1
|
Liu J, Verweij FJ, van Niel G, Galli T, Danglot L, Bun P. ExoJ - a Fiji/ImageJ2 plugin for automated spatiotemporal detection and analysis of exocytosis. J Cell Sci 2024; 137:jcs261938. [PMID: 39219469 DOI: 10.1242/jcs.261938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024] Open
Abstract
Exocytosis is a dynamic physiological process that enables the release of biomolecules to the surrounding environment via the fusion of membrane compartments to the plasma membrane. Understanding its mechanisms is crucial, as defects can compromise essential biological functions. The development of pH-sensitive optical reporters alongside fluorescence microscopy enables the assessment of individual vesicle exocytosis events at the cellular level. Manual annotation represents, however, a time-consuming task that is prone to selection biases and human operational errors. Here, we introduce ExoJ, an automated plugin based on Fiji/ImageJ2 software. ExoJ identifies user-defined genuine populations of exocytosis events, recording quantitative features including intensity, apparent size and duration. We designed ExoJ to be fully user-configurable, making it suitable for studying distinct forms of vesicle exocytosis regardless of the imaging quality. Our plugin demonstrates its capabilities by showcasing distinct exocytic dynamics among tetraspanins and vesicular SNARE protein reporters. Assessment of performance on synthetic data shows that ExoJ is a robust tool that is capable of correctly identifying exocytosis events independently of signal-to-noise ratio conditions. We propose ExoJ as a standard solution for future comparative and quantitative studies of exocytosis.
Collapse
Affiliation(s)
- Junjun Liu
- Jinan Central Hospital affiliated to Shandong First Medical University, Jinan 250013, China
| | | | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Endosomal dynamics in neuropathies, 75014 Paris, France
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
| | - Thierry Galli
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
| | - Lydia Danglot
- GHU-Paris Psychiatrie et Neurosciences, Hôpital Saint Anne, F-75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team Membrane traffic in healthy and diseased brain, 75014 Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| | - Philippe Bun
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, 75014 Paris, France
| |
Collapse
|
2
|
Son D, Lee M. Gene regulation of RMR-related DNAJC6 on adipogenesis and mitochondria function in 3T3-L1 preadipocytes. Biochem Biophys Res Commun 2023; 672:1-9. [PMID: 37331165 DOI: 10.1016/j.bbrc.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/06/2023] [Accepted: 06/11/2023] [Indexed: 06/20/2023]
Abstract
In the pilot GWAS of children obesity, DNAJC6 gene was found as a regulator for resting metabolic rate (RMR) and obesity in children aged 8-9 years. To investigate whether DNAJC6 gene regulated obesity and energy metabolism, the physiological mechanisms during adipogenesis of 3T3-L1 preadipocytes were confirmed after DNAJC6 gene was overexpressed or inhibited. Overexpressing DNAJC6 gene maintained a 3T3-L1 preadipocyte status during cell differentiation (MTT, ORO, DAPI/BODIPY). It suppressed adipogenesis and adipokine production (leptin, adiponectin), insulin signaling with IRS-GLUT4 system (RT-PCR, Western blotting), and mitochondrial function (Mito Stress Test). DNAJC6 overexpressed cells inhibited mTOR expression, but maintained LC3 expression at a high level, indicating that autophagy occurred and energy was obtained. However, when DNAJC6 gene was inhibited, fat synthesis factor was highly expressed during differentiation (PPARr, C/EBPa, aP2, etc) and the intracellular stress level increased accordingly, which affected the reduction of reserve respiratory capacity during mitochondrial respiration. Our study confirmed gene regulation of DNAJC6, overexpression or inhibition, affects adipogenesis with energy metabolism and mitochondrial functions. This basic data can be used for clinic obesity studies to control an energy imbalance.
Collapse
Affiliation(s)
- Dajeong Son
- Department of Food & Nutrition, Sungshin Women's University, Seoul, 01133, Republic of Korea; Research Institute of Obesity Science, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Myougsook Lee
- Department of Food & Nutrition, Sungshin Women's University, Seoul, 01133, Republic of Korea; Research Institute of Obesity Science, Sungshin Women's University, Seoul, 01133, Republic of Korea.
| |
Collapse
|
3
|
Inhibitors of RNA and protein synthesis cause Glut4 translocation and increase glucose uptake in adipocytes. Sci Rep 2022; 12:15640. [PMID: 36123369 PMCID: PMC9485115 DOI: 10.1038/s41598-022-19534-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/30/2022] [Indexed: 12/29/2022] Open
Abstract
Insulin stimulates glucose uptake in adipocytes by triggering translocation of glucose transporter 4-containg vesicles to the plasma membrane. Under basal conditions, these vesicles (IRVs for insulin-responsive vesicles) are retained inside the cell via a “static” or “dynamic” mechanism. We have found that inhibitors of RNA and protein synthesis, actinomycin D and emetine, stimulate Glut4 translocation and glucose uptake in adipocytes without engaging conventional signaling proteins, such as Akt, TBC1D4, or TUG. Actinomycin D does not significantly affect endocytosis of Glut4 or recycling of transferrin, suggesting that it specifically increases exocytosis of the IRVs. Thus, the intracellular retention of the IRVs in adipocytes requires continuous RNA and protein biosynthesis de novo. These results point out to the existence of a short-lived inhibitor of IRV translocation thus supporting the “static” model.
Collapse
|
4
|
Heckmann M, Klanert G, Sandner G, Lanzerstorfer P, Auer M, Weghuber J. Fluorescence Microscopy-Based Quantitation of GLUT4 Translocation. Methods Appl Fluoresc 2022; 10. [PMID: 35008072 DOI: 10.1088/2050-6120/ac4998] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/10/2022] [Indexed: 11/11/2022]
Abstract
Postprandial insulin-stimulated glucose uptake into target tissue is crucial for the maintenance of normal blood glucose homeostasis. This step is rate-limited by the number of facilitative glucose transporters type 4 (GLUT4) present in the plasma membrane. Since insulin resistance and impaired GLUT4 translocation are associated with the development of metabolic disorders such as type 2 diabetes, this transporter has become an important target of antidiabetic drug research. The application of screening approaches that are based on the analysis of GLUT4 translocation to the plasma membrane to identify substances with insulinomimetic properties has gained global research interest in recent years. Here, we review methods that have been implemented to quantitate the translocation of GLUT4 to the plasma membrane. These methods can be broadly divided into two sections: microscopy-based technologies (e.g., immunoelectron, confocal or total internal reflection fluorescence microscopy) and biochemical and spectrometric approaches (e.g., membrane fractionation, photoaffinity labeling or flow cytometry). In this review, we discuss the most relevant approaches applied to GLUT4 thus far, highlighting the advantages and disadvantages of these approaches, and we provide a critical discussion and outlook into new methodological opportunities.
Collapse
Affiliation(s)
- Mara Heckmann
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Gerald Klanert
- FFoQSI GmbH-Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, Tulln, 3430, AUSTRIA
| | - Georg Sandner
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Peter Lanzerstorfer
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| | - Manfred Auer
- Division of Pathway Medicine, University of Edinburgh, University of Edinburgh Medical School, The Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, Edinburgh, EH8 9AB, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, Stelzhamerstrasse 23, Wels, Oberösterreich, 4600, AUSTRIA
| |
Collapse
|
5
|
Wang S, Liu Y, Crisman L, Wan C, Miller J, Yu H, Shen J. Genetic evidence for an inhibitory role of tomosyn in insulin-stimulated GLUT4 exocytosis. Traffic 2021; 21:636-646. [PMID: 32851733 DOI: 10.1111/tra.12760] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
Exocytosis is a vesicle fusion process driven by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A classic exocytic pathway is insulin-stimulated translocation of the glucose transporter type 4 (GLUT4) from intracellular vesicles to the plasma membrane in adipocytes and skeletal muscles. The GLUT4 exocytic pathway plays a central role in maintaining blood glucose homeostasis and is compromised in insulin resistance and type 2 diabetes. A candidate regulator of GLUT4 exocytosis is tomosyn, a soluble protein expressed in adipocytes. Tomosyn directly binds to GLUT4 exocytic SNAREs in vitro but its role in GLUT4 exocytosis was unknown. In this work, we used CRISPR-Cas9 genome editing to delete the two tomosyn-encoding genes in adipocytes. We observed that both basal and insulin-stimulated GLUT4 exocytosis was markedly elevated in the double knockout (DKO) cells. By contrast, adipocyte differentiation and insulin signaling remained intact in the DKO adipocytes. In a reconstituted liposome fusion assay, tomosyn inhibited all the SNARE complexes underlying GLUT4 exocytosis. The inhibitory activity of tomosyn was relieved by NSF and α-SNAP, which act in concert to remove tomosyn from GLUT4 exocytic SNAREs. Together, these studies revealed an inhibitory role for tomosyn in insulin-stimulated GLUT4 exocytosis in adipocytes. We suggest that tomosyn-arrested SNAREs represent a reservoir of fusion capacity that could be harnessed to treat patients with insulin resistance and type 2 diabetes.
Collapse
Affiliation(s)
- Shifeng Wang
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA.,Department of Chinese Medicine Information Science, Beijing University of Chinese Medicine, Beijing, China
| | - Yinghui Liu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Lauren Crisman
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Chun Wan
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jessica Miller
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Haijia Yu
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| | - Jingshi Shen
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
6
|
Cheng A, Tse KH, Chow HM, Gan Y, Song X, Ma F, Qian YXY, She W, Herrup K. ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 2020; 17:1998-2010. [PMID: 32757690 DOI: 10.1080/15548627.2020.1805860] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with defects in multiple organs including the nervous system. Precisely how ATM deficiency leads to the complex phenotypes of A-T, however, remains elusive. Here, we reported that part of the connection may lie in autophagy and lysosomal abnormalities. We found that ATM was degraded through the autophagy pathway, while ATR was processed by the proteasome. Autophagy and lysosomal trafficking were both abnormal in atm-/- neurons and the deficits impacted cellular functions such as synapse maintenance, neuronal survival and glucose uptake. Upregulated autophagic flux was observed in atm-/- lysosomes, associated with a more acidic pH. Significantly, we found that the ATP6V1A (ATPase, H+ transporting, lysosomal V1 subunit A) proton pump was an ATM kinase target. In atm-/- neurons, lysosomes showed enhanced retrograde transport and accumulated in the perinuclear regions. We attributed this change to an unexpected physical interaction between ATM and the retrograde transport motor protein, dynein. As a consequence, SLC2A4/GLUT4 (solute carrier family 4 [facilitated glucose transporter], member 4) translocation to the plasma membrane was inhibited and trafficking to the lysosomes was increased, leading to impaired glucose uptake capacity. Together, these data underscored the involvement of ATM in a variety of neuronal vesicular trafficking processes, offering new and therapeutically useful insights into the pathogenesis of A-T.Abbreviations: 3-MA: 3-methyladenine; A-T: ataxia-telangiectasia; ALG2: asparagine-linked glycosylation 2 (alpha-1,3-mannosyltransferase); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ATG5: autophagy related 5; ATM: ataxia telangiectasia mutated; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATR: ataxia-telangiectasia and Rad3 related; BFA1: bafilomycin A1; CC3: cleaved-CASP3; CGN: cerebellar granule neuron; CLQ: chloroquine; CN: neocortical neuron; CTSB: cathepsin B; CTSD: cathepsin D; DYNLL1: the light chain1 of dynein; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; Etop: etoposide; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HBS: HEPES-buffered saline; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HOMER1: homer protein homolog 1; KU: KU-60019; LAMP1: lysosomal-associated membrane protein 1; LC3B-II: LC3-phosphatidylethanolamine conjugate; Lyso: lysosome; LysopH-GFP: lysopHluorin-GFP; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule associated protein 2; MAPK14: mitogen-activated protein kinase 14; MAPK8/JNK1: mitogen-activated protein kinase 8; MCOLN1/TRPML1: mucolipin 1; OSBPL1A: oxysterol binding protein like 1A; PIKK: phosphatidylinositol 3 kinase related kinase; Rapa: rapamycin; RILP: rab interacting lysosomal protein; ROS: reactive oxygen species; SEM: standard error of mean; SLC2A4/GLUT4: solute carrier family 2 (facilitated glucose transporter), member 4; TSC2/tuberin: TSC complex subunit 2; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system; VE: VE-822; WCL: whole-cell lysate; WT: wild type.
Collapse
Affiliation(s)
- Aifang Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yunqiao Gan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Fulin Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | | | - Weiyi She
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
7
|
Aleksenko L, Quaye IK. Pregnancy-induced Cardiovascular Pathologies: Importance of Structural Components and Lipids. Am J Med Sci 2020; 360:447-466. [PMID: 32540145 DOI: 10.1016/j.amjms.2020.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/09/2020] [Accepted: 05/07/2020] [Indexed: 01/22/2023]
Abstract
Pregnancy leads to adaptations for maternal and fetal energy needs. The cardiovascular system bears the brunt of the adaptations as the heart and vessels enable nutrient supply to maternal organs facilitated by the placenta to the fetus. The components of the cardiovascular system are critical in the balance between maternal homeostatic and fetus driven homeorhetic regulation. Since lipids intersect maternal cardiovascular function and fetal needs with growth and in stress, factors affecting lipid deposition and mobilization impact risk outcomes. Here, the cardiovascular components and functional derangements associated with cardiovascular pathology in pregnancy, vis-à-vis lipid deposition, mobilization and maternal and/or cardiac and fetal energy needs are detailed. Most reports on the components and associated pathology in pregnancy, are on derangements affecting the extracellular matrix and epicardial fat, followed by the endothelium, vascular smooth muscle, pericytes and myocytes. Targeted studies on all cardiovascular components and pathological outcomes in pregnancy will enhance targeted interventions.
Collapse
Affiliation(s)
- Larysa Aleksenko
- Division of Obstetrics and Gynecology, Department of Clinical Sciences, Lund University, Lund, Sweden.
| | - Isaac K Quaye
- Regent University College of Science and Technology, Accra, Ghana
| |
Collapse
|
8
|
Choubey M, Ranjan A, Bora PS, Baltazar F, Krishna A. Direct actions of adiponectin on changes in reproductive, metabolic, and anti-oxidative enzymes status in the testis of adult mice. Gen Comp Endocrinol 2019; 279:1-11. [PMID: 29908833 DOI: 10.1016/j.ygcen.2018.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 05/30/2018] [Accepted: 06/13/2018] [Indexed: 10/28/2022]
Abstract
Obesity is a major health problem that is linked to decreased sperm count. It is hypothesized that an obesity-associated reduction in adiponectin secretion may be responsible for impairment of spermatogenesis. Therefore, the aim of the study was to evaluate the direct role of adiponectin in spermatogenesis and steroid synthesis in adult mice. This study showed that adiponectin receptors (AdipoR1 and AdipoR2) were localized in Leydig cells and seminiferous tubules in the testis of adult mice. The result of the in vitro study showed the direct action of adiponectin on spermatogenesis by stimulating cell proliferation (PCNA) and survival (Bcl2) and by suppressing cell apoptosis. Treatment of testis with adiponectin also enhanced transport of the energetic substrates glucose and lactate to protect cells from undergoing apoptosis. Adiponectin treatment further showed a significant reduction in oxidative stress and nitric oxide. Our findings suggest that adiponectin effectively facilitates cell survival and proliferation, as well as protects from apoptosis. Thus, adiponectin treatment may be responsible for enhancing sperm counts. Interestingly, this study showed the stimulatory effect of adiponectin in spermatogenesis but showed an inhibitory effect on testosterone and estradiol synthesis in the testes. Based on the present study, it is hypothesized that systemic adiponectin treatment may be a promising therapeutic strategy for the improvement of spermatogenesis and sperm count.
Collapse
Affiliation(s)
- Mayank Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Ashutosh Ranjan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Puran S Bora
- Department of Ophthalmology, Jones Eye Institute, Pat & Willard Walker Eye Research Center, 4301 West Markham, University of Arkansas for Medical Sciences, AR 72205, USA
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Abstract
A pivotal metabolic function of insulin is the stimulation of glucose uptake into muscle and adipose tissues. The discovery of the insulin-responsive glucose transporter type 4 (GLUT4) protein in 1988 inspired its molecular cloning in the following year. It also spurred numerous cellular mechanistic studies laying the foundations for how insulin regulates glucose uptake by muscle and fat cells. Here, we reflect on the importance of the GLUT4 discovery and chronicle additional key findings made in the past 30 years. That exocytosis of a multispanning membrane protein regulates cellular glucose transport illuminated a novel adaptation of the secretory pathway, which is to transiently modulate the protein composition of the cellular plasma membrane. GLUT4 controls glucose transport into fat and muscle tissues in response to insulin and also into muscle during exercise. Thus, investigation of regulated GLUT4 trafficking provides a major means by which to map the essential signaling components that transmit the effects of insulin and exercise. Manipulation of the expression of GLUT4 or GLUT4-regulating molecules in mice has revealed the impact of glucose uptake on whole-body metabolism. Remaining gaps in our understanding of GLUT4 function and regulation are highlighted here, along with opportunities for future discoveries and for the development of therapeutic approaches to manage metabolic disease.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | - Timothy E McGraw
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York 10065
| | - David E James
- Charles Perkins Centre, School of Life and Environmental Sciences, Sydney Medical School, University of Sydney, Camperdown, New South Wales 2050, Australia
| |
Collapse
|
10
|
Transcriptome Changes of Skeletal Muscle RNA-Seq Speculates the Mechanism of Postprandial Hyperglycemia in Diabetic Goto-Kakizaki Rats During the Early Stage of T2D. Genes (Basel) 2019; 10:genes10060406. [PMID: 31141985 PMCID: PMC6627578 DOI: 10.3390/genes10060406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
To address how skeletal muscle contributes to postprandial hyperglycemia, we performed skeletal muscle transcriptome analysis of diabetic Goto-Kakizaki (GK) and control Wistar rats by RNA sequencing (RNA-Seq). We obtained 600 and 1785 differentially expressed genes in GK rats compared to those Wistar rats at three and four weeks of age, respectively. Specifically, Tbc1d4, involved in glucose uptake, was significantly downregulated in the skeletal muscle of GK aged both three and four weeks compared to those of age-matched Wistar rats. Pdk4, related to glucose uptake and oxidation, was significantly upregulated in the skeletal muscle of GK aged both three and four weeks compared to that of age-matched Wistar rats. Genes (Acadl, Acsl1 and Fabp4) implicated in fatty acid oxidation were significantly upregulated in the skeletal muscle of GK aged four weeks compared to those of age-matched Wistar rats. The overexpression or knockout of Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4 has been reported to change glucose uptake and fatty acid oxidation directly in rodents. By taking the results of previous studies into consideration, we speculated that dysregulation of key dysregulated genes (Tbc1d4, Pdk4, Acadl, Acsl1 and Fabp4) may lead to a decrease in glucose uptake and oxidation, and an increase in fatty acid oxidation in GK skeletal muscle at three and four weeks, which may, in turn, contribute to postprandial hyperglycemia. Our research revealed transcriptome changes in GK skeletal muscle at three and four weeks. Tbc1d4, Acadl, Acsl1 and Fabp4 were found to be associated with early diabetes in GK rats for the first time, which may provide a new scope for pathogenesis of postprandial hyperglycemia.
Collapse
|
11
|
Liu G, Ma C, Jin BK, Chen Z, Cheng FL, Zhu JJ. Electrochemiluminescence Investigation of Glucose Transporter 4 Expression at Skeletal Muscle Cells Surface Based on a Graphene Hydrogel Electrode. Anal Chem 2019; 91:3021-3026. [PMID: 30693766 DOI: 10.1021/acs.analchem.8b05340] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In situ detection of the expression level of cell-surface receptors has become a hotspot study in recent years. We propose in this manuscript a novel strategy for sensitive electrochemiluminescence (ECL) detection of glucose transporter 4 (GLUT4) on human skeletal muscle cells (HSMCs). Graphene hydrogel (GH) was selected to fabricate a permeable electrode with the purpose of overcoming the steric hindrance of cells on electrode, which leads to errors in the detection of cell-surface receptors. GLUT4 was labeled with carbon dots (CDs), which generate ECL emission at the interface between GH and cells, so about half the amount of GLUT4 expressed at the cell surface could be determined, which provided an accurate GLUT4 expression quantification. The prepared cytosensor exhibited good analytical performance for HSMC cells, ranging from 500 to 1.0 × 106 cells·mL-1, with a detection limit of 200 cells·mL-1. The average amount of GLUT4 per HSMC cell was calculated to be 1.88 × 105. Furthermore, GLUT4 on HSMC surface had a 2.3-fold increase under the action of insulin. This strategy is capable of evaluating the receptors on the cell surface, which may push the application of ECL for disease diagnosis.
Collapse
Affiliation(s)
- Gen Liu
- College of Chemistry & Chemical Engineering , Anhui University , Hefei 230601 , P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Cheng Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Bao-Kang Jin
- College of Chemistry & Chemical Engineering , Anhui University , Hefei 230601 , P. R. China
| | - Zixuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Fa-Liang Cheng
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering , Dongguan University of Technology , Dongguan 523808 , P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
12
|
Choubey M, Ranjan A, Bora PS, Baltazar F, Martin LJ, Krishna A. Role of adiponectin as a modulator of testicular function during aging in mice. Biochim Biophys Acta Mol Basis Dis 2019; 1865:413-427. [DOI: 10.1016/j.bbadis.2018.11.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 12/30/2022]
|
13
|
Ranjan A, Choubey M, Yada T, Krishna A. Direct effects of neuropeptide nesfatin-1 on testicular spermatogenesis and steroidogenesis of the adult mice. Gen Comp Endocrinol 2019; 271:49-60. [PMID: 30391240 DOI: 10.1016/j.ygcen.2018.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 11/25/2022]
Abstract
Recent studies have revealed nesfatin-1 as a hypothalamic neuropeptide, regulating food intake, energy expenditure and reproduction primarily by acting on the hypothalamic-pituitary-gonadal axis. Nesfatin-1 is also localized in several peripheral tissues including testes. However, functional significance of nesfatin-1 in testicular activities is not yet well documented in mammals. Therefore, this study was aimed to elucidate the direct effects of nesfatin-1 on testicular markers for steroid productions, spermatogenesis, metabolic changes and oxidative stress. The results revealed the expression of both protein and mRNA of nesfatin-1 in the testes of adult mice. The testes treated in vitro with nesfatin-1 showed significant increase in testosterone production, which correlated significantly with increased expression of steroidogenic markers and insulin receptor proteins in the testes. Furthermore, the in vitro treatment with nesfatin-1 showed stimulatory effects on spermatogenesis by promoting cell proliferation (PCNA) and survival (Bcl2), while inhibiting apoptosis (caspase-3) in the testes. The nesfatin-1 treatment in vitro further increased the expression of insulin receptor and GLUT8 proteins, in parallel with increase in the intra-testicular transport of glucose and production of lactate. This nesfatin-1 induced enhanced transport of energy substrate (glucose and lactate) may be responsible for promoting spermatogenesis and steroidogenesis. Nesfatin-1 significantly reduced oxidative stress and nitric oxide, which may also be responsible for stimulatory effects on testicular activities. The present finding suggests that nesfatin-1 acts via paracrine manner to increase sperm count and fertility, thus promoting the testicular function.
Collapse
Affiliation(s)
- Ashutosh Ranjan
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mayank Choubey
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Toshihiko Yada
- Division of Integrative Physiology, Kansai Electric Power Medical Research Institute, Kobe 650-0047, Japan
| | - Amitabh Krishna
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
14
|
Zhao D, Lv Q, Yang J, Wu G, Liu M, Yang Q, Han J, Feng Y, Lin S, Hu J. Taurine Improves Lipid Metabolism and Skeletal Muscle Sensitivity to Insulin in Rats Fed with High Sugar and High Fat Diet. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1155:133-146. [PMID: 31468392 DOI: 10.1007/978-981-13-8023-5_12] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metabolic syndrome is a lifestyle-related disease caused by high nutrient condition and lack of exercise. The insulin resistance due to obesity has attracted attention as an underlying mechanism of metabolic syndrome. Insulin resistance refers to reduced insulin sensitivity in insulin target tissues. In this case, in order to maintain normal blood glucose levels, a compensatory large amount of insulin is released, leading to the occurrence of hyperinsulinemia. Taurine is widely distributed in animal tissues. Although it is not involved in protein synthesis, taurine plays an important role in maintaining the body's physiological function. In this experiment, insulin resistance model was induced by high fat and high sugar diet. Two percent taurine was added in drinking water to explore the mechanism of taurine in insulin resistance and to provide theoretical basis for using taurine to improve insulin resistance. The result showed that high-fat and high-sugar diet could decrease insulin sensitivity, and taurine could improve it by oral glucose tolerance test. Moreover, serum TG, TC were higher, while HDL-C in rats fed with high sugar and high fat diet was lower than normal rats, the changes of which can be significantly relieved by 2% taurine administration. mRNA and protein expressions of IRS1, and GLUT4 which were significantly changed by high sugar and high fat diet can also be regulated by 2% taurine. The results indicated that taurine can improve insulin sensitivity through remediating lipid metabolism disorder and regulating the expressions of IRS and GLUT4.
Collapse
Affiliation(s)
- Dongdong Zhao
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qiufeng Lv
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jiancheng Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Gaofeng Wu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Mei Liu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Qunhui Yang
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jie Han
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Ying Feng
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Shumei Lin
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | - Jianmin Hu
- Liaoning Provincial Key Laboratory of Zoonosis, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
15
|
Skorobogatko Y, Dragan M, Cordon C, Reilly SM, Hung CW, Xia W, Zhao P, Wallace M, Lackey DE, Chen XW, Osborn O, Bogner-Strauss JG, Theodorescu D, Metallo CM, Olefsky JM, Saltiel AR. RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proc Natl Acad Sci U S A 2018; 115:7819-7824. [PMID: 29915037 PMCID: PMC6065037 DOI: 10.1073/pnas.1801050115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Insulin increases glucose uptake into adipose tissue and muscle by increasing trafficking of the glucose transporter Glut4. In cultured adipocytes, the exocytosis of Glut4 relies on activation of the small G protein RalA by insulin, via inhibition of its GTPase activating complex RalGAP. Here, we evaluate the role of RalA in glucose uptake in vivo with specific chemical inhibitors and by generation of mice with adipocyte-specific knockout of RalGAPB. RalA was profoundly activated in brown adipose tissue after feeding, and its inhibition prevented Glut4 exocytosis. RalGAPB knockout mice with diet-induced obesity were protected from the development of metabolic disease due to increased glucose uptake into brown fat. Thus, RalA plays a crucial role in glucose transport in adipose tissue in vivo.
Collapse
Affiliation(s)
- Yuliya Skorobogatko
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Morgan Dragan
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
| | - Claudia Cordon
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Shannon M Reilly
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Chao-Wei Hung
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
| | - Wenmin Xia
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
- Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria
| | - Peng Zhao
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Martina Wallace
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Denise E Lackey
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
| | - Xiao-Wei Chen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Olivia Osborn
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
| | | | - Dan Theodorescu
- Department of Surgery, University of Colorado, Aurora, CO 80045
| | - Christian M Metallo
- Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093
| | - Jerrold M Olefsky
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093
| | - Alan R Saltiel
- Department of Medicine, University of California, San Diego School of Medicine, La Jolla, CA 92093;
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
16
|
Sarkar J, Dwivedi G, Chen Q, Sheu IE, Paich M, Chelini CM, D'Alessandro PM, Burns SP. A long-term mechanistic computational model of physiological factors driving the onset of type 2 diabetes in an individual. PLoS One 2018; 13:e0192472. [PMID: 29444133 PMCID: PMC5812629 DOI: 10.1371/journal.pone.0192472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
A computational model of the physiological mechanisms driving an individual's health towards onset of type 2 diabetes (T2D) is described, calibrated and validated using data from the Diabetes Prevention Program (DPP). The objective of this model is to quantify the factors that can be used for prevention of T2D. The model is energy and mass balanced and continuously simulates trajectories of variables including body weight components, fasting plasma glucose, insulin, and glycosylated hemoglobin among others on the time-scale of years. Modeled mechanisms include dynamic representations of intracellular insulin resistance, pancreatic beta-cell insulin production, oxidation of macronutrients, ketogenesis, effects of inflammation and reactive oxygen species, and conversion between stored and activated metabolic species, with body-weight connected to mass and energy balance. The model was calibrated to 331 placebo and 315 lifestyle-intervention DPP subjects, and one year forecasts of all individuals were generated. Predicted population mean errors were less than or of the same magnitude as clinical measurement error; mean forecast errors for weight and HbA1c were ~5%, supporting predictive capabilities of the model. Validation of lifestyle-intervention prediction is demonstrated by synthetically imposing diet and physical activity changes on DPP placebo subjects. Using subject level parameters, comparisons were made between exogenous and endogenous characteristics of subjects who progressed toward T2D (HbA1c > 6.5) over the course of the DPP study to those who did not. The comparison revealed significant differences in diets and pancreatic sensitivity to hyperglycemia but not in propensity to develop insulin resistance. A computational experiment was performed to explore relative contributions of exogenous versus endogenous factors between these groups. Translational uses to applications in public health and personalized healthcare are discussed.
Collapse
Affiliation(s)
- Joydeep Sarkar
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Gaurav Dwivedi
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Qian Chen
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Iris E. Sheu
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Mark Paich
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | - Colleen M. Chelini
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| | | | - Samuel P. Burns
- PricewaterhouseCoopers LLP, New York, New York, United States of America
| |
Collapse
|
17
|
Wasserstrom S, Morén B, Stenkula KG. Total Internal Reflection Fluorescence Microscopy to Study GLUT4 Trafficking. Methods Mol Biol 2018; 1713:151-159. [PMID: 29218524 DOI: 10.1007/978-1-4939-7507-5_12] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Total internal reflection fluorescence (TIRF) microscopy is a powerful method that allows examination of plasma membrane close events in real time. The last decade, the method has successfully been used to explore GLUT4 translocation in adipocytes. Here, we describe the procedure for studying GLUT4 trafficking using TIRF microscopy in isolated primary adipocytes.
Collapse
Affiliation(s)
- Sebastian Wasserstrom
- Department of Experimental Medical Science, Lund University, BMC C11, Lund, 22 184, Sweden
| | - Björn Morén
- Department of Experimental Medical Science, Lund University, BMC C11, Lund, 22 184, Sweden
| | - Karin G Stenkula
- Department of Experimental Medical Science, Lund University, BMC C11, Lund, 22 184, Sweden.
| |
Collapse
|
18
|
Selected Phyto and Marine Bioactive Compounds: Alternatives for the Treatment of Type 2 Diabetes. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64068-0.00004-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Li H, Mao Y, Yin Z, Xu Y. A Hierarchical Convolutional Neural Network for vesicle fusion event classification. Comput Med Imaging Graph 2017; 60:22-34. [PMID: 28669577 DOI: 10.1016/j.compmedimag.2017.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 02/15/2017] [Accepted: 04/05/2017] [Indexed: 11/17/2022]
Abstract
Quantitative analysis of vesicle exocytosis and classification of different modes of vesicle fusion from the fluorescence microscopy are of primary importance for biomedical researches. In this paper, we propose a novel Hierarchical Convolutional Neural Network (HCNN) method to automatically identify vesicle fusion events in time-lapse Total Internal Reflection Fluorescence Microscopy (TIRFM) image sequences. Firstly, a detection and tracking method is developed to extract image patch sequences containing potential fusion events. Then, a Gaussian Mixture Model (GMM) is applied on each image patch of the patch sequence with outliers rejected for robust Gaussian fitting. By utilizing the high-level time-series intensity change features introduced by GMM and the visual appearance features embedded in some key moments of the fusion process, the proposed HCNN architecture is able to classify each candidate patch sequence into three classes: full fusion event, partial fusion event and non-fusion event. Finally, we validate the performance of our method on 9 challenging datasets that have been annotated by cell biologists, and our method achieves better performances when comparing with three previous methods.
Collapse
Affiliation(s)
- Haohan Li
- Department of Computer Science, Missouri University of Science and Technology, Rolla 65409, USA.
| | - Yunxiang Mao
- Department of Computer Science, Missouri University of Science and Technology, Rolla 65409, USA.
| | - Zhaozheng Yin
- Department of Computer Science, Missouri University of Science and Technology, Rolla 65409, USA.
| | - Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
20
|
Chang YC, Chi LH, Chang WM, Su CY, Lin YF, Chen CL, Chen MH, Chang PMH, Wu ATH, Hsiao M. Glucose transporter 4 promotes head and neck squamous cell carcinoma metastasis through the TRIM24-DDX58 axis. J Hematol Oncol 2017; 10:11. [PMID: 28061796 PMCID: PMC5219690 DOI: 10.1186/s13045-016-0372-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/08/2016] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Head and neck squamous cell carcinoma (HNSCC) represents a unique and major health concern worldwide. Significant increases in glucose uptake and aerobic glycolysis have been observed in HNSCC cells. Glucose transporters (GLUTs) represent a major hub in the glycolysis pathway, with GLUT4 having the highest glucose affinity. However, GLUT4's role in HNSCC has not been fully appreciated. METHODS An in silico analysis was performed in HNSCC cohorts to identify the most significant glucose transporter associated with HNSCC patient prognosis. An immunohistochemical analysis of a tissue microarray with samples from 90 HNSCC patients was used to determine the association of GLUT4 with prognosis. Complementary functional expression and knockdown studies of GLUT4 were performed to investigate whether GLUT4 plays a role in HNSCC cell migration and invasion in vitro and in vivo. The detailed molecular mechanism of the function of GLUT4 in inducing HNSCC cell metastasis was determined. RESULTS Our clinicopathologic analysis showed that increased GLUT4 expression in oral squamous cell carcinoma patients was significantly associated with a poor overall survival (OS, P = 0.035) and recurrence-free survival (RFS, P = 0.001). Furthermore, the ectopic overexpression of GLUT4 in cell lines with low endogenous GLUT4 expression resulted in a significant increase in migratory ability both in vitro and in vivo, whereas the reverse phenotype was observed in GLUT4-silenced cells. Utilizing a GLUT4 overexpression model, we performed gene expression microarray and Ingenuity Pathway Analysis (IPA) to determine that the transcription factor tripartite motif-containing 24 (TRIM24) was the main downstream regulator of GLUT4. In addition, DDX58 was confirmed to be the downstream target of TRIM24, whose downregulation is essential for the migratory phenotype induced by GLUT4-TRIM24 activation in HNSCC cells. CONCLUSIONS Here, we identified altered glucose metabolism in the progression of HNSCC and showed that it could be partially attributed to the novel link between GLUT4 and TRIM24. This novel signaling axis may be used for the prognosis and therapeutic treatment of HNSCC in the future.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Li-Hsing Chi
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ming Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuang-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chi-Long Chen
- Department of Pathology, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Pathology, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ming-Huang Chen
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Peter Mu-Hsin Chang
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Alex T H Wu
- The Ph.D. Program for Translational Medicine, Taipei Medical University, Taipei, Taiwan
| | - Michael Hsiao
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
21
|
Zhou X, Shentu P, Xu Y. Spatiotemporal Regulators for Insulin-Stimulated GLUT4 Vesicle Exocytosis. J Diabetes Res 2017; 2017:1683678. [PMID: 28529958 PMCID: PMC5424486 DOI: 10.1155/2017/1683678] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/21/2017] [Accepted: 04/03/2017] [Indexed: 11/30/2022] Open
Abstract
Insulin increases glucose uptake and storage in muscle and adipose cells, which is accomplished through the mobilization of intracellular GLUT4 storage vesicles (GSVs) to the cell surface upon stimulation. Importantly, the dysfunction of insulin-regulated GLUT4 trafficking is strongly linked with peripheral insulin resistance and type 2 diabetes in human. The insulin signaling pathway, key signaling molecules involved, and precise trafficking itinerary of GSVs are largely identified. Understanding the interaction between insulin signaling molecules and key regulatory proteins that are involved in spatiotemporal regulation of GLUT4 vesicle exocytosis is of great importance to explain the pathogenesis of diabetes and may provide new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Ping Shentu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- *Yingke Xu:
| |
Collapse
|
22
|
Gao L, Chen J, Gao J, Wang H, Xiong W. Super-resolution microscopy reveals the insulin-resistance-regulated reorganization of GLUT4 on plasma membranes. J Cell Sci 2016; 130:396-405. [PMID: 27888215 DOI: 10.1242/jcs.192450] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/11/2016] [Indexed: 02/01/2023] Open
Abstract
GLUT4 (also known as SLC2A4) is essential for glucose uptake in skeletal muscles and adipocytes, which play central roles in whole-body glucose metabolism. Here, using direct stochastic optical reconstruction microscopy (dSTORM) to investigate the characteristics of plasma-membrane-fused GLUT4 at the single-molecule level, we have demonstrated that insulin and insulin resistance regulate the spatial organization of GLUT4 in adipocytes. Stimulation with insulin shifted the balance of GLUT4 on the plasma membrane toward a more dispersed configuration. In contrast, insulin resistance induced a more clustered distribution of GLUT4 and increased the mean number of molecules per cluster. Furthermore, our data demonstrate that the F5QQI motif and lipid rafts mediate the maintenance of GLUT4 clusters on the plasma membrane. Mutation of F5QQI (F5QQA-GLUT4) induced a more clustered distribution of GLUT4; moreover, destruction of lipid rafts in adipocytes expressing F5QQA-GLUT4 dramatically decreased the percentage of large clusters and the mean number of molecules per cluster. In conclusion, our data clarify the effects of insulin stimulation or insulin resistance on GLUT4 reorganization on the plasma membrane and reveal new pathogenic mechanisms of insulin resistance.
Collapse
Affiliation(s)
- Lan Gao
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China.,Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Junling Chen
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Jing Gao
- Graduate University of Chinese Academy of Sciences, Beijing 100049, P.R. China.,State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilil 130022, P.R. China
| | - Wenyong Xiong
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, P.R. China
| |
Collapse
|
23
|
Xu Y, Nan D, Fan J, Bogan JS, Toomre D. Optogenetic activation reveals distinct roles of PIP3 and Akt in adipocyte insulin action. J Cell Sci 2016; 129:2085-95. [PMID: 27076519 DOI: 10.1242/jcs.174805] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Accepted: 03/31/2016] [Indexed: 12/26/2022] Open
Abstract
Glucose transporter 4 (GLUT4; also known as SLC2A4) resides on intracellular vesicles in muscle and adipose cells, and translocates to the plasma membrane in response to insulin. The phosphoinositide 3-kinase (PI3K)-Akt signaling pathway plays a major role in GLUT4 translocation; however, a challenge has been to unravel the potentially distinct contributions of PI3K and Akt (of which there are three isoforms, Akt1-Akt3) to overall insulin action. Here, we describe new optogenetic tools based on CRY2 and the N-terminus of CIB1 (CIBN). We used these 'Opto' modules to activate PI3K and Akt selectively in time and space in 3T3-L1 adipocytes. We validated these tools using biochemical assays and performed live-cell kinetic analyses of IRAP-pHluorin translocation (IRAP is also known as LNPEP and acts as a surrogate marker for GLUT4 here). Strikingly, Opto-PIP3 largely mimicked the maximal effects of insulin stimulation, whereas Opto-Akt only partially triggered translocation. Conversely, drug-mediated inhibition of Akt only partially dampened the translocation response of Opto-PIP3 In spatial optogenetic studies, focal targeting of Akt to a region of the cell marked the sites where IRAP-pHluorin vesicles fused, supporting the idea that local Akt-mediated signaling regulates exocytosis. Taken together, these results indicate that PI3K and Akt play distinct roles, and that PI3K stimulates Akt-independent pathways that are important for GLUT4 translocation.
Collapse
Affiliation(s)
- Yingke Xu
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA
| | - Di Nan
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Jiannan Fan
- Department of Biomedical Engineering, MOE Key Laboratory of Biomedical Engineering, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
| | - Jonathan S Bogan
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8020, USA
| | - Derek Toomre
- Department of Cell Biology, Yale University School of Medicine, New Haven, 06510, USA
| |
Collapse
|
24
|
Yang Z, Hong LK, Follett J, Wabitsch M, Hamilton NA, Collins BM, Bugarcic A, Teasdale RD. Functional characterization of retromer in GLUT4 storage vesicle formation and adipocyte differentiation. FASEB J 2015; 30:1037-50. [PMID: 26581601 DOI: 10.1096/fj.15-274704] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 10/28/2015] [Indexed: 12/26/2022]
Abstract
Insulin-stimulated translocation of glucose transporter 4 (GLUT4) storage vesicles (GSVs), the specialized intracellular compartments within mature adipocytes, to the plasma membrane (PM) is a fundamental cellular process for maintaining glucose homeostasis. Using 2 independent adipocyte cell line models, human primary Simpson-Golabi-Behmel syndrome and mouse 3T3-L1 fibroblast cell lines, we demonstrate that the endosome-associated protein-sorting complex retromer colocalizes with GLUT4 on the GSVs by confocal microscopy in mature adipocytes. By use of both confocal microscopy and differential ultracentrifugation techniques, retromer is redistributed to the PM of mature adipocytes upon insulin stimulation. Furthermore, stable knockdown of the retromer subunit-vacuolar protein-sorting 35, or the retromer-associated protein sorting nexin 27, by lentivirus-delivered small hairpin RNA impaired the adipogenesis process when compared to nonsilence control. The knockdown of retromer decreased peroxisome proliferator activated receptor γ expression during differentiation, generating adipocytes with decreased levels of GSVs, lipid droplet accumulation, and insulin-stimulated glucose uptake. In conclusion, our study demonstrates a role for retromer in the GSV formation and adipogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Lee Kian Hong
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Jordan Follett
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Martin Wabitsch
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Nicholas A Hamilton
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Brett M Collins
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Andrea Bugarcic
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| | - Rohan D Teasdale
- *Institute for Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia; and Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, University of Ulm, Ulm, Germany
| |
Collapse
|
25
|
Boal F, Hodgson LR, Reed SE, Yarwood SE, Just VJ, Stephens DJ, McCaffrey MW, Tavaré JM. Insulin promotes Rip11 accumulation at the plasma membrane by inhibiting a dynamin- and PI3-kinase-dependent, but Akt-independent, internalisation event. Cell Signal 2015; 28:74-82. [PMID: 26515129 PMCID: PMC4678287 DOI: 10.1016/j.cellsig.2015.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
Abstract
Rip11 is a Rab11 effector protein that has been shown to be important in controlling the trafficking of several intracellular cargoes, including the fatty acid transporter FAT/CD36, V-ATPase and the glucose transporter GLUT4. We have previously demonstrated that Rip11 translocates to the plasma membrane in response to insulin and here we examine the basis of this regulated phenomenon in more detail. We show that Rip11 rapidly recycles between the cell interior and surface, and that the ability of insulin to increase the appearance of Rip11 at the cell surface involves an inhibition of Rip11 internalisation from the plasma membrane. By contrast the hormone has no effect on the rate of Rip11 translocation towards the plasma membrane. The ability of insulin to inhibit Rip11 internalisation requires dynamin and class I PI3-kinases, but is independent of the activation of the protein kinase Akt; characteristics which are very similar to the mechanism by which insulin inhibits GLUT4 endocytosis.
Collapse
Affiliation(s)
- Frédéric Boal
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Lorna R Hodgson
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Sam E Reed
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Sophie E Yarwood
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Victoria J Just
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - David J Stephens
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | - Mary W McCaffrey
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland
| | - Jeremy M Tavaré
- School of Biochemistry, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
26
|
Spatiotemporal detection and analysis of exocytosis reveal fusion "hotspots" organized by the cytoskeleton in endocrine cells. Biophys J 2015; 108:251-60. [PMID: 25606674 DOI: 10.1016/j.bpj.2014.11.3462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/11/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Total internal reflection fluorescence microscope has often been used to study the molecular mechanisms underlying vesicle exocytosis. However, the spatial occurrence of the fusion events within a single cell is not frequently explored due to the lack of sensitive and accurate computer-assisted programs to analyze large image data sets. Here, we have developed an image analysis platform for the nonbiased identification of different types of vesicle fusion events with high accuracy in different cell types. By performing spatiotemporal analysis of stimulus-evoked exocytosis in insulin-secreting INS-1 cells, we statistically prove that individual vesicle fusion events are clustered at hotspots. This spatial pattern disappears upon the disruption of either the actin or the microtubule network; this disruption also severely inhibits evoked exocytosis. By demonstrating that newcomer vesicles are delivered from the cell interior to the surface membrane for exocytosis, we highlight a previously unappreciated mechanism in which the cytoskeleton-dependent transportation of secretory vesicles organizes exocytosis hotspots in endocrine cells.
Collapse
|
27
|
Lorenzo DN, Healy JA, Hostettler J, Davis J, Yang J, Wang C, Hohmeier HE, Zhang M, Bennett V. Ankyrin-B metabolic syndrome combines age-dependent adiposity with pancreatic β cell insufficiency. J Clin Invest 2015; 125:3087-102. [PMID: 26168218 DOI: 10.1172/jci81317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/27/2015] [Indexed: 12/22/2022] Open
Abstract
Rare functional variants of ankyrin-B have been implicated in human disease, including hereditary cardiac arrhythmia and type 2 diabetes (T2D). Here, we developed murine models to evaluate the metabolic consequences of these alterations in vivo. Specifically, we generated knockin mice that express either the human ankyrin-B variant R1788W, which is present in 0.3% of North Americans of mixed European descent and is associated with T2D, or L1622I, which is present in 7.5% of African Americans. Young AnkbR1788W/R1788W mice displayed primary pancreatic β cell insufficiency that was characterized by reduced insulin secretion in response to muscarinic agonists, combined with increased peripheral glucose uptake and concomitantly increased plasma membrane localization of glucose transporter 4 (GLUT4) in skeletal muscle and adipocytes. In contrast, older AnkbR1788W/R1788W and AnkbL1622I/L1622I mice developed increased adiposity, a phenotype that was reproduced in cultured adipocytes, and insulin resistance. GLUT4 trafficking was altered in animals expressing mutant forms of ankyrin-B, and we propose that increased cell surface expression of GLUT4 in skeletal muscle and fatty tissue of AnkbR1788W/R1788W mice leads to the observed age-dependent adiposity. Together, our data suggest that ankyrin-B deficiency results in a metabolic syndrome that combines primary pancreatic β cell insufficiency with peripheral insulin resistance and is directly relevant to the nearly one million North Americans bearing the R1788W ankyrin-B variant.
Collapse
|
28
|
Shitara A, Weigert R. Imaging membrane remodeling during regulated exocytosis in live mice. Exp Cell Res 2015; 337:219-25. [PMID: 26160452 DOI: 10.1016/j.yexcr.2015.06.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/28/2015] [Indexed: 10/23/2022]
Abstract
In this mini-review we focus on the use of time-lapse light microscopy to study membrane remodeling during protein secretion in live animals. In particular, we highlight how subcellular intravital microscopy has enabled imaging the dynamics of both individual secretory vesicles and the plasma membrane, during different steps in the exocytic process. This powerful approach has provided us with the unique opportunity to unravel the role of the actin cytoskeleton in regulating this process under physiological conditions, and to overcome the shortcomings of more reductionist model systems.
Collapse
Affiliation(s)
- Akiko Shitara
- Intracellular Membrane Trafficking Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, United States
| | - Roberto Weigert
- Intracellular Membrane Trafficking Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Dr. 303A, Bethesda, MD 20892-4340, United States.
| |
Collapse
|
29
|
Automatically Identifying Fusion Events between GLUT4 Storage Vesicles and the Plasma Membrane in TIRF Microscopy Image Sequences. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:610482. [PMID: 26089970 PMCID: PMC4452347 DOI: 10.1155/2015/610482] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/02/2015] [Accepted: 01/03/2015] [Indexed: 11/18/2022]
Abstract
Quantitative analysis of the dynamic behavior about membrane-bound secretory vesicles has proven to be important in biological research. This paper proposes a novel approach to automatically identify the elusive fusion events between VAMP2-pHluorin labeled GLUT4 storage vesicles (GSVs) and the plasma membrane. The differentiation is implemented to detect the initiation of fusion events by modified forward subtraction of consecutive frames in the TIRFM image sequence. Spatially connected pixels in difference images brighter than a specified adaptive threshold are grouped into a distinct fusion spot. The vesicles are located at the intensity-weighted centroid of their fusion spots. To reveal the true in vivo nature of a fusion event, 2D Gaussian fitting for the fusion spot is used to derive the intensity-weighted centroid and the spot size during the fusion process. The fusion event and its termination can be determined according to the change of spot size. The method is evaluated on real experiment data with ground truth annotated by expert cell biologists. The evaluation results show that it can achieve relatively high accuracy comparing favorably to the manual analysis, yet at a small fraction of time.
Collapse
|
30
|
Govers R. Molecular mechanisms of GLUT4 regulation in adipocytes. DIABETES & METABOLISM 2014; 40:400-10. [PMID: 24656589 DOI: 10.1016/j.diabet.2014.01.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/24/2014] [Accepted: 01/26/2014] [Indexed: 01/28/2023]
|
31
|
Foley KP, Klip A. Dynamic GLUT4 sorting through a syntaxin-6 compartment in muscle cells is derailed by insulin resistance-causing ceramide. Biol Open 2014; 3:314-25. [PMID: 24705014 PMCID: PMC4021353 DOI: 10.1242/bio.20147898] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
GLUT4 constitutively recycles between the plasma membrane and intracellular depots. Insulin shifts this dynamic equilibrium towards the plasma membrane by recruiting GLUT4 to the plasma membrane from insulin-responsive vesicles. Muscle is the primary site for dietary glucose deposition; however, how GLUT4 sorts into insulin-responsive vesicles, and if and how insulin resistance affects this process, is unknown. In L6 myoblasts stably expressing myc-tagged GLUT4, we analyzed the intracellular itinerary of GLUT4 as it internalizes from the cell surface and examined if such sorting is perturbed by C2-ceramide, a lipid metabolite causing insulin resistance. Surface-labeled GLUT4myc that internalized for 30 min accumulated in a Syntaxin-6 (Stx6)- and Stx16-positive perinuclear sub-compartment devoid of furin or internalized transferrin, and displayed insulin-responsive re-exocytosis. C2-ceramide dispersed the Stx6-positive sub-compartment and prevented insulin-responsive re-exocytosis of internalized GLUT4myc, even under conditions not affecting insulin-stimulated signaling towards Akt. Microtubule disruption with nocodazole prevented pre-internalized GLUT4myc from reaching the Stx6-positive perinuclear sub-compartment and from undergoing insulin-responsive exocytosis. Removing nocodazole allowed both parameters to recover, suggesting that the Stx6-positive perinuclear sub-compartment was required for GLUT4 insulin-responsiveness. Accordingly, Stx6 knockdown inhibited by ∼50% the ability of internalized GLUT4myc to undergo insulin-responsive re-exocytosis without altering its overall perinuclear accumulation. We propose that Stx6 defines the insulin-responsive compartment in muscle cells. Our data are consistent with a model where ceramide could cause insulin resistance by altering intracellular GLUT4 sorting.
Collapse
Affiliation(s)
- Kevin P Foley
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Amira Klip
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
32
|
Abstract
GLUT4 is regulated by its intracellular localization. In the absence of insulin, GLUT4 is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation (and contraction in muscle), GLUT4 translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. Its implication in insulin-regulated glucose uptake makes GLUT4 not only a key player in normal glucose homeostasis but also an important element in insulin resistance and type 2 diabetes. Nevertheless, how GLUT4 is retained intracellularly and how insulin acts on this retention mechanism is largely unclear. In this review, the current knowledge regarding the various molecular processes that govern GLUT4 physiology is discussed as well as the questions that remain.
Collapse
|
33
|
Chen Y, Lippincott-Schwartz J. Insulin triggers surface-directed trafficking of sequestered GLUT4 storage vesicles marked by Rab10. Small GTPases 2013; 4:193-7. [PMID: 24030635 PMCID: PMC3976978 DOI: 10.4161/sgtp.26471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Understanding how glucose transporter isoform 4 (GLUT4) redistributes to the plasma membrane during insulin stimulation is a major goal of glucose transporter research. GLUT4 molecules normally reside in numerous intracellular compartments, including specialized storage vesicles and early/recycling endosomes. It is unclear how these diverse compartments respond to insulin stimulation to deliver GLUT4 molecules to the plasma membrane. For example, do they fuse with each other first or remain as separate compartments with different trafficking characteristics? Our recent live cell imaging studies are helping to clarify these issues. Using Rab proteins as specific markers to distinguish between storage vesicles and endosomes containing GLUT4, we demonstrate that it is primarily internal GLUT4 storage vesicles (GSVs) marked by Rab10 that approach and fuse at the plasma membrane and GSVs don’t interact with endosomes on their way to the plasma membrane. These new findings add strong support to the model that GSV release from intracellular retention plays a major role in supplying GLUT4 molecules onto the PM under insulin stimulation.
Collapse
Affiliation(s)
- Yu Chen
- The Eugene Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| | - Jennifer Lippincott-Schwartz
- The Eugene Kennedy Shriver National Institute of Child Health and Human Development; National Institutes of Health; Bethesda, MD USA
| |
Collapse
|
34
|
Sadacca LA, Bruno J, Wen J, Xiong W, McGraw TE. Specialized sorting of GLUT4 and its recruitment to the cell surface are independently regulated by distinct Rabs. Mol Biol Cell 2013; 24:2544-57. [PMID: 23804653 PMCID: PMC3744946 DOI: 10.1091/mbc.e13-02-0103] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RAB10 and RAB14 function at sequential steps of insulin-stimulated GLUT4 translocation to the plasma membrane. RAB14 functions upstream of RAB10 in GLUT4 sorting to the specialized transport vesicles, and RAB10 and its GAP protein comprise the main signaling module that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Adipocyte glucose uptake in response to insulin is essential for physiological glucose homeostasis: stimulation of adipocytes with insulin results in insertion of the glucose transporter GLUT4 into the plasma membrane and subsequent glucose uptake. Here we establish that RAB10 and RAB14 are key regulators of GLUT4 trafficking that function at independent, sequential steps of GLUT4 translocation. RAB14 functions upstream of RAB10 in the sorting of GLUT4 to the specialized transport vesicles that ferry GLUT4 to the plasma membrane. RAB10 and its GTPase-activating protein (GAP) AS160 comprise the principal signaling module downstream of insulin receptor activation that regulates the accumulation of GLUT4 transport vesicles at the plasma membrane. Although both RAB10 and RAB14 are regulated by the GAP activity of AS160 in vitro, only RAB10 is under the control of AS160 in vivo. Insulin regulation of the pool of RAB10 required for GLUT4 translocation occurs through regulation of AS160, since activation of RAB10 by DENND4C, its GTP exchange factor, does not require insulin stimulation.
Collapse
Affiliation(s)
- L Amanda Sadacca
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
35
|
Burchfield JG, Lu J, Fazakerley DJ, Tan SX, Ng Y, Mele K, Buckley MJ, Han W, Hughes WE, James DE. Novel systems for dynamically assessing insulin action in live cells reveals heterogeneity in the insulin response. Traffic 2013; 14:259-73. [PMID: 23252720 DOI: 10.1111/tra.12035] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/13/2012] [Accepted: 12/18/2012] [Indexed: 12/23/2022]
Abstract
Regulated GLUT4 trafficking is a key action of insulin. Quantitative stepwise analysis of this process provides a powerful tool for pinpointing regulatory nodes that contribute to insulin regulation and insulin resistance. We describe a novel GLUT4 construct and workflow for the streamlined dissection of GLUT4 trafficking; from simple high throughput screens to high resolution analyses of individual vesicles. We reveal single cell heterogeneity in insulin action highlighting the utility of this approach - each cell displayed a unique and highly reproducible insulin response, implying that each cell is hard-wired to produce a specific output in response to a given stimulus. These data highlight that the response of a cell population to insulin is underpinned by extensive heterogeneity at the single cell level. This heterogeneity is pre-programmed within each cell and is not the result of intracellular stochastic events.
Collapse
Affiliation(s)
- James G Burchfield
- Diabetes and Obesity Research Program, The Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
A diffusion model for detecting and classifying vesicle fusion and undocking events. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2013. [PMID: 23286147 DOI: 10.1007/978-3-642-33454-2_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Fluorescently-tagged proteins located on vesicles can fuse with the surface membrane (visualised as a 'puff') or undock and return back into the bulk of the cell. Detection and quantitative measurement of these events from time-lapse videos has proven difficult. We propose a novel approach to detect fusion and undocking events by first searching for docked vesicles that 'disappear' from the field of view, and then using a diffusion model to classify them as either fusion or undocking events. We can also use the same searching method to identify docking events. We present comparative results against existing algorithms.
Collapse
|
37
|
Jambaldorj B, Terada E, Hosaka T, Kishuku Y, Tomioka Y, Iwashima K, Hirata Y, Teshigawara K, Thi Kim Le C, Nakagawa T, Harada N, Sakai T, Sakaue H, Matsumoto T, Funaki M, Takahashi A, Nakaya Y. Cysteine string protein 1 (CSP1) modulates insulin sensitivity by attenuating glucose transporter 4 (GLUT4) vesicle docking with the plasma membrane. THE JOURNAL OF MEDICAL INVESTIGATION 2013; 60:197-204. [DOI: 10.2152/jmi.60.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Bayasgalan Jambaldorj
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Eri Terada
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Toshio Hosaka
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yuka Kishuku
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yukiko Tomioka
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Kaori Iwashima
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yohko Hirata
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Kiyoshi Teshigawara
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Chung Thi Kim Le
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Tadahiko Nakagawa
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Nagakatsu Harada
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Tohru Sakai
- Department of Public Health and Applied Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Toshio Matsumoto
- Department of Medicine and Bioregulatory Sciences, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Makoto Funaki
- Clinical Research Center for Diabetes, Tokushima University Hospital
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Health Biosciences, the University of Tokushima Graduate School
| | - Yutaka Nakaya
- Department of Nutrition and Metabolism, Institute of Health Biosciences, the University of Tokushima Graduate School
| |
Collapse
|
38
|
Chen Y, Wang Y, Zhang J, Deng Y, Jiang L, Song E, Wu XS, Hammer JA, Xu T, Lippincott-Schwartz J. Rab10 and myosin-Va mediate insulin-stimulated GLUT4 storage vesicle translocation in adipocytes. ACTA ACUST UNITED AC 2012; 198:545-60. [PMID: 22908308 PMCID: PMC3514028 DOI: 10.1083/jcb.201111091] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rab proteins are important regulators of insulin-stimulated GLUT4 translocation to the plasma membrane (PM), but the precise steps in GLUT4 trafficking modulated by particular Rab proteins remain unclear. Here, we systematically investigate the involvement of Rab proteins in GLUT4 trafficking, focusing on Rab proteins directly mediating GLUT4 storage vesicle (GSV) delivery to the PM. Using dual-color total internal reflection fluorescence (TIRF) microscopy and an insulin-responsive aminopeptidase (IRAP)-pHluorin fusion assay, we demonstrated that Rab10 directly facilitated GSV translocation to and docking at the PM. Rab14 mediated GLUT4 delivery to the PM via endosomal compartments containing transferrin receptor (TfR), whereas Rab4A, Rab4B, and Rab8A recycled GLUT4 through the endosomal system. Myosin-Va associated with GSVs by interacting with Rab10, positioning peripherally recruited GSVs for ultimate fusion. Thus, multiple Rab proteins regulate the trafficking of GLUT4, with Rab10 coordinating with myosin-Va to mediate the final steps of insulin-stimulated GSV translocation to the PM.
Collapse
Affiliation(s)
- Yu Chen
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Carcel-Trullols J, Aguilar-Gallardo C, Garcia-Alcalde F, Pardo-Cea MA, Dopazo J, Conesa A, Simón C. Transdifferentiation of MALME-3M and MCF-7 Cells toward Adipocyte-like Cells is Dependent on Clathrin-mediated Endocytosis. SPRINGERPLUS 2012; 1:44. [PMID: 23961369 PMCID: PMC3725915 DOI: 10.1186/2193-1801-1-44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 10/03/2012] [Indexed: 01/19/2023]
Abstract
Abstract Enforced cell transdifferentiation of human cancer cells is a promising alternative to conventional chemotherapy. We previously identified albumin-associated lipid- and, more specifically, saturated fatty acid-induced transdifferentiation programs in human cancer cells (HCCLs). In this study, we further characterized the adipocyte-like cells, resulting from the transdifferentiation of human cancer cell lines MCF-7 and MALME-3M, and proposed a common mechanistic approach for these transdifferentiating programs. We showed the loss of pigmentation in MALME-3M cells treated with albumin-associated lipids, based on electron microscopic analysis, and the overexpression of perilipin 2 (PLIN2) by western blotting in MALME-3M and MCF-7 cells treated with unsaturated fatty acids. Comparing the gene expression profiles of naive melanoma MALME-3M cells and albumin-associated lipid-treated cells, based on RNA sequencing, we confirmed the transcriptional upregulation of some key adipogenic gene markers and also an alternative splicing of the adipogenic master regulator PPARG, that is probably related to the reported up regulated expression of the protein. Most importantly, these results also showed the upregulation of genes responsible for Clathrin (CLTC) and other adaptor-related proteins. An increase in CLTC expression in the transdifferentiated cells was confirmed by western blotting. Inactivation of CLTC by chlorpromazine (CHP), an inhibitor of CTLC mediated endocytosis (CME), and gene silencing by siRNAs, partially reversed the accumulation of neutral lipids observed in the transdifferentiated cells. These findings give a deeper insight into the phenotypic changes observed in HCCL to adipocyte-like transdifferentiation and point towards CME as a key pathway in distinct transdifferentiation programs. Disclosures Simon C and Aguilar-Gallardo C are co-inventors of the International Patent Application No. PCT/EP2011/004941 entitled “Methods for tumor treatment and adipogenesis differentiation”. Electronic supplementary material The online version of this article (doi:10.1186/2193-1801-1-44) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jaime Carcel-Trullols
- Bioinformatics and Genomics Department, Prince Felipe Research Centre (CIPF), Avda. Autopista del Saler, 16-3 46012 Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Olson AL. Regulation of GLUT4 and Insulin-Dependent Glucose Flux. ISRN MOLECULAR BIOLOGY 2012; 2012:856987. [PMID: 27335671 PMCID: PMC4890881 DOI: 10.5402/2012/856987] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 09/24/2012] [Indexed: 12/21/2022]
Abstract
GLUT4 has long been known to be an insulin responsive glucose transporter. Regulation of GLUT4 has been a major focus of research on the cause and prevention of type 2 diabetes. Understanding how insulin signaling alters the intracellular trafficking of GLUT4 as well as understanding the fate of glucose transported into the cell by GLUT4 will be critically important for seeking solutions to the current rise in diabetes and metabolic disease.
Collapse
Affiliation(s)
- Ann Louise Olson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, P.O. Box 26901, BMSB 964, Oklahoma City, OK 73190, USA
| |
Collapse
|
41
|
Rosenow A, Noben JP, Jocken J, Kallendrusch S, Fischer-Posovszky P, Mariman ECM, Renes J. Resveratrol-induced changes of the human adipocyte secretion profile. J Proteome Res 2012; 11:4733-43. [PMID: 22905912 DOI: 10.1021/pr300539b] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enlarged white adipose tissue (WAT) is a feature of obesity and leads to changes in its paracrine and endocrine function. Dysfunction of WAT cells is associated with obesity-associated disorders like type 2 diabetes and cardiovascular diseases. Resveratrol (RSV), a natural polyphenolic compound, mimics beneficial effects of calorie restriction. As such, RSV seems a promising therapeutic target for obesity-associated disorders. The effect of RSV on the human adipokine profile is still elusive. Therefore, a proteomic study together with bioinformatical analysis was performed to investigate the effect of RSV on the secretion profile of mature human SGBS adipocytes. RSV incubation resulted in elevated basal glycerol release and reduced intracellular TG content. This increased intracellular lipolysis was accompanied by profound changes in the adipocyte secretion profile. Extracellular matrix proteins were down-regulated while processing proteins were mostly up-regulated after RSV treatment. Interestingly, RSV induced secretion of proteins protective against cellular stress and proteins involved in the regulation of apoptosis. Furthermore, we found a RSV-induced up-regulation of adiponectin and ApoE accompanied by a down-regulation of PAI-1 and PEDF secretion which may improve anti-inflammatory processes and increased insulin sensitivity. These effects may contribute to alleviate obesity-induced metabolic complications. In addition, two novel RSV-regulated adipocyte-secreted proteins were identified.
Collapse
Affiliation(s)
- Anja Rosenow
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
42
|
Sites of glucose transporter-4 vesicle fusion with the plasma membrane correlate spatially with microtubules. PLoS One 2012; 7:e43662. [PMID: 22916292 PMCID: PMC3423385 DOI: 10.1371/journal.pone.0043662] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 07/23/2012] [Indexed: 12/25/2022] Open
Abstract
In adipocytes, vesicles containing glucose transporter-4 (GLUT4) redistribute from intracellular stores to the cell periphery in response to insulin stimulation. Vesicles then fuse with the plasma membrane, facilitating glucose transport into the cell. To gain insight into the details of microtubule involvement, we examined the spatial organization and dynamics of microtubules in relation to GLUT4 vesicle trafficking in living 3T3-L1 adipocytes using total internal reflection fluorescence (TIRF) microscopy. Insulin stimulated an increase in microtubule density and curvature within the TIRF-illuminated region of the cell. The high degree of curvature and abrupt displacements of microtubules indicate that substantial forces act on microtubules. The time course of the microtubule density increase precedes that of the increase in intensity of fluorescently-tagged GLUT4 in this same region of the cell. In addition, portions of the microtubules are highly curved and are pulled closer to the cell cortex, as confirmed by Parallax microscopy. Microtubule disruption delayed and modestly reduced GLUT4 accumulation at the plasma membrane. Quantitative analysis revealed that fusions of GLUT4-containing vesicles with the plasma membrane, detected using insulin-regulated aminopeptidase with a pH-sensitive GFP tag (pHluorin), preferentially occur near microtubules. Interestingly, long-distance vesicle movement along microtubules visible at the cell surface prior to fusion does not appear to account for this proximity. We conclude that microtubules may be important in providing spatial information for GLUT4 vesicle fusion.
Collapse
|
43
|
Abstract
GLUT4 is an insulin-regulated glucose transporter that is responsible for insulin-regulated glucose uptake into fat and muscle cells. In the absence of insulin, GLUT4 is mainly found in intracellular vesicles referred to as GLUT4 storage vesicles (GSVs). Here, we summarise evidence for the existence of these specific vesicles, how they are sequestered inside the cell and how they undergo exocytosis in the presence of insulin. In response to insulin stimulation, GSVs fuse with the plasma membrane in a rapid burst and in the continued presence of insulin GLUT4 molecules are internalised and recycled back to the plasma membrane in vesicles that are distinct from GSVs and probably of endosomal origin. In this Commentary we discuss evidence that this delivery process is tightly regulated and involves numerous molecules. Key components include the actin cytoskeleton, myosin motors, several Rab GTPases, the exocyst, SNARE proteins and SNARE regulators. Each step in this process is carefully orchestrated in a sequential and coupled manner and we are beginning to dissect key nodes within this network that determine vesicle-membrane fusion in response to insulin. This regulatory process clearly involves the Ser/Thr kinase AKT and the exquisite manner in which this single metabolic process is regulated makes it a likely target for lesions that might contribute to metabolic disease.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | |
Collapse
|
44
|
Abstract
Despite daily fasting and feeding, plasma glucose levels are normally maintained within a narrow range owing to the hormones insulin and glucagon. Insulin increases glucose uptake into fat and muscle cells through the regulated trafficking of vesicles that contain glucose transporter type 4 (GLUT4). New insights into insulin signalling reveal that phosphorylation events initiated by the insulin receptor regulate key GLUT4 trafficking proteins, including small GTPases, tethering complexes and the vesicle fusion machinery. These proteins, in turn, control GLUT4 movement through the endosomal system, formation and retention of specialized GLUT4 storage vesicles and targeted exocytosis of these vesicles. Understanding these processes may help to explain the development of insulin resistance in type 2 diabetes and provide new potential therapeutic targets.
Collapse
|
45
|
Toomre D. Generating live cell data using total internal reflection fluorescence microscopy. Cold Spring Harb Protoc 2012; 2012:439-46. [PMID: 22474670 DOI: 10.1101/pdb.ip068676] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Live cell fluorescent microscopy is important in elucidating dynamic cellular processes such as cell signaling, membrane trafficking, and cytoskeleton remodeling. Often, transient intermediate states are revealed only when imaged and quantitated at the single-molecule, vesicle, or organelle level. Such insight depends on the spatiotemporal resolution and sensitivity of a given microscopy method. Confocal microscopes optically section the cell and improve image contrast and axial resolution (>600 nm) compared with conventional epifluorescence microscopes. Another approach, which can selectively excite fluorophores in an even thinner optical plane (<100 nm) is total internal reflection fluorescence microscopy (TIRFM). The key principle of TIRFM is that a thin, exponentially decaying, evanescent field of excitation can be generated at the interface of two mediums of different refractive index (RI) (e.g., the glass coverslip and the biological specimen); as such, TIRFM is ill-suited to deep imaging of cells or tissue. However, for processes near the lower cell cortex, the sensitivity of TIRFM is exquisite. The recent availability of a very high numerical-aperture (NA) objective lens (>1.45) and turnkey TIRFM systems by all the major microscopy manufacturers has made TIRFM increasingly accessible and attractive to biologists, especially when performed in a quantitative manner and complemented with orthogonal genetic and molecular manipulations. This article discusses sample preparation for TIRFM, acquisition of time-lapse movies, and quantitative analysis. It also gives examples of imaging cytoskeleton dynamics and exo- and endocytosis using TIRFM.
Collapse
|
46
|
Millis BA. Evanescent-wave field imaging: an introduction to total internal reflection fluorescence microscopy. Methods Mol Biol 2012; 823:295-309. [PMID: 22081353 DOI: 10.1007/978-1-60327-216-2_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Advancements in technology and computational power in recent years have directly impacted modern microscopy through improvements in light detection, imaging software platforms, as well as integration of complex hardware systems. These successes have allowed for mainstream utilization of previously complex microscopic techniques such as total internal reflection fluorescence (TIRF) microscopy, revealing many aspects of cell biology not previously appreciated. Through the restriction of illumination to areas of cell-coverslip interfaces in combination with modern detectors, TIRF microscopy allows researchers in the life sciences a glimpse of dynamic cellular phenomena with resolutions never before achieved.This chapter provides a basic overview to the concept of TIRF microscopy and some considerations to setting up this technique in the lab.
Collapse
Affiliation(s)
- Bryan A Millis
- National Center for Biodefense and Infectious Disease, George Mason University, Manassas, VA, USA.
| |
Collapse
|
47
|
Strålfors P. Caveolins and Caveolae, Roles in Insulin Signalling and Diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 729:111-26. [DOI: 10.1007/978-1-4614-1222-9_8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
48
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
49
|
Lafontan M. Historical perspectives in fat cell biology: the fat cell as a model for the investigation of hormonal and metabolic pathways. Am J Physiol Cell Physiol 2011; 302:C327-59. [PMID: 21900692 DOI: 10.1152/ajpcell.00168.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
For many years, there was little interest in the biochemistry or physiology of adipose tissue. It is now well recognized that adipocytes play an important dynamic role in metabolic regulation. They are able to sense metabolic states via their ability to perceive a large number of nervous and hormonal signals. They are also able to produce hormones, called adipokines, that affect nutrient intake, metabolism and energy expenditure. The report by Rodbell in 1964 that intact fat cells can be obtained by collagenase digestion of adipose tissue revolutionized studies on the hormonal regulation and metabolism of the fat cell. In the context of the advent of systems biology in the field of cell biology, the present seems an appropriate time to look back at the global contribution of the fat cell to cell biology knowledge. This review focuses on the very early approaches that used the fat cell as a tool to discover and understand various cellular mechanisms. Attention essentially focuses on the early investigations revealing the major contribution of mature fat cells and also fat cells originating from adipose cell lines to the discovery of major events related to hormone action (hormone receptors and transduction pathways involved in hormonal signaling) and mechanisms involved in metabolite processing (hexose uptake and uptake, storage, and efflux of fatty acids). Dormant preadipocytes exist in the stroma-vascular fraction of the adipose tissue of rodents and humans; cell culture systems have proven to be valuable models for the study of the processes involved in the formation of new fat cells. Finally, more recent insights into adipocyte secretion, a completely new role with major metabolic impact, are also briefly summarized.
Collapse
Affiliation(s)
- Max Lafontan
- Institut National de la Santé et de la Recherche Médicale, UMR, Hôpital Rangueil, Toulouse, France.
| |
Collapse
|
50
|
Zhang L, Yu K, Robert KW, DeBolt KM, Hong N, Tao JQ, Fukuda M, Fisher AB, Huang S. Rab38 targets to lamellar bodies and normalizes their sizes in lung alveolar type II epithelial cells. Am J Physiol Lung Cell Mol Physiol 2011; 301:L461-77. [PMID: 21764986 DOI: 10.1152/ajplung.00056.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rab38 is a rat Hermansky-Pudlak syndrome gene that plays an important role in surfactant homeostasis in alveolar type II (ATII) pneumocytes. We examined Rab38 function in regulating lamellar body (LB) morphology in ATII cells. Quantitative electron microscopy revealed that LBs in ATII cells were ∼77% larger in Rab38-null fawn-hooded hypertension (FHH) than control Sprague-Dawley (SD) rats. Rab38 protein expression was restricted in lung epithelial cells but was not found in primary endothelial cells. In SD ATII cells, Rab38 protein level gradually declined during 5 days in culture. Importantly, endogenous Rab38 was present in LB fractions purified from SD rat lungs, and transiently expressed enhanced green fluorescent protein (EGFP)-tagged Rab38 labeled only the limiting membranes of a subpopulation (∼30%) of LBs in cultured ATII cells. This selective targeting was abolished by point mutations to EGFP-Rab38 and was not shared by Rab7 and Rab4b, which also function in the ATII cells. Using confocal microscopy, we established a method for quantitative evaluation of the enlarged LB phenotype temporally preserved in cultured FHH ATII cells. A direct causal relationship was established when the enlarged LB phenotype was reserved and then rescued by transiently reexpressed EGFP-Rab38 in cultured FHH ATII cells. This rescuing effect was associated with dynamic EGFP-Rab38 targeting to and on LB limiting membranes. We conclude that Rab38 plays an indispensible role in maintaining LB morphology and surfactant homeostasis in ATII pneumocytes.
Collapse
Affiliation(s)
- Linghui Zhang
- Institute for Environmental Medicine, University of Pennsylvania School of Medicine, Philadelphia, 19104-6068, USA
| | | | | | | | | | | | | | | | | |
Collapse
|