1
|
Jun JE, Kulhanek KR, Chen H, Chakraborty A, Roose JP. Alternative ZAP70-p38 signals prime a classical p38 pathway through LAT and SOS to support regulatory T cell differentiation. Sci Signal 2019; 12:12/591/eaao0736. [PMID: 31337738 DOI: 10.1126/scisignal.aao0736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
T cell receptor (TCR) stimulation activates diverse kinase pathways, which include the mitogen-activated protein kinases (MAPKs) ERK and p38, the phosphoinositide 3-kinases (PI3Ks), and the kinase mTOR. Although TCR stimulation activates the p38 pathway through a "classical" MAPK cascade that is mediated by the adaptor protein LAT, it also stimulates an "alternative" pathway in which p38 is activated by the kinase ZAP70. Here, we used dual-parameter, phosphoflow cytometry and in silico computation to investigate how both classical and alternative p38 pathways contribute to T cell activation. We found that basal ZAP70 activation in resting T cell lines reduced the threshold ("primed") TCR-stimulated activation of the classical p38 pathway. Classical p38 signals were reduced after T cell-specific deletion of the guanine nucleotide exchange factors Sos1 and Sos2, which are essential LAT signalosome components. As a consequence of Sos1/2 deficiency, production of the cytokine IL-2 was impaired, differentiation into regulatory T cells was reduced, and the autoimmune disease EAE was exacerbated in mice. These data suggest that the classical and alternative p38 activation pathways exist to generate immune balance.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kayla R Kulhanek
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hang Chen
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Arup Chakraborty
- Departments of Chemical Engineering, Chemistry, and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeroen P Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Olferiev M, Jacek E, Kirou KA, Crow MK. Novel molecular signatures in mononuclear cell populations from patients with systemic lupus erythematosus. Clin Immunol 2016; 172:34-43. [PMID: 27576056 DOI: 10.1016/j.clim.2016.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022]
Abstract
To gain novel insights into the immunopathogenesis of systemic lupus erythematosus we have analyzed gene expression data from isolated CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD56+ NK-cell enriched peripheral blood cell fractions from patients and healthy donors. As predicted, type I interferon-inducible gene transcripts are overexpressed in all populations. Transcripts preferentially expressed in SLE CD4+ and CD8+ T cells include those associated with Tregulatory and Th17 effector cell programs, respectively, but in each case additional transcripts predicted to limit differentiation of those effector cells are detected. Evidence for involvement of the Wnt/β-catenin pathway was observed in both B and T cell fractions, and novel transcripts were identified in each cell population. These data point to disrupted T effector cell differentiation and the Wnt/β-catenin pathway as contributors to immune dysfunction in SLE while further supporting a central role for the type I interferon pathway in lupus.
Collapse
Affiliation(s)
- Mikhail Olferiev
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Elzbieta Jacek
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Kyriakos A Kirou
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA
| | - Mary K Crow
- Mary Kirkland Center for Lupus Research, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021, USA.
| |
Collapse
|
3
|
Erwin-Cohen R, Porter A, Pittman P, Rossi C, Dasilva L. Host responses to live-attenuated Venezuelan equine encephalitis virus (TC-83): comparison of naïve, vaccine responder and nonresponder to TC-83 challenge in human peripheral blood mononuclear cells. Hum Vaccin Immunother 2012; 8:1053-65. [PMID: 22617845 DOI: 10.4161/hv.20300] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a positive-strand RNA Alphavirus endemic in Central and South America, and the causative agent of fatal encephalitis in humans. In an effort to better understand the mechanisms of infection, including differences between people who produce a neutralizing antibody response to the vaccine and those who do not, we performed whole genome transcriptional analysis in human PBMCs exposed in vitro to the live-attenuated vaccine strain of VEEV, TC-83. We compared the molecular responses in cells from three groups of individuals: naïve; previously vaccinated individuals who developed a neutralizing antibody response to the vaccine (responders); and those who did not develop a neutralizing antibody response to the vaccine (nonresponders). Overall, the changes in gene expression were more intense for the naïve group after TC-83 challenge and least potent in the nonresponder group. The main canonical pathways revealed the involvement of interferon and interferon-induced pathways, as well as toll-like receptors TLR- and interleukin (IL)-12-related pathways. HLA class II genotype and suppression of transcript expression for TLR2, TLR4 and TLR8 in the nonresponder group may help explain the lack of vaccine response in this study group. Because TL3 and TLR7 transcripts were elevated in all study groups, these factors may be indicators of the infection and not the immunological state of the individuals. Biomarkers were identified that differentiate between the vaccine responder and the vaccine nonresponder groups. The identified biomarkers were contrasted against transcripts that were unique to the naïve population alone upon induction with TC-83. Biomarker analysis allowed for the discernment between the naïve (innate) responses; the responder (recall) responses; and the nonresponder (alternative) changes to gene transcription that were caused by infection with TC-83. The study also points to the existence of HLA haplotypes that may discriminate between vaccine low- and high-responder phenotypes.
Collapse
Affiliation(s)
- Rebecca Erwin-Cohen
- United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Center for Aerobiological Sciences, 1425 Porter Street, Room 821, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
4
|
King RG, Herrin BR, Justement LB. Differential expression of the adaptor protein HSH2 controls the quantitative and qualitative nature of the humoral response. THE JOURNAL OF IMMUNOLOGY 2011; 187:3565-77. [PMID: 21873522 DOI: 10.4049/jimmunol.1101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Endogenous expression of the adaptor protein hematopoietic Src homology 2-containing adaptor protein (HSH2) is regulated in a dynamic manner during B cell maturation and differentiation. Developing B cells lack detectable HSH2, whereas transitional 1 and 2 B cells in the periphery exhibit increasing levels of expression. Mature follicular B cells exhibit decreased expression of HSH2 compared with transitional 2 B cells, and expression is further downregulated in germinal center B cells. In contrast, marginal zone B cells and B1a/b B cells exhibit high-level HSH2 expression. Regulation of HSH2 expression plays a critical role in determining the outcome of the humoral immune response as demonstrated using HSH2 transgenic (Tg) mice. Constitutive expression of HSH2 in the B lineage at levels comparable to B1a/b B cells results in decreased serum Ig titers for all subclasses with the exception of IgA. HSH2 Tg mice immunized with T-dependent or T-independent Ags exhibit a moderate decrease in the production of Ag-specific IgM, whereas class-switched isotypes are decreased by ∼80-90% compared with control mice. Analysis of HSH2 Tg B cell activation in vitro demonstrated that HSH2 selectively regulates the B cell response to TNF family receptors (i.e., CD40 and BAFF-R), but not BCR- or TLR-dependent signals. These data demonstrate that changes in HSH2 expression have profound effects on the humoral immune response.
Collapse
Affiliation(s)
- R Glenn King
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
5
|
Zou S, Shen X, Tang Y, Fu Z, Zheng Q, Wang Q. Astilbin Suppresses Acute Heart Allograft Rejection by Inhibiting Maturation and Function of Dendritic Cells in Mice. Transplant Proc 2010; 42:3798-802. [PMID: 21094859 DOI: 10.1016/j.transproceed.2010.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 06/07/2010] [Accepted: 06/28/2010] [Indexed: 11/15/2022]
Affiliation(s)
- S Zou
- General Surgery Department, Shanghai Jiao Tong University Sixth People's Hospital, Shanghai, China
| | | | | | | | | | | |
Collapse
|
6
|
Capitani N, Lucherini OM, Baldari CT. Negative regulation of immunoreceptor signaling by protein adapters: Shc proteins join the club. FEBS Lett 2010; 584:4915-22. [DOI: 10.1016/j.febslet.2010.08.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/23/2010] [Accepted: 08/31/2010] [Indexed: 11/26/2022]
|
7
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
8
|
Fuller DM, Zhang W. Regulation of lymphocyte development and activation by the LAT family of adapter proteins. Immunol Rev 2010; 232:72-83. [PMID: 19909357 DOI: 10.1111/j.1600-065x.2009.00828.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transmembrane adapter proteins (TRAPs) are critical components of signaling pathways in lymphocytes, linking antigen receptor engagement to downstream cellular processes. While these proteins lack intrinsic enzymatic activity, their phosphorylation following receptor ligation allows them to function as scaffolds for the assembly of multi-molecular signaling complexes. Many TRAPs have recently been discovered, and numerous studies demonstrate their roles in the positive and negative regulation of lymphocyte maturation, activation, and differentiation. One such example is the linker for activation of T cells (LAT) family of adapter proteins. While LAT has been shown to play an indispensable role in T-cell and mast cell function, the other family members, linker for activation of B cells (LAB) and linker for activation of X cells (LAX), are necessary to fine-tune immune responses. In addition to its well-established role in the positive regulation of lymphocyte activation, LAT exerts an inhibitory effect on T-cell receptor-mediated signaling. Furthermore, LAT, along with LAB and LAX, plays a crucial role in establishing and maintaining tolerance. Here, we review recent data concerning the regulation of lymphocyte development and activation by the LAT family of proteins.
Collapse
Affiliation(s)
- Deirdre M Fuller
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
9
|
Phosphorylation at serine 318 is not required for inhibition of T cell activation by ALX. Biochem Biophys Res Commun 2010; 396:994-8. [PMID: 20471366 DOI: 10.1016/j.bbrc.2010.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 05/10/2010] [Indexed: 11/24/2022]
Abstract
The activation of T cells and the initiation of an immune response is tightly controlled by both positive and negative regulators. Two adaptors which function as negative regulators of T cell activation are ALX and LAX. ALX constitutively associates with LAX in T cells, and T cells from mice deficient in ALX and LAX display similar hyper-responsiveness upon T cell receptor (TCR)/CD28 stimulation, including increased production of interleukin-2. During T cell activation, ALX is inducibly phosphorylated, however the site of ALX phosphorylation had not been previously identified and the role of phosphorylation in the inhibitory function of ALX was not known. Here, using mass spectrometry, we demonstrate that ALX is phosphorylated on a serine at position 318. Substitution of alanine for serine at this position (ALX S318A) leads to an abrogation of the mobility shift in ALX induced upon TCR/CD28 stimulation. However, ALX S318A retained the ability to bind to and stimulate tyrosine phosphorylation of LAX. In addition, overexpression of ALX S318A inhibited RE/AP activation upon TCR/CD28 stimulation to a similar extent as wild-type ALX. Therefore, although ALX is inducibly phosphorylated upon TCR/CD28 stimulation, this phosphorylation is not required for ALX to inhibit T cell activation.
Collapse
|
10
|
Lapinski PE, Oliver JA, Bodie JN, Marti F, King PD. The T-cell-specific adapter protein family: TSAd, ALX, and SH2D4A/SH2D4B. Immunol Rev 2009; 232:240-54. [PMID: 19909368 DOI: 10.1111/j.1600-065x.2009.00829.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adapter proteins play key roles in intracellular signal transduction through complex formation with catalytically active signaling molecules. In T lymphocytes, the role of several different types of adapter proteins in T-cell antigen receptor signal transduction is well established. An exception to this is the family of T-cell-specific adapter (TSAd) proteins comprising of TSAd, adapter protein of unknown function (ALX), SH2D4A, and SH2D4B. Only recently has the function of these adapters in T-cell signal transduction been explored. Here, we discuss advances in our understanding of the role of this family of adapter proteins in T cells. Their function as regulators of signal transduction in other cell types is also discussed.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620, USA
| | | | | | | | | |
Collapse
|
11
|
Shapiro MJ, Nguyen CT, Aghajanian H, Zhang W, Shapiro VS. Negative regulation of TCR signaling by linker for activation of X cells via phosphotyrosine-dependent and -independent mechanisms. THE JOURNAL OF IMMUNOLOGY 2008; 181:7055-61. [PMID: 18981125 DOI: 10.4049/jimmunol.181.10.7055] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activation of T cells and the initiation of an immune response is tightly controlled through the crosstalk of both positive and negative regulators. Two adaptors that function as negative regulators of T cell activation are adaptor in lymphocytes of unknown function X (ALX) and linker for activation of X cell (LAX). Previously, we showed that T cells from mice deficient in ALX and LAX display similar hyperresponsiveness, with increased IL-2 production and proliferation upon TCR/CD28 stimulation, and that these adaptors physically associate. In this study, we analyze the nature of the association between ALX and LAX. We demonstrate that this association occurs in the absence of TCR/CD28 signaling via a mechanism independent of both tyrosine phosphorylation of LAX and the SH2 domain of ALX. Cotransfection of ALX with LAX resulted in LAX tyrosine phosphorylation in the absence of TCR/CD28 stimulation. ALX-mediated LAX phosphorylation depends upon the ALX SH2 domain, which functions to recruit Lck to LAX. We also show that LAX, like ALX, can inhibit RE/AP reporter activation. However, in contrast to its inhibition of NFAT, the inhibition of RE/AP by LAX is independent of its tyrosine phosphorylation. Therefore, it can be concluded that inhibition of signaling events involved in T cell activation by LAX occurs through mechanisms both dependent on and independent of its tyrosine phosphorylation.
Collapse
Affiliation(s)
- Michael J Shapiro
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
12
|
Lapinski PE, Oliver JA, Kamen LA, Hughes ED, Saunders TL, King PD. Genetic analysis of SH2D4A, a novel adapter protein related to T cell-specific adapter and adapter protein in lymphocytes of unknown function, reveals a redundant function in T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:2019-27. [PMID: 18641339 PMCID: PMC2613811 DOI: 10.4049/jimmunol.181.3.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell-specific adapter (TSAd) protein and adapter protein in lymphocytes of unknown function (ALX) are two related Src homology 2 (SH2) domain-containing signaling adapter molecules that have both been shown to regulate TCR signal transduction in T cells. TSAd is required for normal TCR-induced synthesis of IL-2 and other cytokines in T cells and acts at least in part by promoting activation of the LCK protein tyrosine kinase at the outset of the TCR signaling cascade. By contrast, ALX functions as a negative-regulator of TCR-induced IL-2 synthesis through as yet undetermined mechanisms. In this study, we report a novel T cell-expressed adapter protein named SH2D4A that contains an SH2 domain that is highly homologous to the TSAd protein and ALX SH2 domains and that shares other structural features with these adapters. To examine the function of SH2D4A in T cells we produced SH2D4A-deficient mice by homologous recombination in embryonic stem cells. T cell development, homeostasis, proliferation, and function were all found to be normal in these mice. Furthermore, knockdown of SH2D4A expression in human T cells did not impact upon their function. We conclude that in contrast to TSAd and ALX proteins, SH2D4A is dispensable for TCR signal transduction in T cells.
Collapse
Affiliation(s)
- Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer A. Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Lynn A. Kamen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Elizabeth D. Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Internal Medicine, Division of Molecular Medicine and Genetics University of Michigan Medical School, Ann Arbor, MI 48109
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Tephly LA, Carter AB. Asbestos-induced MKP-3 expression augments TNF-alpha gene expression in human monocytes. Am J Respir Cell Mol Biol 2008; 39:113-23. [PMID: 18314537 DOI: 10.1165/rcmb.2007-0356oc] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
TNF-alpha is associated with the development of interstitial fibrosis. We have demonstrated that the p38 mitogen-activated protein (MAP) kinase regulates TNF-alpha expression in monocytes exposed to asbestos. In this report, we asked if extracellular signal-regulated kinase (ERK) was also involved in TNF-alpha expression in monocytes exposed to asbestos. We found that p38 and ERK were differentially activated in alveolar macrophages obtained from patients with asbestosis compared with normal subjects. More specifically, p38 was constitutively active and ERK activation was suppressed. Since the upstream pathway leading to ERK was intact, we hypothesized that an ERK-specific phosphatase was, in part, responsible for the decreased ERK activity. We evaluated whether the dual specificity phosphatase MAP kinase phosphatase (MKP)-3, which is highly expressed in the lung and specifically dephosphorylates ERK, was increased after exposure to asbestos. We found that MKP-3 increased after exposure to asbestos, and its expression was regulated by p38. We found that p38 and ERK negatively regulated one another, and MKP-3 had a role in this differential activation. We also found that p38 was a positive regulator and ERK was a negative regulator of TNF-alpha gene expression. Cells overexpressing MKP-3 had a significant increase in TNF-alpha gene expression, suggesting than an environment favoring p38 MAP kinase activation is necessary for TNF-alpha production in monocytes exposed to asbestos. Taken together, these data demonstrate that the p38 MAP kinase down-regulates ERK via activation of MKP-3 in human monocytes exposed to asbestos to enhance TNF-alpha gene expression.
Collapse
Affiliation(s)
- Linda A Tephly
- Division of Pulmonary and Critical Care Medicine, C33 GH, University of Iowa Hospital and Clinics, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | |
Collapse
|
14
|
Perchonock CE, Pajerowski AG, Nguyen C, Shapiro MJ, Shapiro VS. The related adaptors, adaptor in lymphocytes of unknown function X and Rlk/Itk-binding protein, have nonredundant functions in lymphocytes. THE JOURNAL OF IMMUNOLOGY 2007; 179:1768-75. [PMID: 17641043 DOI: 10.4049/jimmunol.179.3.1768] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Adaptors play a critical role in regulating signaling pathways that control lymphocyte development and activation. Adaptor in lymphocytes of unknown function X (ALX) and Rlk/Itk-binding protein (RIBP) are adaptors related by structure and sequence, coexpressed in T cells. Mice deficient for each adaptor demonstrated that ALX and RIBP, respectively, negatively and positively regulate T cell activation in response to TCR/CD28 stimulation. However, these results did not preclude that they may function redundantly in other cell populations, or in response to other stimuli. Therefore, to understand the relationship between these related adaptors, ALX/RIBP-deficient mice were generated. We demonstrate that although ALX and RIBP are expressed throughout T cell development, T cell development occurs normally in these mice. Using the H-Y TCR transgenic model, positive and negative selection were found to proceed unimpeded in the absence of ALX and RIBP. We demonstrate that RIBP is also expressed in B cells; however, RIBP- and ALX/RIBP-deficient mice had normal B cell development, and responded equivalently to wild type in response to IgM, CD40, B cell-activating factor/B lymphocyte stimulator, CpG, and LPS. Interestingly, T cells deficient in both ALX and RIBP behaved similarly to those deficient in ALX alone during T cell activation in response to TCR/CD28, exhibiting increased IL-2 production, CD25 expression, and proliferation, thus showing that ALX deficiency masked the effect of RIBP deficiency. ALX/RIBP-deficient T cells did not have any alterations in either activation-induced cell death or Th1/2 polarization. Therefore, we did not find any functional redundancy or synergy during lymphocyte development, selection, activation, or survival in ALX/RIBP-deficient mice, demonstrating that these molecules function independently.
Collapse
Affiliation(s)
- Claire E Perchonock
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
15
|
Abstract
The role of the paxillin superfamily of adaptor proteins in B cell antigen receptor (BCR) signaling has not been studied previously. We show here that leupaxin (LPXN), a member of this family, was tyrosine-phosphorylated and recruited to the plasma membrane of human BJAB lymphoma cells upon BCR stimulation and that it interacted with Lyn (a critical Src family tyrosine kinase in BCR signaling) in a BCR-induced manner. LPXN contains four leucine-rich sequences termed LD motifs, and serial truncation and specific domain deletion of LPXN indicated that its LD3 domain is involved in the binding of Lyn. Of a total of 11 tyrosine sites in LPXN, we mutated Tyr(22), Tyr(72), Tyr(198), and Tyr(257) to phenylalanine and demonstrated that LPXN was phosphorylated by Lyn only at Tyr(72) and that this tyrosine site is proximal to the LD3 domain. The overexpression of LPXN in mouse A20 B lymphoma cells led to the suppression of BCR-induced activation of JNK, p38 MAPK, and, to a lesser extent, Akt, but not ERK and NFkappaB, suggesting that LPXN can selectively repress BCR signaling. We further show that LPXN suppressed the secretion of interleukin-2 by BCR-activated A20 B cells and that this inhibition was abrogated in the Y72F LPXN mutant, indicating that the phosphorylation of Tyr(72) is critical for the biological function of LPXN. Thus, LPXN plays an inhibitory role in BCR signaling and B cell function.
Collapse
Affiliation(s)
- Valerie Chew
- Laboratory of Immune Regulation, Biomedical Sciences Institutes, Agency for Science, Technology and Research and Singapore Immunology Network, Singapore 138673, Singapore
| | - Kong-Peng Lam
- Laboratory of Immune Regulation, Biomedical Sciences Institutes, Agency for Science, Technology and Research and Singapore Immunology Network, Singapore 138673, Singapore.
| |
Collapse
|
16
|
Abstract
There have been recent, significant advances about the role of mRNA turnover in controlling gene expression in immune cells. Post‐transcriptional regulation of gene expression contributes to the characteristics of many of the processes underlying the immune response by ensuring early, rapid, and transient action. The emphasis of this review is on current work that deals with the regulation of mRNA decay during innate immunity against microbes and T cell activation as a model of the adaptive response.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, P3354, mBC-03, Riyadh 11211, Saudi Arabia.
| |
Collapse
|