.2017.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/14/2016] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
Abstract
Li-Fraumeni syndrome (LFS) is an autosomal dominant disorder where an oncogenic TP53 germline mutation is passed from parent to child. Tumor protein p53 is a key tumor suppressor regulating cell cycle arrest in response to DNA damage. Paradoxically, some mutant TP53 carriers remain unaffected, while their children develop cancer within the first few years of life. To address this paradox, response to UV stress was compared in dermal fibroblasts (dFb) from an affected LFS patient vs. their unaffected carrier parent. UV induction of CDKN1A/p21, a regulatory target of p53, in LFS patient dFb was significantly reduced compared to the unaffected parent. UV exposure also induced significantly greater p53[Ser15]-phosphorylation in LFS patient dFb, a reported property of some mutant p53 variants. Taken together, these results suggested that unaffected parental dFb may express an increased proportion of wild-type vs. mutant p53. Indeed, a significantly increased ratio of wild-type to mutant TP53 allele-specific expression in the unaffected parent dFb was confirmed by RT-PCR-RFLP and RNA-seq analysis. Hence, allele-specific expression of wild-type TP53 may allow an unaffected parent to mount a response to genotoxic stress more characteristic of homozygous wild-type TP53 individuals than their affected offspring, providing protection from the oncogenesis associated with LFS.
Collapse
Affiliation(s)
- Jeffrey S Buzby
- Hematology Research and Advanced Diagnostics Laboratories, CHOC Children's Hospital of Orange County, Orange, CA, USA.
| | - Shirley A Williams
- Hematology Research and Advanced Diagnostics Laboratories, CHOC Children's Hospital of Orange County, Orange, CA, USA
| | - Lana Schaffer
- Next Generation Sequencing and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Steven R Head
- Next Generation Sequencing and Microarray Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - Diane J Nugent
- Hematology Research and Advanced Diagnostics Laboratories, CHOC Children's Hospital of Orange County, Orange, CA, USA; Division of Hematology, CHOC Children's Hospital of Orange County, Orange, CA, USA; Division of Pediatric Hematology, School of Medicine, University of California at Irvine, Orange, CA, USA
| |
Collapse
|
10
|
Bruning O, Rauwerda H, Dekker RJ, de Leeuw WC, Wackers PFK, Ensink WA, Jonker MJ, Breit TM. Valuable lessons-learned in transcriptomics experimentation. Transcription 2016; 6:51-5. [PMID: 26098945 PMCID: PMC4581358 DOI: 10.1080/21541264.2015.1064195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have collected several valuable lessons that will help improve transcriptomics experimentation. These lessons relate to experiment design, execution, and analysis. The cautions, but also the pointers, may help biologists avoid common pitfalls in transcriptomics experimentation and achieve better results with their transcriptome studies.
Collapse
Affiliation(s)
- Oskar Bruning
- a RNA Biology & Applied Bioinformatics research group; Swammerdam Institute for Life Sciences; Faculty of Science; University of Amsterdam ; Amsterdam , the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang G, An Y, Lu X, Zhong H, Zhu Y, Wu Y, Ma F, Yang J, Liu Y, Zhou Z, Peng Y, Chen Z. A Novel Naphthalimide Compound Restores p53 Function in Non-small Cell Lung Cancer by Reorganizing the Bak·Bcl-xl Complex and Triggering Transcriptional Regulation. J Biol Chem 2015; 291:4211-25. [PMID: 26668309 DOI: 10.1074/jbc.m115.669978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Indexed: 12/16/2022] Open
Abstract
p53 inactivation is a hallmark in non-small-cell lung cancer (NSCLC). It is therefore highly desirable to develop tumor-specific treatment for NSCLC therapy by restoring p53 function. Herein, a novel naphthalimide compound, NA-17, was identified as a promising drug candidate in view of both its anticancer activity and mechanism of action. NA-17 exhibited strong anticancer activity on a broad range of cancer cell lines but showed low toxicity to normal cell lines, such as HL-7702 and WI-38. Moreover, NA-17 showed p53-dependent inhibition selectivity in different NSCLC cell lines due to the activation state of endogenous p53 in the background level. Further studies revealed that NA-17 caused cell cycle arrest at the G1 phase, changed cell size, and induced apoptosis and cell death by increasing the proportion of sub-G1 cells. Molecular mechanism studies suggested that targeted accumulation of phospho-p53 in mitochondria and nuclei induced by NA-17 resulted in activation of Bak and direct binding of phospho-p53 to the target DNA sequences, thereby evoking cell apoptosis and cell cycle arrest and eventually leading to irreversible cancer cell inhibition. This work provided new insights into the molecular interactions and anticancer mechanisms of phospho-p53-dependent naphthalimide compounds.
Collapse
Affiliation(s)
- Guohai Zhang
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yunfeng An
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Xing Lu
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Hui Zhong
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yanhong Zhu
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yiming Wu
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Feng'e Ma
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Jingmei Yang
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yancheng Liu
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Zuping Zhou
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Yan Peng
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| | - Zhenfeng Chen
- From the State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
12
|
Abstract
p53 has been studied intensively as a major tumour suppressor that detects oncogenic events in cancer cells and eliminates them through senescence (a permanent non-proliferative state) or apoptosis. Consistent with this role, p53 activity is compromised in a high proportion of all cancer types, either through mutation of the TP53 gene (encoding p53) or changes in the status of p53 modulators. p53 has additional roles, which may overlap with its tumour-suppressive capacity, in processes including the DNA damage response, metabolism, aging, stem cell differentiation and fertility. Moreover, many mutant p53 proteins, termed 'gain-of-function' (GOF), acquire new activities that help drive cancer aggression. p53 is regulated mainly through protein turnover and operates within a negative-feedback loop with its transcriptional target, MDM2 (murine double minute 2), an E3 ubiquitin ligase which mediates the ubiquitylation and proteasomal degradation of p53. Induction of p53 is achieved largely through uncoupling the p53-MDM2 interaction, leading to elevated p53 levels. Various stress stimuli acting on p53 (such as hyperproliferation and DNA damage) use different, but overlapping, mechanisms to achieve this. Additionally, p53 activity is regulated through critical context-specific or fine-tuning events, mediated primarily through post-translational mechanisms, particularly multi-site phosphorylation and acetylation. In the present review, I broadly examine these events, highlighting their regulatory contributions, their ability to integrate signals from cellular events towards providing most appropriate response to stress conditions and their importance for tumour suppression. These are fascinating aspects of molecular oncology that hold the key to understanding the molecular pathology of cancer and the routes by which it may be tackled therapeutically.
Collapse
|
13
|
Hallenborg P, Petersen RK, Feddersen S, Sundekilde U, Hansen JB, Blagoev B, Madsen L, Kristiansen K. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation. J Lipid Res 2014; 55:2491-500. [PMID: 25312885 DOI: 10.1194/jlr.m050658] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation.
Collapse
Affiliation(s)
- Philip Hallenborg
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | | | - Søren Feddersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Ulrik Sundekilde
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacob B Hansen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Blagoy Blagoev
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Lise Madsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark National Institute of Nutrition and Seafood Research, Bergen, Norway
| | | |
Collapse
|
14
|
A range finding protocol to support design for transcriptomics experimentation: examples of in-vitro and in-vivo murine UV exposure. PLoS One 2014; 9:e97089. [PMID: 24823911 PMCID: PMC4019648 DOI: 10.1371/journal.pone.0097089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/14/2014] [Indexed: 12/27/2022] Open
Abstract
In transcriptomics research, design for experimentation by carefully considering biological, technological, practical and statistical aspects is very important, because the experimental design space is essentially limitless. Usually, the ranges of variable biological parameters of the design space are based on common practices and in turn on phenotypic endpoints. However, specific sub-cellular processes might only be partially reflected by phenotypic endpoints or outside the associated parameter range. Here, we provide a generic protocol for range finding in design for transcriptomics experimentation based on small-scale gene-expression experiments to help in the search for the right location in the design space by analyzing the activity of already known genes of relevant molecular mechanisms. Two examples illustrate the applicability: in-vitro UV-C exposure of mouse embryonic fibroblasts and in-vivo UV-B exposure of mouse skin. Our pragmatic approach is based on: framing a specific biological question and associated gene-set, performing a wide-ranged experiment without replication, eliminating potentially non-relevant genes, and determining the experimental ‘sweet spot’ by gene-set enrichment plus dose-response correlation analysis. Examination of many cellular processes that are related to UV response, such as DNA repair and cell-cycle arrest, revealed that basically each cellular (sub-) process is active at its own specific spot(s) in the experimental design space. Hence, the use of range finding, based on an affordable protocol like this, enables researchers to conveniently identify the ‘sweet spot’ for their cellular process of interest in an experimental design space and might have far-reaching implications for experimental standardization.
Collapse
|
15
|
Donehower LA. Insights into Wild-Type and Mutant p53 Functions Provided by Genetically Engineered Mice. Hum Mutat 2014; 35:715-27. [DOI: 10.1002/humu.22507] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Lawrence A. Donehower
- Departments of Molecular Virology and Microbiology, Molecular and Cellular Biology, and Pediatrics; Baylor College of Medicine; Houston Texas 77030
| |
Collapse
|
16
|
Requirement for phosphorylation of P53 at Ser312 in suppression of chemical carcinogenesis. Sci Rep 2013; 3:3105. [PMID: 24173284 PMCID: PMC3813944 DOI: 10.1038/srep03105] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 10/11/2013] [Indexed: 12/23/2022] Open
Abstract
The p53 tumour suppressor is activated in response to a wide variety of genotoxic stresses, frequently via post-translational modification. Using a knock in mouse model with a Ser312 to Ala mutation, we show here that phosphorylation of p53 on Ser312 helps to prevent tumour induction by the alkylating agent MNU, which predominantly caused T cell lymphomas. This is consistent with our previous observation that p53312A/A mice are more susceptible to X-ray induced tumourigenesis. Phosphorylation on Ser312 aids p53's interaction with E2F1, and enhances p53-mediated apoptosis. Loss of E2F1 alone does not affect tumour susceptibility to MNU, but its absence partially rescues tumour formation in p53312A/A mice, thus reflecting the oncogenic properties of E2F1. Our data confirms the participation of Ser312 phosphorylation in tumour suppression by p53.
Collapse
|
17
|
Luijten M, Singh AV, Bastian CA, Westerman A, Pisano MM, Pennings JLA, Verhoef A, Green ML, Piersma AH, de Vries A, Knudsen TB. Lasting effects on body weight and mammary gland gene expression in female mice upon early life exposure to n-3 but not n-6 high-fat diets. PLoS One 2013; 8:e55603. [PMID: 23409006 PMCID: PMC3567116 DOI: 10.1371/journal.pone.0055603] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/03/2013] [Indexed: 01/21/2023] Open
Abstract
Exposure to an imbalance of nutrients prior to conception and during critical developmental periods can have lasting consequences on physiological processes resulting in chronic diseases later in life. Developmental programming has been shown to involve structural and functional changes in important tissues. The aim of the present study was to investigate whether early life diet has a programming effect on the mammary gland. Wild-type mice were exposed from 2 weeks prior to conception to 6 weeks of age to a regular low-fat diet, or to high-fat diets based on either corn oil or flaxseed oil. At 6 weeks of age, all mice were shifted to the regular low-fat diet until termination at 10 weeks of age. Early life exposure to a high-fat diet, either high in n-6 (corn oil) or in n-3 (flaxseed oil) polyunsaturated fatty acids, did not affect birth weight, but resulted in an increased body weight at 10 weeks of age. Transcriptome analyses of the fourth abdominal mammary gland revealed differentially expressed genes between the different treatment groups. Exposure to high-fat diet based on flaxseed oil, but not on corn oil, resulted in regulation of pathways involved in energy metabolism, immune response and inflammation. Our findings suggest that diet during early life indeed has a lasting effect on the mammary gland and significantly influences postnatal body weight gain, metabolic status, and signaling networks in the mammary gland of female offspring.
Collapse
Affiliation(s)
- Mirjam Luijten
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Amar V. Singh
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, Kentucky, United States of America
| | - Caleb A. Bastian
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, Kentucky, United States of America
| | - Anja Westerman
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - M. Michele Pisano
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, Kentucky, United States of America
| | - Jeroen L. A. Pennings
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Aart Verhoef
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Maia L. Green
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, Kentucky, United States of America
| | - Aldert H. Piersma
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Annemieke de Vries
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Thomas B. Knudsen
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville Birth Defects Center, Louisville, Kentucky, United States of America
- National Center for Computational Toxicology, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
18
|
Furlan A, Lamballe F, Stagni V, Hussain A, Richelme S, Prodosmo A, Moumen A, Brun C, Barrantes IDB, Arthur JSC, Koleske AJ, Nebreda AR, Barilà D, Maina F. Met acts through Abl to regulate p53 transcriptional outcomes and cell survival in the developing liver. J Hepatol 2012; 57:1292-8. [PMID: 22889954 PMCID: PMC3571726 DOI: 10.1016/j.jhep.2012.07.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/10/2012] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Genetic studies indicate that distinct signaling modulators are each necessary but not individually sufficient for embryonic hepatocyte survival in vivo. Nevertheless, how signaling players are interconnected into functional circuits and how they coordinate the balance of cell survival and death in developing livers are still major unresolved issues. In the present study, we examined the modulation of the p53 pathway by HGF/Met in embryonic livers. METHODS We combined pharmacological and genetic approaches to biochemically and functionally evaluate p53 pathway modulation in primary embryonic hepatocytes and in developing livers. RT-PCR arrays were applied to investigate the selectivity of p53 transcriptional response triggered by Met. RESULTS Met recruits p53 to regulate the liver developmental program, by qualitatively modulating its transcriptional properties: turning on the Mdm2 survival gene, while keeping death and cell-cycle arrest genes Pmaip1 and p21 silent. We investigated the mechanism leading to p53 regulation by Met and found that Abl and p38MAPK are required for p53 phosphorylation on S(389), Mdm2 upregulation, and hepatocyte survival. Alteration of this signaling mechanism switches p53 properties, leading to p53-dependent cell death in embryonic livers. RT-PCR array studies affirmed the ability of the Met-Abl-p53 axis to modulate the expression of distinct genes that can be regulated by p53. CONCLUSIONS A signaling circuit involving Abl and p38MAPK is required downstream of Met for the survival of embryonic hepatocytes, via qualitative regulation of the p53 transcriptional response, by switching its proapoptotic into survival properties.
Collapse
Affiliation(s)
| | | | - Venturina Stagni
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, Biology Department, Univ. Rome “Tor Vergata”, Rome, Italy
| | | | | | - Andrea Prodosmo
- Molecular Oncogenesis Laboratory, Experimental Oncology Department, Regina Elena Cancer Institute, Rome, Italy
| | - Anice Moumen
- Aix-Marseille Univ, IBDML, CNRS UMR 7288, Marseille, France
| | - Christine Brun
- Aix-Marseille Univ, Inserm U928, TAGC, CNRS, Marseille, France
| | - Ivan del Barco Barrantes
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA)
| | - J. Simon C. Arthur
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, UK
| | - Anthony J. Koleske
- Molecular Biophysics and Biochemistry Department, Yale University, New Haven, CT, United States
| | - Angel R. Nebreda
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA)
| | - Daniela Barilà
- Laboratory of Cell Signaling, IRCCS-Fondazione Santa Lucia, Biology Department, Univ. Rome “Tor Vergata”, Rome, Italy
| | - Flavio Maina
- Aix-Marseille Univ, IBDML, CNRS UMR 7288, Marseille, France,Corresponding author. Address: IBDML, Parc Scientifique de Luminy, Case 907, 13288 Marseille Cedex 09, France. Tel.: +33 4 91 26 97 69. , (F. Maina)
| |
Collapse
|
19
|
Abstract
Emerging strategies in cancer therapeutics link the genomic mutational and proteomic landscape, allowing intelligent reasoning on target selection. In this issue of Cancer Cell, Piccinin and colleagues use this approach to demonstrate that the mesenchymal protein Twist1 inhibits p53, providing a novel target for reactivation of p53 in human sarcoma.
Collapse
Affiliation(s)
- Ted R Hupp
- Institute of Genetics and Molecular Medicine, University of Edinburgh, UK.
| | | | | |
Collapse
|
20
|
Zwart EP, Schaap MM, van den Dungen MW, Braakhuis HM, White PA, van Steeg H, van Benthem J, Luijten M. Proliferating primary hepatocytes from the pUR288 lacZ plasmid mouse are valuable tools for genotoxicity assessment in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:1-8. [PMID: 22619112 DOI: 10.1002/em.21700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Revised: 04/03/2012] [Accepted: 04/06/2012] [Indexed: 06/01/2023]
Abstract
Safety assessments of substances with regard to genotoxicity are generally based on a combination of in vitro and in vivo tests. These tests are performed according to a (tiered) test strategy whereby a positive result in vitro usually triggers further testing in vivo. A low specificity and high frequency of irrelevant positive results associated with most in vitro mammalian cell genotoxicity assays necessitates the design and validation of suitable alternatives. As such, we examined the feasibility of culturing primary hepatocytes from the pUR288 lacZ reporter mouse, and moreover, using established cultures to reliably assess genotoxic activity in vitro. Initial studies characterizing the metabolic capacity of proliferating lacZ primary hepatocytes indicated that these cells retained at least some activities important for xenobiotic metabolism: cytochrome P450 1A1 enzyme activities were markedly increased in the hepatocytes after exposure to benzo[a]pyrene, and also UDP-glucuronosyl transferase and glutathione-S-transferase activities, both Phase II enzymes, were detected. Increasing levels of phosphorylated p53 at residue serine 389 after ultraviolet treatment indicated a properly functioning p53, one of the criteria for an effective new test system. Four genotoxic substances with different mechanisms of genotoxicity, i.e., benzo[a]pyrene, bleomycin, etoposide, and cyclophosphamide, were tested in the lacZ rescue assay. For etoposide and cyclophosphamide, the induction of mutant colonies was rather low. Exposure to benzo[a]pyrene and bleomycin, however, yielded a clear concentration-dependent induction of the lacZ mutant frequency. Based on our preliminary observations, proliferating lacZ primary hepatocytes are a promising new tool for the assessment of genotoxic hazard.
Collapse
Affiliation(s)
- Edwin P Zwart
- Laboratory for Health Protection Research, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hamard PJ, Lukin DJ, Manfredi JJ. p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J Biol Chem 2012; 287:22397-407. [PMID: 22514277 DOI: 10.1074/jbc.m111.331298] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The p53 gene encodes a transcription factor that is composed of several functional domains: the N-terminal transactivation domain, the central sequence-specific DNA binding domain, the tetramerization domain, and the highly basic C-terminal regulatory domain (CTD). The p53 CTD is a nonspecific DNA binding domain that is subject to extensive post-translational modifications. However, the functional significance of the p53 CTD remains unclear. The role of this domain in the regulation of p53 functions is explored by comparing the activity of ectopically expressed wild-type (WT) p53 protein to that of a truncated mutant lacking the 24 terminal amino acids (Δ24). Using quantitative real time PCR and chromatin Immuno-Precipitation experiments, a p53 CTD deletion is shown to alter the p53-dependent induction of a subset of its target genes due to impaired specific DNA binding. Moreover, p53-induced growth arrest and apoptosis both require an intact p53 CTD. These data indicate that the p53 CTD is a positive regulator of p53 tumor suppressor functions.
Collapse
Affiliation(s)
- Pierre-Jacques Hamard
- Department of Oncological Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
22
|
Induction and activation of the p53 pathway: a role for the protein kinase CK2? Mol Cell Biochem 2011; 356:133-8. [DOI: 10.1007/s11010-011-0966-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 02/02/2023]
|
23
|
Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 2011; 16:528-36. [PMID: 20932800 DOI: 10.1016/j.molmed.2010.09.002] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor protein has well-established roles in monitoring various types of stress signals by activating specific transcriptional targets that control cell cycle arrest and apoptosis, although some activities are also mediated in a transcription-independent manner. Here, we review the recent advances in our understanding of the wide spectrum of post-translational modifications that act as epigenetic-like codes for modulating specific functions of p53 in vivo and how deregulation of these modifications might contribute to tumorigenesis. We also discuss future research priorities to further understand p53 post-translational modifications and the interpretation of genetic data in appreciation of the increasing evidence that p53 regulates cellular metabolism, autophagy and many unconventional tumor suppressor activities.
Collapse
Affiliation(s)
- Chao Dai
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
24
|
Bruning O, Yuan X, Rodenburg W, Bruins W, van Oostrom CT, Rauwerda H, Wittink FR, Jonker MJ, de Vries A, Breit TM. Serious complications in gene-expression studies with stress perturbation: An example of UV-exposed p53-mutant mouse embryonic fibroblasts. Transcription 2011; 1:159-164. [PMID: 21326892 DOI: 10.4161/trns.1.3.13487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 08/30/2010] [Accepted: 08/30/2010] [Indexed: 01/06/2023] Open
Abstract
Reanalysis of our UV study of p53-mutant mouse embryonic fibroblasts revealed an intriguing orchestration of massive transcriptome responses. However, close scrutiny of the data uncovered an affected mRNA/rRNA ratio, effectively inhibiting valid data analysis. UV-dose range-finding showed low-dose UV specific- and high-dose stress-related responses, which represent a plea for UV dose range-finding in experimental design.
Collapse
Affiliation(s)
- Oskar Bruning
- MicroArray Department and Integrative Bioinformatics Unit (MAD-IBU); Swammerdam Institute for Life Sciences; Faculty of Science; University of Amsterdam (UvA); Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fraser JA, Madhumalar A, Blackburn E, Bramham J, Walkinshaw MD, Verma C, Hupp TR. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: II. a model in which phosphorylation at SER269 induces a mutant conformation to p53. J Biol Chem 2010; 285:37773-86. [PMID: 20847049 PMCID: PMC2988382 DOI: 10.1074/jbc.m110.143107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/15/2010] [Indexed: 12/11/2022] Open
Abstract
The p53 DNA-binding domain harbors a conformationally flexible multiprotein binding site that regulates p53 ubiquitination. A novel phosphorylation site exists within this region at Ser(269), whose phosphomimetic mutation inactivates p53. The phosphomimetic p53 (S269D) exhibits characteristics of mutant p53: stable binding to Hsp70 in vivo, elevated ubiquitination in vivo, inactivity in DNA binding and transcription, increased thermoinstability using thermal shift assays, and λ(max) of intrinsic tryptophan fluorescence at 403 nm rather than 346 nm, characteristic of wild type p53. These data indicate that p53 conformational stability is regulated by a phosphoacceptor site within an exposed flexible surface loop and that this can be destabilized by phosphorylation. To test whether other motifs within p53 have similarly evolved, we analyzed the effect of Ser(215) mutation on p53 function because Ser(215) is another inactivating phosphorylation site in the conformationally flexible PAb240 epitope. The p53(S215D) protein is inactive like p53(S269D), whereas p53(S215A) is as active as p53(S269A). However, the double mutant p53(S215A/S269A) was transcriptionally inactive and more thermally unstable than either individual Ser-Ala loop mutant. Molecular dynamics simulations suggest that (i) solvation of phospho-Ser(215) and phospho-Ser(269) by positive charged residues or solvent water leads to local unfolding, which is accompanied by local destabilization of the N-terminal loop and global destabilization of p53, and (ii) the double alanine 215/269 mutation disrupts hydrogen bonding normally stabilized by both Ser(215) and Ser(269). These data indicate that p53 has evolved two serine phosphoacceptor residues within conformationally flexible epitopes that normally stabilize the p53 DNA-binding domain but whose phosphorylation induces a mutant conformation to wild type p53.
Collapse
Affiliation(s)
- Jennifer A. Fraser
- From the CRUK p53 Signal Transduction Group, Cell Signaling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, Scotland, United Kingdom
| | - Arumugam Madhumalar
- the Bioinformatics Institute (A-STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore
| | - Elizabeth Blackburn
- the Institute of Structural and Molecular Biology, Kings Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom, and
| | - Janice Bramham
- the Institute of Structural and Molecular Biology, Kings Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom, and
| | - Malcolm D. Walkinshaw
- the Institute of Structural and Molecular Biology, Kings Buildings, Edinburgh EH9 3JR, Scotland, United Kingdom, and
| | - Chandra Verma
- the Bioinformatics Institute (A-STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore
| | - Ted R. Hupp
- From the CRUK p53 Signal Transduction Group, Cell Signaling Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, Scotland, United Kingdom
| |
Collapse
|
26
|
Fraser JA, Vojtesek B, Hupp TR. A novel p53 phosphorylation site within the MDM2 ubiquitination signal: I. phosphorylation at SER269 in vivo is linked to inactivation of p53 function. J Biol Chem 2010; 285:37762-72. [PMID: 20851891 DOI: 10.1074/jbc.m110.143099] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p53 is a thermodynamically unstable protein containing a conformationally flexible multiprotein docking site within the DNA-binding domain. A combinatorial peptide chip used to identify the novel kinase consensus site RXSΦ(K/D) led to the discovery of a homologous phosphorylation site in the S10 β-strand of p53 at Ser(269). Overlapping peptide libraries confirmed that Ser(269) was a phosphoacceptor site in vitro, and immunochemical approaches evaluated whether p53 is phosphorylated in vivo at Ser(269). Mutation or phosphorylation of p53 at Ser(269) attenuates binding of the p53-specific monoclonal antibody DO-12, identifying an assay for measuring Ser(269) phosphorylation of p53 in vivo. The mAb DO-12 epitope of p53 is masked via phosphorylation in a range of human tumor cells with WT p53 status, as defined by increased mAb DO-12 binding to endogenous p53 after phosphatase treatment. Phospho-Ser(269)-specific monoclonal antibodies were generated and used to demonstrate that p53 phosphorylation is induced at Ser(269) after irradiation with kinetics similar to those of p53 protein induction. Phosphomimetic mutation at Ser(269) inactivated the transcription activation function and clonogenic suppressor activity of p53. These data suggest that the dynamic equilibrium between native and unfolded states of WT p53 can be modulated by phosphorylation of the conformationally flexible multiprotein binding site in the p53 DNA-binding domain.
Collapse
Affiliation(s)
- Jennifer A Fraser
- Institute of Genetics and Molecular Medicine, CRUK Cancer Research Centre, University of Edinburgh, Edinburgh EH4 2XR, Scotland, United Kingdom
| | | | | |
Collapse
|
27
|
Cox ML, Meek DW. Phosphorylation of serine 392 in p53 is a common and integral event during p53 induction by diverse stimuli. Cell Signal 2010; 22:564-71. [PMID: 19932175 DOI: 10.1016/j.cellsig.2009.11.014] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/11/2009] [Accepted: 11/13/2009] [Indexed: 10/20/2022]
Abstract
Post-translational modifications play important roles during the stabilisation and activation of p53 by various genotoxic and non-genotoxic stresses. Ser392 has been reported to be a major UV-stimulated phosphorylation site that is modified through the p38 MAPK pathway in a manner that may involve recruitment of CK2. Here we show that phosphorylation of Ser392 is an integral event that occurs not only in response to UV, but also during the induction of p53 by a range of stimuli including treatment of cells with the MDM2 inhibitor, Nutlin 3a. Strikingly, phosphorylation of Ser392 and Ser33 was also observed following induction of the p53 pathway by ARF which has previously been thought to induce p53 in a phosphorylation-independent manner. The induction of Ser392 phosphorylation by diverse stimuli can be explained by a common mechanism in which its phosphorylation at a low rate, coupled with the rapid turnover of p53, limits the accumulation of phosphorylated molecules until a stimulus stabilises p53 and allows the Ser392-phosphorylated p53 to accumulate. We also provide biological evidence that Ser392 phosphorylation is not mediated by a UV-associated route involving p38 MAPK, either directly or indirectly via CK2. These data suggest that, physiologically, Ser392 may be phosphorylated by an, as yet, unidentified protein kinase.
Collapse
Affiliation(s)
- Miranda L Cox
- Biomedical Research Institute, University of Dundee, Ninewells Hospital and Medical School, Dundee DD1 9SY, United Kingdom
| | | |
Collapse
|
28
|
Abstract
Loss of p53 function occurs during the development of most, if not all, tumour types. This paves the way for genomic instability, tumour-associated changes in metabolism, insensitivity to apoptotic signals, invasiveness and motility. However, the nature of the causal link between early tumorigenic events and the induction of the p53-mediated checkpoints that constitute a barrier to tumour progression remains uncertain. This Review considers the role of the DNA damage response, which is activated during the early stages of tumour development, in mobilizing the tumour suppression function of p53. The relationship between these events and oncogene-induced p53 activation through the ARF pathway is also discussed.
Collapse
Affiliation(s)
- David W Meek
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
29
|
Abstract
While the tumor suppressor functions of p53 have long been recognized, the contribution of p53 to numerous other aspects of disease and normal life is only now being appreciated. This burgeoning range of responses to p53 is reflected by an increasing variety of mechanisms through which p53 can function, although the ability to activate transcription remains key to p53's modus operandi. Control of p53's transcriptional activity is crucial for determining which p53 response is activated, a decision we must understand if we are to exploit efficiently the next generation of drugs that selectively activate or inhibit p53.
Collapse
Affiliation(s)
- Karen H Vousden
- The Beatson Institute for Cancer Research, Garscube Estate, Glasgow, UK.
| | | |
Collapse
|