1
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
2
|
Lyu C, Vaddi PK, Elshafae S, Pradeep A, Ma D, Chen S. Unveiling RACK1: a key regulator of the PI3K/AKT pathway in prostate cancer development. Oncogene 2025; 44:322-335. [PMID: 39537875 DOI: 10.1038/s41388-024-03224-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The dysregulated PI3K/AKT pathway is pivotal in the onset and progression of various cancers, including prostate cancer. However, targeting this pathway directly poses challenges due to compensatory upregulation of alternative oncogenic pathways. This study focuses on the novel regulatory activity of the Receptor for Activated Protein Kinase (RACK1), a scaffolding/adaptor protein, in governing the PI3K/AKT pathway within prostate cancer. Through a genetic mouse model, our research unveils RACK1's pivotal role in orchestrating AKT activation and the genesis of prostate cancer. RACK1 deficiency hampers AKT activation, effectively impeding prostate tumor formation induced by PTEN and p53 deficiency. Mechanistically, RACK1 facilitates AKT membrane translocation and fosters its interaction with mTORC2, thereby promoting AKT activation and subsequent tumor cell proliferation and tumor formation. Notably, inhibiting AKT activation via RACK1 deficiency does not trigger feedback upregulation of HER3 and androgen receptor (AR) expression and activation, distinguishing it from direct PI3K or AKT targeting. These findings position RACK1 as a critical regulator of the PI3K/AKT pathway and a promising target for curtailing prostate cancer development arising from pathway aberrations.
Collapse
Affiliation(s)
- Cancan Lyu
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Prasanna Kuma Vaddi
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Said Elshafae
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Anirudh Pradeep
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA
| | - Deqin Ma
- Departments of Phathology, University of Iowa, Iowa City, USA
| | - Songhai Chen
- Departments of Neuroscience and Pharmacology, University of Iowa, Iowa City, USA.
- Departments of Holden Comprehensive Cancer Center, Carver College of Medicine, University of Iowa, Iowa City, USA.
| |
Collapse
|
3
|
Ceci M, Bonvissuto D, Papetti F, Silvestri F, Sette C, Catalani E, Cervia D, Gornati R, Romano N. RACK1 contributes to the upregulation of embryonic genes in a model of cardiac hypertrophy. Sci Rep 2024; 14:25698. [PMID: 39465301 PMCID: PMC11514175 DOI: 10.1038/s41598-024-76138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Receptors for activated C kinases (RACKs) have been shown to coordinate PKC-mediated hypertrophic signalling in mice. However, little information is available on its participation in embryonic gene expression. This study investigated the involvement of RACK1 in the expression of embryonic genes in a zebrafish (ZF) ex vivo heart culture model by using phenylephrine (PE) or a growth factors cocktail (GFs) as a prohypertrophic/regeneration stimulus. Blebbistatin (BL) inhibition has also been studied for its ability to block the signal transduction actions of some PEs. qRT‒PCR and immunoblot analyses confirmed the upregulation of RACK1 in the PE- and GFs-treated groups. BL administration counteracted PE-induced hypertrophy and downregulated RACK1 expression. Immunohistochemical analyses of the heart revealed the colocalization of RACK1 and embryonic genes, namely, Gata4, Wt1, and Nfat2, under stimulation, whereas these genes were expressed at lower levels in the BL treatment group. Culturing ZF heart cells activated via GFs treatment increased the expression of RACK1. The overexpression of RACK1 induced by the transfection of recombinant RACK1 cDNA in ZF heart cells increased the expression of embryonic genes, especially after one week of GFs treatment. In summary, these results support the involvement of RACK1 in the induction of embryonic genes during cardiac hypertrophy/GFs stimulation in a fish heart model, which can be used as an alternative study model for mammals.
Collapse
Affiliation(s)
| | | | | | | | - Claudio Sette
- DNHA, Catholic University of Sacred Heart, Rome, Italy
- IRCCS, Policlinico A. Gemelli Foundation, Rome, Italy
| | | | | | | | | |
Collapse
|
4
|
Soni UK, Jenny L, Hegde RS. IGF-1R targeting in cancer - does sub-cellular localization matter? J Exp Clin Cancer Res 2023; 42:273. [PMID: 37858153 PMCID: PMC10588251 DOI: 10.1186/s13046-023-02850-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023] Open
Abstract
The insulin-like growth factor receptor (IGF-1R) was among the most intensively pursued kinase targets in oncology. However, even after a slew of small-molecule and antibody therapeutics reached clinical trials for a range of solid tumors, the initial promise remains unfulfilled. Mechanisms of resistance to, and toxicities resulting from, IGF-1R-targeted drugs are well-catalogued, and there is general appreciation of the fact that a lack of biomarker-based patient stratification was a limitation of previous clinical trials. But no next-generation therapeutic strategies have yet successfully exploited this understanding in the clinic.Currently there is emerging interest in re-visiting IGF-1R targeted therapeutics in combination-treatment protocols with predictive biomarker-driven patient-stratification. One such biomarker that emerged from early clinical trials is the sub-cellular localization of IGF-1R. After providing some background on IGF-1R, its drugging history, and the trials that led to the termination of drug development for this target, we look more deeply into the correlation between sub-cellular localization of IGF-1R and susceptibility to various classes of IGF-1R - targeted agents.
Collapse
Affiliation(s)
- Upendra K Soni
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Liam Jenny
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Rashmi S Hegde
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
5
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
6
|
Lee J, Robinson ME, Sun R, Kume K, Ma N, Cosgun KN, Chan LN, Leveille E, Geng H, Vykunta VS, Shy BR, Marson A, Katz S, Chen J, Paietta E, Meffre E, Vaidehi N, Müschen M. Dynamic phosphatase-recruitment controls B-cell selection and oncogenic signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532151. [PMID: 36993276 PMCID: PMC10054997 DOI: 10.1101/2023.03.13.532151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.
Collapse
|
7
|
Targeting the IGF-1R in prostate and colorectal cancer: reasons behind trial failure and future directions. Ther Deliv 2022; 13:167-186. [PMID: 35029130 DOI: 10.4155/tde-2021-0060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IGF-1Rs enact a significant part in cancer growth and its progress. IGF-1R inhibitors were encouraged in the early trials, but the patients did not benefit due to the unavailability of predictive biomarkers and IGF-1R system complexity. However, the linkage between IGF-1R and cancer was reported three decades ago. This review will shed light on the IGF-1R system, targeting IGF-1R through monoclonal antibodies, reasons behind IGF-1R trial failure and future directions. This study presented that targeting IGF-1R through monoclonal antibodies is still effective in cancer treatment, and there is a need to look for future directions. Cancer patients may benefit from using mAbs that target existing and new cancer targets, evidenced by promising results. It is also essential that the academician, trial experts and pharmaceutical companies play their role in finding a treatment for this deadly disease.
Collapse
|
8
|
Majed SO, Mustafa SA. MACE-Seq-based coding RNA and TrueQuant-based small RNA profile in breast cancer: tumor-suppressive miRNA-1275 identified as a novel marker. BMC Cancer 2021; 21:473. [PMID: 33910530 PMCID: PMC8082896 DOI: 10.1186/s12885-021-08218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Disruption of cellular processes in the breast by abnormally expressed miRNA is characterized to develop cancer. We aimed to identify the differential expression of small RNAs (sRNAs) and mRNAs in formalin-fixed paraffin-embedded (FFPE) tissue of the breast cancer (BC) and normal adjacent tissue (NAT). Another aim is to determine the differential expression of miR-1275 as a novel biomarker for BC and also identify its target genes. Methods TrueQuant method for analysis of sRNA expression and MACE-sequencing method for analysis of gene expression were used analyzing. The RT-qPCR technique was used to confirm miR-1275 down expression. Target genes of miR-1275 were computationally identified using target prediction sites and also the expression level of them was experimentally determined among the expressed genes. Results TrueQuant findings showed that 1400 sRNAs were differentially expressed in the FFPE tissue of two Kurdish cases with BC, as compared to NAT. Among the sRNAs, 29 small RNAs were shown to be significantly downregulated in BC cells. The RT-qPCR results confirmed that miR-1275 was significantly down-expressed in 20 Kurdish cases with BC compared to NAT. However, Overall survival (OS) analysis revealed that the correlation between the expression level of miR-1275 and clinical significance was highly corrected in cases with BC (OS rate: P = 0.0401). The MACE-seq results revealed that 26,843 genes were differentially expressed in the BC tissue compared to NAT, but 7041 genes were displayed in a scatter plot. Furthermore, putative target genes (DVL3, PPP2R2D, THSD4, CREB1, SYT7, and PRKACA) were computationally identified as direct targets of miR-1275 in several target predicted sites. The MACE-seq results revealed that the expression level of these targets was increased in BC tissue compared to NAT. The level of these targets was negatively associated with miR-1275 expression. Finally, the role of down-regulated miR-1275 on its targets in biological mechanisms of BC cells was identified; including cell growth, proliferation, movement, invasion, metastasis, and apoptosis. Conclusion Down-expressed miR-1275, a tumor suppressor, is a novel biomarker for early detection of BC. DVL3, PPP2R2D, THSD4, CREB1, SYT7, and PRKACA are newly identified to be targeted by miR-1275.
Collapse
Affiliation(s)
- Sevan Omer Majed
- Biology Department, College of Education, Salahaddin University-Erbil, Erbil, Iraq.
| | - Suhad Asad Mustafa
- Research Center, Molecular Genetics lab, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
9
|
Buoso E, Masi M, Long A, Chiappini C, Travelli C, Govoni S, Racchi M. Ribosomes as a nexus between translation and cancer progression: Focus on ribosomal Receptor for Activated C Kinase 1 (RACK1) in breast cancer. Br J Pharmacol 2020; 179:2813-2828. [PMID: 32726469 DOI: 10.1111/bph.15218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022] Open
Abstract
Ribosomes coordinate spatiotemporal control of gene expression, contributing to the acquisition and maintenance of cancer phenotype. The link between ribosomes and cancer is found in the roles of individual ribosomal proteins in tumorigenesis and cancer progression, including the ribosomal protein, receptor for activated C kinase 1 (RACK1). RACK1 regulates cancer cell invasion and is localized in spreading initiation centres, structural adhesion complexes containing RNA binding proteins and poly-adenylated mRNAs that suggest a local translation process. As RACK1 is a ribosomal protein directly involved in translation and in breast cancer progression, we propose a new molecular mechanism for breast cancer cell migration and invasion, which considers the molecular differences between epithelial and mesenchymal cell profiles in order to characterize and provide novel targets for therapeutic strategies. Hence, we provide an analysis on how ribosomes translate cancer progression with a final focus on the ribosomal protein RACK1 in breast cancer.
Collapse
Affiliation(s)
- Erica Buoso
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Mirco Masi
- Department of Drug Sciences, University of Pavia, Pavia, Italy.,Scuola Universitaria Superiore IUSS Pavia, Pavia, Italy
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | | | | | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Rui M, Ng KS, Tang Q, Bu S, Yu F. Protein phosphatase PP2A regulates microtubule orientation and dendrite pruning in Drosophila. EMBO Rep 2020; 21:e48843. [PMID: 32187821 DOI: 10.15252/embr.201948843] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
Pruning that selectively eliminates inappropriate projections is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, ddaC sensory neurons undergo dendrite-specific pruning in response to the steroid hormone ecdysone. However, the understanding of the molecular mechanisms underlying dendrite pruning remains incomplete. Here, we show that protein phosphatase 2A (PP2A) is required for dendrite pruning. The catalytic (Microtubule star/Mts), scaffolding (PP2A-29B), and two regulatory subunits (Widerborst/Wdb and Twins/Tws) play important roles in dendrite pruning. Functional analyses indicate that PP2A, via Wdb, facilitates the expression of Sox14 and Mical prior to dendrite pruning. Furthermore, PP2A, via Tws, governs the minus-end-out orientation of microtubules (MTs) in the dendrites. Moreover, the levels of Klp10A, a MT depolymerase, increase when PP2A is compromised. Attenuation of Klp10A fully rescues the MT orientation defects in mts or pp2a-29b RNAi ddaC neurons, suggesting that PP2A governs dendritic MT orientation by suppressing Klp10A levels and/or function. Taken together, this study sheds light on a novel function of PP2A in regulating dendrite pruning and dendritic MT polarity in sensory neurons.
Collapse
Affiliation(s)
- Menglong Rui
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Kay Siong Ng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore
| | - Quan Tang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Shufeng Bu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore City, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore City, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, Singapore City, Singapore.,Neuroscience and Behavioral Disorder Program, Duke-NUS Medical School Singapore, Singapore City, Singapore
| |
Collapse
|
11
|
Rieger L, O’Connor R. Controlled Signaling-Insulin-Like Growth Factor Receptor Endocytosis and Presence at Intracellular Compartments. Front Endocrinol (Lausanne) 2020; 11:620013. [PMID: 33584548 PMCID: PMC7878670 DOI: 10.3389/fendo.2020.620013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Ligand-induced activation of the IGF-1 receptor triggers plasma-membrane-derived signal transduction but also triggers receptor endocytosis, which was previously thought to limit signaling. However, it is becoming ever more clear that IGF-1R endocytosis and trafficking to specific subcellular locations can define specific signaling responses that are important for key biological processes in normal cells and cancer cells. In different cell types, specific cell adhesion receptors and associated proteins can regulate IGF-1R endocytosis and trafficking. Once internalized, the IGF-1R may be recycled, degraded or translocated to the intracellular membrane compartments of the Golgi apparatus or the nucleus. The IGF-1R is present in the Golgi apparatus of migratory cancer cells where its signaling contributes to aggressive cancer behaviors including cell migration. The IGF-1R is also found in the nucleus of certain cancer cells where it can regulate gene expression. Nuclear IGF-1R is associated with poor clinical outcomes. IGF-1R signaling has also been shown to support mitochondrial biogenesis and function, and IGF-1R inhibition causes mitochondrial dysfunction. How IGF-1R intracellular trafficking and compartmentalized signaling is controlled is still unknown. This is an important area for further study, particularly in cancer.
Collapse
|
12
|
Guo J, Hu Y, Zhou Y, Zhu Z, Sun Y, Li J, Wu R, Miao Y, Sun X. Profiling of the Receptor for Activated C Kinase 1a (RACK1a) interaction network in Arabidopsis thaliana. Biochem Biophys Res Commun 2019; 520:366-372. [PMID: 31606202 DOI: 10.1016/j.bbrc.2019.09.142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/27/2022]
Abstract
As a scaffold protein, Receptor for Activated C Kinase 1a (RACK1) interacts with many proteins and is involved in multiple biological processes in Arabidopsis. However, the global RACK1 protein interaction network in higher plants remains poorly understood. Here, we generated a yeast two-hybrid library using mixed samples from different developmental stages of Arabidopsis thaliana. Using RACK1a as bait, we performed a comprehensive screening of the resulting library to identify RACK1a interactors at the whole-transcriptome level. We selected 1065 independent positive clones that led to the identification of 215 RACK1a interactors. We classified these interactors into six groups according to their potential functions. Several interactors were selected for bimolecular fluorescence complementation (BiFC) analysis and their interaction with RACK1a was confirmed in vivo. Our results provide further insight into the molecular mechanisms through which RACK1a regulates various growth and development processes in higher plants.
Collapse
Affiliation(s)
- Jinggong Guo
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yunhe Hu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Yaping Zhou
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Zhinan Zhu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yijing Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Jiaoai Li
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China
| | - Rui Wu
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng, 475001, China; College of Life Sciences, Shanghai Normal University, Guilin Road 100, Shanghai, 200234, China.
| |
Collapse
|
13
|
Day JP, Whiteley E, Freeley M, Long A, Malacrida B, Kiely P, Baillie GS. RAB40C regulates RACK1 stability via the ubiquitin-proteasome system. Future Sci OA 2018; 4:FSO317. [PMID: 30112187 PMCID: PMC6088270 DOI: 10.4155/fsoa-2018-0022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/15/2018] [Indexed: 11/17/2022] Open
Abstract
AIM RACK1 is a multifunctional scaffolding protein that is expressed in many cellular compartments, orchestrating a number of signaling processes. RACK1 acts as a signaling hub to localize active enzymes to discrete locations; therefore tight control of RACK1 is vital to cellular homeostasis. Our aim was to identify the mechanisms responsible for RACK1 turnover and show that degradation is directed by the ubiquitin proteasome system. RESULTS Using siRNA screening, we identified RAB40C as the ubiquitin E3 ligase responsible for ubiquitination of RACK1, and that the action of RAB40C in controlling RACK1 levels is crucial to both cancer cell growth and migration of T cells. CONCLUSION Our data suggest that manipulation of RACK1 levels in this way may provide a novel strategy to explore RACK1 function.
Collapse
Affiliation(s)
- Jon P Day
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ellanor Whiteley
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Michael Freeley
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, D08 W9RT, Ireland
| | - Aideen Long
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College, Dublin, D08 W9RT, Ireland
| | - Beatrice Malacrida
- Materials & Surface Science Institute & Health Research Institute, University of Limerick, Limerick, Ireland
| | - Patrick Kiely
- Materials & Surface Science Institute & Health Research Institute, University of Limerick, Limerick, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
14
|
O'Flanagan CH, O'Shea S, Lyons A, Fogarty FM, McCabe N, Kennedy RD, O'Connor R. IGF-1R inhibition sensitizes breast cancer cells to ATM-related kinase (ATR) inhibitor and cisplatin. Oncotarget 2018; 7:56826-56841. [PMID: 27472395 PMCID: PMC5302955 DOI: 10.18632/oncotarget.10862] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/10/2016] [Indexed: 01/18/2023] Open
Abstract
The complexity of the IGF-1 signalling axis is clearly a roadblock in targeting this receptor in cancer therapy. Here, we sought to identify mediators of resistance, and potential co-targets for IGF-1R inhibition. By using an siRNA functional screen with the IGF-1R tyrosine kinase inhibitor (TKI) BMS-754807 in MCF-7 cells we identified several genes encoding components of the DNA damage response (DDR) pathways as mediators of resistance to IGF-1R kinase inhibition. These included ATM and Ataxia Telangiectasia and RAD3-related kinase (ATR). We also observed a clear induction of DDR in cells that were exposed to IGF-1R TKIs (BMS-754807 and OSI-906) as indicated by accumulation of γ-H2AX, and phosphorylated Chk1. Combination of the IGF-1R/IR TKIs with an ATR kinase inhibitor VE-821 resulted in additive to synergistic cytotoxicity compared to either drug alone. In MCF-7 cells with stably acquired resistance to the IGF-1R TKI (MCF-7-R), DNA damage was also observed, and again, dual inhibition of the ATR kinase and IGF-1R/IR kinase resulted in synergistic cytotoxicity. Interestingly, dual inhibition of ATR and IGF-1R was more effective in MCF-7-R cells than parental cells. IGF-1R TKIs also potentiated the effects of cisplatin in a panel of breast cancer cell lines. Overall, our findings identify induction of DDR by IGF-1R kinase inhibition as a rationale for co-targeting the IGF-1R with ATR kinase inhibitors or cisplatin, particularly in cells with acquired resistance to TKIs.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sandra O'Shea
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Amy Lyons
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Fionola M Fogarty
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Nuala McCabe
- Almac Diagnostics, Craigavon, Northern Ireland, UK
| | - Richard D Kennedy
- Almac Diagnostics, Craigavon, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Wang S, Shen M, Wen X, Han XR, Wang YJ, Fan SH, Zhuang J, Zhang ZF, Shan Q, Li MQ, Hu B, Sun CH, Ge X, Lei QM, Wu DM, Lu J, Zheng YL. Correlation of the expressions of IGF1R-RACK1-STAT3 and Bcl-xl in nasopharyngeal carcinoma with the clinicopathological features and prognosis of nasopharyngeal carcinoma. J Cell Biochem 2017; 119:1931-1941. [PMID: 28816378 DOI: 10.1002/jcb.26354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 08/15/2017] [Indexed: 12/31/2022]
Abstract
The aim of this study was to investigate the correlation of expression of IGF1R-RACK1-STAT3 and Bcl-xl in nasopharyngeal carcinoma (NPC) with the clinicopathological features and the prognosis of NPC. Our study selected 215 NPC tissues and 178 chronic nasopharyngitis tissues (control group). Positive expression rates of IGF1R, RACK1, STAT3, and Bcl-xl were tested by immunohistochemical method, and expression of IGF1R, RACK1, STAT3, Bcl-xl, Bcl-2, and Bax by western blotting. Correlation of IGF1R, RACK1, STAT3, and Bcl-xl with the clinicopathological features of NPC was analyzed. The correlation among those four expression was analyzed by Spearman. The survival of NPC and independent factors of prognosis were tested by Kaplan-Meier and COX proportional hazards model respectively. The NPC group had higher positive expression rates of IGF1R, RACK1, STAT3, and Bcl-xl, and elevated expression of IGF1R, RACK1, STAT3, Bcl-xl, Bcl-2, and Bax. The lymph node metastasis (LNM) group had higher positive expression rates of IGF1R and RACK1 when compared with the non-LNM group. Patients with stage III and IV had higher positive expression rates of IGF1R, RACK1, STAT3, and Bcl-xl. There was positive correlation between expression of IGF1R and RACK1, STAT3. Such correlation was found between RACK1 and STAT3. Patients with negative expression of IGF1R, RACK1, STAT3, and Bcl-xl had higher survival rates. The risky factors of poor prognosis of NPC were positive expression of IGF1R, RACK1, STAT3 and Bcl-xl, and LNM. IGF1R-RACK1-STAT3 and Bcl-xl expression correlated with the clinicopathological features and poor prognosis of NPC.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China.,School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, P.R. China.,Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huaian, P.R. China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Chun-Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Xia Ge
- Department of Oncology, Linyi People's Hospital, Linyi, P.R. China
| | - Qiu-Mei Lei
- Department of Oncology, Linyi People's Hospital, Linyi, P.R. China
| | - Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou, P.R. China
| |
Collapse
|
16
|
Duff D, Long A. Roles for RACK1 in cancer cell migration and invasion. Cell Signal 2017; 35:250-255. [PMID: 28336233 DOI: 10.1016/j.cellsig.2017.03.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/10/2017] [Accepted: 03/13/2017] [Indexed: 01/16/2023]
Abstract
Migration and invasion of cancer cells into surrounding tissue and vasculature is an important initial step in cancer metastasis. Metastasis is the leading cause of cancer related death and thus it is crucial that we improve our understanding of the mechanisms that promote this life-threatening phenomenon. Cell migration involves a complex, multistep process that leads to the actin-driven movement of cells on or through the tissues of the body. The multifunctional scaffolding protein RACK1 plays important roles in nucleating cell signalling hubs, anchoring proteins at specific subcellular locations and regulating protein activity. It is essential for cell migration and accumulating evidence now demonstrates multiple roles for RACK1 in regulating migration and invasion of tumour cells. The possibility of designing drugs that block the migratory and invasive capabilities of cancer cells represents an attractive therapeutic strategy for treating malignant disease with RACK1 being a potential target. In this review we summarize this evidence and examine the mechanisms that underlie the contribution of RACK1 to the various stages of cell migration and invasion.
Collapse
Affiliation(s)
- Deirdre Duff
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland
| | - Aideen Long
- Trinity Translational Medicine Institute, Trinity College Dublin, Trinity Centre for Health Sciences, St James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
17
|
Caromile LA, Dortche K, Rahman MM, Grant CL, Stoddard C, Ferrer FA, Shapiro LH. PSMA redirects cell survival signaling from the MAPK to the PI3K-AKT pathways to promote the progression of prostate cancer. Sci Signal 2017; 10:10/470/eaag3326. [PMID: 28292957 DOI: 10.1126/scisignal.aag3326] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased abundance of the prostate-specific membrane antigen (PSMA) on prostate epithelium is a hallmark of advanced metastatic prostate cancer (PCa) and correlates negatively with prognosis. However, direct evidence that PSMA functionally contributes to PCa progression remains elusive. We generated mice bearing PSMA-positive or PSMA-negative PCa by crossing PSMA-deficient mice with transgenic PCa (TRAMP) models, enabling direct assessment of PCa incidence and progression in the presence or absence of PSMA. Compared with PSMA-positive tumors, PSMA-negative tumors were smaller, lower-grade, and more apoptotic with fewer blood vessels, consistent with the recognized proangiogenic function of PSMA. Relative to PSMA-positive tumors, tumors lacking PSMA had less than half the abundance of type 1 insulin-like growth factor receptor (IGF-1R), less activity in the survival pathway mediated by PI3K-AKT signaling, and more activity in the proliferative pathway mediated by MAPK-ERK1/2 signaling. Biochemically, PSMA interacted with the scaffolding protein RACK1, disrupting signaling between the β1 integrin and IGF-1R complex to the MAPK pathway, enabling activation of the AKT pathway instead. Manipulation of PSMA abundance in PCa cell lines recapitulated this signaling pathway switch. Analysis of published databases indicated that IGF-1R abundance, cell proliferation, and expression of transcripts for antiapoptotic markers positively correlated with PSMA abundance in patients, suggesting that this switch may be relevant to human PCa. Our findings suggest that increase in PSMA in prostate tumors contributes to progression by altering normal signal transduction pathways to drive PCa progression and that enhanced signaling through the IGF-1R/β1 integrin axis may occur in other tumors.
Collapse
Affiliation(s)
- Leslie Ann Caromile
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Kristina Dortche
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - M Mamunur Rahman
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christina L Grant
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Christopher Stoddard
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fernando A Ferrer
- Department of Urology, New York Medical College, Valhalla, NY 10595, USA
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
18
|
Nielsen MH, Flygaard RK, Jenner LB. Structural analysis of ribosomal RACK1 and its role in translational control. Cell Signal 2017; 35:272-281. [PMID: 28161490 DOI: 10.1016/j.cellsig.2017.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 12/28/2022]
Abstract
Receptor for Activated C-Kinase 1 (RACK1) belongs to the WD40 family of proteins, known to act as scaffolding proteins in interaction networks. Accordingly, RACK1 is found to have numerous interacting partners ranging from kinases and signaling proteins to membrane bound receptors and ion channels. Interestingly, RACK1 has also been identified as a ribosomal protein present in all eukaryotic ribosomes. Structures of eukaryotic ribosomes have shown RACK1 to be located at the back of the head of the small ribosomal subunit. This suggests that RACK1 could act as a ribosomal scaffolding protein recruiting regulators of translation to the ribosome, and several studies have in fact found RACK1 to play a role in regulation of translation. To fully understand the role of RACK1 we need to understand whether the many reported interaction partners of RACK1 bind to free or ribosomal RACK1. In this review we provide a structural analysis of ribosome-bound RACK1 to provide a basis for answering this fundamental question. Our analysis shows that RACK1 is tightly bound to the ribosome through highly conserved and specific interactions confirming RACK1 as an integral ribosomal protein. Furthermore, we have analyzed whether reported binding sites for RACK1 interacting partners with a proposed role in translational control are accessible on ribosomal RACK1. Our analysis shows that most of the interaction partners with putative regulatory functions have binding sites that are available on ribosomal RACK1, supporting the role of RACK1 as a ribosomal signaling hub. We also discuss the possible role for RACK1 in recruitment of ribosomes to focal adhesion sites and regulation of local translation during cell spreading and migration.
Collapse
Affiliation(s)
- Maja Holch Nielsen
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| | - Lasse Bohl Jenner
- Department of Molecular Biology and Genetics, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Aarhus University, Denmark
| |
Collapse
|
19
|
Asc1p/RACK1 Connects Ribosomes to Eukaryotic Phosphosignaling. Mol Cell Biol 2017; 37:MCB.00279-16. [PMID: 27821475 DOI: 10.1128/mcb.00279-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 02/07/2023] Open
Abstract
WD40 repeat proteins fold into characteristic β-propeller structures and control signaling circuits during cellular adaptation processes within eukaryotes. The RACK1 protein of Saccharomyces cerevisiae, Asc1p, consists exclusively of a single seven-bladed β-propeller that operates from the ribosomal base at the head region of the 40S subunit. Here we show that the R38D K40E ribosomal binding-compromised variant (Asc1DEp) is severely destabilized through mutation of phosphosite T143 to a dephosphorylation-mimicking alanine, probably through proteasomal degradation, leading to asc1- phenotypes. Phosphosite Y250 contributes to resistance to translational inhibitors but does not influence Asc1DEp stability. Beyond its own phosphorylation at T143, Y250, and other sites, Asc1p heavily influences the phosphorylation of as many as 90 proteins at 120 sites. Many of these proteins are regulators of fundamental processes ranging from mRNA translation to protein transport and turnover, cytoskeleton organization, and cellular signaling. Our data expose Asc1p/RACK1 as a key factor in phosphosignaling and manifest it as a control point at the head of the ribosomal 40S subunit itself regulated through posttranslational modification.
Collapse
|
20
|
The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell Signal 2017; 35:282-289. [PMID: 28069443 DOI: 10.1016/j.cellsig.2017.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 01/15/2023]
Abstract
The cyclic AMP and protein kinase C (PKC) signalling pathways regulate a wide range of cellular processes that require tight control, including cell proliferation and differentiation, metabolism and inflammation. The identification of a protein complex formed by receptor for activated C kinase 1 (RACK1), a scaffold protein for protein kinase C (PKC), and the cyclic AMP-specific phosphodiesterase, PDE4D5, demonstrates a potential mechanism for crosstalk between these two signalling routes. Indeed, RACK1-bound PDE4D5 is activated by PKCα, providing a route through which the PKC pathway can control cellular cyclic AMP levels. Although RACK1 does not appear to affect the intracellular localisation of PDE4D5, it does afford structural stability, providing protection against denaturation, and increases the susceptibility of PDE4D5 to inhibition by cyclic AMP-elevating pharmaceuticals, such as rolipram. In addition, RACK1 can recruit PDE4D5 and PKC to intracellular protein complexes that control diverse cellular functions, including activated G protein-coupled receptors (GPCRs) and integrins clustered at focal adhesions. Through its ability to regulate local cyclic AMP levels in the vicinity of these multimeric receptor complexes, the RACK1/PDE4D5 signalling unit therefore has the potential to modify the quality of incoming signals from diverse extracellular cues, ranging from neurotransmitters and hormones to nanometric topology. Indeed, PDE4D5 and RACK1 have been found to form a tertiary complex with integrin-activated focal adhesion kinase (FAK), which localises to cellular focal adhesion sites. This supports PDE4D5 and RACK1 as potential regulators of cell adhesion, spreading and migration through the non-classical exchange protein activated by cyclic AMP (EPAC1)/Rap1 signalling route.
Collapse
|
21
|
Villafuerte BC, Barati MT, Rane MJ, Isaacs S, Li M, Wilkey DW, Merchant ML. Over-expression of insulin-response element binding protein-1 (IRE-BP1) in mouse pancreatic islets increases expression of RACK1 and TCTP: Beta cell markers of high glucose sensitivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:186-194. [PMID: 27816562 DOI: 10.1016/j.bbapap.2016.10.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/16/2016] [Accepted: 10/31/2016] [Indexed: 12/29/2022]
Abstract
BACKGROUND A targeted analysis of the 50kDa C-terminal fragment of insulin-response element binding protein-1 (IRE-BP1) activation of target genes through the insulin receptor substrate receptor/PI-3 kinase/Akt pathway has been demonstrated for the insulin growth factor-1 receptor. The broader effects of 50kDa C-terminal IRE-BP1 fragment over-expression on protein abundance in pancreatic islet beta cells have not been determined. RESULTS Liquid-chromatography coupled to tandem mass spectrometry (LC-MS/MS) analyses of replicate lysates of pancreatic islets isolated from background strain animals and transgenic animals, overexpressing IRE-BP1 in pancreatic islet beta cells, demonstrated statistically significant increases in the expression of proteins involved in protein synthesis, endoplasmic reticulum (ER) stress and scaffolding proteins important for protein kinase C signaling; some of which were confirmed by immunoblot analyses. Bioinformatic analysis of protein expression network patterns suggested IRE-BP1 over-expression leads to protein expression patterns indicative of activation of functional protein networks utilized for protein post-translational modification, protein folding, and protein synthesis. Co-immunoprecipitation experiments demonstrate a novel interaction between two differentially regulated proteins receptor for activated protein kinase C (RACK1) and translationally controlled tumor protein (TCTP). CONCLUSIONS Proteomic analysis of IRE-BP1 over-expression in pancreatic islet beta cells suggest IRE-BP1 (a) directly or indirectly through establishing hyperglycemia results in increased expression of ribosomal proteins and markers of ER stress and (b) leads to the enhanced and previously un-described interaction of RACK1 and TCTP. SIGNIFICANCE This study identified C-terminal 50kDa domain of IRE-BP1 over-expression results in increased markers of ER-stress and a novel interaction between the scaffolding proteins RACK1 and TCTP.
Collapse
Affiliation(s)
- Betty C Villafuerte
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Michelle T Barati
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Madhavi J Rane
- Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Susan Isaacs
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Ming Li
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Daniel W Wilkey
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States
| | - Michael L Merchant
- Department of Medicine, University of Louisville, Louisville, KY, United States; Core Proteomics Laboratory, University of Louisville, Louisville, KY, United States.
| |
Collapse
|
22
|
Kiely M, Adams DR, Hayes SL, O'Connor R, Baillie GS, Kiely PA. RACK1 stabilises the activity of PP2A to regulate the transformed phenotype in mammary epithelial cells. Cell Signal 2016; 35:290-300. [PMID: 27600565 DOI: 10.1016/j.cellsig.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/04/2023]
Abstract
Conflicting reports implicate the scaffolding protein RACK1 in the progression of breast cancer. RACK1 has been identified as a key regulator downstream of growth factor and adhesion signalling and as a direct binding partner of PP2A. Our objective was to further characterise the interaction between PP2A and RACK1 and to advance our understanding of this complex in breast cancer cells. We examined how the PP2A holoenzyme is assembled on the RACK1 scaffold in MCF-7 cells. We used immobilized peptide arrays representing the entire PP2A-catalytic subunit to identify candidate amino acids on the C subunit of PP2A that might be involved in binding of RACK1. We identified the RACK1 interaction sites on PP2A. Stable cell lines expressing PP2A with FR69/70AA, R214A and Y218F substitutions were generated and it was confirmed that the RACK1/PP2A interaction is essential to stabilise PP2A activity. We used Real-Time Cell Analysis and a series of assays to demonstrate that disruption of the RACK1/PP2A complex also reduces the adhesion, proliferation, migration and invasion of breast cancer cells and plays a role in maintenance of the cancer phenotype. This work has significantly advanced our understanding of the RACK1/PP2A complex and suggests a pro-carcinogenic role for the RACK1/PP2A interaction. This work suggests that approaches to target the RACK1/PP2A complex are a viable option to regulate PP2A activity and identifies a novel potential therapeutic target in the treatment of breast cancer.
Collapse
Affiliation(s)
- Maeve Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton Campus, Edinburgh EH14AS, UK
| | - Sheri L Hayes
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - George S Baillie
- Institute of Cardiovascular & Medical Science, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Patrick A Kiely
- Graduate Entry Medical School, Materials and Surface Science Institute and Health Research Institute, University of Limerick, Ireland.
| |
Collapse
|
23
|
Hayes CJ, Dowling CM, Dwane S, McCumiskey ME, Tormey SM, Anne Merrigan B, Coffey JC, Kiely PA, Dalton TM. Extracellular matrix gene expression profiling using microfluidics for colorectal carcinoma stratification. BIOMICROFLUIDICS 2016; 10:054124. [PMID: 27822332 PMCID: PMC5097046 DOI: 10.1063/1.4966245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/14/2016] [Indexed: 05/15/2023]
Abstract
In cancer, biomarkers have many potential applications including generation of a differential diagnosis, prediction of response to treatment, and monitoring disease progression. Many molecular biomarkers have been put forward for different diseases but most of them do not possess the required specificity and sensitivity. A biomarker with a high sensitivity has a low specificity and vice versa. The inaccuracy of the biomarkers currently in use has led to a compelling need to identify more accurate markers with diagnostic and prognostic significance. The aim of the present study was to use a novel, droplet-based, microfluidic platform to evaluate the prognostic value of a panel of thirty-four genes that regulate the composition of extracellular matrices in colorectal carcinoma. Our method is a novel approach as it uses using continuous-flowing Polymerase Chain Reaction for the sensitive detection and accurate quantitation of gene expression. We identified a panel of relevant extracellular matrix genes whose expression levels were measured by real-time quantitative polymerase chain reaction using Taqman® reagents in twenty-four pairs of matched colorectal cancer tumour and associated normal tissue. Differential expression patterns occurred between the normal and malignant tissue and correlated with histopathological parameters and overall surgical staging. The findings demonstrate that a droplet-based microfluidic quantitative PCR system enables biomarker classification. It was further possible to sub-classify colorectal cancer based on extracellular matrix protein expressing groups which in turn correlated with prognosis.
Collapse
Affiliation(s)
| | | | - Susan Dwane
- Stokes Laboratories, Bernal Institute, University of Limerick , Limerick, Ireland
| | | | - Shona M Tormey
- Department of Surgery, University Hospital Limerick , Limerick, Ireland
| | - B Anne Merrigan
- Department of Surgery, University Hospital Limerick , Limerick, Ireland
| | | | | | - Tara M Dalton
- Stokes Laboratories, Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
24
|
Abstract
Protein phosphatase 2A (PP2A) plays a critical multi-faceted role in the regulation of the cell cycle. It is known to dephosphorylate over 300 substrates involved in the cell cycle, regulating almost all major pathways and cell cycle checkpoints. PP2A is involved in such diverse processes by the formation of structurally distinct families of holoenzymes, which are regulated spatially and temporally by specific regulators. Here, we review the involvement of PP2A in the regulation of three cell signaling pathways: wnt, mTOR and MAP kinase, as well as the G1→S transition, DNA synthesis and mitotic initiation. These processes are all crucial for proper cell survival and proliferation and are often deregulated in cancer and other diseases.
Collapse
Affiliation(s)
- Nathan Wlodarchak
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| | - Yongna Xing
- a McArdle Laboratory for Cancer Research, University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
25
|
Qu J, Ero R, Feng C, Ong LT, Tan HF, Lee HS, Ismail MHB, Bu WT, Nama S, Sampath P, Gao YG, Tan SM. Kindlin-3 interacts with the ribosome and regulates c-Myc expression required for proliferation of chronic myeloid leukemia cells. Sci Rep 2015; 5:18491. [PMID: 26677948 PMCID: PMC4683439 DOI: 10.1038/srep18491] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/19/2015] [Indexed: 12/22/2022] Open
Abstract
Kindlins are FERM-containing cytoplasmic proteins that regulate integrin-mediated cell-cell and cell-extracellular matrix (ECM) attachments. Kindlin-3 is expressed in hematopoietic cells, platelets, and endothelial cells. Studies have shown that kindlin-3 stabilizes cell adhesion mediated by ß1, ß2, and ß3 integrins. Apart from integrin cytoplasmic tails, kindlins are known to interact with other cytoplasmic proteins. Here we demonstrate that kindlin-3 can associate with ribosome via the receptor for activated-C kinase 1 (RACK1) scaffold protein based on immunoprecipitation, ribosome binding, and proximity ligation assays. We show that kindlin-3 regulates c-Myc protein expression in the human chronic myeloid leukemia cell line K562. Cell proliferation was reduced following siRNA reduction of kindlin-3 expression and a significant reduction in tumor mass was observed in xenograft experiments. Mechanistically, kindlin-3 is involved in integrin α5ß1-Akt-mTOR-p70S6K signaling; however, its regulation of c-Myc protein expression could be independent of this signaling axis.
Collapse
Affiliation(s)
- Jing Qu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Rya Ero
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Chen Feng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Li-Teng Ong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Foon Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Hui-Shan Lee
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Muhammad H B Ismail
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Wen-Ting Bu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Srikanth Nama
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore
| | - Prabha Sampath
- Institute of Medical Biology, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore 117597,Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.,Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Suet-Mien Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
26
|
Morishita Y, Tsutsumi K, Ohta Y. Phosphorylation of Serine 402 Regulates RacGAP Protein Activity of FilGAP Protein. J Biol Chem 2015; 290:26328-38. [PMID: 26359494 DOI: 10.1074/jbc.m115.666875] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Indexed: 11/06/2022] Open
Abstract
FilGAP is a Rho GTPase-activating protein (GAP) that specifically regulates Rac. FilGAP is phosphorylated by ROCK, and this phosphorylation stimulates its RacGAP activity. However, it is unclear how phosphorylation regulates cellular functions and localization of FilGAP. We found that non-phosphorylatable FilGAP (ST/A) mutant is predominantly localized to the cytoskeleton along actin filaments and partially co-localized with vinculin around cell periphery, whereas phosphomimetic FilGAP (ST/D) mutant is diffusely cytoplasmic. Moreover, phosphorylated FilGAP detected by Phos-tag is also mainly localized in the cytoplasm. Of the six potential phosphorylation sites in FilGAP tested, only mutation of serine 402 to alanine (S402A) resulted in decreased cell spreading on fibronectin. FilGAP phosphorylated at Ser-402 is localized to the cytoplasm but not at the cytoskeleton. Although Ser-402 is highly phosphorylated in serum-starved quiescent cells, dephosphorylation of Ser-402 is accompanied with the cell spreading on fibronectin. Treatment of the cells expressing wild-type FilGAP with calyculin A, a Ser/Thr phosphatase inhibitor, suppressed cell spreading on fibronectin, whereas cells transfected with FilGAP S402A mutant were not affected by calyculin A. Expression of constitutively activate Arf6 Q67L mutant stimulated membrane blebbing activity of both non-phosphorylatable (ST/A) and phosphomimetic (ST/D) FilGAP mutants. Conversely, depletion of endogenous Arf6 suppressed membrane blebbing induced by FilGAP (ST/A) and (ST/D) mutants. Our study suggests that Arf6 and phosphorylation of FilGAP may regulate FilGAP, and phosphorylation of Ser-402 may play a role in the regulation of cell spreading on fibronectin.
Collapse
Affiliation(s)
- Yuji Morishita
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - Koji Tsutsumi
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| | - Yasutaka Ohta
- From the Division of Cell Biology, Department of Biosciences, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Minami-ku, Kanagawa 252-0373, Japan
| |
Collapse
|
27
|
Targeting Protein Kinase C Downstream of Growth Factor and Adhesion Signalling. Cancers (Basel) 2015; 7:1271-91. [PMID: 26184315 PMCID: PMC4586769 DOI: 10.3390/cancers7030836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/25/2015] [Accepted: 07/03/2015] [Indexed: 12/11/2022] Open
Abstract
The signaling outputs of Receptor Tyrosine Kinases, G-protein coupled receptors and integrins converge to mediate key cell process such as cell adhesion, cell migration, cell invasion and cell proliferation. Once activated by their ligands, these cell surface proteins recruit and direct a diverse range of proteins to disseminate the appropriate response downstream of the specific environmental cues. One of the key groups of proteins required to regulate these activities is the family of serine/threonine intracellular kinases called Protein Kinase Cs. The activity and subcellular location of PKCs are mediated by a series of tightly regulated events and is dependent on several posttranslational modifications and the availability of second messengers. Protein Kinase Cs exhibit both pro- and anti-tumorigenic effects making them an interesting target for anti-cancer treatment.
Collapse
|
28
|
Kiely M, Kiely PA. PP2A: The Wolf in Sheep's Clothing? Cancers (Basel) 2015; 7:648-69. [PMID: 25867001 PMCID: PMC4491676 DOI: 10.3390/cancers7020648] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/16/2015] [Accepted: 03/23/2015] [Indexed: 12/21/2022] Open
Abstract
Protein Phosphatase 2A (PP2A) is a major serine/threonine phosphatase in cells. It consists of a catalytic subunit (C), a structural subunit (A), and a regulatory/variable B-type subunit. PP2A has a critical role to play in homeostasis where its predominant function is as a phosphatase that regulates the major cell signaling pathways in cells. Changes in the assembly, activity and substrate specificity of the PP2A holoenzyme have a direct role in disease and are a major contributor to the maintenance of the transformed phenotype in cancer. We have learned a lot about how PP2A functions from specific mutations that disrupt the core assembly of PP2A and from viral proteins that target PP2A and inhibit its effect as a phosphatase. This prompted various studies revealing that restoration of PP2A activity benefits some cancer patients. However, our understanding of the mechanism of action of this is limited because of the complex nature of PP2A holoenzyme assembly and because it acts through a wide variety of signaling pathways. Information on PP2A is also conflicting as there are situations whereby inactivation of PP2A induces apoptosis in many cancer cells. In this review we discuss this relationship and we also address many of the pertinent and topical questions that relate to novel therapeutic strategies aimed at altering PP2A activity.
Collapse
Affiliation(s)
- Maeve Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
| | - Patrick A Kiely
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick 78666, Ireland.
- Stokes Institute, University of Limerick 78666, Limerick, Ireland.
| |
Collapse
|
29
|
Crystal structure of Gib2, a signal-transducing protein scaffold associated with ribosomes in Cryptococcus neoformans. Sci Rep 2015; 5:8688. [PMID: 25732347 PMCID: PMC4894404 DOI: 10.1038/srep08688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/27/2015] [Indexed: 11/16/2022] Open
Abstract
The atypical Gβ-like/RACK1 Gib2 protein promotes cAMP signalling that plays a central role in regulating the virulence of Cryptococcus neoformans. Gib2 contains a seven-bladed β transducin structure and is emerging as a scaffold protein interconnecting signalling pathways through interactions with various protein partners. Here, we present the crystal structure of Gib2 at a 2.2-Å resolution. The structure allows us to analyse the association between Gib2 and the ribosome, as well as to identify the Gib2 amino acid residues involved in ribosome binding. Our studies not only suggest that Gib2 has a role in protein translation but also present Gib2 as a physical link at the crossroads of various regulatory pathways important for the growth and virulence of C. neoformans.
Collapse
|
30
|
Crudden C, Girnita A, Girnita L. Targeting the IGF-1R: The Tale of the Tortoise and the Hare. Front Endocrinol (Lausanne) 2015; 6:64. [PMID: 25964779 PMCID: PMC4410616 DOI: 10.3389/fendo.2015.00064] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/11/2015] [Indexed: 11/13/2022] Open
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and maintenance of cancer. Since the first links between growth factor receptors and oncogenes were noted over three decades ago, targeting the IGF-1R has been of great interest. This review follows the progress from inception through intense pharmaceutical development, disappointing clinical trials and recent updates to the signaling paradigm. In light of major developments in signaling understanding and activation complexities, we examine reasons for failure of first line targeting approaches. Recent findings include the fact that the IGF-1R can signal in the absence of the ligand, in the absence of kinase activity, and utilizes components of the GPCR system. With recognition of the unappreciated complexities that this first wave of targeting approaches encountered, we advocate re-recognition of IGF-1R as a valid target for cancer treatment and look to future directions, where both research and pharmaceutical strengths can lend themselves to finally unearthing anti-IGF-1R potential.
Collapse
Affiliation(s)
- Caitrin Crudden
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ada Girnita
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden
| | - Leonard Girnita
- Department of Oncology and Pathology, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- *Correspondence: Leonard Girnita, Cancer Centre Karolinska, Karolinska Institutet, Karolinska University Hospital, CCK R8:04, Stockholm S-17176, Sweden,
| |
Collapse
|
31
|
Cox OT, O’Shea S, Tresse E, Bustamante-Garrido M, Kiran-Deevi R, O’Connor R. IGF-1 Receptor and Adhesion Signaling: An Important Axis in Determining Cancer Cell Phenotype and Therapy Resistance. Front Endocrinol (Lausanne) 2015; 6:106. [PMID: 26191041 PMCID: PMC4490239 DOI: 10.3389/fendo.2015.00106] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/19/2015] [Indexed: 11/13/2022] Open
Abstract
IGF-1R expression and activation levels generally cannot be correlated in cancer cells, suggesting that cellular proteins may modulate IGF-1R activity. Strong candidates for such modulation are found in cell-matrix and cell-cell adhesion signaling complexes. Activated IGF-1R is present at focal adhesions, where it can stabilize β1 integrin and participate in signaling complexes that promote invasiveness associated with epithelial mesenchymal transition (EMT) and resistance to therapy. Whether IGF-1R contributes to EMT or to non-invasive tumor growth may be strongly influenced by the degree of extracellular matrix engagement and the presence or absence of key proteins in IGF-1R-cell adhesion complexes. One such protein is PDLIM2, which promotes both cell polarization and EMT by regulating the stability of transcription factors including NFκB, STATs, and beta catenin. PDLIM2 exhibits tumor suppressor activity, but is also highly expressed in certain invasive cancers. It is likely that distinct adhesion complex proteins modulate IGF-1R signaling during cancer progression or adaptive responses to therapy. Thus, identifying the key modulators will be important for developing effective therapeutic strategies and predictive biomarkers.
Collapse
Affiliation(s)
- Orla T. Cox
- Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Sandra O’Shea
- Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Emilie Tresse
- Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Milan Bustamante-Garrido
- Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Ravi Kiran-Deevi
- Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Rosemary O’Connor
- Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
- *Correspondence: Rosemary O’Connor, Cell Biology Laboratory, BioSciences Institute, School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland,
| |
Collapse
|
32
|
Luo J, Zuo J, Wu J, Wan P, Kang D, Xiang C, Zhu H, Chen J. In vivo RNAi screen identifies candidate signaling genes required for collective cell migration in Drosophila ovary. SCIENCE CHINA-LIFE SCIENCES 2014; 58:379-89. [PMID: 25528253 DOI: 10.1007/s11427-014-4786-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 11/11/2014] [Indexed: 01/05/2023]
Abstract
Collective migration of loosely or closely associated cell groups is prevalent in animal development, physiological events, and cancer metastasis. However, our understanding of the mechanisms of collective cell migration is incomplete. Drosophila border cells provide a powerful in vivo genetic model to study collective migration and identify essential genes for this process. Using border cell-specific RNAi-silencing in Drosophila, we knocked down 360 conserved signaling transduction genes in adult flies to identify essential pathways and genes for border cell migration. We uncovered a plethora of signaling genes, a large proportion of which had not been reported for border cells, including Rack1 (Receptor of activated C kinase) and brk (brinker), mad (mother against dpp), and sax (saxophone), which encode three components of TGF-β signaling. The RNAi knock down phenotype was validated by clonal analysis of Rack1 mutants. Our data suggest that inhibition of Src activity by Rack1 may be important for border cell migration and cluster cohesion maintenance. Lastly, results from our screen not only would shed light on signaling pathways involved in collective migration during embryogenesis and organogenesis in general, but also could help our understanding for the functions of conserved human genes involved in cancer metastasis.
Collapse
Affiliation(s)
- Jun Luo
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, 210061, China
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gandin V, Senft D, Topisirovic I, Ronai ZA. RACK1 Function in Cell Motility and Protein Synthesis. Genes Cancer 2014; 4:369-77. [PMID: 24349634 DOI: 10.1177/1947601913486348] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The receptor for activated C kinase 1 (RACK1) serves as an adaptor for a number of proteins along the MAPK, protein kinase C, and Src signaling pathways. The abundance and near ubiquitous expression of RACK1 reflect its role in coordinating signaling molecules for many critical biological processes, from mRNA translation to cell motility to cell survival and death. Complete deficiency of Rack1 is embryonic lethal, but the recent development of genetic Rack1 hypomorphic mice has highlighted the central role that RACK1 plays in cell movement and protein synthesis. This review focuses on the importance of RACK1 in these processes and places the recent work in the larger context of understanding RACK1 function.
Collapse
Affiliation(s)
- Valentina Gandin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Daniela Senft
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, Montréal, QC, Canada ; Department of Oncology, McGill University, Montréal, QC, Canada
| | - Ze'ev A Ronai
- Signal Transduction Program, Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| |
Collapse
|
34
|
Omosigho NN, Swaminathan K, Plomann M, Müller-Taubenberger A, Noegel AA, Riyahi TY. The Dictyostelium discoideum RACK1 orthologue has roles in growth and development. Cell Commun Signal 2014; 12:37. [PMID: 24930026 PMCID: PMC4094278 DOI: 10.1186/1478-811x-12-37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/06/2014] [Indexed: 12/19/2022] Open
Abstract
Background The receptor for activated C-kinase 1 (RACK1) is a conserved protein belonging to the WD40 repeat family of proteins. It folds into a beta propeller with seven blades which allow interactions with many proteins. Thus it can serve as a scaffolding protein and have roles in several cellular processes. Results We identified the product of the Dictyostelium discoideum gpbB gene as the Dictyostelium RACK1 homolog. The protein is mainly cytosolic but can also associate with cellular membranes. DdRACK1 binds to phosphoinositides (PIPs) in protein-lipid overlay and liposome-binding assays. The basis of this activity resides in a basic region located in the extended loop between blades 6 and 7 as revealed by mutational analysis. Similar to RACK1 proteins from other organisms DdRACK1 interacts with G protein subunits alpha, beta and gamma as shown by yeast two-hybrid, pulldown, and immunoprecipitation assays. Unlike the Saccharomyces cerevisiae and Cryptococcus neoformans RACK1 proteins it does not appear to take over Gβ function in D. discoideum as developmental and other defects were not rescued in Gβ null mutants overexpressing GFP-DdRACK1. Overexpression of GFP-tagged DdRACK1 and a mutant version (DdRACK1mut) which carried a charge-reversal mutation in the basic region in wild type cells led to changes during growth and development. Conclusion DdRACK1 interacts with heterotrimeric G proteins and can through these interactions impact on processes specifically regulated by these proteins.
Collapse
Affiliation(s)
| | | | | | | | - Angelika A Noegel
- Institute of Biochemistry I, Medical Faculty, Center for Molecular Medicine Cologne (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Köln, Germany.
| | | |
Collapse
|
35
|
Deevi RK, Cox OT, O'Connor R. Essential function for PDLIM2 in cell polarization in three-dimensional cultures by feedback regulation of the β1-integrin-RhoA signaling axis. Neoplasia 2014; 16:422-31. [PMID: 24863845 PMCID: PMC4198691 DOI: 10.1016/j.neo.2014.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/16/2014] [Accepted: 04/17/2014] [Indexed: 11/25/2022] Open
Abstract
PDLIM2 is a cytoskeletal and nuclear PDZ-LIM domain protein that regulates the stability of Nuclear Factor kappa-B (NFκB) and other transcription factors, and is required for polarized cell migration. PDLIM2 expression is suppressed by methylation in different cancers, but is strongly expressed in invasive breast cancer cells that have undergone an Epithelial Mesenchymal Transition (EMT). PDLIM2 is also expressed in non-transformed breast myoepithelial MCF10A cells and here we asked whether it is important for maintaining the polarized, epithelial phenotype of these cells. Suppression of PDLIM2 in MCF10A cells was sufficient to disrupt cell polarization and acini formation with increased proliferation and reduced apoptosis in the luminal space compared to control acini with hollow lumina. Spheroids with suppressed PDLIM2 exhibited increased expression of cell-cell and cell-matrix adhesion proteins including beta 1 (β1) integrin. Interestingly, levels of the Insulin-like growth factor 1 receptor (IGF-1 R) and Receptor of activated protein kinase C 1 (RACK1), which scaffolds IGF-1R to β1 integrin, were also increased, indicating a transformed phenotype. Focal Adhesion Kinase (FAK) and cofilin phosphorylation, and RhoA Guanosine Triphosphatase (GTPase) activity were all enhanced in these spheroids compared to control acini. Importantly, inhibition of either FAK or Rho Kinase (ROCK) was sufficient to rescue the polarity defect. We conclude that PDLIM2 expression is essential for feedback regulation of the β1-integrin-RhoA signalling axis and integration of cellular microenvironment signals with gene expression to control the polarity of breast epithelial acini structures. This is a mechanism by which PDLIM2 could mediate tumour suppression in breast epithelium.
Collapse
Affiliation(s)
- Ravi Kiran Deevi
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Orla T Cox
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland
| | - Rosemary O'Connor
- Cell Biology Laboratory, School of Biochemistry and Cell Biology, BioSciences Institute, University College Cork, Cork, Ireland.
| |
Collapse
|
36
|
Du Y, Meng J, Huang Y, Wu J, Wang B, Ibrahim MM, Tang J. Guanine nucleotide-binding protein subunit beta-2-like 1, a new Annexin A7 interacting protein. Biochem Biophys Res Commun 2014; 445:58-63. [PMID: 24491534 DOI: 10.1016/j.bbrc.2014.01.119] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 12/19/2022]
Abstract
We report for the first time that Guanine nucleotide-binding protein subunit beta-2-like 1 (RACK1) formed a complex with Annexin A7. Hca-F and Hca-P are a pair of syngeneic mouse hepatocarcinoma cell lines established and maintained in our laboratory. Our previous study showed that both Annexin A7 and RACK1 were expressed higher in Hca-F (lymph node metastasis >70%) than Hca-P (lymph node metastasis <30%). Suppression of Annexin A7 expression in Hca-F cells induced decreased migration and invasion ability. In this study, knockdown of RACK1 by RNA interference (RNAi) had the same impact on metastasis potential of Hca-F cells as Annexin A7 down-regulation. Furthermore, by co-immunoprecipitation and double immunofluorescence confocal imaging, we found that RACK1 was in complex with Annexin A7 in control cells, but not in the RACK1-down-regulated cells, indicating the abolishment of RACK1-Annexin A7 interaction in Hca-F cells by RACK1 RNAi. Taken together, these results suggest that RACK1-Annexin A7 interaction may be one of the means by which RACK1 and Annexin A7 influence the metastasis potential of mouse hepatocarcinoma cells in vitro.
Collapse
Affiliation(s)
- Yue Du
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Jinyi Meng
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Yuhong Huang
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Jun Wu
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Bo Wang
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Mohammed M Ibrahim
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China
| | - Jianwu Tang
- Key Laboratory of Tumor Metastasis of Liaoning Province, Department of Pathology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
37
|
Yang B, Pu F, Qin J, You W, Ke C. Characterization of receptor of activated C kinase 1 (RACK1) and functional analysis during larval metamorphosis of the oyster Crassostrea angulata. Gene 2013; 537:294-301. [PMID: 24374472 DOI: 10.1016/j.gene.2013.12.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/18/2013] [Accepted: 12/12/2013] [Indexed: 11/25/2022]
Abstract
During a large-scale screen of the larval transcriptome library of the Portuguese oyster, Crassostrea angulata, the oyster gene RACK, which encodes a receptor of activated protein kinase C protein was isolated and characterized. The cDNA is 1,148 bp long and has a predicted open reading frame encoding 317 aa. The predicted protein shows high sequence identity to many RACK proteins of different organisms including molluscs, fish, amphibians and mammals, suggesting that it is conserved during evolution. The structural analysis of the Ca-RACK1 genomic sequence implies that the Ca-RACK1 gene has seven exons and six introns, extending approximately 6.5 kb in length. It is expressed ubiquitously in many oyster tissues as detected by RT-PCR analysis. The Ca-RACK1 mRNA expression pattern was markedly increased at larval metamorphosis; and was further increased along with Ca-RACK1 protein synthesis during epinephrine-induced metamorphosis. These results indicate that the Ca-RACK1 plays an important role in tissue differentiation and/or in cell growth during larval metamorphosis in the oyster, C. angulata.
Collapse
Affiliation(s)
- Bingye Yang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen 361005, PR China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen 361005, PR China
| | - Ji Qin
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen 361005, PR China
| | - Weiwei You
- College of Ocean and Earth Science, Xiamen University, Xiamen 361005, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, PR China; College of Ocean and Earth Science, Xiamen University, Xiamen 361005, PR China.
| |
Collapse
|
38
|
Something old, something new and something borrowed: emerging paradigm of insulin-like growth factor type 1 receptor (IGF-1R) signaling regulation. Cell Mol Life Sci 2013; 71:2403-27. [PMID: 24276851 PMCID: PMC4055838 DOI: 10.1007/s00018-013-1514-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 10/17/2013] [Accepted: 11/07/2013] [Indexed: 12/14/2022]
Abstract
The insulin-like growth factor type 1 receptor (IGF-1R) plays a key role in the development and progression of cancer; however, therapeutics targeting it have had disappointing results in the clinic. As a receptor tyrosine kinase (RTK), IGF-1R is traditionally described as an ON/OFF system, with ligand stabilizing the ON state and exclusive kinase-dependent signaling activation. Newly added to the traditional model, ubiquitin-mediated receptor downregulation and degradation was originally described as a response to ligand/receptor interaction and thus inseparable from kinase signaling activation. Yet, the classical model has proven over-simplified and insufficient to explain experimental evidence accumulated over the last decade, including kinase-independent signaling, unbalanced signaling, or dissociation between signaling and receptor downregulation. Based on the recent findings that IGF-1R “borrows” components of G-protein coupled receptor (GPCR) signaling, including β-arrestins and G-protein-related kinases, we discuss the emerging paradigm for the IGF-1R as a functional RTK/GPCR hybrid, which integrates the kinase signaling with the IGF-1R canonical GPCR characteristics. The contradictions to the classical IGF-1R signaling concept as well as the design of anti-IGF-1R therapeutics treatment are considered in the light of this paradigm shift and we advocate recognition of IGF-1R as a valid target for cancer treatment.
Collapse
|
39
|
Shin DH, Lee HJ, Min HY, Choi SP, Lee MS, Lee JW, Johnson FM, Mehta K, Lippman SM, Glisson BS, Lee HY. Combating resistance to anti-IGFR antibody by targeting the integrin β3-Src pathway. J Natl Cancer Inst 2013; 105:1558-70. [PMID: 24092920 PMCID: PMC3797025 DOI: 10.1093/jnci/djt263] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 08/20/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Several phase II/III trials of anti-insulin-like growth factor 1 receptor (IGF-1R) monoclonal antibodies (mAbs) have shown limited efficacy. The mechanisms of resistance to IGF-1R mAb-based therapies and clinically applicable strategies for overcoming drug resistance are still undefined. METHODS IGF-1R mAb cixutumumab efficacy, alone or in combination with Src inhibitors, was evaluated in 10 human head and neck squamous cell carcinoma (HNSCC) and six non-small cell lung cancer (NSCLC) cell lines in vitro in two- or three-dimensional culture systems and in vivo in cell line- or patient-derived xenograft tumors in athymic nude mice (n = 6-9 per group). Cixutumumab-induced changes in cell signaling and IGF-1 binding to integrin β3 were determined by Western or ligand blotting, immunoprecipitation, immunofluorescence, and cell adhesion analyses and enzyme-linked immunosorbent assay. Data were analyzed by the two-sided Student t test or one-way analysis of variance. RESULTS Integrin β3-Src signaling cascade was activated by IGF-1 in HNSCC and NSCLC cells, when IGF-1 binding to IGF-1R was hampered by cixutumumab, resulting in Akt activation and cixutumumab resistance. Targeting integrin β3 or Src enhanced antitumor activity of cixutumumab in multiple cixutumumab-resistant cell lines and patient-derived tumors in vitro and in vivo. Mean tumor volume of mice cotreated with cixutumumab and integrin β3 siRNA was 133.7 mm(3) (95% confidence interval [CI] = 57.6 to 209.8 mm(3)) compared with those treated with cixutumumab (1472.5 mm(3); 95% CI = 1150.7 to 1794.3 mm(3); P < .001) or integrin β3 siRNA (903.2 mm(3); 95% CI = 636.1 to 1170.3 mm(3); P < .001) alone. CONCLUSIONS Increased Src activation through integrin ανβ3 confers considerable resistance against anti-IGF-1R mAb-based therapies in HNSCC and NSCLC cells. Dual targeting of the IGF-1R pathway and collateral integrin β3-Src signaling module may override this resistance.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal, Humanized
- Antineoplastic Agents/pharmacology
- Blotting, Western
- CSK Tyrosine-Protein Kinase
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Squamous Cell/drug therapy
- Carcinoma, Squamous Cell/metabolism
- Drug Resistance, Neoplasm/drug effects
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Head and Neck Neoplasms/drug therapy
- Head and Neck Neoplasms/metabolism
- Humans
- Immunoprecipitation
- Integrin beta3/pharmacology
- Lung Neoplasms/drug therapy
- Mice
- Mice, Nude
- Phosphorylation/drug effects
- Protein Kinase Inhibitors/pharmacology
- Proto-Oncogene Proteins c-akt/drug effects
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, IGF Type 1/immunology
- Signal Transduction/drug effects
- Squamous Cell Carcinoma of Head and Neck
- Xenograft Model Antitumor Assays
- src-Family Kinases/antagonists & inhibitors
Collapse
Affiliation(s)
- Dong Hoon Shin
- Affiliations of authors: Department of Thoracic/Head and Neck Medical Oncology (DHS, SPC, FMJ, SML, BSG) and Department of Experimental Therapeutics (KM), The University of Texas MD Anderson Cancer Center, Houston, TX; College of Pharmacy, Inje University, Gimhae, Gyungnam, Republic of Korea (H-JL); College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea (H-YM, M-SL, JWL, H-YL)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Dwane S, Durack E, O'Connor R, Kiely PA. RACK1 promotes neurite outgrowth by scaffolding AGAP2 to FAK. Cell Signal 2013; 26:9-18. [PMID: 24056044 DOI: 10.1016/j.cellsig.2013.08.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 08/31/2013] [Indexed: 11/29/2022]
Abstract
RACK1 binds proteins in a constitutive or transient manner and supports signal transmission by engaging in diverse and distinct signalling pathways. The emerging theme is that RACK1 functions as a signalling switch, recruiting proteins to form distinct molecular complexes. In focal adhesions, RACK1 is required for the regulation of FAK activity and for integrating a wide array of cellular signalling events including the integration of growth factor and adhesion signalling pathways. FAK is required for cell adhesion and migration and has a well-established role in neurite outgrowth and in the developing nervous system. However, the mechanism by which FAK activity is regulated in neurons remains unknown. Using neuronal cell lines, we determined that differentiation of these cells promotes an interaction between the scaffolding protein RACK1 and FAK. Disruption of the RACK1/FAK interaction leads to decreased neurite outgrowth suggesting a role for the interaction in neurite extension. We hypothesised that RACK1 recruits proteins to FAK, to regulate FAK activity in neuronal cells. To address this, we immunoprecipitated RACK1 from rat hippocampus and searched for interacting proteins by mass spectrometry. We identified AGAP2 as a novel RACK1-interacting protein. Having confirmed the RACK1-AGAP2 interaction biochemically, we show RACK1-AGAP2 to localise together in the growth cone of differentiated cells, and confirm that these proteins are in complex with FAK. This complex is disrupted when RACK1 expression is suppressed using siRNA or when mutants of RACK1 that do not interact with FAK are expressed in cells. Similarly, suppression of AGAP2 using siRNA leads to increased phosphorylation of FAK and increased cell adhesion resulting in decreased neurite outgrowth. Our results suggest that RACK1 scaffolds AGAP2 to FAK to regulate FAK activity and cell adhesion during the differentiation process.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | | | | | |
Collapse
|
41
|
Dave JM, Kang H, Abbey CA, Maxwell SA, Bayless KJ. Proteomic profiling of endothelial invasion revealed receptor for activated C kinase 1 (RACK1) complexed with vimentin to regulate focal adhesion kinase (FAK). J Biol Chem 2013; 288:30720-30733. [PMID: 24005669 DOI: 10.1074/jbc.m113.512467] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Angiogenesis is critical for many physiological and pathological processes. To identify molecules relevant to angiogenesis, we performed a proteomic screen comparing invading versus non-invading endothelial cells in three-dimensional collagen matrices. We found up-regulated levels of receptor for activated C kinase 1 (RACK1) and the intermediate filament protein vimentin that correlated with increased endothelial cell invasion. Because both RACK1 and vimentin have been linked to focal adhesion kinase (FAK), we investigated whether this pathway regulated invasion. RACK1 depletion reduced invasion responses, and this was associated with attenuated activation of FAK. Knockdown of vimentin significantly decreased levels of phosphorylated and total FAK. Treatment with a pharmacological inhibitor of FAK dose-dependently reduced invasion, indicating a crucial role for FAK activity during invasion. Because RACK1 and vimentin were both up-regulated with sphingosine 1-phosphate treatment, required for invasion, and regulated FAK, we tested whether they complexed together. RACK1 complexed with vimentin, and growth factors enhanced this interaction. In addition, RACK1, vimentin, and FAK formed an intermolecular complex in invading endothelial cultures in three dimensions in response to stimulation by sphingosine 1-phosphate and growth factors. Moreover, depletion of RACK1 decreased the association of vimentin and FAK, suggesting that RACK1 was required for stabilizing vimentin-FAK interactions during sprouting. Silencing of vimentin and RACK1 decreased cell adhesion and focal contact formation. Taken together, these results demonstrate that proangiogenic signals converge to enhance expression and association of RACK1 and vimentin, which regulated FAK, resulting in successful endothelial sprout formation in three-dimensional collagen matrices.
Collapse
Affiliation(s)
- Jui M Dave
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Hojin Kang
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Colette A Abbey
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Steve A Maxwell
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843
| | - Kayla J Bayless
- From the Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas 77843.
| |
Collapse
|
42
|
RACK1 to the future--a historical perspective. Cell Commun Signal 2013; 11:53. [PMID: 23915285 PMCID: PMC3750812 DOI: 10.1186/1478-811x-11-53] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 07/26/2013] [Indexed: 12/18/2022] Open
Abstract
This perspective summarises the first and long overdue RACK1 meeting held at the University of Limerick, Ireland, May 2013, in which RACK1's role in the immune system, the heart and the brain were discussed and its contribution to disease states such as cancer, cardiac hypertrophy and addiction were described. RACK1 is a scaffolding protein and a member of the WD repeat family of proteins. These proteins have a unique architectural assembly that facilitates protein anchoring and the stabilisation of protein activity. A large body of evidence is accumulating which is helping to define the versatile role of RACK1 in assembling and dismantling complex signaling pathways from the cell membrane to the nucleus in health and disease. In this commentary, we first provide a historical perspective on RACK1. We also address many of the pertinent and topical questions about this protein such as its role in transcription, epigenetics and translation, its cytoskeletal contribution and the merits of targeting RACK1 in disease.
Collapse
|
43
|
Mao X, Jia X, Qiu F. Enantioselective pharmacodynamics of propranolol in HUVEC cells: a study using chiral 2D gel electrophoresis and mass spectrometry. Mol Med Rep 2013; 8:128-32. [PMID: 23660645 DOI: 10.3892/mmr.2013.1464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 04/24/2013] [Indexed: 11/06/2022] Open
Abstract
Propranolol (PRO), a nonselective β-adrenergic receptor (β-AR) antagonist, has two enantiomers, R(+)-PRO and S(-)-PRO, which have diverse biological effects. For example, S(-)-PRO blocks the β-receptor ~100 times more strongly than R(+)-PRO. However, the signaling pathway that causes this difference remains unclear. This pathway may affect the expression of numerous proteins, some of which play key roles during the drug action process. Therefore, we treated human umbilical vein endothelial cells (HUVECs) with R(+)-PRO and S(-)-PRO in order to identify differentially expressed proteins and to determine their functions in the drug action process. Of the 22 differentially expressed protein spots investigated, 14 demonstrated higher expression levels in the R(+)-PRO-treated cells, while 8 demonstrated lower expression levels in the same cells. Mass spectrometry identified 10 of the differentially expressed proteins: 4 signaling molecules, 2 metabolic enzymes, 3 heat shock proteins and 1 cytoskeleton protein. Our results suggest that these differentially expressed proteins, particularly guanine nucleotide-binding protein subunit β-2-like 1 (GBLP), are the key biomacromolecules underlying the mechanism by which PRO enantiomers induce stereoselective cellular responses. The results aid in clarifying the role of PRO in the treatment of arrhythmia and angina.
Collapse
Affiliation(s)
- Xiaoqin Mao
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650032, PR China
| | | | | |
Collapse
|
44
|
Boratkó A, Gergely P, Csortos C. RACK1 is involved in endothelial barrier regulation via its two novel interacting partners. Cell Commun Signal 2013; 11:2. [PMID: 23305203 PMCID: PMC3560227 DOI: 10.1186/1478-811x-11-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/07/2013] [Indexed: 01/17/2023] Open
Abstract
Background RACK1, receptor for activated protein kinase C, serves as an anchor in multiple signaling pathways. TIMAP, TGF-β inhibited membrane-associated protein, is most abundant in endothelial cells with a regulatory effect on the endothelial barrier function. The interaction of TIMAP with protein phosphatase 1 (PP1cδ) was characterized, yet little is known about its further partners. Results We identified two novel interacting partners of RACK1, namely, TGF-β inhibited membrane-associated protein, TIMAP, and farnesyl transferase. TIMAP is most abundant in endothelial cells where it is involved in the regulation of the barrier function. WD1-4 repeats of RACK1 were identified as critical regions of the interaction both with TIMAP and farnesyl transferase. Phosphorylation of TIMAP by activation of the cAMP/PKA pathway reduced the amount of TIMAP-RACK1 complex and enhanced translocation of TIMAP to the cell membrane in vascular endothelial cells. However, both membrane localization of TIMAP and transendothelial resistance were attenuated after RACK1 depletion. Farnesyl transferase, the enzyme responsible for prenylation and consequent membrane localization of TIMAP, is present in the RACK1-TIMAP complex in control cells, but it does not co-immunoprecipitate with TIMAP after RACK1 depletion. Conclusions Transient parallel linkage of TIMAP and farnesyl transferase to RACK1 could ensure prenylation and transport of TIMAP to the plasma membrane where it may attend in maintaining the endothelial barrier as a phosphatase regulator.
Collapse
Affiliation(s)
- Anita Boratkó
- Department of Medical Chemistry, University of Debrecen Medical and Health Science Center, Egyetem tér 1, Debrecen, H 4032, Hungary.
| | | | | |
Collapse
|
45
|
Ferguson RD, Gallagher EJ, Scheinman EJ, Damouni R, LeRoith D. The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer. VITAMINS AND HORMONES 2013; 93:51-98. [PMID: 23810003 DOI: 10.1016/b978-0-12-416673-8.00010-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The worldwide epidemic of obesity is associated with increasing rates of the metabolic syndrome and type 2 diabetes. Epidemiological studies have reported that these conditions are linked to increased rates of cancer incidence and mortality. Obesity, particularly abdominal obesity, is associated with insulin resistance and the development of dyslipidemia, hyperglycemia, and ultimately type 2 diabetes. Although many metabolic abnormalities occur with obesity and type 2 diabetes, insulin resistance and hyperinsulinemia appear to be central to these conditions and may contribute to dyslipidemia and altered levels of circulating estrogens and androgens. In this review, we will discuss the epidemiological and molecular links between obesity, type 2 diabetes, and cancer, and how hyperinsulinemia and dyslipidemia may contribute to cancer development. We will discuss how these metabolic abnormalities may interact with estrogen signaling in breast cancer growth. Finally, we will discuss the effects of type 2 diabetes medications on cancer risk.
Collapse
Affiliation(s)
- Rosalyn D Ferguson
- Division of Endocrinology, Diabetes and Bone Diseases, Samuel Bronfman Department of Medicine, Mount Sinai School of Medicine, P.O. Box 1055, New York, USA
| | | | | | | | | |
Collapse
|
46
|
Lam BD, Anthony EC, Hordijk PL. Cytoplasmic targeting of the proto-oncogene SET promotes cell spreading and migration. FEBS Lett 2012. [PMID: 23195690 DOI: 10.1016/j.febslet.2012.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The RhoGTPase Rac1 is activated in a polarised fashion and controls cell motility. We previously showed that Rac1 binds the PP2A inhibitor SET and recruits nuclear SET to the cytosol. We show that a SET mutant, lacking a nuclear localization signal, SET(ΔNLS), promotes cell spreading and motility. This was accompanied by an increase in the number and frequency of membrane ruffles. Pharmacological inhibition of PP2A did not mimic the effects of SET(ΔNLS), however, we found that expression of SET and SET(ΔNLS) increases the levels of the MAP kinases ERK1 and ERK2.
Collapse
Affiliation(s)
- B Daniel Lam
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, The Netherlands
| | | | | |
Collapse
|
47
|
Ruiz Carrillo D, Chandrasekaran R, Nilsson M, Cornvik T, Liew CW, Tan SM, Lescar J. Structure of human Rack1 protein at a resolution of 2.45 Å. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:867-72. [PMID: 22869111 PMCID: PMC3412762 DOI: 10.1107/s1744309112027480] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 06/18/2012] [Indexed: 11/10/2022]
Abstract
The crystal structure of human receptor for activated C-kinase 1 (hRack1) protein is reported at 2.45 Å resolution. The crystals belongs to space group P4(1)2(1)2, with three molecules per asymmetric unit. The hRack1 structure features a sevenfold β-propeller, with each blade housing a sequence motif that contains a strictly conserved Trp, the indole group of which is embedded between adjacent blades. In blades 1-5 the imidazole group of a His residue is wedged between the side chains of a Ser residue and an Asp residue through two hydrogen bonds. The hRack1 crystal structure forms a starting basis for understanding the remarkable scaffolding properties of this protein.
Collapse
Affiliation(s)
- David Ruiz Carrillo
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
| | - Ramya Chandrasekaran
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
| | - Martina Nilsson
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
| | - Tobias Cornvik
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
| | - Chong Wai Liew
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
| | - Julien Lescar
- School of Biological Sciences, Nanyang Technological University, Biopolis 7-06B, 61 Biopolis Drive (Proteos), Singapore
- AFMB, CNRS UMR 6098, Marseille, France
| |
Collapse
|
48
|
Kelly GM, Buckley DA, Kiely PA, Adams DR, O'Connor R. Serine phosphorylation of the insulin-like growth factor I (IGF-1) receptor C-terminal tail restrains kinase activity and cell growth. J Biol Chem 2012; 287:28180-94. [PMID: 22685298 DOI: 10.1074/jbc.m112.385757] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the (1248)SFYYS(1252) motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling.
Collapse
Affiliation(s)
- Geraldine M Kelly
- Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
49
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
50
|
EphB3 suppresses non-small-cell lung cancer metastasis via a PP2A/RACK1/Akt signalling complex. Nat Commun 2012; 3:667. [PMID: 22314363 DOI: 10.1038/ncomms1675] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 01/11/2012] [Indexed: 01/29/2023] Open
Abstract
Eph receptors are implicated in regulating the malignant progression of cancer. Here we find that despite overexpression of EphB3 in human non-small-cell lung cancer, as reported previously, the expression of its cognate ligands, either ephrin-B1 or ephrin-B2, is significantly downregulated, leading to reduced tyrosine phosphorylation of EphB3. Forced activation of EphB3 kinase in EphB3-overexpressing non-small-cell lung cancer cells inhibits cell migratory capability in vitro as well as metastatic seeding in vivo. Furthermore, we identify a novel EphB3-binding protein, the receptor for activated C-kinase 1, which mediates the assembly of a ternary signal complex comprising protein phosphatase 2A, Akt and itself in response to EphB3 activation, leading to reduced Akt phosphorylation and subsequent inhibition of cell migration. Our study reveals a novel tumour-suppressive signalling pathway associated with kinase-activated EphB3 in non-small-cell lung cancer, and provides a potential therapeutic strategy by activating EphB3 signalling, thus inhibiting tumour metastasis.
Collapse
|