1
|
Katz DH, Lindholm ME, Ashley EA. Charting the Molecular Terrain of Exercise: Energetics, Exerkines, and the Future of Multiomic Mapping. Physiology (Bethesda) 2025; 40:0. [PMID: 39136551 DOI: 10.1152/physiol.00024.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 11/21/2024] Open
Abstract
Physical activity plays a fundamental role in human health and disease. Exercise has been shown to improve a wide variety of disease states, and the scientific community is committed to understanding the precise molecular mechanisms that underlie the exquisite benefits. This review provides an overview of molecular responses to acute exercise and chronic training, particularly energy mobilization and generation, structural adaptation, inflammation, and immune regulation. Furthermore, it offers a detailed discussion of known molecular signals and systemic regulators activated during various forms of exercise and their role in orchestrating health benefits. Critically, the increasing use of multiomic technologies is explored with an emphasis on how multiomic and multitissue studies contribute to a more profound understanding of exercise biology. These data inform anticipated future advancement in the field and highlight the prospect of integrating exercise with pharmacology for personalized disease prevention and treatment.
Collapse
Affiliation(s)
- Daniel H Katz
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Maléne E Lindholm
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| | - Euan A Ashley
- Division of Cardiovascular MedicineStanford University School of Medicine, Stanford, California, United States
| |
Collapse
|
2
|
Shuvalov O, Kirdeeva Y, Fefilova E, Daks A, Fedorova O, Parfenyev S, Nazarov A, Vlasova Y, Krasnov GS, Barlev NA. 20-Hydroxyecdysone Boosts Energy Production and Biosynthetic Processes in Non-Transformed Mouse Cells. Antioxidants (Basel) 2024; 13:1349. [PMID: 39594491 PMCID: PMC11591052 DOI: 10.3390/antiox13111349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024] Open
Abstract
20-Hydroxyecdysone (20E) is an arthropod steroid hormone that possesses a number of beneficial pharmacological activities in humans, including anabolic, antioxidant, hypoglycemic, cardioprotective, hepatoprotective, neuroprotective, and antineoplastic properties, etc. While several studies have explored the anabolic activity of 20E in muscle cells, they have concentrated on its effects on myofibril size, protein biosynthesis intensity, and myostatin expression, without assessing energy metabolism. In this research, we have demonstrated that 20E boosts both catabolism and anabolism, coupling energy-producing and biosynthetic metabolic processes in mouse myoblasts and fibroblasts in the same way. Using a transcriptomic approach, we identified the 20E-mediated up-regulation of genes involved in different metabolic processes. Further experiments revealed that 20E increased the levels of enzymes involved in glycolysis and one-carbon metabolism. It also increased the uptake of glucose, glycolysis, respiration, the production of ATP, and global protein biosynthesis in mouse myoblasts and fibroblasts. This phenomenon involves the PI3K/AKT/mTOR signaling pathway. Taken together, the observed 20E-dependent upregulation of energy metabolism may be the main reason for 20E's well-known anabolic activity.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Elizaveta Fefilova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Alexander Nazarov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
| | - Yulia Vlasova
- Almazov National Medical Research Centre, St. Petersburg 197341, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia;
| | - Nick A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (E.F.); (A.D.); (O.F.); (S.P.); (A.N.)
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| |
Collapse
|
3
|
Rambout X, Maquat LE. Nuclear mRNA decay: regulatory networks that control gene expression. Nat Rev Genet 2024; 25:679-697. [PMID: 38637632 PMCID: PMC11408106 DOI: 10.1038/s41576-024-00712-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 04/20/2024]
Abstract
Proper regulation of mRNA production in the nucleus is critical for the maintenance of cellular homoeostasis during adaptation to internal and environmental cues. Over the past 25 years, it has become clear that the nuclear machineries governing gene transcription, pre-mRNA processing, pre-mRNA and mRNA decay, and mRNA export to the cytoplasm are inextricably linked to control the quality and quantity of mRNAs available for translation. More recently, an ever-expanding diversity of new mechanisms by which nuclear RNA decay factors finely tune the expression of protein-encoding genes have been uncovered. Here, we review the current understanding of how mammalian cells shape their protein-encoding potential by regulating the decay of pre-mRNAs and mRNAs in the nucleus.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.
- Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
de Smalen LM, Börsch A, Leuchtmann AB, Gill JF, Ritz D, Zavolan M, Handschin C. Impaired age-associated mitochondrial translation is mitigated by exercise and PGC-1α. Proc Natl Acad Sci U S A 2023; 120:e2302360120. [PMID: 37639610 PMCID: PMC10483666 DOI: 10.1073/pnas.2302360120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/24/2023] [Indexed: 08/31/2023] Open
Abstract
Sarcopenia, the age-related loss of skeletal muscle mass and function, can dramatically impinge on quality of life and mortality. While mitochondrial dysfunction and imbalanced proteostasis are recognized as hallmarks of sarcopenia, the regulatory and functional link between these processes is underappreciated and unresolved. We therefore investigated how mitochondrial proteostasis, a crucial process that coordinates the expression of nuclear- and mitochondrial-encoded mitochondrial proteins with supercomplex formation and respiratory activity, is affected in skeletal muscle aging. Intriguingly, a robust mitochondrial translation impairment was observed in sarcopenic muscle, which is regulated by the peroxisome proliferator-activated receptor γ coactivator 1 α (PGC-1α) with the estrogen-related receptor α (ERRα). Exercise, a potent inducer of PGC-1α activity, rectifies age-related reduction in mitochondrial translation, in conjunction with quality control pathways. These results highlight the importance of mitochondrial proteostasis in muscle aging, and elucidate regulatory interactions that underlie the powerful benefits of physical activity in this context.
Collapse
Affiliation(s)
| | | | | | | | - Danilo Ritz
- Biozentrum, University of Basel, BaselCH-4056, Switzerland
| | | | | |
Collapse
|
5
|
Schmid S, Heim-Kupr B, Pérez-Schindler J, Mansingh S, Beer M, Mittal N, Ehrenfeuchter N, Handschin C. PGC-1β modulates catabolism and fiber atrophy in the fasting-response of specific skeletal muscle beds. Mol Metab 2022; 66:101643. [PMID: 36400401 PMCID: PMC9723918 DOI: 10.1016/j.molmet.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Skeletal muscle is a pivotal organ for the coordination of systemic metabolism, constituting one of the largest storage site for glucose, lipids and amino acids. Tight temporal orchestration of protein breakdown in times of fasting has to be balanced with preservation of muscle mass and function. However, the molecular mechanisms that control the fasting response in muscle are poorly understood. METHODS We now have identified a role for the peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) in the regulation of catabolic pathways in this context in muscle-specific loss-of-function mouse models. RESULTS Muscle-specific knockouts for PGC-1β experience mitigated muscle atrophy in fasting, linked to reduced expression of myostatin, atrogenes, activation of AMP-dependent protein kinase (AMPK) and other energy deprivation signaling pathways. At least in part, the muscle fasting response is modulated by a negative effect of PGC-1β on the nuclear factor of activated T-cells 1 (NFATC1). CONCLUSIONS Collectively, these data highlight the complex regulation of muscle metabolism and reveal a new role for muscle PGC-1β in the control of proteostasis in fasting.
Collapse
Affiliation(s)
- Svenia Schmid
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Barbara Heim-Kupr
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | | | - Shivani Mansingh
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Markus Beer
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Nitish Mittal
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | | | - Christoph Handschin
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Lee SH, Golinska M, Griffiths JR. HIF-1-Independent Mechanisms Regulating Metabolic Adaptation in Hypoxic Cancer Cells. Cells 2021; 10:2371. [PMID: 34572020 PMCID: PMC8472468 DOI: 10.3390/cells10092371] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
In solid tumours, cancer cells exist within hypoxic microenvironments, and their metabolic adaptation to this hypoxia is driven by HIF-1 transcription factor, which is overexpressed in a broad range of human cancers. HIF inhibitors are under pre-clinical investigation and clinical trials, but there is evidence that hypoxic cancer cells can adapt metabolically to HIF-1 inhibition, which would provide a potential route for drug resistance. Here, we review accumulating evidence of such adaptions in carbohydrate and creatine metabolism and other HIF-1-independent mechanisms that might allow cancers to survive hypoxia despite anti-HIF-1 therapy. These include pathways in glucose, glutamine, and lipid metabolism; epigenetic mechanisms; post-translational protein modifications; spatial reorganization of enzymes; signalling pathways such as Myc, PI3K-Akt, 2-hyxdroxyglutarate and AMP-activated protein kinase (AMPK); and activation of the HIF-2 pathway. All of these should be investigated in future work on hypoxia bypass mechanisms in anti-HIF-1 cancer therapy. In principle, agents targeted toward HIF-1β rather than HIF-1α might be advantageous, as both HIF-1 and HIF-2 require HIF-1β for activation. However, HIF-1β is also the aryl hydrocarbon nuclear transporter (ARNT), which has functions in many tissues, so off-target effects should be expected. In general, cancer therapy by HIF inhibition will need careful attention to potential resistance mechanisms.
Collapse
Affiliation(s)
- Shen-Han Lee
- Department of Otorhinolaryngology, Hospital Sultanah Bahiyah, KM6 Jalan Langgar, Alor Setar 05460, Kedah, Malaysia
| | - Monika Golinska
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
- Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK
| | - John R. Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, UK; (M.G.); (J.R.G.)
| |
Collapse
|
7
|
Pérez-Schindler J, Kohl B, Schneider-Heieck K, Leuchtmann AB, Henríquez-Olguín C, Adak V, Maier G, Delezie J, Sakoparnig T, Vargas-Fernández E, Karrer-Cardel B, Ritz D, Schmidt A, Hondele M, Jensen TE, Hiller S, Handschin C. RNA-bound PGC-1α controls gene expression in liquid-like nuclear condensates. Proc Natl Acad Sci U S A 2021; 118:e2105951118. [PMID: 34465622 PMCID: PMC8433555 DOI: 10.1073/pnas.2105951118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plasticity of cells, tissues, and organs is controlled by the coordinated transcription of biological programs. However, the mechanisms orchestrating such context-specific transcriptional networks mediated by the dynamic interplay of transcription factors and coregulators are poorly understood. The peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is a prototypical master regulator of adaptive transcription in various cell types. We now uncovered a central function of the C-terminal domain of PGC-1α to bind RNAs and assemble multiprotein complexes including proteins that control gene transcription and RNA processing. These interactions are important for PGC-1α recruitment to chromatin in transcriptionally active liquid-like nuclear condensates. Notably, such a compartmentalization of active transcription mediated by liquid-liquid phase separation was observed in mouse and human skeletal muscle, revealing a mechanism by which PGC-1α regulates complex transcriptional networks. These findings provide a broad conceptual framework for context-dependent transcriptional control of phenotypic adaptations in metabolically active tissues.
Collapse
Affiliation(s)
| | - Bastian Kohl
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | - Carlos Henríquez-Olguín
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Volkan Adak
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Julien Delezie
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | | | | - Danilo Ritz
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Maria Hondele
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Thomas E Jensen
- Section of Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The Role of the Skeletal Muscle Secretome in Mediating Endurance and Resistance Training Adaptations. Front Physiol 2021; 12:709807. [PMID: 34456749 PMCID: PMC8387622 DOI: 10.3389/fphys.2021.709807] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022] Open
Abstract
Exercise, in the form of endurance or resistance training, leads to specific molecular and cellular adaptions not only in skeletal muscles, but also in many other organs such as the brain, liver, fat or bone. In addition to direct effects of exercise on these organs, the production and release of a plethora of different signaling molecules from skeletal muscle are a centerpiece of systemic plasticity. Most studies have so far focused on the regulation and function of such myokines in acute exercise bouts. In contrast, the secretome of long-term training adaptation remains less well understood, and the contribution of non-myokine factors, including metabolites, enzymes, microRNAs or mitochondrial DNA transported in extracellular vesicles or by other means, is underappreciated. In this review, we therefore provide an overview on the current knowledge of endurance and resistance exercise-induced factors of the skeletal muscle secretome that mediate muscular and systemic adaptations to long-term training. Targeting these factors and leveraging their functions could not only have broad implications for athletic performance, but also for the prevention and therapy in diseased and elderly populations.
Collapse
|
9
|
Quezada ER, Díaz-Vegas A, Jaimovich E, Casas M. Changes in Gene Expression of the MCU Complex Are Induced by Electrical Stimulation in Adult Skeletal Muscle. Front Physiol 2021; 11:601313. [PMID: 33574764 PMCID: PMC7870689 DOI: 10.3389/fphys.2020.601313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/27/2020] [Indexed: 11/29/2022] Open
Abstract
The slow calcium transient triggered by low-frequency electrical stimulation (ES) in adult muscle fibers and regulated by the extracellular ATP/IP3/IP3R pathway has been related to muscle plasticity. A regulation of muscular tropism associated with the MCU has also been described. However, the role of transient cytosolic calcium signals and signaling pathways related to muscle plasticity over the regulation of gene expression of the MCU complex (MCU, MICU1, MICU2, and EMRE) in adult skeletal muscle is completely unknown. In the present work, we show that 270 0.3-ms-long pulses at 20-Hz ES (and not at 90 Hz) transiently decreased the mRNA levels of the MCU complex in mice flexor digitorum brevis isolated muscle fibers. Importantly, when ATP released after 20-Hz ES is hydrolyzed by the enzyme apyrase, the repressor effect of 20 Hz on mRNA levels of the MCU complex is lost. Accordingly, the exposure of muscle fibers to 30 μM exogenous ATP produces the same effect as 20-Hz ES. Moreover, the use of apyrase in resting conditions (without ES) increased mRNA levels of MCU, pointing out the importance of extracellular ATP concentration over MCU mRNA levels. The use of xestospongin B (inhibitor of IP3 receptors) also prevented the decrease of mRNA levels of MCU, MICU1, MICU2, and EMRE mediated by a low-frequency ES. Our results show that the MCU complex can be regulated by electrical stimuli in a frequency-dependent manner. The changes observed in mRNA levels may be related to changes in the mitochondria, associated with the phenotypic transition from a fast- to a slow-type muscle, according to the described effect of this stimulation frequency on muscle phenotype. The decrease in mRNA levels of the MCU complex by exogenous ATP and the increase in MCU levels when basal ATP is reduced with the enzyme apyrase indicate that extracellular ATP may be a regulator of the MCU complex. Moreover, our results suggest that this regulation is part of the axes linking low-frequency stimulation with ATP/IP3/IP3R.
Collapse
Affiliation(s)
- Esteban R Quezada
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Alexis Díaz-Vegas
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Enrique Jaimovich
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| | - Mariana Casas
- Center for Exercise, Metabolism, and Cancer, Physiology and Biophysics Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile, Santiago, Chile
| |
Collapse
|
10
|
Rambout X, Cho H, Maquat LE. Transcriptional Coactivator PGC-1α Binding to Newly Synthesized RNA via CBP80: A Nexus for Co- and Posttranscriptional Gene Regulation. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2020; 84:47-54. [PMID: 32295928 DOI: 10.1101/sqb.2019.84.040212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mammalian cells have many quality-control mechanisms that regulate protein-coding gene expression to ensure proper transcript synthesis, processing, and translation. Should a step in transcript metabolism fail to fulfill requisite spatial, temporal, or structural criteria, including the proper acquisition of RNA-binding proteins, then that step will halt, fail to proceed to the next step, and ultimately result in transcript degradation. Quality-control mechanisms constitute a continuum of processes that initiate in the nucleus and extend to the cytoplasm. Here, we present published and unpublished data for protein-coding genes whose expression is activated by the transcriptional coactivator PGC-1α. We show that PGC-1α movement from chromatin, to which it is recruited by DNA-binding proteins, to CBP80 at the 5' cap of nascent transcripts begins a series of co- and posttranscriptional quality- and quantity-control steps that, in total, ensure proper gene expression.
Collapse
Affiliation(s)
- Xavier Rambout
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, Rochester, New York 14642, USA.,Center for RNA Biology, University of Rochester, Rochester, New York 14642, USA
| |
Collapse
|
11
|
How Epigenetic Modifications Drive the Expression and Mediate the Action of PGC-1α in the Regulation of Metabolism. Int J Mol Sci 2019; 20:ijms20215449. [PMID: 31683747 PMCID: PMC6862278 DOI: 10.3390/ijms20215449] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/29/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Epigenetic changes are a hallmark of short- and long-term transcriptional regulation, and hence instrumental in the control of cellular identity and plasticity. Epigenetic mechanisms leading to changes in chromatin structure, accessibility for recruitment of transcriptional complexes, and interaction of enhancers and promoters all contribute to acute and chronic adaptations of cells, tissues and organs to internal and external perturbations. Similarly, the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is activated by stimuli that alter the cellular energetic demand, and subsequently controls complex transcriptional networks responsible for cellular plasticity. It thus is of no surprise that PGC-1α is under the control of epigenetic mechanisms, and constitutes a mediator of epigenetic changes in various tissues and contexts. In this review, we summarize the current knowledge of the link between epigenetics and PGC-1α in health and disease.
Collapse
|
12
|
Miller KN, Clark JP, Anderson RM. Mitochondrial regulator PGC-1a-Modulating the modulator. ACTA ACUST UNITED AC 2019; 5:37-44. [PMID: 31406949 DOI: 10.1016/j.coemr.2019.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1a) is a central regulator of metabolism that is poised at the intersection of myriad intracellular signaling pathways. In this brief update, we discuss regulation of PGC-1a at multiple levels, including transcriptional, post-transcriptional, and post-translational modifications. We discuss recently identified small molecule effectors of PGC-1a that offer translational potential and promise new insight into PGC-1a biology. We highlight novel mechanistic insights relating to PGC-1a's interactions with RNA to enhance transcription and potentially influence transcript processing. Finally, we place these exciting new data in the context of aging biology, offering PGC-1a as a candidate target with terrific potential in anti-aging interventions.
Collapse
Affiliation(s)
- Karl N Miller
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Josef P Clark
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA
| | - Rozalyn M Anderson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, USA.,GRECC, William S. Middleton Memorial Veterans Hospital, Madison WI, USA
| |
Collapse
|
13
|
Popov DV, Lysenko EA, Bokov RO, Volodina MA, Kurochkina NS, Makhnovskii PA, Vyssokikh MY, Vinogradova OL. Effect of aerobic training on baseline expression of signaling and respiratory proteins in human skeletal muscle. Physiol Rep 2018; 6:e13868. [PMID: 30198217 PMCID: PMC6129775 DOI: 10.14814/phy2.13868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 08/24/2018] [Indexed: 12/30/2022] Open
Abstract
Most studies examining the molecular mechanisms underlying adaptation of human skeletal muscles to aerobic exercise focused on the response to acute exercise. Here, we examined the effect of a 2-month aerobic training program on baseline parameters in human muscle. Ten untrained males performed a one-legged knee extension exercise for 1 h with the same relative intensity before and after a 2-month aerobic training program. Biopsy samples were taken from vastus lateralis muscle at rest before and after the 2 month training program (baseline samples). Additionally, biopsy samples were taken from the exercised leg 1 and 4 h after the one-legged continuous knee extension exercise. Aerobic training decreases baseline phosphorylation of FOXO1Ser256 , increases that of CaMKIIThr286 , CREB1Ser133 , increases baseline expression of mitochondrial proteins in respiratory complexes I-V, and some regulators of mitochondrial biogenesis (TFAM, NR4A3, and CRTC2). An increase in the baseline content of these proteins was not associated with a change in baseline expression of their genes. The increase in the baseline content of regulators of mitochondrial biogenesis (TFAM and NR4A3) was associated with a transient increase in transcription after acute exercise. Contrariwise, the increase in the baseline content of respiratory proteins does not seem to be regulated at the transcriptional level; rather, it is associated with other mechanisms. Adaptation of human skeletal muscle to regular aerobic exercise is associated not only with transient molecular responses to exercise, but also with changes in baseline phosphorylation and expression of regulatory proteins.
Collapse
Affiliation(s)
- Daniil V. Popov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Evgeny A. Lysenko
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| | - Roman O. Bokov
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Maria A. Volodina
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Nadia S. Kurochkina
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Pavel A. Makhnovskii
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
| | - Mikhail Y. Vyssokikh
- Laboratory of Mitochondrial MedicineResearch Center for ObstetricsGynecology and PerinatologyMinistry of Healthcare of the Russian FederationMoscowRussia
| | - Olga L. Vinogradova
- Laboratory of Exercise PhysiologyInstitute of Biomedical Problems of the Russian Academy of SciencesMoscowRussia
- Faculty of Fundamental MedicineM.V. Lomonosov Moscow State UniversityMoscowRussia
| |
Collapse
|
14
|
Intensity-dependent gene expression after aerobic exercise in endurance-trained skeletal muscle. Biol Sport 2018; 35:277-289. [PMID: 30449946 PMCID: PMC6224845 DOI: 10.5114/biolsport.2018.77828] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 09/14/2017] [Accepted: 03/16/2018] [Indexed: 01/06/2023] Open
Abstract
We investigated acute exercise-induced gene expression in skeletal muscle adapted to aerobic training. Vastus lateralis muscle samples were taken in ten endurance-trained males prior to, and just after, 4 h, and 8 h after acute cycling sessions with different intensities, 70% and 50% V˙O2max. High-throughput RNA sequencing was applied in samples from two subjects to evaluate differentially expressed genes after intensive exercise (70% V˙O2max), and then the changes in expression for selected genes were validated by quantitative PCR (qPCR). To define exercise-induced genes, we compared gene expression after acute exercise with different intensities, 70% and 50% V˙O2max, by qPCR. The transcriptome is dynamically changed during the first hours of recovery after intensive exercise (70% V˙O2max). A computational approach revealed that the changes might be related to up- and down-regulation of the activity of transcription activators and repressors, respectively. The exercise increased expression of many genes encoding protein kinases, while genes encoding transcriptional regulators were both up- and down-regulated. Evaluation of the gene expression after exercise with different intensities revealed that some genes changed expression in an intensity-dependent manner, but others did not: the majority of genes encoding protein kinases, oxidative phosphorylation and activator protein (AP)-1-related genes significantly correlated with markers of exercise stress (power, blood lactate during exercise and post-exercise blood cortisol), while transcriptional repressors and circadian-related genes did not. Some of the changes in gene expression after exercise seemingly may be modulated by circadian rhythm.
Collapse
|
15
|
Popov DV. Adaptation of Skeletal Muscles to Contractile Activity of Varying Duration and Intensity: The Role of PGC-1α. BIOCHEMISTRY (MOSCOW) 2018; 83:613-628. [DOI: 10.1134/s0006297918060019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Transcriptional coactivator PGC-1α contains a novel CBP80-binding motif that orchestrates efficient target gene expression. Genes Dev 2018; 32:555-567. [PMID: 29654059 PMCID: PMC5959238 DOI: 10.1101/gad.309773.117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 12/13/2022]
Abstract
In this study, Cho et al. investigated how PGC-1α, a transcriptional coactivator, functions in the metabolic adaptation of mammalian cells to diverse physiological stresses. They used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α, thus providing insight into a novel cap-binding protein surveillance mechanism. Although peroxisome proliferator-activated receptor-γ (PPARγ) coactivator 1α (PGC-1α) is a well-established transcriptional coactivator for the metabolic adaptation of mammalian cells to diverse physiological stresses, the molecular mechanism by which it functions is incompletely understood. Here we used in vitro binding assays, X-ray crystallography, and immunoprecipitations of mouse myoblast cell lysates to define a previously unknown cap-binding protein 80 (CBP80)-binding motif (CBM) in the C terminus of PGC-1α. We show that the CBM, which consists of a nine-amino-acid α helix, is critical for the association of PGC-1α with CBP80 at the 5′ cap of target transcripts. Results from RNA sequencing demonstrate that the PGC-1α CBM promotes RNA synthesis from promyogenic genes. Our findings reveal a new conduit between DNA-associated and RNA-associated proteins that functions in a cap-binding protein surveillance mechanism, without which efficient differentiation of myoblasts to myotubes fails to occur.
Collapse
|
17
|
Mutikainen M, Tuomainen T, Naumenko N, Huusko J, Smirin B, Laidinen S, Kokki K, Hynynen H, Ylä-Herttuala S, Heinäniemi M, Ruas JL, Tavi P. Peroxisome proliferator-activated receptor-γ coactivator 1 α1 induces a cardiac excitation-contraction coupling phenotype without metabolic remodelling. J Physiol 2017; 594:7049-7071. [PMID: 27716916 DOI: 10.1113/jp272847] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
KEY POINTS Transcriptional co-activator PGC-1α1 has been shown to regulate energy metabolism and to mediate metabolic adaptations in pathological and physiological cardiac hypertrophy but other functional implications of PGC-1α1 expression are not known. Transgenic PGC-1α1 overexpression within the physiological range in mouse heart induces purposive changes in contractile properties, electrophysiology and calcium signalling but does not induce substantial metabolic remodelling. The phenotype of the PGC-1α1 transgenic mouse heart recapitulates most of the functional modifications usually associated with the exercise-induced heart phenotype, but does not protect the heart against load-induced pathological hypertrophy. Transcriptional effects of PGC-1α1 show clear dose-dependence with diverse changes in genes in circadian clock, heat shock, excitability, calcium signalling and contraction pathways at low overexpression levels, while metabolic genes are recruited at much higher PGC-1α1 expression levels. These results imply that the physiological role of PGC-1α1 is to promote a beneficial excitation-contraction coupling phenotype in the heart. ABSTRACT The transcriptional coactivator PGC-1α1 has been identified as a central factor mediating metabolic adaptations of the heart. However, to what extent physiological changes in PGC-1α1 expression levels actually contribute to the functional adaptation of the heart is still mostly unresolved. The aim of this study was to characterize the transcriptional and functional effects of physiologically relevant, moderate PGC-1α1 expression in the heart. In vivo and ex vivo physiological analysis shows that expression of PGC-1α1 within a physiological range in mouse heart does not induce the expected metabolic alterations, but instead induces a unique excitation-contraction (EC) coupling phenotype recapitulating features typically seen in physiological hypertrophy. Transcriptional screening of PGC-1α1 overexpressing mouse heart and myocyte cultures with higher, acute adenovirus-induced PGC-1α1 expression, highlights PGC-1α1 as a transcriptional coactivator with a number of binding partners in various pathways (such as heat shock factors and the circadian clock) through which it acts as a pleiotropic transcriptional regulator in the heart, to both augment and repress the expression of its target genes in a dose-dependent fashion. At low levels of overexpression PGC-1α1 elicits a diverse transcriptional response altering the expression state of circadian clock, heat shock, excitability, calcium signalling and contraction pathways, while metabolic targets of PGC-1α1 are recruited at higher PGC-1α1 expression levels. Together these findings demonstrate that PGC-1α1 elicits a dual effect on cardiac transcription and phenotype. Further, our results imply that the physiological role of PGC-1α1 is to promote a beneficial EC coupling phenotype in the heart.
Collapse
Affiliation(s)
- Maija Mutikainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Tomi Tuomainen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Nikolay Naumenko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jenni Huusko
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Boris Smirin
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Svetlana Laidinen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Krista Kokki
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Heidi Hynynen
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jorge L Ruas
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Pasi Tavi
- Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
18
|
Chandra R, Engeln M, Francis TC, Konkalmatt P, Patel D, Lobo MK. A Role for Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α in Nucleus Accumbens Neuron Subtypes in Cocaine Action. Biol Psychiatry 2017; 81:564-572. [PMID: 27939396 PMCID: PMC5346327 DOI: 10.1016/j.biopsych.2016.10.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/22/2016] [Accepted: 10/25/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Molecules critically involved in cocaine behavioral plasticity are known to regulate and interact with peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α). In addition, the PGC-1α promoter has binding sites for early growth response 3 (Egr3), which plays a dynamic role in cocaine action in nucleus accumbens (NAc) medium spiny neuron (MSN) subtypes, those enriched in dopamine receptor D1 (D1-MSN) versus D2 (D2-MSN). However, the role of PGC-1α in NAc in cocaine action is unknown. METHODS PGC-1α messenger RNA and protein were examined in NAc after repeated cocaine exposure. Binding of Egr3 to and histone methylation at the PGC-1α promoter was examined in NAc using chromatin immunoprecipitation after repeated cocaine. PGC-1α ribosome-associated messenger RNA in MSN subtypes was assessed after repeated cocaine using D1-Cre-RiboTag and D2-Cre-RiboTag lines. Finally, PGC-1α was expressed in NAc D1-MSNs versus D2-MSNs using a Cre-inducible adeno-associated virus and Cre lines during cocaine conditioned place preference and cocaine-induced locomotion. RESULTS Repeated cocaine increased PGC-1α levels and increased Egr3 binding and H3K4me3 at the PGC-1α promoter in NAc. Increased PGC-1α occurred in D1-MSNs, while D2-MSNs showed reduced levels. Viral-mediated expression of PGC-1α in D1-MSNs enhanced behavioral responses to cocaine, while expression in D2-MSNs blunted these behaviors. CONCLUSIONS We demonstrate a novel role for PGC-1α in NAc in cocaine action. PGC-1α is enhanced in NAc D1-MSNs, specifically after cocaine exposure. These data are consistent with increased active methylation and Egr3 binding at the PGC-1α promoter. Finally, we demonstrate a bidirectional role for PGC-1α in mediating behavioral plasticity to cocaine through D1-MSNs versus D2-MSNs.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michel Engeln
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T. Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prasad Konkalmatt
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, D.C, USA
| | - Dipal Patel
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
19
|
New targets to alleviate skeletal muscle inflammation: role of microRNAs regulated by adiponectin. Sci Rep 2017; 7:43437. [PMID: 28240307 PMCID: PMC5327483 DOI: 10.1038/srep43437] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 01/23/2017] [Indexed: 12/20/2022] Open
Abstract
Muscle inflammation worsens metabolic disorders as well as devastating myopathies. The hormone adiponectin (ApN) has emerged has a master regulator of inflammation/immunity in several tissues including the skeletal muscle. In this work, we explore whether microRNAs regulated by ApN may represent novel mechanisms for controlling muscle inflammation. By screening arrays, we found miR-711 as a strong candidate for mediating ApN action. Thus, ApN-knockout mice showed decreased muscular expression of miR-711 together with enhanced inflammation/oxidative stress markers, while mice overexpressing ApN showed increased miR-711 levels. Likewise, electrotransfer of the ApN gene in muscle of ApN-knockout mice upregulated miR-711 while reducing inflammation and oxidative stress. Similar data were obtained in murine C2C12 cells or in human primary myotubes treated with ApN. MiR-711 overexpression downregulated several components of the Toll-like receptor-4 (TLR4) pathway, which led to repression of NF-κB activity and downstream pro-inflammatory cytokines. MiR-711 blockade had opposite effects. Moreover, muscle electrotransfer of pre-miR-711 recapitulated in vivo the anti-inflammatory effects observed in vitro. Thus, miR-711, which is upregulated by ApN represses TLR4 signaling, acting therefore as a major mediator of the anti-inflammatory action of ApN. This novel miRNA and its related target genes may open new therapeutic perspectives for controlling muscle inflammation.
Collapse
|
20
|
Paracrine cross-talk between skeletal muscle and macrophages in exercise by PGC-1α-controlled BNP. Sci Rep 2017; 7:40789. [PMID: 28091624 PMCID: PMC5238507 DOI: 10.1038/srep40789] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 12/11/2022] Open
Abstract
Activation of resident and infiltrating immune cells is a central event in training adaptation and other contexts of skeletal muscle repair and regeneration. A precise orchestration of inflammatory events in muscle fibers and immune cells is required after recurrent contraction-relaxation cycles. However, the mechanistic aspects of this important regulation remain largely unknown. We now demonstrate that besides a dominant role in controlling cellular metabolism, the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) also has a profound effect on cytokine expression in muscle tissue. Muscle PGC-1α expression results in activation of tissue-resident macrophages, at least in part mediated by PGC-1α-dependent B-type natriuretic peptide (BNP) production and secretion. Positive effects of exercise in metabolic diseases and other pathologies associated with chronic inflammation could accordingly involve the PGC-1α-BNP axis and thereby provide novel targets for therapeutic approaches.
Collapse
|
21
|
Schnyder S, Kupr B, Handschin C. Coregulator-mediated control of skeletal muscle plasticity - A mini-review. Biochimie 2017; 136:49-54. [PMID: 28057584 DOI: 10.1016/j.biochi.2016.12.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
Abstract
Skeletal muscle plasticity is a complex process entailing massive transcriptional programs. These changes are mediated by the action of nuclear receptors and other transcription factors. In addition, coregulator proteins have emerged as important players in this process by linking transcription factors to the RNA polymerase II complex and inducing changes in the chromatic structure. An accumulating body of work highlights the pleiotropic functions of coregulator proteins in the control of tissue-specific and whole body metabolism. In skeletal muscle, several coregulators have been identified as potent modulators of metabolic and myofibrillar plasticity. In this mini-review, we will discuss the control, function and physiological significance of these coregulators in skeletal muscle biology.
Collapse
Affiliation(s)
- Svenia Schnyder
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Barbara Kupr
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland.
| |
Collapse
|
22
|
Furrer R, Handschin C. Optimized Engagement of Macrophages and Satellite Cells in the Repair and Regeneration of Exercised Muscle. RESEARCH AND PERSPECTIVES IN ENDOCRINE INTERACTIONS 2017. [DOI: 10.1007/978-3-319-72790-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Hainer SJ, McCannell KN, Yu J, Ee LS, Zhu LJ, Rando OJ, Fazzio TG. DNA methylation directs genomic localization of Mbd2 and Mbd3 in embryonic stem cells. eLife 2016; 5. [PMID: 27849519 PMCID: PMC5111885 DOI: 10.7554/elife.21964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/01/2016] [Indexed: 12/22/2022] Open
Abstract
Cytosine methylation is an epigenetic and regulatory mark that functions in part through recruitment of chromatin remodeling complexes containing methyl-CpG binding domain (MBD) proteins. Two MBD proteins, Mbd2 and Mbd3, were previously shown to bind methylated or hydroxymethylated DNA, respectively; however, both of these findings have been disputed. Here, we investigated this controversy using experimental approaches and re-analysis of published data and find no evidence for methylation-independent functions of Mbd2 or Mbd3. We show that chromatin localization of Mbd2 and Mbd3 is highly overlapping and, unexpectedly, we find Mbd2 and Mbd3 are interdependent for chromatin association. Further investigation reveals that both proteins are required for normal levels of cytosine methylation and hydroxymethylation in murine embryonic stem cells. Furthermore, Mbd2 and Mbd3 regulate overlapping sets of genes that are also regulated by DNA methylation/hydroxymethylation factors. These findings reveal an interdependent regulatory mechanism mediated by the DNA methylation machinery and its readers.
Collapse
Affiliation(s)
- Sarah J Hainer
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Kurtis N McCannell
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Jun Yu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Ly-Sha Ee
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States
| | - Lihua J Zhu
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Thomas G Fazzio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, United States.,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
24
|
Cummins EP, Keogh CE. Respiratory gases and the regulation of transcription. Exp Physiol 2016; 101:986-1002. [DOI: 10.1113/ep085715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Eoin P. Cummins
- School of Medicine; University College Dublin; Belfield 4 Dublin Ireland
| | - Ciara E. Keogh
- School of Medicine; University College Dublin; Belfield 4 Dublin Ireland
| |
Collapse
|
25
|
Svensson K, Schnyder S, Cardel B, Handschin C. Loss of Renal Tubular PGC-1α Exacerbates Diet-Induced Renal Steatosis and Age-Related Urinary Sodium Excretion in Mice. PLoS One 2016; 11:e0158716. [PMID: 27463191 PMCID: PMC4963111 DOI: 10.1371/journal.pone.0158716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/21/2016] [Indexed: 12/22/2022] Open
Abstract
The kidney has a high energy demand and is dependent on oxidative metabolism for ATP production. Accordingly, the kidney is rich in mitochondria, and mitochondrial dysfunction is a common denominator for several renal diseases. While the mitochondrial master regulator peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) is highly expressed in kidney, its role in renal physiology is so far unclear. Here we show that PGC-1α is a transcriptional regulator of mitochondrial metabolic pathways in the kidney. Moreover, we demonstrate that mice with an inducible nephron-specific inactivation of PGC-1α in the kidney display elevated urinary sodium excretion, exacerbated renal steatosis during metabolic stress but normal blood pressure regulation. Overall, PGC-1α seems largely dispensable for basal renal physiology. However, the role of PGC-1α in renal mitochondrial biogenesis indicates that activation of PGC-1α in the context of renal disorders could be a valid therapeutic strategy to ameliorate renal mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kristoffer Svensson
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Svenia Schnyder
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Bettina Cardel
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
| | - Christoph Handschin
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Salatino S, Kupr B, Baresic M, Omidi S, van Nimwegen E, Handschin C. The Genomic Context and Corecruitment of SP1 Affect ERRα Coactivation by PGC-1α in Muscle Cells. Mol Endocrinol 2016; 30:809-25. [PMID: 27182621 PMCID: PMC4970653 DOI: 10.1210/me.2016-1036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 01/22/2023] Open
Abstract
The peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) coordinates the transcriptional network response to promote an improved endurance capacity in skeletal muscle, eg, by coactivating the estrogen-related receptor-α (ERRα) in the regulation of oxidative substrate metabolism. Despite a close functional relationship, the interaction between these 2 proteins has not been studied on a genomic level. We now mapped the genome-wide binding of ERRα to DNA in a skeletal muscle cell line with elevated PGC-1α and linked the DNA recruitment to global PGC-1α target gene regulation. We found that, surprisingly, ERRα coactivation by PGC-1α is only observed in the minority of all PGC-1α recruitment sites. Nevertheless, a majority of PGC-1α target gene expression is dependent on ERRα. Intriguingly, the interaction between these 2 proteins is controlled by the genomic context of response elements, in particular the relative GC and CpG content, monomeric and dimeric repeat-binding site configuration for ERRα, and adjacent recruitment of the transcription factor specificity protein 1. These findings thus not only reveal a novel insight into the regulatory network underlying muscle cell plasticity but also strongly link the genomic context of DNA-response elements to control transcription factor-coregulator interactions.
Collapse
Affiliation(s)
- Silvia Salatino
- Focal Area Growth and Development (S.S., B.K., M.B., C.H.) and Focal Area Computational and Systems Biology (S.S., E.N.), Biozentrum, University of Basel, and Swiss Institute of Bioinformatics (S.S., E.N.), CH-4056 Basel, Switzerland
| | - Barbara Kupr
- Focal Area Growth and Development (S.S., B.K., M.B., C.H.) and Focal Area Computational and Systems Biology (S.S., E.N.), Biozentrum, University of Basel, and Swiss Institute of Bioinformatics (S.S., E.N.), CH-4056 Basel, Switzerland
| | - Mario Baresic
- Focal Area Growth and Development (S.S., B.K., M.B., C.H.) and Focal Area Computational and Systems Biology (S.S., E.N.), Biozentrum, University of Basel, and Swiss Institute of Bioinformatics (S.S., E.N.), CH-4056 Basel, Switzerland
| | | | - Erik van Nimwegen
- Focal Area Growth and Development (S.S., B.K., M.B., C.H.) and Focal Area Computational and Systems Biology (S.S., E.N.), Biozentrum, University of Basel, and Swiss Institute of Bioinformatics (S.S., E.N.), CH-4056 Basel, Switzerland
| | - Christoph Handschin
- Focal Area Growth and Development (S.S., B.K., M.B., C.H.) and Focal Area Computational and Systems Biology (S.S., E.N.), Biozentrum, University of Basel, and Swiss Institute of Bioinformatics (S.S., E.N.), CH-4056 Basel, Switzerland
| |
Collapse
|
27
|
Goljanek-Whysall K, Iwanejko LA, Vasilaki A, Pekovic-Vaughan V, McDonagh B. Ageing in relation to skeletal muscle dysfunction: redox homoeostasis to regulation of gene expression. Mamm Genome 2016; 27:341-57. [PMID: 27215643 PMCID: PMC4935741 DOI: 10.1007/s00335-016-9643-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 12/17/2022]
Abstract
Ageing is associated with a progressive loss of skeletal muscle mass, quality and function—sarcopenia, associated with reduced independence and quality of life in older generations. A better understanding of the mechanisms, both genetic and epigenetic, underlying this process would help develop therapeutic interventions to prevent, slow down or reverse muscle wasting associated with ageing. Currently, exercise is the only known effective intervention to delay the progression of sarcopenia. The cellular responses that occur in muscle fibres following exercise provide valuable clues to the molecular mechanisms regulating muscle homoeostasis and potentially the progression of sarcopenia. Redox signalling, as a result of endogenous generation of ROS/RNS in response to muscle contractions, has been identified as a crucial regulator for the adaptive responses to exercise, highlighting the redox environment as a potentially core therapeutic approach to maintain muscle homoeostasis during ageing. Further novel and attractive candidates include the manipulation of microRNA expression. MicroRNAs are potent gene regulators involved in the control of healthy and disease-associated biological processes and their therapeutic potential has been researched in the context of various disorders, including ageing-associated muscle wasting. Finally, we discuss the impact of the circadian clock on the regulation of gene expression in skeletal muscle and whether disruption of the peripheral muscle clock affects sarcopenia and altered responses to exercise. Interventions that include modifying altered redox signalling with age and incorporating genetic mechanisms such as circadian- and microRNA-based gene regulation, may offer potential effective treatments against age-associated sarcopenia.
Collapse
Affiliation(s)
- Katarzyna Goljanek-Whysall
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| | - Lesley A Iwanejko
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Aphrodite Vasilaki
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Vanja Pekovic-Vaughan
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK
| | - Brian McDonagh
- MRC-Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, L7 8XL, UK.
| |
Collapse
|
28
|
Svensson K, Albert V, Cardel B, Salatino S, Handschin C. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice. FASEB J 2016; 30:1976-86. [PMID: 26849960 PMCID: PMC4970654 DOI: 10.1096/fj.201500128] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/26/2016] [Indexed: 11/11/2022]
Abstract
Ketone bodies (KBs) are crucial energy substrates during states of low carbohydrate availability. However, an aberrant regulation of KB homeostasis can lead to complications such as diabetic ketoacidosis. Exercise and diabetes affect systemic KB homeostasis, but the regulation of KB metabolism is still enigmatic. In our study in mice with either knockout or overexpression of the peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α in skeletal muscle, PGC-1α regulated ketolytic gene transcription in muscle. Furthermore, KB homeostasis of these mice was investigated during withholding of food, exercise, and ketogenic diet feeding, and after streptozotocin injection. In response to these ketogenic stimuli, modulation of PGC-1α levels in muscle affected systemic KB homeostasis. Moreover, the data demonstrate that skeletal muscle PGC-1α is necessary for the enhanced ketolytic capacity in response to exercise training and overexpression of PGC-1α in muscle enhances systemic ketolytic capacity and is sufficient to ameliorate diabetic hyperketonemia in mice. In cultured myotubes, the transcription factor estrogen-related receptor-α was a partner of PGC-1α in the regulation of ketolytic gene transcription. These results demonstrate a central role of skeletal muscle PGC-1α in the transcriptional regulation of systemic ketolytic capacity.-Svensson, K., Albert, V., Cardel, B., Salatino, S., Handschin, C. Skeletal muscle PGC-1α modulates systemic ketone body homeostasis and ameliorates diabetic hyperketonemia in mice.
Collapse
|
29
|
Kupr B, Handschin C. Complex Coordination of Cell Plasticity by a PGC-1α-controlled Transcriptional Network in Skeletal Muscle. Front Physiol 2015; 6:325. [PMID: 26617528 PMCID: PMC4639707 DOI: 10.3389/fphys.2015.00325] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 10/27/2015] [Indexed: 12/27/2022] Open
Abstract
Skeletal muscle cells exhibit an enormous plastic capacity in order to adapt to external stimuli. Even though our overall understanding of the molecular mechanisms that underlie phenotypic changes in skeletal muscle cells remains poor, several factors involved in the regulation and coordination of relevant transcriptional programs have been identified in recent years. For example, the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a central regulatory nexus in the adaptation of muscle to endurance training. Intriguingly, PGC-1α integrates numerous signaling pathways and translates their activity into various transcriptional programs. This selectivity is in part controlled by differential expression of PGC-1α variants and post-translational modifications of the PGC-1α protein. PGC-1α-controlled activation of transcriptional networks subsequently enables a spatio-temporal specification and hence allows a complex coordination of changes in metabolic and contractile properties, protein synthesis and degradation rates and other features of trained muscle. In this review, we discuss recent advances in our understanding of PGC-1α-regulated skeletal muscle cell plasticity in health and disease.
Collapse
Affiliation(s)
- Barbara Kupr
- Biozentrum, University of Basel Basel, Switzerland
| | | |
Collapse
|
30
|
Pemberton-Ross PJ, Pachkov M, van Nimwegen E. ARMADA: Using motif activity dynamics to infer gene regulatory networks from gene expression data. Methods 2015; 85:62-74. [PMID: 26164700 DOI: 10.1016/j.ymeth.2015.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 11/19/2022] Open
Abstract
Analysis of gene expression data remains one of the most promising avenues toward reconstructing genome-wide gene regulatory networks. However, the large dimensionality of the problem prohibits the fitting of explicit dynamical models of gene regulatory networks, whereas machine learning methods for dimensionality reduction such as clustering or principal component analysis typically fail to provide mechanistic interpretations of the reduced descriptions. To address this, we recently developed a general methodology called motif activity response analysis (MARA) that, by modeling gene expression patterns in terms of the activities of concrete regulators, accomplishes dramatic dimensionality reduction while retaining mechanistic biological interpretations of its predictions (Balwierz, 2014). Here we extend MARA by presenting ARMADA, which models the activity dynamics of regulators across a time course, and infers the causal interactions between the regulators that drive the dynamics of their activities across time. We have implemented ARMADA as part of our ISMARA webserver, ismara.unibas.ch, allowing any researcher to automatically apply it to any gene expression time course. To illustrate the method, we apply ARMADA to a time course of human umbilical vein endothelial cells treated with TNF. Remarkably, ARMADA is able to reproduce the complex observed motif activity dynamics using a relatively small set of interactions between the key regulators in this system. In addition, we show that ARMADA successfully infers many of the key regulatory interactions known to drive this inflammatory response and discuss several novel interactions that ARMADA predicts. In combination with ISMARA, ARMADA provides a powerful approach to generating plausible hypotheses for the key interactions between regulators that control gene expression in any system for which time course measurements are available.
Collapse
Affiliation(s)
- Peter J Pemberton-Ross
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Mikhail Pachkov
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| | - Erik van Nimwegen
- Biozentrum, University of Basel, and Swiss Institute of Bioinformatics, Basel, Switzerland.
| |
Collapse
|
31
|
|