1
|
Klimova N, Ngov C, Devaux F, Turcotte B. Regulation of meiotic gene expression is functional in the human fungal pathogen Candida glabrata. FEMS Yeast Res 2025; 25:foaf018. [PMID: 40175304 PMCID: PMC12012894 DOI: 10.1093/femsyr/foaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/04/2025] Open
Abstract
The human fungal pathogen Candida glabrata is closely related to the budding yeast Saccharomyces cerevisiae. The sexual cycle in S. cerevisiae has been extensively characterized. Haploid cells 'a' and alpha secrete pheromones involved in mating of the opposite cell type leading to the formation of a diploid cell. Under harsh conditions, diploid cells undergo meiosis for the formation of four haploid spores. In C. glabrata, cells are also found as 'a' and alpha and this organism possesses most S. cerevisiae homologous genes involved in meiosis and mating. However, mating has never been observed in C. glabrata. In S. cerevisiae, the non-essential UME6 gene is involved in controlling the expression of meiotic genes. We have previously shown that Zcf11, a putative homolog of Ume6, is encoded by an essential gene but its function is unknown. Here, we show that the expression of UME6 in C. glabrata can partially complement a Zcf11 knock-down and that these factors recognize the same DNA sequence. Importantly, expression profiling using a Zcf11 knock-down strain revealed that this factor is a negative regulator of meiotic genes expression as well as some genes involved in mating. Thus, regulation of the expression of meiotic genes is functional in this organism reinforcing the view that C. glabrata may have a sexual cycle under specific conditions.
Collapse
Affiliation(s)
- Natalia Klimova
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Cindy Ngov
- Department of Microbiology and Immunology, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de biologie Paris-Seine (IBPS), UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris 75005, France
| | - Bernard Turcotte
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Biochemistry, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
2
|
Gomez-Gutierrrez SV, Sic-Hernandez WR, Haridas S, LaButti K, Eichenberger J, Kaur N, Lipzen A, Barry K, Goodwin SB, Gribskov M, Grigoriev IV. Comparative genomics of the extremophile Cryomyces antarcticus and other psychrophilic Dothideomycetes. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1418145. [PMID: 39309730 PMCID: PMC11412873 DOI: 10.3389/ffunb.2024.1418145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024]
Abstract
Over a billion years of fungal evolution has enabled representatives of this kingdom to populate almost all parts of planet Earth and to adapt to some of its most uninhabitable environments including extremes of temperature, salinity, pH, water, light, or other sources of radiation. Cryomyces antarcticus is an endolithic fungus that inhabits rock outcrops in Antarctica. It survives extremes of cold, humidity and solar radiation in one of the least habitable environments on Earth. This fungus is unusual because it produces heavily melanized, meristematic growth and is thought to be haploid and asexual. Due to its growth in the most extreme environment, it has been suggested as an organism that could survive on Mars. However, the mechanisms it uses to achieve its extremophilic nature are not known. Comparative genomics can provide clues to the processes underlying biological diversity, evolution, and adaptation. This effort has been greatly facilitated by the 1000 Fungal Genomes project and the JGI MycoCosm portal where sequenced genomes have been assembled into phylogenetic and ecological groups representing different projects, lifestyles, ecologies, and evolutionary histories. Comparative genomics within and between these groups provides insights into fungal adaptations, for example to extreme environmental conditions. Here, we analyze two Cryomyces genomes in the context of additional psychrophilic fungi, as well as non-psychrophilic fungi with diverse lifestyles selected from the MycoCosm database. This analysis identifies families of genes that are expanded and contracted in Cryomyces and other psychrophiles and may explain their extremophilic lifestyle. Higher GC contents of genes and of bases in the third positions of codons may help to stabilize DNA under extreme conditions. Numerous smaller contigs in C. antarcticus suggest the presence of an alternative haplotype that could indicate the sequenced isolate is diploid or dikaryotic. These analyses provide a first step to unraveling the secrets of the extreme lifestyle of C. antarcticus.
Collapse
Affiliation(s)
| | - Wily R. Sic-Hernandez
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Joanne Eichenberger
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Navneet Kaur
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Stephen B. Goodwin
- Crop Production and Pest Control Research Unit, U.S. Department of Agriculture (USDA) - Agricultural Research Service, West Lafayette, IN, United States
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Igor V. Grigoriev
- U.S. Department of Energy Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
3
|
Hou S, Gao C, Liu J, Chen X, Wei W, Song W, Hu G, Li X, Wu J, Liu L. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress. Appl Environ Microbiol 2024; 90:e0096824. [PMID: 39082808 PMCID: PMC11337799 DOI: 10.1128/aem.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.
Collapse
Affiliation(s)
- Shuo Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Martinez KP, Gasmi N, Jeronimo C, Klimova N, Robert F, Turcotte B. Yeast zinc cluster transcription factors involved in the switch from fermentation to respiration show interdependency for DNA binding revealing a novel type of DNA recognition. Nucleic Acids Res 2024; 52:2242-2259. [PMID: 38109318 PMCID: PMC10954478 DOI: 10.1093/nar/gkad1185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023] Open
Abstract
In budding yeast, fermentation is the most important pathway for energy production. Under low-glucose conditions, ethanol is used for synthesis of this sugar requiring a shift to respiration. This process is controlled by the transcriptional regulators Cat8, Sip4, Rds2 and Ert1. We characterized Gsm1 (glucose starvation modulator 1), a paralog of Rds2 and Ert1. Genome-wide analysis showed that Gsm1 has a DNA binding profile highly similar to Rds2. Binding of Gsm1 and Rds2 is interdependent at the gluconeogenic gene FBP1. However, Rds2 is required for Gsm1 to bind at other promoters but not the reverse. Gsm1 and Rds2 also bind to DNA independently of each other. Western blot analysis revealed that Rds2 controls expression of Gsm1. In addition, we showed that the DNA binding domains of Gsm1 and Rds2 bind cooperatively in vitro to the FBP1 promoter. In contrast, at the HAP4 gene, Ert1 cooperates with Rds2 for DNA binding. Mutational analysis suggests that Gsm1/Rds2 and Ert1/Rds2 bind to short common DNA stretches, revealing a novel mode of binding for this class of factors. Two-point mutations in a HAP4 site convert it to a Gsm1 binding site. Thus, Rds2 controls binding of Gsm1 at many promoters by two different mechanisms: regulation of Gsm1 levels and increased DNA binding by formation of heterodimers.
Collapse
Affiliation(s)
- Karla Páez Martinez
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Najla Gasmi
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
| | - Natalia Klimova
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 avenue des Pins Ouest, Montréal, QC H2W 1R7, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| | - Bernard Turcotte
- Department of Medicine, McGill University Health Centre, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Biochemistry, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
- Department of Microbiology and Immunology, McGill University, 1001 Boul. Décarie, Room E02.7212, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
5
|
Buechel ER, Pinkett HW. Activity of the pleiotropic drug resistance transcription factors Pdr1p and Pdr3p is modulated by binding site flanking sequences. FEBS Lett 2024; 598:169-186. [PMID: 37873734 PMCID: PMC10843404 DOI: 10.1002/1873-3468.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/25/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleiotropic drug resistance (PDR) in Saccharomyces cerevisiae via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3p can differentially regulate PDR.
Collapse
Affiliation(s)
- Evan R. Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Heather W. Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
6
|
Delorme-Axford E, Wen X, Klionsky DJ. The yeast transcription factor Stb5 acts as a negative regulator of autophagy by modulating cellular metabolism. Autophagy 2023; 19:2719-2732. [PMID: 37345792 PMCID: PMC10472870 DOI: 10.1080/15548627.2023.2228533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved pathway of cellular degradation and recycling that maintains cell health during homeostatic conditions and facilitates survival during stress. Aberrant cellular autophagy contributes to the pathogenesis of human diseases such as cancer, neurodegeneration, and cardiovascular, metabolic and lysosomal storage disorders. Despite decades of research, there remain unanswered questions as to how autophagy modulates cellular metabolism, and, conversely, how cellular metabolism affects autophagy activity. Here, we have identified the yeast metabolic transcription factor Stb5 as a negative regulator of autophagy. Chromosomal deletion of STB5 in the yeast Saccharomyces cerevisiae enhances autophagy. Loss of Stb5 results in the upregulation of select autophagy-related (ATG) transcripts under nutrient-replete conditions; however, the Stb5-mediated impact on autophagy occurs primarily through its effect on genes involved in NADPH production and the pentose phosphate pathway. This work provides insight into the intersection of Stb5 as a transcription factor that regulates both cellular metabolic responses and autophagy activity.Abbreviations: bp, base pairs; ChIP, chromatin immunoprecipitation; G6PD, glucose-6-phosphate dehydrogenase; GFP, green fluorescent protein; IDR, intrinsically disordered region; NAD, nicotinamide adenine dinucleotide; NADP+, nicotinamide adenine dinucleotide phosphate; NADPH, nicotinamide adenine dinucleotide phosphate (reduced); ORF, open reading frame; PA, protein A; PCR, polymerase chain reaction; PE, phosphatidylethanolamine; PPP, pentose phosphate pathway; prApe1, precursor aminopeptidase I; ROS, reactive oxygen species; RT-qPCR, real-time quantitative PCR; SD, standard deviation; TF, transcription factor; TOR, target of rapamycin; WT, wild-type.
Collapse
Affiliation(s)
| | - Xin Wen
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Buechel ER, Pinkett HW. Unraveling the Half and Full Site Sequence Specificity of the Saccharomyces cerevisiae Pdr1p and Pdr3p Transcription Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.553033. [PMID: 37609128 PMCID: PMC10441396 DOI: 10.1101/2023.08.11.553033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The transcription factors Pdr1p and Pdr3p regulate pleotropic drug resistance (PDR) in Saccharomyces cerevisiae , via the PDR responsive elements (PDREs) to modulate gene expression. However, the exact mechanisms underlying the differences in their regulons remain unclear. Employing genomic occupancy profiling (CUT&RUN), binding assays, and transcription studies, we characterized the differences in sequence specificity between transcription factors. Findings reveal distinct preferences for core PDRE sequences and the flanking sequences for both proteins. While flanking sequences moderately alter DNA binding affinity, they significantly impact Pdr1/3p transcriptional activity. Notably, both proteins demonstrated the ability to bind half sites, showing potential enhancement of transcription from adjacent PDREs. This insight sheds light on ways Pdr1/3 can differentially regulate PDR.
Collapse
|
8
|
Francisco CS, McDonald BA, Palma-Guerrero J. A transcription factor and a phosphatase regulate temperature-dependent morphogenesis in the fungal plant pathogen Zymoseptoria tritici. Fungal Genet Biol 2023; 167:103811. [PMID: 37196910 DOI: 10.1016/j.fgb.2023.103811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/26/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Naturally fluctuating temperatures provide a constant environmental stress that requires adaptation. Some fungal pathogens respond to heat stress by producing new morphotypes that maximize their overall fitness. The fungal wheat pathogen Zymoseptoria tritici responds to heat stress by switching from its yeast-like blastospore form to hyphae or chlamydospores. The regulatory mechanisms underlying this switch are unknown. Here, we demonstrate that a differential heat stress response is ubiquitous in Z. tritici populations around the world. We used QTL mapping to identify a single locus associated with the temperature-dependent morphogenesis and we found two genes, the transcription factor ZtMsr1 and the protein phosphatase ZtYvh1, regulating this mechanism. We find that ZtMsr1 regulates repression of hyphal growth and induces chlamydospore formation whereas ZtYvh1 is required for hyphal growth. We next showed that chlamydospore formation is a response to the intracellular osmotic stress generated by the heat stress. This intracellular stress stimulates the cell wall integrity (CWI) and high-osmolarity glycerol (HOG) MAPK pathways resulting in hyphal growth. If cell wall integrity is compromised, however, ZtMsr1 represses the hyphal development program and may induce the chlamydospore-inducing genes as a stress-response survival strategy. Taken together, these results suggest a novel mechanism through which morphological transitions are orchestrated in Z. tritici - a mechanism that may also be present in other pleomorphic fungi.
Collapse
Affiliation(s)
| | - Bruce A McDonald
- Plant Pathology Group, Institute of Integrative Biology, 8092 ETH Zürich, Switzerland
| | - Javier Palma-Guerrero
- Plant Pathology Group, Institute of Integrative Biology, 8092 ETH Zürich, Switzerland.
| |
Collapse
|
9
|
González-Lozano KJ, Aréchiga-Carvajal ET, Jiménez-Salas Z, Valdez-Rodríguez DM, León-Ramírez CG, Ruiz-Herrera J, Adame-Rodríguez JM, López-Cabanillas-Lomelí M, Campos-Góngora E. Identification and Characterization of Dmct: A Cation Transporter in Yarrowia lipolytica Involved in Metal Tolerance. J Fungi (Basel) 2023; 9:600. [PMID: 37367535 DOI: 10.3390/jof9060600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 06/28/2023] Open
Abstract
Yarrowia lipolytica is a dimorphic fungus used as a model organism to investigate diverse biotechnological and biological processes, such as cell differentiation, heterologous protein production, and bioremediation strategies. However, little is known about the biological processes responsible for cation concentration homeostasis. Metals play pivotal roles in critical biochemical processes, and some are toxic at unbalanced intracellular concentrations. Membrane transport proteins control intracellular cation concentrations. Analysis of the Y. lipolytica genome revealed a characteristic functional domain of the cation efflux protein family, i.e., YALI0F19734g, which encodes YALI0F19734p (a putative Yl-Dmct protein), which is related to divalent metal cation tolerance. We report the in silico analysis of the putative Yl-Dmct protein's characteristics and the phenotypic response to divalent cations (Ca2+, Cu2+, Fe2+, and Zn2+) in the presence of mutant strains, Δdmct and Rdmct, constructed by deletion and reinsertion of the DMCT gene, respectively. The absence of the Yl-Dmct protein induces cellular and growth rate changes, as well as dimorphism differences, when calcium, copper, iron, and zinc are added to the cultured medium. Interestingly, the parental and mutant strains were able to internalize the ions. Our results suggest that the protein encoded by the DMCT gene is involved in cell development and cation homeostasis in Y. lipolytica.
Collapse
Affiliation(s)
- Katia Jamileth González-Lozano
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Elva Teresa Aréchiga-Carvajal
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Zacarías Jiménez-Salas
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| | - Debany Marlen Valdez-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Claudia Geraldine León-Ramírez
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato CP 36824, Guanajuato, Mexico
| | - José Ruiz-Herrera
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Unidad Irapuato, Departamento de Ingeniería Genética, Irapuato CP 36824, Guanajuato, Mexico
| | - Juan Manuel Adame-Rodríguez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología, LMYF, Unidad de Manipulación Genética, Monterrey CP 66455, Nuevo León, Mexico
| | - Manuel López-Cabanillas-Lomelí
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| | - Eduardo Campos-Góngora
- Universidad Autónoma de Nuevo León, Centro de Investigación en Nutrición y Salud Pública, Monterrey CP 64460, Nuevo León, Mexico
| |
Collapse
|
10
|
Real-time monitoring of subcellular states with genetically encoded redox biosensor system (RBS) in yeast cell factories. Biosens Bioelectron 2023; 222:114988. [PMID: 36521204 DOI: 10.1016/j.bios.2022.114988] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
During industrial fermentation, microbial cell factories are usually confronted with environmental or metabolic stresses, leading to the imbalance of intracellular redox and the reduction of cell metabolic capacity. Here, we constructed the genetically encoded redox biosensor system (RBS) based on redox-sensitive fluorescent proteins to detect redox metabolites, including reactive oxygen species (ROS), oxidized glutathione, NADH, and NADPH in Saccharomyces cerevisiae. The functional biosensors were quantitatively characterized and the orthogonal redox biosensor system (oRBS) was designed for detecting multiple redox metabolites. Furthermore, the compartment targeted redox biosensor system (ctRBS) was constructed to detect ROS and NADPH, revealing the distribution and spatiotemporal dynamics of ROS in yeast under various stress conditions. As a proof-of-concept, RBS was applied to evaluate the redox states of engineered yeast with stress resistance and heterogenous triterpene synthesis in vivo, elucidating the redox balance significantly affecting the growth and production phenotypes. The RBS in this study allowed the exploration of the diversity of compartmental redox state and real-time monitoring of the production process of yeast, providing a reliable and effective approach for accurate and in-depth profiling of bottlenecks of yeast cell factories.
Collapse
|
11
|
Chen SL, Liu TS, Zhang WG, Xu JZ. Cofactor Engineering for Efficient Production of α-Farnesene by Rational Modification of NADPH and ATP Regeneration Pathway in Pichia pastoris. Int J Mol Sci 2023; 24:1767. [PMID: 36675279 PMCID: PMC9860691 DOI: 10.3390/ijms24021767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 01/18/2023] Open
Abstract
α-Farnesene, an acyclic volatile sesquiterpene, plays important roles in aircraft fuel, food flavoring, agriculture, pharmaceutical and chemical industries. Here, by re-creating the NADPH and ATP biosynthetic pathways in Pichia pastoris, we increased the production of α-farnesene. First, the native oxiPPP was recreated by overexpressing its essential enzymes or by inactivating glucose-6-phosphate isomerase (PGI). This revealed that the combined over-expression of ZWF1 and SOL3 increases α-farnesene production by improving NADPH supply, whereas inactivating PGI did not do so because it caused a reduction in cell growth. The next step was to introduce heterologous cPOS5 at various expression levels into P. pastoris. It was discovered that a low intensity expression of cPOS5 aided in the production of α-farnesene. Finally, ATP was increased by the overexpression of APRT and inactivation of GPD1. The resultant strain P. pastoris X33-38 produced 3.09 ± 0.37 g/L of α-farnesene in shake flask fermentation, which was 41.7% higher than that of the parent strain. These findings open a new avenue for the development of an industrial-strength α-farnesene producer by rationally modifying the NADPH and ATP regeneration pathways in P. pastoris.
Collapse
Affiliation(s)
| | | | | | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, China
| |
Collapse
|
12
|
Paramasivan K, Abdulla A, Gupta N, Mutturi S. In silico target-based strain engineering of Saccharomyces cerevisiae for terpene precursor improvement. Integr Biol (Camb) 2022; 14:25-36. [DOI: 10.1093/intbio/zyac003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Systems-based metabolic engineering enables cells to enhance product formation by predicting gene knockout and overexpression targets using modeling tools. FOCuS, a novel metaheuristic tool, was used to predict flux improvement targets in terpenoid pathway using the genome-scale model of Saccharomyces cerevisiae, iMM904. Some of the key knockout target predicted includes LYS1, GAP1, AAT1, AAT2, TH17, KGD-m, MET14, PDC1 and ACO1. It was also observed that the knockout reactions belonged either to fatty acid biosynthesis, amino acid synthesis pathways or nucleotide biosynthesis pathways. Similarly, overexpression targets such as PFK1, FBA1, ZWF1, TDH1, PYC1, ALD6, TPI1, PDX1 and ENO1 were established using three different existing gene amplification algorithms. Most of the overexpression targets belonged to glycolytic and pentose phosphate pathways. Each of these targets had plausible role for improving flux toward sterol pathway and were seemingly not artifacts. Moreover, an in vitro study as validation was carried with overexpression of ALD6 and TPI1. It was found that there was an increase in squalene synthesis by 2.23- and 4.24- folds, respectively, when compared with control. In general, the rationale for predicting these in silico targets was attributed to either increasing the acetyl-CoA precursor pool or regeneration of NADPH, which increase the sterol pathway flux.
Collapse
Affiliation(s)
- Kalaivani Paramasivan
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
- Department of Bioengineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Aneesha Abdulla
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Nabarupa Gupta
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Sarma Mutturi
- Microbiology and Fermentation Technology Department, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
13
|
Chen HQ, Xing Q, Cheng C, Zhang MM, Liu CG, Champreda V, Zhao XQ. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance. Front Bioeng Biotechnol 2022; 10:837813. [PMID: 35402407 PMCID: PMC8992792 DOI: 10.3389/fbioe.2022.837813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Robust yeast strains that are tolerant to multiple stress environments are desired for an efficient biorefinery. Our previous studies revealed that zinc sulfate serves as an important nutrient for stress tolerance of budding yeast Saccharomyces cerevisiae. Acetic acid is a common inhibitor in cellulosic hydrolysate, and the development of acetic acid-tolerant strains is beneficial for lignocellulosic biorefineries. In this study, comparative proteomic studies were performed using S. cerevisiae cultured under acetic acid stress with or without zinc sulfate addition, and novel zinc-responsive proteins were identified. Among the differentially expressed proteins, the protein kinase Kic1p and the small rho-like GTPase Cdc42p, which is required for cell integrity and regulation of cell polarity, respectively, were selected for further studies. Overexpression of KIC1 and CDC42 endowed S. cerevisiae with faster growth and ethanol fermentation under the stresses of acetic acid and mixed inhibitors, as well as in corncob hydrolysate. Notably, the engineered yeast strains showed a 12 h shorter lag phase under the three tested conditions, leading to up to 52.99% higher ethanol productivity than that of the control strain. Further studies showed that the transcription of genes related to stress response was significantly upregulated in the engineered strains under the stress condition. Our results in this study provide novel insights in exploring zinc-responsive proteins for applications of synthetic biology in developing a robust industrial yeast.
Collapse
Affiliation(s)
- Hong-Qi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
14
|
Robustness: linking strain design to viable bioprocesses. Trends Biotechnol 2022; 40:918-931. [PMID: 35120750 DOI: 10.1016/j.tibtech.2022.01.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 12/18/2022]
Abstract
Microbial cell factories are becoming increasingly popular for the sustainable production of various chemicals. Metabolic engineering has led to the design of advanced cell factories; however, their long-term yield, titer, and productivity falter when scaled up and subjected to industrial conditions. This limitation arises from a lack of robustness - the ability to maintain a constant phenotype despite the perturbations of such processes. This review describes predictable and stochastic industrial perturbations as well as state-of-the-art technologies to counter process variability. Moreover, we distinguish robustness from tolerance and discuss the potential of single-cell studies for improving system robustness. Finally, we highlight ways of achieving consistent and comparable quantification of robustness that can guide the selection of strains for industrial bioprocesses.
Collapse
|
15
|
Berrou K, Roig B, Cadiere A. Assessment of micropollutants toxicity by using a modified Saccharomyces cerevisiae model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118211. [PMID: 34571070 DOI: 10.1016/j.envpol.2021.118211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Environment can be affected by a variety of micropollutants. In this paper, we develop a system to assess the toxicity on an environmental sample, based on the expression of a nanoluciferase under the control of the STB5 promotor in a yeast. The STB5 gene encodes for a transcription factor involved in a pleiotropic drug resistance and in the oxidative stress response. The response of the modified yeast was assessed using 42 micropollutants belonging to different families (antibiotics, pain killers, hormones, plasticizers, pesticides, etc.). Among them, 26 induced an increase of the bioluminescence for concentration ranges from pg.L-1 to ng.L-1. Surprisingly, for concentrations higher than 100 ng.L-1, no response can be observed, suggesting that other mechanisms are involved when the stress increases. Analyzing the different responses obtained, we highlighted six nonmonotonic types of responses. The type of response seems to be independent of the properties of the compounds (polarity, toxicology, molecular weight) and of their family. In conclusion, we highlighted that a cellular response exists for very low exposition to environmental concentration of micropollutants and that it was necessary to explore the cellular mechanisms involved at very low concentration to provide a better risk assessment.
Collapse
Affiliation(s)
- Kevin Berrou
- University of Nimes, UPR CHROME, Rue du Dr G. Salan, 30021, Nimes Cedex 1, France
| | - Benoit Roig
- University of Nimes, UPR CHROME, Rue du Dr G. Salan, 30021, Nimes Cedex 1, France
| | - Axelle Cadiere
- University of Nimes, UPR CHROME, Rue du Dr G. Salan, 30021, Nimes Cedex 1, France.
| |
Collapse
|
16
|
de Ramón-Carbonell M, Sánchez-Torres P. Unveiling the Role Displayed by Penicillium digitatum PdMut3 Transcription Factor in Pathogen-Fruit Interaction. J Fungi (Basel) 2021; 7:828. [PMID: 34682249 PMCID: PMC8540835 DOI: 10.3390/jof7100828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/16/2022] Open
Abstract
Zn2Cys6 transcription factors are unique to fungi and are involved in different regulatory functions. In this study, we have identified the Penicillium digitatumPdMut3 gene, which encodes a putative Zn (II) 2Cys6 DNA-binding protein. Elimination of PdMut3 in Pd1 strain caused increased virulence during citrus infection. The transcription of the PdMut3 gene showed a higher expression rate during fungal growth and less transcription during fruit infection. Furthermore, the deletion of the gene in the wild-type isolate of P. digitatum did not produce any modification of the sensitivity to different fungicides, indicating that the gene is not associated with resistance to fungicides. In contrast, PdMut3 null mutants showed a reduction in growth in minimal media, which was associated with severe alterations in conidiophore development and morphological alterations of the hyphae. Mutants showed greater sensitivity to compounds that interfere with the cell wall and an invasive growth block. Thus, PdMut3 might have an indirect role in fungi virulence through metabolism and peroxisomes development.
Collapse
|
17
|
The Pentose Phosphate Pathway in Yeasts-More Than a Poor Cousin of Glycolysis. Biomolecules 2021; 11:biom11050725. [PMID: 34065948 PMCID: PMC8151747 DOI: 10.3390/biom11050725] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
The pentose phosphate pathway (PPP) is a route that can work in parallel to glycolysis in glucose degradation in most living cells. It has a unidirectional oxidative part with glucose-6-phosphate dehydrogenase as a key enzyme generating NADPH, and a non-oxidative part involving the reversible transketolase and transaldolase reactions, which interchange PPP metabolites with glycolysis. While the oxidative branch is vital to cope with oxidative stress, the non-oxidative branch provides precursors for the synthesis of nucleic, fatty and aromatic amino acids. For glucose catabolism in the baker’s yeast Saccharomyces cerevisiae, where its components were first discovered and extensively studied, the PPP plays only a minor role. In contrast, PPP and glycolysis contribute almost equally to glucose degradation in other yeasts. We here summarize the data available for the PPP enzymes focusing on S. cerevisiae and Kluyveromyces lactis, and describe the phenotypes of gene deletions and the benefits of their overproduction and modification. Reference to other yeasts and to the importance of the PPP in their biotechnological and medical applications is briefly being included. We propose future studies on the PPP in K. lactis to be of special interest for basic science and as a host for the expression of human disease genes.
Collapse
|
18
|
Yoshida H, Tanaka C. An arabinose-induced enhancement of asexual reproduction and concomitant changes in metabolic state in the filamentous fungus Bipolaris maydis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555250 DOI: 10.1099/mic.0.001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
l-Arabinose, a major constituent pentose of plant cell-wall polysaccharides, has been suggested to be a less preferred carbon source for fungi but to be a potential signalling molecule that can cause distinct genome-wide transcriptional changes in fungal cells. Here, we explore the possibility that this unique pentose influences the morphological characteristics of the phytopathogenic fungus Bipolaris maydis strain HITO7711. When grown on plate media under different sugar conditions, the mycelial dry weight of cultures on l-arabinose was as low as that with no sugar, suggesting that l-arabinose does not substantially contribute to vegetative growth. However, the intensity of conidiation on l-arabinose was comparable to or even higher than that on d-glucose and on d-xylose, in contrast to the poor conidiation under the no-sugar condition. To explore the physiological basis of the passive growth and active conidiation on l-arabinose, we next investigated cellular responses of the fungus to these sugar conditions. Transcriptional analysis of genes related to carbohydrate metabolism showed that l-arabinose stimulates carbohydrate utilization through the hexose monophosphate shunt (HMP shunt), a catabolic pathway parallel to glycolysis and which participates in the generation of the reducing agent NADPH (the reduced form of nicotinamide adenine dinucleotide phosphate). Then, the HMP shunt was impaired by disrupting the related gene BmZwf1, which encodes glucose-6-phosphate dehydrogenase in this fungus. The resulting mutants on l-arabinose showed remarkably decreased conidiation, but a conversely increased mycelial dry weight compared with the wild-type. Our study demonstrates that l-arabinose acts to enhance resource allocation to asexual reproduction in B. maydis HITO7711 at the cost of vegetative growth, and suggests that this is mediated by the concomitant stimulation of the HMP shunt.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Chihiro Tanaka
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
19
|
Mota MN, Martins LC, Sá-Correia I. The Identification of Genetic Determinants of Methanol Tolerance in Yeast Suggests Differences in Methanol and Ethanol Toxicity Mechanisms and Candidates for Improved Methanol Tolerance Engineering. J Fungi (Basel) 2021; 7:90. [PMID: 33513997 PMCID: PMC7911966 DOI: 10.3390/jof7020090] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 12/15/2022] Open
Abstract
Methanol is a promising feedstock for metabolically competent yeast strains-based biorefineries. However, methanol toxicity can limit the productivity of these bioprocesses. Therefore, the identification of genes whose expression is required for maximum methanol tolerance is important for mechanistic insights and rational genomic manipulation to obtain more robust methylotrophic yeast strains. The present chemogenomic analysis was performed with this objective based on the screening of the Euroscarf Saccharomyces cerevisiae haploid deletion mutant collection to search for susceptibility phenotypes in YPD medium supplemented with 8% (v/v) methanol, at 35 °C, compared with an equivalent ethanol concentration (5.5% (v/v)). Around 400 methanol tolerance determinants were identified, 81 showing a marked phenotype. The clustering of the identified tolerance genes indicates an enrichment of functional categories in the methanol dataset not enriched in the ethanol dataset, such as chromatin remodeling, DNA repair and fatty acid biosynthesis. Several genes involved in DNA repair (eight RAD genes), identified as specific for methanol toxicity, were previously reported as tolerance determinants for formaldehyde, a methanol detoxification pathway intermediate. This study provides new valuable information on genes and potential regulatory networks involved in overcoming methanol toxicity. This knowledge is an important starting point for the improvement of methanol tolerance in yeasts capable of catabolizing and copying with methanol concentrations present in promising bioeconomy feedstocks, including industrial residues.
Collapse
Affiliation(s)
- Marta N. Mota
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Luís C. Martins
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal; (M.N.M.); (L.C.M.)
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| |
Collapse
|
20
|
Pavin SS, Prestes ADS, Dos Santos MM, de Macedo GT, Ferreira SA, Claro MT, Dalla Corte C, Vargas Barbosa N. Methylglyoxal disturbs DNA repair and glyoxalase I system in Saccharomyces cerevisiae. Toxicol Mech Methods 2020; 31:107-115. [PMID: 33059495 DOI: 10.1080/15376516.2020.1838019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde able to form covalent adducts with proteins and nucleic acids, disrupting cellular functions. In this study, we performed a screening of Saccharomyces cerevisiae (S. cerevisiae) strains to find out which genes of cells are responsive to MG, emphasizing genes against oxidative stress and DNA repair. Yeast strains were grown in the YPD-Galactose medium containing MG (0.5 to 12 mM). The tolerance to MG was evaluated by determining cellular growth and cell viability. The toxicity of MG was more pronounced in the strains with deletion in genes engaged with DNA repair checkpoint proteins, namely Rad23 and Rad50. MG also impaired the growth and viability of S. cerevisiae mutant strains Glo1 and Gsh1, both components of the glyoxalase I system. Differently, the strains with deletion in genes encoding for antioxidant enzymes were apparently resistant to MG. In summary, our data indicate that DNA repair and MG detoxification pathways are keys in the control of MG toxicity in S. cerevisiae.
Collapse
Affiliation(s)
- Sandra Sartoretto Pavin
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandro de Souza Prestes
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Matheus Mulling Dos Santos
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Teixeira de Macedo
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sabrina Antunes Ferreira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mariana Torri Claro
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Cristiane Dalla Corte
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Nilda Vargas Barbosa
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
21
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
22
|
Using high-throughput data and dynamic flux balance modeling techniques to identify points of constraint in xylose utilization in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s43393-020-00003-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Hou Z, Chen Q, Zhao M, Huang C, Wu X. Genome-wide characterization of the Zn(II) 2Cys 6 zinc cluster-encoding gene family in Pleurotus ostreatus and expression analyses of this family during developmental stages and under heat stress. PeerJ 2020; 8:e9336. [PMID: 32566411 PMCID: PMC7295025 DOI: 10.7717/peerj.9336] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
Pleurotus ostreatus is one of the most widely cultivated mushrooms in China. The regulatory mechanisms of fruiting body formation and the response to heat stress in P. ostreatus are main research focuses. The Zn(II)2Cys6 family is one of the largest families of transcriptional factors and plays important roles in multiple biological processes in fungi. In this study, we identified 66 zinc cluster proteins in P. ostreatus (PoZCPs) through a genome-wide search. The PoZCPs were classified into 15 types according to their zinc cluster domain. Physical and chemical property analyses showed a huge diversity among the PoZCPs. Phylogenetic analysis of PoZCPs classified these proteins into six groups and conserved motif combinations and similar gene structures were observed in each group. The expression profiles of these PoZCP genes during different developmental stages and under heat stress were further investigated by RNA-sequencing (RNA-seq), revealing diverse expression patterns. A total of 13 PoZCPs that may participate in development or the heat stress response were selected for validation of their expression levels through real-time quantitative PCR (RT-qPCR) analysis, and some developmental stage-specific and heat stress-responsive candidates were identified. The findings contribute to our understanding of the roles and regulatory mechanisms of ZCPs in P. ostreatus.
Collapse
Affiliation(s)
- Zhihao Hou
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiang Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Mengran Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Chenyang Huang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiangli Wu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.,Key Laboratory of Microbial Resources, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
24
|
Sethiya P, Rai MN, Rai R, Parsania C, Tan K, Wong KH. Transcriptomic analysis reveals global and temporal transcription changes during Candida glabrata adaptation to an oxidative environment. Fungal Biol 2020; 124:427-439. [DOI: 10.1016/j.funbio.2019.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 01/14/2023]
|
25
|
Pan C, Li YX, Yang K, Famous E, Ma Y, He X, Geng Q, Liu M, Tian J. The Molecular Mechanism of Perillaldehyde Inducing Cell Death in Aspergillus flavus by Inhibiting Energy Metabolism Revealed by Transcriptome Sequencing. Int J Mol Sci 2020; 21:ijms21041518. [PMID: 32102190 PMCID: PMC7073185 DOI: 10.3390/ijms21041518] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023] Open
Abstract
Perillaldehyde (PAE), an essential oil in Perilla plants, serves as a safe flavor ingredient in foods, and shows an effectively antifungal activity. Reactive oxygen species (ROS) accumulation in Aspergillus flavus plays a critical role in initiating a metacaspase-dependent apoptosis. However, the reason for ROS accumulation in A. flavus is not yet clear. Using transcriptome sequencing of A. flavus treated with different concentrations of PAE, our data showed that the ROS accumulation might have been as a result of an inhibition of energy metabolism with less production of reducing power. By means of GO and KEGG enrichment analysis, we screened four key pathways, which were divided into two distinct groups: a downregulated group that was made up of the glycolysis and pentose phosphate pathway, and an upregulated group that consisted of MAPK signaling pathway and GSH metabolism pathway. The inhibition of dehydrogenase gene expression in two glycometabolism pathways might play a crucial role in antifungal mechanism of PAE. Also, in our present study, we systematically showed a gene interaction network of how genes of four subsets are effected by PAE stress on glycometabolism, oxidant damage repair, and cell cycle control. This research may contribute to explaining an intrinsic antifungal mechanism of PAE against A. flavus.
Collapse
Affiliation(s)
- Chao Pan
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Yong-Xin Li
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Kunlong Yang
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Erhunmwunsee Famous
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Yan Ma
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Xiaona He
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Qingru Geng
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
| | - Man Liu
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
- Correspondence: (M.L.); (J.T.); Tel.: +86-516-83403172 (J.T.)
| | - Jun Tian
- College of Life Science, Jiangsu Normal University, Xuzhou 221116, China; (C.P.); (Y.-X.L.); (K.Y.); (E.F.)
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing100048, China
- Correspondence: (M.L.); (J.T.); Tel.: +86-516-83403172 (J.T.)
| |
Collapse
|
26
|
Porras-Agüera JA, Román-Camacho JJ, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. Effect of endogenous CO 2 overpressure on the yeast "stressome" during the "prise de mousse" of sparkling wine. Food Microbiol 2020; 89:103431. [PMID: 32138989 DOI: 10.1016/j.fm.2020.103431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Sparkling wines elaboration by the "Champenoise" method involves a second fermentation of a base wine in hermetically sealed bottles and a subsequent aging period. The whole process is known as "prise de mousse". The endogenous CO2 pressure produced during the second fermentation by the yeast Saccharomyces cerevisiae could modify the sub-proteome involved in the response to different stresses, or "stressome", and cell viability thus affecting the wine organoleptic properties. This study focuses on the stressome evolution along the prise de mousse under CO2 overpressure conditions in an industrial S. cerevisiae strain. The results reveal an important effect of endogenous CO2 overpressure on the stress sub-proteome, cell viability and metabolites such as glycerol, reducing sugars and ethanol. Whereas the content of glycerol biosynthesis-related proteins increased in sealed bottle, those involved in the response to toxic metabolites like ROS, ethanol, acetaldehyde and acetic acid, decreased in content. Proteomic profile obtained in this study may be used to select suitable wine yeast strains for sparkling wine elaboration and improve their stress tolerance.
Collapse
Affiliation(s)
- Juan A Porras-Agüera
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan J Román-Camacho
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan C Mauricio
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| |
Collapse
|
27
|
A Genetic Screen To Identify Genes Influencing the Secondary Redox Couple NADPH/NADP + in the Yeast Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2020; 10:371-378. [PMID: 31757928 PMCID: PMC6945034 DOI: 10.1534/g3.119.400606] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NADPH is an important cofactor in the cell. In addition to its role in the biosynthesis of critical metabolites, it plays crucial roles in the regeneration of the reduced forms of glutathione, thioredoxins and peroxiredoxins. The enzymes and pathways that regulate NADPH are thus extremely important to understand, and yet are only partially understood. We have been interested in understanding how NADPH fluxes are altered in the cell. We describe here both an assay and a genetic screen that allows one to discern changes in NADPH levels. The screen exploits the secondary redox property of NADPH. At low levels of glutathione we show that the redox contributions of NADPH become critical for growth, and we have used this to develop a genetic screen for genes affecting NADPH homeostasis. The screen was validated in pathways that both directly (pentose phosphate pathway) and indirectly (glycolytic pathway) affect NADPH levels, and was then exploited to identify mitochondrial genes that affect NADPH homeostasis. A total of 239 mitochondrial gene knockouts were assayed using this screen. Among these, several genes were predicted to play a role in NADPH homeostasis. This included several new genes of unknown function, and others of poorly defined function. We examined two of these genes, FMP40 which encodes a protein required during oxidative stress and GOR1, glyoxylate reductase. Our studies throw new light on these proteins that appear to be major consumers of NADPH in the cell. The genetic screen is thus predicted to be an exceedingly useful tool for investigating NADPH homeostasis.
Collapse
|
28
|
Bergman A, Vitay D, Hellgren J, Chen Y, Nielsen J, Siewers V. Effects of overexpression of STB5 in Saccharomyces cerevisiae on fatty acid biosynthesis, physiology and transcriptome. FEMS Yeast Res 2019; 19:5423327. [PMID: 30924859 PMCID: PMC6755256 DOI: 10.1093/femsyr/foz027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 03/27/2019] [Indexed: 12/16/2022] Open
Abstract
Microbial conversion of biomass to fatty acids (FA) and products derived thereof is an attractive alternative to the traditional oleochemical production route from animal and plant lipids. This study examined if NADPH-costly FA biosynthesis could be enhanced by overexpressing the transcription factor Stb5 in Saccharomyces cerevisiae. Stb5 activates expression of multiple genes encoding enzymes within the pentose phosphate pathway (PPP) and other NADPH-producing reactions. Overexpression of STB5 led to a decreased growth rate and an increased free fatty acid (FFA) production during growth on glucose. The improved FFA synthetic ability in the glucose phase was shown to be independent of flux through the oxidative PPP. RNAseq analysis revealed that STB5 overexpression had wide-ranging effects on the transcriptome in the batch phase, and appeared to cause a counterintuitive phenotype with reduced flux through the oxidative PPP. During glucose limitation, when an increased NADPH supply is likely less harmful, an overall induction of the proposed target genes of Stb5 (eg. GND1/2, TAL1, ALD6, YEF1) was observed. Taken together, the strategy of utilizing STB5 overexpression to increase NADPH supply for reductive biosynthesis is suggested to have potential in strains engineered to have strong ability to consume excess NADPH, alleviating a potential redox imbalance.
Collapse
Affiliation(s)
- Alexandra Bergman
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE41296 Gothenburg, Sweden
| | - Dóra Vitay
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden
| | - John Hellgren
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE41296 Gothenburg, Sweden
| | - Yun Chen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE41296 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE41296 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, DK2800 Kgs. Lyngby, Denmark
| | - Verena Siewers
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, Kemivägen 10, SE41296, Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Kemivägen 10, SE41296 Gothenburg, Sweden
| |
Collapse
|
29
|
Patiño MA, Ortiz JP, Velásquez M, Stambuk BU. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review. Yeast 2019; 36:541-556. [PMID: 31254359 DOI: 10.1002/yea.3429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
Xylose is the second most abundant sugar in nature. Its efficient fermentation has been considered as a critical factor for a feasible conversion of renewable biomass resources into biofuels and other chemicals. The yeast Saccharomyces cerevisiae is of exceptional industrial importance due to its excellent capability to ferment sugars. However, although S. cerevisiae is able to ferment xylulose, it is considered unable to metabolize xylose, and thus, a lot of research has been directed to engineer this yeast with heterologous genes to allow xylose consumption and fermentation. The analysis of the natural genetic diversity of this yeast has also revealed some nonrecombinant S. cerevisiae strains that consume or even grow (modestly) on xylose. The genome of this yeast has all the genes required for xylose transport and metabolism through the xylose reductase, xylitol dehydrogenase, and xylulokinase pathway, but there seems to be problems in their kinetic properties and/or required expression. Self-cloning industrial S. cerevisiae strains overexpressing some of the endogenous genes have shown interesting results, and new strategies and approaches designed to improve these S. cerevisiae strains for ethanol production from xylose will also be presented in this review.
Collapse
Affiliation(s)
- Margareth Andrea Patiño
- Instituto de Biotecnología.,Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Pablo Ortiz
- Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Mario Velásquez
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Boris U Stambuk
- Departamento de Bioquímica, Universidad Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
30
|
Vanacloig-Pedros E, Lozano-Pérez C, Alarcón B, Pascual-Ahuir A, Proft M. Live-cell assays reveal selectivity and sensitivity of the multidrug response in budding yeast. J Biol Chem 2019; 294:12933-12946. [PMID: 31296662 DOI: 10.1074/jbc.ra119.009291] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/04/2019] [Indexed: 11/06/2022] Open
Abstract
Pleiotropic drug resistance arises by the enhanced extrusion of bioactive molecules and is present in a wide range of organisms, ranging from fungi to human cells. A key feature of this adaptation is the sensitive detection of intracellular xenobiotics by transcriptional activators, activating expression of multiple drug exporters. Here, we investigated the selectivity and sensitivity of the budding yeast (Saccharomyces cerevisiae) multidrug response to better understand how differential drug recognition leads to specific activation of drug exporter genes and to drug resistance. Applying live-cell luciferase reporters, we demonstrate that the SNQ2, PDR5, PDR15, and YOR1 transporter genes respond to different mycotoxins, menadione, and hydrogen peroxide in a distinguishable manner and with characteristic amplitudes, dynamics, and sensitivities. These responses correlated with differential sensitivities of the respective transporter mutants to the specific xenobiotics. We further establish a binary vector system, enabling quantitative determination of xenobiotic-transcription factor (TF) interactions in real time. Applying this system we found that the TFs Pdr1, Pdr3, Yrr1, Stb5, and Pdr8 have largely different drug recognition patterns. We noted that Pdr1 is the most promiscuous activator, whereas Yrr1 and Stb5 are selective for ochratoxin A and hydrogen peroxide, respectively. We also show that Pdr1 is rapidly degraded after xenobiotic exposure, which leads to a desensitization of the Pdr1-specific response upon repeated activation. The findings of our work indicate that in the yeast multidrug system, several transcriptional activators with distinguishable selectivities trigger differential activation of the transporter genes.
Collapse
Affiliation(s)
- Elena Vanacloig-Pedros
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Carlos Lozano-Pérez
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010 Valencia, Spain
| | - Benito Alarcón
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, 46022 Valencia, Spain.
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, 46010 Valencia, Spain.
| |
Collapse
|
31
|
Zhang C, Huang H, Deng W, Li T. Genome-Wide Analysis of the Zn(II)₂Cys₆ Zinc Cluster-Encoding Gene Family in Tolypocladium guangdongense and Its Light-Induced Expression. Genes (Basel) 2019; 10:genes10030179. [PMID: 30813610 PMCID: PMC6471507 DOI: 10.3390/genes10030179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 01/17/2023] Open
Abstract
The Zn(II)2Cys6 zinc cluster gene family is a subclass of zinc-finger proteins, which are transcriptional regulators involved in a wide variety of biological processes in fungi. We performed genome-wide identification and characterization of Zn(II)2Cys6 zinc-cluster gene (C6 zinc gene) family in Tolypocladiumguangdongense, Cordycepsmilitaris and Ophiocordycepssinensis. Based on the structures of the C6 zinc domains, these proteins were observed to be evolutionarily conserved in ascomycete fungi. We focused on T.guangdongense, a medicinal fungus, and identified 139 C6 zinc genes which could be divided into three groups. Among them, 49.6% belonged to the fungal specific transcriptional factors, and 16% had a DUF3468 domain. Homologous and phylogenetic analysis indicated that 29 C6 zinc genes were possibly involved in the metabolic process, while five C6 zinc genes were supposed to be involved in asexual or sexual development. Gene expression analysis revealed that 54 C6 zinc genes were differentially expressed under light, including two genes that possibly influenced the development, and seven genes that possibly influenced the metabolic processes. This indicated that light may affect the development and metabolic processes, at least partially, through the regulation of C6 zinc genes in T.guangdongense. Our results provide comprehensive data for further analyzing the functions of the C6 zinc genes.
Collapse
Affiliation(s)
- Chenghua Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Hong Huang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Wangqiu Deng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| | - Taihui Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangzhou 510070, China.
| |
Collapse
|
32
|
Park SH, Lee K, Jang JW, Hahn JS. Metabolic Engineering of Saccharomyces cerevisiae for Production of Shinorine, a Sunscreen Material, from Xylose. ACS Synth Biol 2019; 8:346-357. [PMID: 30586497 DOI: 10.1021/acssynbio.8b00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shinorine, a mycosporine-like amino acid (MAA), is a small molecule sunscreen produced in some bacteria. In this study, by introducing shinorine biosynthetic genes from cyanobacteria Nostoc punctiform into Saccharomyces cerevisiae, we successfully constructed yeast strains capable of producing shinorine. Sedoheptulose 7-phosphate (S7P), an intermediate of the pentose phosphate pathway, is a key substrate for shinorine biosynthesis. To increase the S7P pool, xylose, which is assimilated via the pentose phosphate pathway, was used as a carbon source after introducing xylose assimilation genes from Scheffersomyces stipitis into the shinorine-producing strain. The resulting xylose-fermenting strain produced a trace amount of shinorine when cells were grown in glucose, but shinorine production was dramatically increased by adding xylose in the medium. Shinorine production was further improved by modulating the pentose phosphate pathway through deleting TAL1 and overexpressing STB5 and TKL1. The final engineered strain JHYS17-4 produced 31.0 mg/L (9.62 mg/g DCW) of shinorine in the optimized medium containing 8 g/L of xylose and 12 g/L of glucose, demonstrating that S. cerevisiae is a promising host to produce this natural sunscreen material.
Collapse
Affiliation(s)
- Seong-Hee Park
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kyusung Lee
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Jae Woo Jang
- BIO Research Institute, CJ CheilJedang, Suwon 16495, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
33
|
Stb5p is involved in Kluyveromyces lactis response to 4-nitroquinoline-N-oxide stress. Folia Microbiol (Praha) 2019; 64:579-586. [PMID: 30706300 DOI: 10.1007/s12223-019-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/18/2019] [Indexed: 10/27/2022]
Abstract
In yeast, the STB5 gene encodes a transcriptional factor belonging to binuclear cluster class (Zn2Cys6) of transcriptional regulators specific to ascomycetes. In this study, we prepared the Kluyveromyces lactis stb5Δ strain and assessed its responses to different stresses. We showed that KlSTB5 gene is able to complement the deficiencies of Saccharomyces cerevisiae stb5Δ mutant. The results of phenotypic analysis suggested that KlSTB5 gene deletion did not sensitize K. lactis cells to oxidative stress inducing compounds but led to Klstb5Δ resistance to 4-nitroquinoline-N-oxide and hygromycin B. Expression analysis indicated that the loss of KlSTB5 gene function induced the transcription of drug efflux pump encoding genes that might contribute to increased 4-nitroquinoline-N-oxide and hygromycin B tolerance. Our results show that KlStb5p functions as negative regulator of some ABC transporter genes in K. lactis.
Collapse
|
34
|
Pais P, Galocha M, Teixeira MC. Genome-Wide Response to Drugs and Stress in the Pathogenic Yeast Candida glabrata. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2019; 58:155-193. [PMID: 30911893 DOI: 10.1007/978-3-030-13035-0_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Candida glabrata is the second most common cause of candidemia worldwide and its prevalence has continuously increased over the last decades. C. glabrata infections are especially worrisome in immunocompromised patients, resulting in serious systemic infections, associated to high mortality rates. Intrinsic resistance to azole antifungals, widely used drugs in the clinical setting, and the ability to efficiently colonize the human host and medical devices, withstanding stress imposed by the immune system, are thought to underlie the emergence of C. glabrata. There is a clear clinical need to understand drug and stress resistance in C. glabrata. The increasing prevalence of multidrug resistant isolates needs to be addressed in order to overcome the decrease of viable therapeutic strategies and find new therapeutic targets. Likewise, the understanding of the mechanisms underlying its impressive ability thrive under oxidative, nitrosative, acidic and metabolic stresses, is crucial to design drugs that target these pathogenesis features. The study of the underlying mechanisms that translate C. glabrata plasticity and its competence to evade the immune system, as well as survive host stresses to establish infection, will benefit from extensive scrutiny. This chapter provides a review on the contribution of genome-wide studies to uncover clinically relevant drug resistance and stress response mechanisms in the human pathogenic yeast C. glabrata.
Collapse
Affiliation(s)
- Pedro Pais
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Biological Sciences Research Group, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mónica Galocha
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.,Biological Sciences Research Group, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Cacho Teixeira
- Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal. .,Biological Sciences Research Group, Institute for Bioengineering and Biosciences (iBB), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
35
|
Fletcher E, Gao K, Mercurio K, Ali M, Baetz K. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde. Metab Eng 2018; 52:98-109. [PMID: 30471359 DOI: 10.1016/j.ymben.2018.11.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/20/2018] [Accepted: 11/20/2018] [Indexed: 01/30/2023]
Abstract
The conversion of plant material into biofuels and high value products is a two-step process of hydrolysing plant lignocellulose and next fermenting the sugars produced. However, lignocellulosic hydrolysis not only frees sugars for fermentation it simultaneously generates toxic chemicals, including phenolic compounds which severely inhibit yeast fermentation. To understand the molecular basis of phenolic compound toxicity, we performed genome-wide chemogenomic screens in Saccharomyces cerevisiae to identify deletion mutants that were either hypersensitive or resistant to three common phenolic compounds found in plant hydrolysates: coniferyl aldehyde, ferulic acid and 4-hydroxybenzoic acid. Despite being similar in structure, our screen revealed that yeast utilizes distinct pathways to tolerate phenolic compound exposure. Furthermore, although each phenolic compound induced reactive oxygen species (ROS), ferulic acid and 4-hydroxybenzoic acid-induced a general cytoplasmic ROS distribution while coniferyl aldehyde-induced ROS partially localized to the mitochondria and to a lesser extent, the endoplasmic reticulum. We found that the glucose-6-phosphate dehydrogenase enzyme Zwf1, which catalyzes the rate limiting step of pentose phosphate pathway, is required for reducing the accummulation of coniferyl aldehyde-induced ROS, potentially through the sequestering of Zwf1 to sites of ROS accumulation. Our novel insights into biological impact of three common phenolic inhibitors will inform the engineering of yeast strains with improved efficiency of biofuel and biochemical production in the presence hydrolysate-derived phenolic compounds.
Collapse
Affiliation(s)
- Eugene Fletcher
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kai Gao
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kevin Mercurio
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Mariam Ali
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5
| | - Kristin Baetz
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, Canada K1H 8M5.
| |
Collapse
|
36
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
37
|
Kim JE, Jang IS, Sung BH, Kim SC, Lee JY. Rerouting of NADPH synthetic pathways for increased protopanaxadiol production in Saccharomyces cerevisiae. Sci Rep 2018; 8:15820. [PMID: 30361526 PMCID: PMC6202386 DOI: 10.1038/s41598-018-34210-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/11/2018] [Indexed: 11/17/2022] Open
Abstract
Ginseng (Panax ginseng) and its bioactive components, ginsenosides, are popular medicinal herbal products, exhibiting various pharmacological effects. Despite their advocated use for medication, the long cultivation periods of ginseng roots and their low ginsenoside content prevent mass production of this compound. Yeast Saccharomyces cerevisiae was engineered for production of protopanaxadiol (PPD), a type of aglycone characterizing ginsenoside. PPD-producing yeast cell factory was further engineered by obtaining a balance between enzyme expressions and altering cofactor availability. Different combinations of promoters (PGPD, PCCW12, and PADH2) were utilized to construct the PPD biosynthetic pathway. Rerouting the redox metabolism to improve NADPH availability in the engineered S. cerevisiae also increased PPD production. Combining these approaches resulted in more than an 11-fold increase in PPD titer over the initially constructed strain. The series of metabolic engineering strategies of this study provides a feasible approach for the microbial production of PPD and development of microbial platforms producing other industrially-relevant terpenoids.
Collapse
Affiliation(s)
- Jae-Eung Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - In-Seung Jang
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea
| | - Bong Hyun Sung
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Ju Young Lee
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), 406-30, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| |
Collapse
|
38
|
Hong J, Park SH, Kim S, Kim SW, Hahn JS. Efficient production of lycopene in Saccharomyces cerevisiae by enzyme engineering and increasing membrane flexibility and NAPDH production. Appl Microbiol Biotechnol 2018; 103:211-223. [PMID: 30343427 DOI: 10.1007/s00253-018-9449-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022]
Abstract
Lycopene is a red carotenoid pigment with strong antioxidant activity. Saccharomyces cerevisiae is considered a promising host to produce lycopene, but lycopene toxicity is one of the limiting factors for high-level production. In this study, we used heterologous lycopene biosynthesis genes crtE and crtI from Xanthophyllomyces dendrorhous and crtB from Pantoea agglomerans for lycopene production in S. cerevisiae. The crtE, crtB, and crtI genes were integrated into the genome of S. cerevisiae CEN.PK2-1C strain, while deleting DPP1 and LPP1 genes to inhibit a competing pathway producing farnesol. Lycopene production was further improved by inhibiting ergosterol production via downregulation of ERG9 expression and by deleting ROX1 or MOT3 genes encoding transcriptional repressors for mevalonate and sterol biosynthetic pathways. To further increase lycopene production, CrtE and CrtB mutants with improved activities were isolated by directed evolution, and subsequently, the mutated genes were randomly integrated into the engineered lycopene-producing strains via delta-integration. To relieve lycopene toxicity by increasing unsaturated fatty acid content in cell membranes, the OLE1 gene encoding stearoyl-CoA 9-desaturase was overexpressed. In combination with the overexpression of STB5 gene encoding a transcription factor involved in NADPH production, the final strain produced up to 41.8 mg/gDCW of lycopene, which is approximately 74.6-fold higher than that produced in the initial strain.
Collapse
Affiliation(s)
- Juhyun Hong
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seong-Hee Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Sujin Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seon-Won Kim
- Division of Applied Life Science (BK21 Plus), PMBBRC, Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Huang M, Kao KC. Identifying novel genetic determinants for oxidative stress tolerance in Candida glabrata via adaptive laboratory evolution. Yeast 2018; 35:605-618. [PMID: 30141215 DOI: 10.1002/yea.3352] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/11/2018] [Accepted: 08/15/2018] [Indexed: 11/09/2022] Open
Abstract
Candida glabrata (C glabrata) is an important yeast of industrial and medical significance. Resistance to oxidative stress is an important trait affecting its robustness as a production host or virulence as a pathogenic agent, but current understanding of resistance mechanisms is still limited in this fungus. In this study, we rapidly evolved C glabrata population to adapt to oxidative challenge (from 80mM to 350mM of H2 O2 ) through short-term adaptive laboratory evolution. Adaptive mutants were isolated from evolved populations and subjected to phenotypic and omics analyses to identify potential mechanisms of tolerance to H2 O2 . Phenotypic characterizations revealed faster detoxification of H2 O2 and ability to initiate growth at a higher concentration of the oxidant in the isolated adaptive mutants compared with the wild type. Genome resequencing and genome-wide transcriptome analysis revealed multiple genetic determinants (eg, CAGL0E01243g, CAGL0F06831g, and CAGL0C00385g) that potentially contribute to enhanced H2 O2 resistance. Subsequent experimental verification confirmed that CgCth2 (CAGL0E01243g) and CgMga2 (CAGL0F06831g) are important in C glabrata tolerance to oxidative stress. Transcriptome profiling of adaptive mutants and bioinformatic analysis suggest that NADPH regeneration, modulation of membrane composition, cell wall remodeling, and/or global regulatory changes are involved in C glabrata tolerance to H2 O2 .
Collapse
Affiliation(s)
- Mian Huang
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| | - Katy C Kao
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas
| |
Collapse
|
40
|
Velvet domain protein VosA represses the zinc cluster transcription factor SclB regulatory network for Aspergillus nidulans asexual development, oxidative stress response and secondary metabolism. PLoS Genet 2018; 14:e1007511. [PMID: 30044771 PMCID: PMC6078315 DOI: 10.1371/journal.pgen.1007511] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 08/06/2018] [Accepted: 06/22/2018] [Indexed: 12/30/2022] Open
Abstract
The NF-κB-like velvet domain protein VosA (viability of spores) binds to more than 1,500 promoter sequences in the filamentous fungus Aspergillus nidulans. VosA inhibits premature induction of the developmental activator gene brlA, which promotes asexual spore formation in response to environmental cues as light. VosA represses a novel genetic network controlled by the sclB gene. SclB function is antagonistic to VosA, because it induces the expression of early activator genes of asexual differentiation as flbC and flbD as well as brlA. The SclB controlled network promotes asexual development and spore viability, but is independent of the fungal light control. SclB interactions with the RcoA transcriptional repressor subunit suggest additional inhibitory functions on transcription. SclB links asexual spore formation to the synthesis of secondary metabolites including emericellamides, austinol as well as dehydroaustinol and activates the oxidative stress response of the fungus. The fungal VosA-SclB regulatory system of transcription includes a VosA control of the sclB promoter, common and opposite VosA and SclB control functions of fungal development and several additional regulatory genes. The relationship between VosA and SclB illustrates the presence of a convoluted surveillance apparatus of transcriptional control, which is required for accurate fungal development and the linkage to the appropriate secondary metabolism. Velvet domain proteins of filamentous fungi are structurally similar to Rel-homology domains of mammalian NF-κB proteins. Velvet and NF-κB proteins control regulatory circuits of downstream transcriptional networks for cellular differentiation, survival and stress responses. Velvet proteins interconnect developmental programs with secondary metabolism in fungi. The velvet protein VosA binds to more than ten percent of the Aspergillus nidulans promoters and is important for the spatial and temporal control of asexual spore formation from conidiophores. A novel VosA-dependent genetic network has been identified and is controlled by the zinc cluster protein SclB. Although zinc cluster proteins constitute one of the most abundant classes of transcription factors in fungi, only a small amount is characterized. SclB is a repression target of VosA and both transcription factors are part of a mutual control in the timely adjusted choreography of asexual sporulation in A. nidulans. SclB acts at the interphase of asexual development and secondary metabolism and interconnects both programs with an adequate oxidative stress response. This study underlines the complexity of different hierarchical levels of the fungal velvet protein transcriptional network for developmental programs and interconnected secondary metabolism.
Collapse
|
41
|
Bonturi N, Crucello A, Viana AJC, Miranda EA. Microbial oil production in sugarcane bagasse hemicellulosic hydrolysate without nutrient supplementation by a Rhodosporidium toruloides adapted strain. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
42
|
Somboon P, Poonsawad A, Wattanachaisaereekul S, Jensen LT, Niimi M, Cheevadhanarak S, Soontorngun N. Fungicide Xylaria sp. BCC 1067 extract induces reactive oxygen species and activates multidrug resistance system in Saccharomyces cerevisiae. Future Microbiol 2017; 12:417-440. [PMID: 28361556 DOI: 10.2217/fmb-2016-0151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM To investigate antifungal potential of Xylaria sp. BIOTEC culture collection (BCC) 1067 extract against the model yeast Saccharomyces cerevisiae. MATERIALS & METHODS Antifungal property of extract, reactive oxygen species levels and cell survival were determined, using selected deletion strains. RESULTS Extract showed promising antifungal effect with minimal inhibitory concentration100 and minimal fungicidal concentration of 500 and 1000 mg/l, respectively. Strong synergy was observed with fractional inhibitory concentration index value of 0.185 for the combination of 60.0 and 0.5 mg/l of extract and ketoconazole, respectively. Extract-induced intracellular reactive oxygen species levels in some oxidant-prone strains and mediated plasma membrane rupture. Antioxidant regulator Yap1, efflux transporter Pdr5 and ascorbate were pivotal to protect S. cerevisiae from extract cytotoxicity. CONCLUSION Xylaria sp. BCC 1067 extract is a potentially valuable source of novel antifungals.
Collapse
Affiliation(s)
- Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Attaporn Poonsawad
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Songsak Wattanachaisaereekul
- Pilot Plant & Development Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Masakazu Niimi
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supapon Cheevadhanarak
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.,Pilot Plant & Development Training Institute (PDTI), King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources & Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
43
|
Villani SM, Hulvey J, Hily JM, Cox KD. Overexpression of the CYP51A1 Gene and Repeated Elements are Associated with Differential Sensitivity to DMI Fungicides in Venturia inaequalis. PHYTOPATHOLOGY 2016; 106:562-71. [PMID: 26863444 DOI: 10.1094/phyto-10-15-0254-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The involvement of overexpression of the CYP51A1 gene in Venturia inaequalis was investigated for isolates exhibiting differential sensitivity to the triazole demethylation inhibitor (DMI) fungicides myclobutanil and difenoconazole. Relative expression (RE) of the CYP51A1 gene was significantly greater (P < 0.0001) for isolates with resistance to both fungicides (MRDR phenotype) or with resistance to difenoconazole only (MSDR phenotype) compared with isolates that were resistant only to myclobutanil (MRDS phenotype) or sensitive to both fungicides (MSDS phenotype). An average of 9- and 13-fold increases in CYP51A1 RE were observed in isolates resistant to difenoconazole compared with isolates with MRDS and MSDS phenotypes, respectively. Linear regression analysis between isolate relative growth on myclobutanil-amended medium and log10 RE revealed that little to no variability in sensitivity to myclobutanil could be explained by CYP51A1 overexpression (R(2) = 0.078). To investigate CYP51A1 upstream anomalies associated with CYP51A1 overexpression or resistance to difenoconazole, Illumina sequencing was conducted for three isolates with resistance to difenoconazole and one baseline isolate. A repeated element, "EL 3,1,2", with the properties of a transcriptional enhancer was identified two to four times upstream of CYP51A1 in difenoconazole-resistant isolates but was not found in isolates with the MRDS phenotype. These results suggest that different mechanisms may govern resistance to different DMI fungicides in the triazole group.
Collapse
Affiliation(s)
- Sara M Villani
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Jon Hulvey
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Jean-Michel Hily
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| | - Kerik D Cox
- First author: Department of Plant Pathology, Mountain Horticultural Crops Research and Extension Center, North Carolina State University, Mills River 28759; second author: Biology Department, University of Massachusetts, Life Sciences Lab N585, Amherst 01003; third author: Institut National de la Recherche Agronomique, Université de Strasbourg, UMR 1131 santé de la Vigne et Qualité du Vin, Colmar Cedex, France; and fourth author: Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, Geneva, NY 14456
| |
Collapse
|
44
|
Bamba T, Hasunuma T, Kondo A. Disruption of PHO13 improves ethanol production via the xylose isomerase pathway. AMB Express 2016; 6:4. [PMID: 26769491 PMCID: PMC4713403 DOI: 10.1186/s13568-015-0175-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/11/2015] [Indexed: 01/08/2023] Open
Abstract
Xylose is the second most abundant sugar in lignocellulosic materials and can be converted to ethanol by recombinant Saccharomyces cerevisiae yeast strains expressing heterologous genes involved in xylose assimilation pathways. Recent research demonstrated that disruption of the alkaline phosphatase gene, PHO13, enhances ethanol production from xylose by a strain expressing the xylose reductase (XR) and xylitol dehydrogenase (XDH) genes; however, the yield of ethanol is poor. In this study, PHO13 was disrupted in a recombinant strain harboring multiple copies of the xylose isomerase (XI) gene derived from Orpinomyces sp., coupled with overexpression of the endogenous xylulokinase (XK) gene and disruption of GRE3, which encodes aldose reductase. The resulting YΔGP/XK/XI strain consumed 2.08 g/L/h of xylose and produced 0.88 g/L/h of volumetric ethanol, for an 86.8 % theoretical ethanol yield, and only YΔGP/XK/XI demonstrated increase in cell concentration. Transcriptome analysis indicated that expression of genes involved in the pentose phosphate pathway (GND1, SOL3, TAL1, RKI1, and TKL1) and TCA cycle and respiratory chain (NDE1, ACO1, ACO2, SDH2, IDH1, IDH2, ATP7, ATP19, SDH4, SDH3, CMC2, and ATP15) was upregulated in the YΔGP/XK/XI strain. And the expression levels of 125 cell cycle genes were changed by deletion of PHO13.
Collapse
|
45
|
Jansuriyakul S, Somboon P, Rodboon N, Kurylenko O, Sibirny A, Soontorngun N. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2016; 100:4549-60. [PMID: 26875874 DOI: 10.1007/s00253-016-7356-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 01/18/2016] [Accepted: 01/23/2016] [Indexed: 01/22/2023]
Abstract
In this study, we characterize a new function for activator of stress response genes (Asg1) in fatty acid utilization. Asg1 is required for full activation of genes in several pathways, including β-oxidation (POX1, FOX2, and POT1), gluconeogenesis (PCK1), glyoxylate cycle (ICL1), triacylglycerol breakdown (TGL3), and peroxisomal transport (PXA1). In addition, the transcriptional activator Asg1 is found to be enriched on promoters of genes in β-oxidation and gluconeogenesis pathways, suggesting that Asg1 is directly involved in the control of fatty acid utilizing genes. In agreement, impaired growth on non-fermentable carbons such as fatty acids and oils and increased sensitivity to some oxidative agents are found for the Δasg1 strain. The lipid class profile of the Δasg1 cells grown in oleate displays approximately 3-fold increase in free fatty acid (FFA) content in comparison to glucose-grown cells, which correlates with decreased expression of β-oxidation genes. The ∆asg1 strain grown in glucose also exhibits higher accumulation of triacylglycerols (TAGs) during log phase, reaching levels typically observed in stationary phase cells. Altered TAG accumulation is partly due to the inability of the Δasg1 cells to efficiently break down TAGs, which is consistent with lowered expression of TGL3 gene, encoding triglycerol lipase. Overall, these results highlight a new role of the transcriptional regulator Asg1 in coordinating expression of genes involved in fatty acid utilization and its role in regulating cellular lipid accumulation, thereby providing an attractive approach to increase FFAs and TAGs content for the production of lipid-derived biofuels and chemicals in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Siripat Jansuriyakul
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand
| | - Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand
| | - Napachai Rodboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand
| | - Olena Kurylenko
- NAS of Ukraine, Institute of Cell Biology, Drahomanov Street, 14/16, Lviv, 79005, Ukraine
| | - Andriy Sibirny
- NAS of Ukraine, Institute of Cell Biology, Drahomanov Street, 14/16, Lviv, 79005, Ukraine.,Department of Bioetchnology and Microbiology, University of Rzeszow, Zelwerowicza Street, 4, 35-601, Rzeszow, Poland
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, 49 Tianthalay Road, Tha Kham, Bangkhuntian, Bangkok, 10150, Thailand.
| |
Collapse
|
46
|
Johnson AJ, Veljanoski F, O'Doherty PJ, Zaman MS, Petersingham G, Bailey TD, Münch G, Kersaitis C, Wu MJ. Revelation of molecular basis for chromium toxicity by phenotypes of Saccharomyces cerevisiae gene deletion mutants. Metallomics 2016; 8:542-50. [DOI: 10.1039/c6mt00039h] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Gumá-Cintrón Y, Bandyopadhyay A, Rosado W, Shu-Hu W, Nadathur GS. Transcriptomic analysis of cobalt stress in the marine yeast Debaryomyces hansenii. FEMS Yeast Res 2015; 15:fov099. [PMID: 26546454 DOI: 10.1093/femsyr/fov099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2015] [Indexed: 12/11/2022] Open
Abstract
The yeast Debaryomyces hansenii overproduces riboflavin upon exposure to subtoxic levels of cobalt (Co(+2)). However, mechanisms for survival have yet to be studied and have been hindered by D. hansenii's high genetic heterogeneity among strains. In this study, we used transcriptomic analyses and RNA-seq in order to identify differentially expressed genes in D. hansenii in response to cobalt exposure. Highly upregulated genes under this condition were identified to primarily comprise DNA damage and repair genes, oxidative stress response genes, and genes for cell wall integrity and growth. The main response of D. hansenii to heavy metal stress is the activation of non-enzymatic oxidative stress response mechanisms and control of biological production of reactive oxygen species. Our results indicate that D. hansenii does not seem to be pre-adapted to survive high concentrations of heavy metals. These organisms appear to possess genetic survival and detoxification mechanisms that enable the cells to recover from heavy metal stress.
Collapse
Affiliation(s)
- Yariela Gumá-Cintrón
- Department of Marine Science, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, Puerto Rico
| | - Arpan Bandyopadhyay
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - William Rosado
- Department of Marine Science, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, Puerto Rico
| | - Wei Shu-Hu
- Department of Chemical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - G S Nadathur
- Department of Marine Science, University of Puerto Rico at Mayagüez, Mayagüez, PR 00681, Puerto Rico
| |
Collapse
|
48
|
Tangsombatvichit P, Semkiv MV, Sibirny AA, Jensen LT, Ratanakhanokchai K, Soontorngun N. Zinc cluster protein Znf1, a novel transcription factor of non-fermentative metabolism in Saccharomyces cerevisiae. FEMS Yeast Res 2015; 15:fou002. [PMID: 25673751 DOI: 10.1093/femsyr/fou002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ability to rapidly respond to nutrient changes is a fundamental requirement for cell survival. Here, we show that the zinc cluster regulator Znf1 responds to altered nutrient signals following glucose starvation through the direct control of genes involved in non-fermentative metabolism, including those belonged to the central pathways of gluconeogenesis (PCK1, FBP1 and MDH2), glyoxylate shunt (MLS1 and ICL1) and the tricarboxylic acid cycle (ACO1), which is demonstrated by Znf1-binding enrichment at these promoters during the glucose-ethanol shift. Additionally, reduced Pck1 and Fbp1 enzymatic activities correlate well with the data obtained from gene transcription analysis. Cells deleted for ZNF1 also display defective mitochondrial morphology with unclear structures of the inner membrane cristae when grown in ethanol, in agreement with the substantial reduction in the ATP content, suggesting for roles of Znf1 in maintaining mitochondrial morphology and function. Furthermore, Znf1 also plays a role in tolerance to pH and osmotic stress, especially during the oxidative metabolism. Taken together, our results clearly suggest that Znf1 is a critical transcriptional regulator for stress adaptation during non-fermentative growth with some partial overlapping targets with previously reported regulators in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Pitchya Tangsombatvichit
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Marta V Semkiv
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine
| | - Andriy A Sibirny
- Institute of Cell Biology, NAS of Ukraine, Lviv 79005, Ukraine Department of Biotechnology and Microbiology, University of Rzeszow, Rzeszow 35-601, Poland
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Khanok Ratanakhanokchai
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| |
Collapse
|
49
|
Xylose-induced dynamic effects on metabolism and gene expression in engineered Saccharomyces cerevisiae in anaerobic glucose-xylose cultures. Appl Microbiol Biotechnol 2015; 100:969-85. [DOI: 10.1007/s00253-015-7038-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 09/14/2015] [Accepted: 09/22/2015] [Indexed: 12/27/2022]
|
50
|
Roy S, Thompson D. Evolution of regulatory networks in Candida glabrata: learning to live with the human host. FEMS Yeast Res 2015; 15:fov087. [PMID: 26449820 DOI: 10.1093/femsyr/fov087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2015] [Indexed: 12/12/2022] Open
Abstract
The opportunistic human fungal pathogen Candida glabrata is second only to C. albicans as the cause of Candida infections and yet is more closely related to Saccharomyces cerevisiae. Recent advances in functional genomics technologies and computational approaches to decipher regulatory networks, and the comparison of these networks among these and other Ascomycete species, have revealed both unique and shared strategies in adaptation to a human commensal/opportunistic pathogen lifestyle and antifungal drug resistance in C. glabrata. Recently, several C. glabrata sister species in the Nakeseomyces clade representing both human associated (commensal) and environmental isolates have had their genomes sequenced and analyzed. This has paved the way for comparative functional genomics studies to characterize the regulatory networks in these species to identify informative patterns of conservation and divergence linked to phenotypic evolution in the Nakaseomyces lineage.
Collapse
Affiliation(s)
- Sushmita Roy
- Department of Biostatistics and Medical Informatics, University of Wisconsin Madison, Madison, WI 53715, USA Wisconsin Institute for Discovery, University of Wisconsin, Madison, WI 53715, USA
| | - Dawn Thompson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|