1
|
Signoria I, Zwartkruis MM, Geerlofs L, Perenthaler E, Faller KM, James R, McHale-Owen H, Green JW, Kortooms J, Snellen SH, Asselman FL, Gillingwater TH, Viero G, Wadman RI, van der Pol WL, Groen EJ. Patient-specific responses to SMN2 splice-modifying treatments in spinal muscular atrophy fibroblasts. Mol Ther Methods Clin Dev 2024; 32:101379. [PMID: 39655308 PMCID: PMC11626024 DOI: 10.1016/j.omtm.2024.101379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024]
Abstract
The availability of three therapies for the neuromuscular disease spinal muscular atrophy (SMA) highlights the need to match patients to the optimal treatment. Two of these treatments (nusinersen and risdiplam) target splicing of SMN2, but treatment outcomes vary from patient to patient. An incomplete understanding of the complex interactions among SMA genetics, SMN protein and mRNA levels, and gene-targeting treatments, limits our ability to explain this variability and identify optimal treatment strategies for individual patients. To address this, we analyzed responses to nusinersen and risdiplam in 45 primary fibroblast cell lines. Pre-treatment SMN2-FL, SMN2Δ7 mRNA, and SMN protein levels were influenced by SMN2 copy number, age, and sex. After treatment, SMN and mRNA levels were more heterogeneous. In 43% of patients, response to both therapies was similar, but in 57% one treatment led to a significantly higher SMN increase than the other treatment. Younger age, higher SMN2 copy number, and higher SMN levels before treatment predicted better in vitro efficacy. These findings showcase patient-derived fibroblasts as a tool for identifying molecular predictors for personalized treatment.
Collapse
Affiliation(s)
- Ilaria Signoria
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Maria M. Zwartkruis
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lotte Geerlofs
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | | | - Kiterie M.E. Faller
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Rachel James
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Harriet McHale-Owen
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | - Jared W. Green
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Joris Kortooms
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Sophie H. Snellen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Fay-Lynn Asselman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Thomas H. Gillingwater
- Edinburgh Medical School: Biomedical Sciences and Euan MacDonald Centre for Motor Neuron Disease Research, Edinburgh, UK
| | | | - Renske I. Wadman
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - W. Ludo van der Pol
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| | - Ewout J.N. Groen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, the Netherlands
| |
Collapse
|
2
|
Matera AG, Steiner RE, Mills CA, McMichael BD, Herring LE, Garcia EL. Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. FRONTIERS IN RNA RESEARCH 2024; 2:1448194. [PMID: 39492846 PMCID: PMC11529804 DOI: 10.3389/frnar.2024.1448194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Introduction Molecular chaperones and co-chaperones are highly conserved cellular components that perform a variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an assembly chaperone and serves as a paradigm for studying how specific RNAs are identified and paired with their client substrate proteins to form RNPs. SMN is the eponymous component of a large complex, required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs), that localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN protein forms the oligomeric core of this complex, and missense mutations in the human SMN1 gene are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known. However, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Methods Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. We carried out affinity purification mass spectrometry (AP-MS) of Drosophila SMN complexes using fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Results Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially associated with SMA-causing alleles of SMN. Discussion Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - C. Allie Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Benjamin D. McMichael
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, United States
- Department of Biology, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
3
|
Grass T, Dokuzluoglu Z, Buchner F, Rosignol I, Thomas J, Caldarelli A, Dalinskaya A, Becker J, Rost F, Marass M, Wirth B, Beyer M, Bonaguro L, Rodriguez-Muela N. Isogenic patient-derived organoids reveal early neurodevelopmental defects in spinal muscular atrophy initiation. Cell Rep Med 2024; 5:101659. [PMID: 39067446 PMCID: PMC11384962 DOI: 10.1016/j.xcrm.2024.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/26/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024]
Abstract
Whether neurodevelopmental defects underlie postnatal neuronal death in neurodegeneration is an intriguing hypothesis only recently explored. Here, we focus on spinal muscular atrophy (SMA), a neuromuscular disorder caused by reduced survival of motor neuron (SMN) protein levels leading to spinal motor neuron (MN) loss and muscle wasting. Using the first isogenic patient-derived induced pluripotent stem cell (iPSC) model and a spinal cord organoid (SCO) system, we show that SMA SCOs exhibit abnormal morphological development, reduced expression of early neural progenitor markers, and accelerated expression of MN progenitor and MN markers. Longitudinal single-cell RNA sequencing reveals marked defects in neural stem cell specification and fewer MNs, favoring mesodermal progenitors and muscle cells, a bias also seen in early SMA mouse embryos. Surprisingly, SMN2-to-SMN1 conversion does not fully reverse these developmental abnormalities. These suggest that early neurodevelopmental defects may underlie later MN degeneration, indicating that postnatal SMN-increasing interventions might not completely amend SMA pathology in all patients.
Collapse
Affiliation(s)
- Tobias Grass
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany.
| | - Zeynep Dokuzluoglu
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Felix Buchner
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Ines Rosignol
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany
| | - Joshua Thomas
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Antonio Caldarelli
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Anna Dalinskaya
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany
| | - Jutta Becker
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Fabian Rost
- DRESDEN-concept Genome Center, Technology Platform at the Center for Molecular and Cellular Bioengineering, TUD, Dresden, Germany
| | - Michele Marass
- Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Rare Diseases, University Hospital of Cologne, Cologne, Germany
| | - Marc Beyer
- Systems Medicine, DZNE, Bonn, Germany; PRECISE Platform for Single Cell Genomics and Epigenomics, DZNE & University of Bonn and West German Genome Center, Bonn, Germany; Immunogenomics & Neurodegeneration, DZNE, Bonn, Germany
| | - Lorenzo Bonaguro
- Systems Medicine, DZNE, Bonn, Germany; Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Natalia Rodriguez-Muela
- German Center for Neurodegenerative Diseases e.V. (DZNE), Dresden, Germany; Technische Universität Dresden (TUD), Center for Regenerative Therapies Dresden, Dresden, Germany; Max Planck Institute for Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
4
|
Matera AG, Steiner RE, Mills CA, Herring LE, Garcia EL. Chaperoning the chaperones: Proteomic analysis of the SMN complex reveals conserved and etiologic connections to the proteostasis network. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594402. [PMID: 38903116 PMCID: PMC11188114 DOI: 10.1101/2024.05.15.594402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Molecular chaperones and co-chaperones are highly conserved cellular components that perform variety of duties related to the proper three-dimensional folding of the proteome. The web of factors that carries out this essential task is called the proteostasis network (PN). Ribonucleoproteins (RNPs) represent an underexplored area in terms of the connections they make with the PN. The Survival Motor Neuron (SMN) complex is an RNP assembly chaperone and serves as a paradigm for studying how specific small nuclear (sn)RNAs are identified and paired with their client substrate proteins. SMN protein is the eponymous component of a large complex required for the biogenesis of uridine-rich small nuclear ribonucleoproteins (U-snRNPs) and localizes to distinct membraneless organelles in both the nucleus and cytoplasm of animal cells. SMN forms the oligomeric core of this complex, and missense mutations in its YG box self-interaction domain are known to cause Spinal Muscular Atrophy (SMA). The basic framework for understanding how snRNAs are assembled into U-snRNPs is known, the pathways and mechanisms used by cells to regulate their biogenesis are poorly understood. Given the importance of these processes to normal development as well as neurodegenerative disease, we set out to identify and characterize novel SMN binding partners. Here, we carried out affinity purification mass spectrometry (AP-MS) of SMN using stable fly lines exclusively expressing either wildtype or SMA-causing missense alleles. Bioinformatic analyses of the pulldown data, along with comparisons to proximity labeling studies carried out in human cells, revealed conserved connections to at least two other major chaperone systems including heat shock folding chaperones (HSPs) and histone/nucleosome assembly chaperones. Notably, we found that heat shock cognate protein Hsc70-4 and other HspA family members preferentially interacted with SMA-causing alleles of SMN. Hsc70-4 is particularly interesting because its mRNA is aberrantly sequestered by a mutant form of TDP-43 in mouse and Drosophila ALS (Amyotrophic Lateral Sclerosis) disease models. Most important, a missense allele of Hsc70-4 (HspA8 in mammals) was recently identified as a bypass suppressor of the SMA phenotype in mice. Collectively, these findings suggest that chaperone-related dysfunction lies at the etiological root of both ALS and SMA.
Collapse
Affiliation(s)
- A. Gregory Matera
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Departments of Biology and Genetics, University of North Carolina at Chapel Hill
- RNA Discovery and Lineberger Comprehensive Cancer Centers, University of North Carolina at Chapel Hill
| | - Rebecca E. Steiner
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
| | - C. Alison Mills
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Laura E. Herring
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Eric L. Garcia
- Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill NC, USA
- Department of Biology, University of Kentucky, Lexington KY, USA
| |
Collapse
|
5
|
Lu M, Wang X, Sun N, Huang S, Yang L, Li D. Metabolomics of cerebrospinal fluid reveals candidate diagnostic biomarkers to distinguish between spinal muscular atrophy type II and type III. CNS Neurosci Ther 2024; 30:e14718. [PMID: 38615366 PMCID: PMC11016346 DOI: 10.1111/cns.14718] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/13/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
AIMS Classification of spinal muscular atrophy (SMA) is associated with the clinical prognosis; however, objective classification markers are scarce. This study aimed to identify metabolic markers in the cerebrospinal fluid (CSF) of children with SMA types II and III. METHODS CSF samples were collected from 40 patients with SMA (27 with type II and 13 with type III) and analyzed for metabolites. RESULTS We identified 135 metabolites associated with SMA types II and III. These were associated with lysine degradation and arginine, proline, and tyrosine metabolism. We identified seven metabolites associated with the Hammersmith Functional Motor Scale: 4-chlorophenylacetic acid, adb-chminaca,(+/-)-, dodecyl benzenesulfonic acid, norethindrone acetate, 4-(undecan-5-yl) benzene-1-sulfonic acid, dihydromaleimide beta-d-glucoside, and cinobufagin. Potential typing biomarkers, N-cyclohexylformamide, cinobufagin, cotinine glucuronide, N-myristoyl arginine, 4-chlorophenylacetic acid, geranic acid, 4-(undecan-5-yl) benzene, and 7,8-diamino pelargonate, showed good predictive performance. Among these, N-myristoyl arginine was unaffected by the gene phenotype. CONCLUSION This study identified metabolic markers are promising candidate prognostic factors for SMA. We also identified the metabolic pathways associated with the severity of SMA. These assessments can help predict the outcomes of screening SMA classification biomarkers.
Collapse
Affiliation(s)
- Mengnan Lu
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Xueying Wang
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Na Sun
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Shaoping Huang
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Lin Yang
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| | - Dan Li
- Department of Pediatricsthe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxiChina
| |
Collapse
|
6
|
Cottam NC, Bamfo T, Harrington MA, Charvet CJ, Hekmatyar K, Tulin N, Sun J. Cerebellar structural, astrocytic, and neuronal abnormalities in the SMNΔ7 mouse model of spinal muscular atrophy. Brain Pathol 2023; 33:e13162. [PMID: 37218083 PMCID: PMC10467044 DOI: 10.1111/bpa.13162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/18/2023] [Indexed: 05/24/2023] Open
Abstract
Spinalmuscular atrophy (SMA) is a neuromuscular disease that affects as many as 1 in 6000 individuals at birth, making it the leading genetic cause of infant mortality. A growing number of studies indicate that SMA is a multi-system disease. The cerebellum has received little attention even though it plays an important role in motor function and widespread pathology has been reported in the cerebella of SMA patients. In this study, we assessed SMA pathology in the cerebellum using structural and diffusion magnetic resonance imaging, immunohistochemistry, and electrophysiology with the SMNΔ7 mouse model. We found a significant disproportionate loss in cerebellar volume, decrease in afferent cerebellar tracts, selective lobule-specific degeneration of Purkinje cells, abnormal lobule foliation and astrocyte integrity, and a decrease in spontaneous firing of cerebellar output neurons in the SMA mice compared to controls. Our data suggest that defects in cerebellar structure and function due to decreased survival motor neuron (SMN) levels impair the functional cerebellar output affecting motor control, and that cerebellar pathology should be addressed to achieve comprehensive treatment and therapy for SMA patients.
Collapse
Affiliation(s)
- Nicholas C. Cottam
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | - Tiffany Bamfo
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
| | | | - Christine J. Charvet
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
- Department of Anatomy, Physiology and PharmacologyAuburn UniversityAuburnAlabamaUSA
- Department of PsychologyDelaware State UniversityDoverDEUnited States
| | - Khan Hekmatyar
- Center for Biomedical and Brain ImagingUniversity of DelawareNewarkDelawareUSA
- Bioimaging Research Center for Biomedical and Brain ImagingUniversity of GeorgiaAthensGeorgiaUSA
| | - Nikita Tulin
- Department of NeuroscienceTemple UniversityPhiladelphiaPennsylvaniaUSA
| | - Jianli Sun
- Department of Biological SciencesDelaware State UniversityDoverDelawareUSA
- Delaware Center for Neuroscience ResearchDelaware State UniversityDoverDelawareUSA
| |
Collapse
|
7
|
Lumpkin CJ, Harris AW, Connell AJ, Kirk RW, Whiting JA, Saieva L, Pellizzoni L, Burghes AHM, Butchbach MER. Evaluation of the orally bioavailable 4-phenylbutyrate-tethered trichostatin A analogue AR42 in models of spinal muscular atrophy. Sci Rep 2023; 13:10374. [PMID: 37365234 PMCID: PMC10293174 DOI: 10.1038/s41598-023-37496-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 06/22/2023] [Indexed: 06/28/2023] Open
Abstract
Proximal spinal muscular atrophy (SMA) is a leading genetic cause for infant death in the world and results from the selective loss of motor neurons in the spinal cord. SMA is a consequence of low levels of SMN protein and small molecules that can increase SMN expression are of considerable interest as potential therapeutics. Previous studies have shown that both 4-phenylbutyrate (4PBA) and trichostatin A (TSA) increase SMN expression in dermal fibroblasts derived from SMA patients. AR42 is a 4PBA-tethered TSA derivative that is a very potent histone deacetylase inhibitor. SMA patient fibroblasts were treated with either AR42, AR19 (a related analogue), 4PBA, TSA or vehicle for 5 days and then immunostained for SMN localization. AR42 as well as 4PBA and TSA increased the number of SMN-positive nuclear gems in a dose-dependent manner while AR19 did not show marked changes in gem numbers. While gem number was increased in AR42-treated SMA fibroblasts, there were no significant changes in FL-SMN mRNA or SMN protein. The neuroprotective effect of this compound was then assessed in SMNΔ7 SMA (SMN2+/+;SMNΔ7+/+;mSmn-/-) mice. Oral administration of AR42 prior to disease onset increased the average lifespan of SMNΔ7 SMA mice by ~ 27% (20.1 ± 1.6 days for AR42-treated mice vs. 15.8 ± 0.4 days for vehicle-treated mice). AR42 treatment also improved motor function in these mice. AR42 treatment inhibited histone deacetylase (HDAC) activity in treated spinal cord although it did not affect SMN protein expression in these mice. AKT and GSK3β phosphorylation were both significantly increased in SMNΔ7 SMA mouse spinal cords. In conclusion, presymptomatic administration of the HDAC inhibitor AR42 ameliorates the disease phenotype in SMNΔ7 SMA mice in a SMN-independent manner possibly by increasing AKT neuroprotective signaling.
Collapse
Affiliation(s)
- Casey J Lumpkin
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | - Ashlee W Harris
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Andrew J Connell
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Ryan W Kirk
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Joshua A Whiting
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA
| | - Luciano Saieva
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Arthur H M Burghes
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew E R Butchbach
- Division of Neurology, Nemours Children's Hospital Delaware, 4462 E400 DuPont Experimental Station, 200 Powder Mill Road, Wilmington, DE, 19803, USA.
- Department of Biological Sciences, University of Delaware, Newark, DE, USA.
- Department of Biological Chemistry and Pharmacology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Kim JK, Jha NN, Awano T, Caine C, Gollapalli K, Welby E, Kim SS, Fuentes-Moliz A, Wang X, Feng Z, Sera F, Takeda T, Homma S, Ko CP, Tabares L, Ebert AD, Rich MM, Monani UR. A spinal muscular atrophy modifier implicates the SMN protein in SNARE complex assembly at neuromuscular synapses. Neuron 2023; 111:1423-1439.e4. [PMID: 36863345 PMCID: PMC10164130 DOI: 10.1016/j.neuron.2023.02.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/11/2022] [Accepted: 02/02/2023] [Indexed: 03/04/2023]
Abstract
Reduced survival motor neuron (SMN) protein triggers the motor neuron disease, spinal muscular atrophy (SMA). Restoring SMN prevents disease, but it is not known how neuromuscular function is preserved. We used model mice to map and identify an Hspa8G470R synaptic chaperone variant, which suppressed SMA. Expression of the variant in the severely affected mutant mice increased lifespan >10-fold, improved motor performance, and mitigated neuromuscular pathology. Mechanistically, Hspa8G470R altered SMN2 splicing and simultaneously stimulated formation of a tripartite chaperone complex, critical for synaptic homeostasis, by augmenting its interaction with other complex members. Concomitantly, synaptic vesicular SNARE complex formation, which relies on chaperone activity for sustained neuromuscular synaptic transmission, was found perturbed in SMA mice and patient-derived motor neurons and was restored in modified mutants. Identification of the Hspa8G470R SMA modifier implicates SMN in SNARE complex assembly and casts new light on how deficiency of the ubiquitous protein causes motor neuron disease.
Collapse
Affiliation(s)
- Jeong-Ki Kim
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Narendra N Jha
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Tomoyuki Awano
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Charlotte Caine
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Kishore Gollapalli
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Emily Welby
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Seung-Soo Kim
- Department of Obstetrics and Gynecology, New York, NY, USA
| | - Andrea Fuentes-Moliz
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Xueyong Wang
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Zhihua Feng
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Fusako Sera
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Taishi Takeda
- Department of Neurology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA
| | - Shunichi Homma
- Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Lucia Tabares
- Department of Medical Physiology and Biophysics, University of Seville School of Medicine, 41009, Seville, Spain
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark M Rich
- Department of Neuroscience, Cell Biology and Physiology, Wright State University, Dayton, OH 45435, USA
| | - Umrao R Monani
- Department of Neurology, New York, NY, USA; Department of Pathology & Cell Biology, New York, NY, USA; Center for Motor Neuron Biology & Disease, New York, NY, USA; Colleen Giblin Research Laboratory, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Faravelli I, Riboldi GM, Rinchetti P, Lotti F. The SMN Complex at the Crossroad between RNA Metabolism and Neurodegeneration. Int J Mol Sci 2023; 24:2247. [PMID: 36768569 PMCID: PMC9917330 DOI: 10.3390/ijms24032247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
In the cell, RNA exists and functions in a complex with RNA binding proteins (RBPs) that regulate each step of the RNA life cycle from transcription to degradation. Central to this regulation is the role of several molecular chaperones that ensure the correct interactions between RNA and proteins, while aiding the biogenesis of large RNA-protein complexes (ribonucleoproteins or RNPs). Accurate formation of RNPs is fundamentally important to cellular development and function, and its impairment often leads to disease. The survival motor neuron (SMN) protein exemplifies this biological paradigm. SMN is part of a multi-protein complex essential for the biogenesis of various RNPs that function in RNA metabolism. Mutations leading to SMN deficiency cause the neurodegenerative disease spinal muscular atrophy (SMA). A fundamental question in SMA biology is how selective motor system dysfunction results from reduced levels of the ubiquitously expressed SMN protein. Recent clarification of the central role of the SMN complex in RNA metabolism and a thorough characterization of animal models of SMA have significantly advanced our knowledge of the molecular basis of the disease. Here we review the expanding role of SMN in the regulation of gene expression through its multiple functions in RNP biogenesis. We discuss developments in our understanding of SMN activity as a molecular chaperone of RNPs and how disruption of SMN-dependent RNA pathways can contribute to the SMA phenotype.
Collapse
Affiliation(s)
- Irene Faravelli
- Department of Stem Cell & Regenerative Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Giulietta M. Riboldi
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
- The Marlene and Paolo Fresco Institute for Parkinson’s and Movement Disorders, NYU Langone Health, New York, NY 10017, USA
| | - Paola Rinchetti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
10
|
Gomez Limia C, Baird M, Schwartz M, Saxena S, Meyer K, Wein N. Emerging Perspectives on Gene Therapy Delivery for Neurodegenerative and Neuromuscular Disorders. J Pers Med 2022; 12:1979. [PMID: 36556200 PMCID: PMC9788053 DOI: 10.3390/jpm12121979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
Neurodegenerative disorders (NDDs), such as Alzheimer's disease (AD) and Parkinson's Disease (PD), are a group of heterogeneous diseases that mainly affect central nervous system (CNS) functions. A subset of NDDs exhibit CNS dysfunction and muscle degeneration, as observed in Gangliosidosis 1 (GM1) and late stages of PD. Neuromuscular disorders (NMDs) are a group of diseases in which patients show primary progressive muscle weaknesses, including Duchenne Muscular Dystrophy (DMD), Pompe disease, and Spinal Muscular Atrophy (SMA). NDDs and NMDs typically have a genetic component, which affects the physiological functioning of critical cellular processes, leading to pathogenesis. Currently, there is no cure or efficient treatment for most of these diseases. More than 200 clinical trials have been completed or are currently underway in order to establish safety, tolerability, and efficacy of promising gene therapy approaches. Thus, gene therapy-based therapeutics, including viral or non-viral delivery, are very appealing for the treatment of NDDs and NMDs. In particular, adeno-associated viral vectors (AAV) are an attractive option for gene therapy for NDDs and NMDs. However, limitations have been identified after systemic delivery, including the suboptimal capacity of these therapies to traverse the blood-brain barrier (BBB), degradation of the particles during the delivery, high reactivity of the patient's immune system during the treatment, and the potential need for redosing. To circumvent these limitations, several preclinical and clinical studies have suggested intrathecal (IT) delivery to target the CNS and peripheral organs via cerebrospinal fluid (CSF). CSF administration can vastly improve the delivery of small molecules and drugs to the brain and spinal cord as compared to systemic delivery. Here, we review AAV biology and vector design elements, different therapeutic routes of administration, and highlight CSF delivery as an attractive route of administration. We discuss the different aspects of neuromuscular and neurodegenerative diseases, such as pathogenesis, the landscape of mutations, and the biological processes associated with the disease. We also describe the hallmarks of NDDs and NMDs as well as discuss current therapeutic approaches and clinical progress in viral and non-viral gene therapy and enzyme replacement strategies for those diseases.
Collapse
Affiliation(s)
- Cintia Gomez Limia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
| | - Megan Baird
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Maura Schwartz
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
| | - Smita Saxena
- Department of Neurology, Inselspital, 3010 Bern, Switzerland
| | - Kathrin Meyer
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| | - Nicolas Wein
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205, USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH 43205, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH 43205, USA
| |
Collapse
|
11
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
SMN controls neuromuscular junction integrity through U7 snRNP. Cell Rep 2022; 40:111393. [PMID: 36130491 PMCID: PMC9533342 DOI: 10.1016/j.celrep.2022.111393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023] Open
Abstract
The neuromuscular junction (NMJ) is an essential synapse whose loss is a key hallmark of the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that activity of the SMA-determining SMN protein in the assembly of U7 small nuclear ribonucleoprotein (snRNP)—which functions in the 3′-end processing of replication-dependent histone mRNAs—is required for NMJ integrity. Co-expression of U7-specific Lsm10 and Lsm11 proteins selectively enhances U7 snRNP assembly, corrects histone mRNA processing defects, and rescues key structural and functional abnormalities of neuromuscular pathology in SMA mice—including NMJ denervation, decreased synaptic transmission, and skeletal muscle atrophy. Furthermore, U7 snRNP dysfunction drives selective loss of the synaptic organizing protein Agrin at NMJs innervating vulnerable muscles of SMA mice. These findings reveal a direct contribution of U7 snRNP dysfunction to neuromuscular pathology in SMA and suggest a role for histone gene regulation in maintaining functional synaptic connections between motor neurons and muscles. NMJ denervation is a hallmark of SMA. Through selective restoration of U7 snRNP biogenesis in SMA mice, Tisdale et al. reveal a role for SMN-mediated U7 snRNP assembly and histone mRNA processing in controlling NMJ integrity through Agrin expression, uncovering RNA-mediated disease mechanisms and linking U7 function to neuromuscular development.
Collapse
|
13
|
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disorder caused by mutations in SMN1 (encoding survival motor neuron protein (SMN)). Reduced expression of SMN leads to loss of α-motor neurons, severe muscle weakness and often early death. Standard-of-care recommendations for multidisciplinary supportive care of SMA were established in the past few decades. However, improved understanding of the pathogenetic mechanisms of SMA has led to the development of different therapeutic approaches. Three treatments that increase SMN expression by distinct molecular mechanisms, administration routes and tissue biodistributions have received regulatory approval with others in clinical development. The advent of the new therapies is redefining standards of care as in many countries most patients are treated with one of the new therapies, leading to the identification of emerging new phenotypes of SMA and a renewed characterization of demographics owing to improved patient survival.
Collapse
|
14
|
Carlini MJ, Triplett MK, Pellizzoni L. Neuromuscular denervation and deafferentation but not motor neuron death are disease features in the Smn2B/- mouse model of SMA. PLoS One 2022; 17:e0267990. [PMID: 35913953 PMCID: PMC9342749 DOI: 10.1371/journal.pone.0267990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease characterized by loss of motor neurons and skeletal muscle atrophy which is caused by ubiquitous deficiency in the survival motor neuron (SMN) protein. Several cellular defects contribute to sensory-motor circuit pathology in SMA mice, but the underlying mechanisms have often been studied in one mouse model without validation in other available models. Here, we used Smn2B/- mice to investigate specific behavioral, morphological, and functional aspects of SMA pathology that we previously characterized in the SMNΔ7 model. Smn2B/- SMA mice on a pure FVB/N background display deficits in body weight gain and muscle strength with onset in the second postnatal week and median survival of 19 days. Morphological analysis revealed severe loss of proprioceptive synapses on the soma of motor neurons and prominent denervation of neuromuscular junctions (NMJs) in axial but not distal muscles. In contrast, no evidence of cell death emerged from analysis of several distinct pools of lumbar motor neurons known to be lost in the disease. Moreover, SMA motor neurons from Smn2B/- mice showed robust nuclear accumulation of p53 but lack of phosphorylation of serine 18 at its amino-terminal, which selectively marks degenerating motor neurons in the SMNΔ7 mouse model. These results indicate that NMJ denervation and deafferentation, but not motor neuron death, are conserved features of SMA pathology in Smn2B/- mice.
Collapse
Affiliation(s)
- Maria J. Carlini
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - Marina K. Triplett
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, United States of America
- Department of Neurology, Columbia University, New York, NY, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| |
Collapse
|
15
|
Kim JH, Kang JS, Yoo K, Jeong J, Park I, Park JH, Rhee J, Jeon S, Jo YW, Hann SH, Seo M, Moon S, Um SJ, Seong RH, Kong YY. Bap1/SMN axis in Dpp4+ skeletal muscle mesenchymal cells regulates the neuromuscular system. JCI Insight 2022; 7:158380. [PMID: 35603786 PMCID: PMC9220848 DOI: 10.1172/jci.insight.158380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/06/2022] [Indexed: 12/15/2022] Open
Abstract
The survival of motor neuron (SMN) protein is a major component of the pre-mRNA splicing machinery and is required for RNA metabolism. Although SMN has been considered a fundamental gene for the central nervous system, due to its relationship with neuromuscular diseases, such as spinal muscular atrophy, recent studies have also revealed the requirement of SMN in non-neuronal cells in the peripheral regions. Here, we report that the fibro-adipogenic progenitor subpopulation expressing Dpp4 (Dpp4+ FAPs) is required for the neuromuscular system. Furthermore, we also reveal that BRCA1-associated protein-1 (Bap1) is crucial for the stabilization of SMN in FAPs by preventing its ubiquitination-dependent degradation. Inactivation of Bap1 in FAPs decreased SMN levels and accompanied degeneration of the neuromuscular junction, leading to loss of motor neurons and muscle atrophy. Overexpression of the ubiquitination-resistant SMN variant, SMNK186R, in Bap1-null FAPs completely prevented neuromuscular degeneration. In addition, transplantation of Dpp4+ FAPs, but not Dpp4– FAPs, completely rescued neuromuscular defects. Our data reveal the crucial role of Bap1-mediated SMN stabilization in Dpp4+ FAPs for the neuromuscular system and provide the possibility of cell-based therapeutics to treat neuromuscular diseases.
Collapse
Affiliation(s)
- Ji-Hoon Kim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jong-Seol Kang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Kyusang Yoo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jinguk Jeong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Inkuk Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jong Ho Park
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Joonwoo Rhee
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Shin Jeon
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Woo Jo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang-Hyeon Hann
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Minji Seo
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Seungtae Moon
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Soo-Jong Um
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, South Korea
| | - Rho Hyun Seong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Young-Yun Kong
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
16
|
[Spinal muscular atrophy]. DER NERVENARZT 2022; 93:191-200. [PMID: 35037967 DOI: 10.1007/s00115-021-01256-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 10/19/2022]
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive disease caused by biallelic mutations in the SMN1 (survival motor neuron 1) gene on chromosome 5q13.2, which leads to a progressive degeneration of alpha motor neurons in the spinal cord and in motor nerve nuclei in the caudal brainstem. It is characterized by progressive proximally accentuated muscle weakness with loss of already acquired motor skills, areflexia and, depending on the phenotype, varying degrees of weakness of the respiratory and bulbar muscles, although the facial muscles and eye muscles are not affected. The previously purely symptom-oriented treatment has undergone a significant expansion since 2017 with the approval of three drugs (nusinersen, onasemnogene abeparvovec and risdiplam) that modify the course of the disease at the gene expression level and have led to a change in the natural disease course of SMA. The effect of these new forms of treatment can only be fully assessed in the coming years. New aspects and challenges in this context are discussed in this article.
Collapse
|
17
|
Jutzi D, Ruepp MD. Alternative Splicing in Human Biology and Disease. Methods Mol Biol 2022; 2537:1-19. [PMID: 35895255 DOI: 10.1007/978-1-0716-2521-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Alternative pre-mRNA splicing allows for the production of multiple mRNAs from an individual gene, which not only expands the protein-coding potential of the genome but also enables complex mechanisms for the post-transcriptional control of gene expression. Regulation of alternative splicing entails a combinatorial interplay between an abundance of trans-acting splicing factors, cis-acting regulatory sequence elements and their concerted effects on the core splicing machinery. Given the extent and biological significance of alternative splicing in humans, it is not surprising that aberrant splicing patterns can cause or contribute to a wide range of diseases. In this introductory chapter, we outline the mechanisms that govern alternative pre-mRNA splicing and its regulation and discuss how dysregulated splicing contributes to human diseases affecting the motor system and the brain.
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
18
|
Buettner JM, Sime Longang JK, Gerstner F, Apel KS, Blanco-Redondo B, Sowoidnich L, Janzen E, Langenhan T, Wirth B, Simon CM. Central synaptopathy is the most conserved feature of motor circuit pathology across spinal muscular atrophy mouse models. iScience 2021; 24:103376. [PMID: 34825141 PMCID: PMC8605199 DOI: 10.1016/j.isci.2021.103376] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/26/2021] [Indexed: 11/04/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced survival motor neuron (SMN) protein. Recently, SMN dysfunction has been linked to individual aspects of motor circuit pathology in a severe SMA mouse model. To determine whether these disease mechanisms are conserved, we directly compared the motor circuit pathology of three SMA mouse models. The severe SMNΔ7 model exhibits vast motor circuit defects, including degeneration of motor neurons, spinal excitatory synapses, and neuromuscular junctions (NMJs). In contrast, the Taiwanese model shows very mild motor neuron pathology, but early central synaptic loss. In the intermediate Smn2B/- model, strong pathology of central excitatory synapses and NMJs precedes the late onset of p53-dependent motor neuron death. These pathological events correlate with SMN-dependent splicing dysregulation of specific mRNAs. Our study provides a knowledge base for properly tailoring future studies and identifies central excitatory synaptopathy as a key feature of motor circuit pathology in SMA. Comparison of detailed motor circuit pathology across three SMA mouse models Motor circuit pathology correlates with dysregulation of specific mRNAs Motor neuron death in severe and intermediate SMA models is p53-dependent Central excitatory synaptopathy is the most conserved feature of SMA pathology
Collapse
Affiliation(s)
- Jannik M Buettner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | | | - Florian Gerstner
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Katharina S Apel
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Beatriz Blanco-Redondo
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Leonie Sowoidnich
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| | - Eva Janzen
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Leipzig 04103, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, Cologne, Germany.,Center for Rare Diseases Cologne, University Hospital of Cologne, Cologne, Germany
| | - Christian M Simon
- Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
19
|
Edinoff AN, Nguyen LH, Odisho AS, Maxey BS, Pruitt JW, Girma B, Cornett EM, Kaye AM, Kaye AD. The Antisense Oligonucleotide Nusinersen for Treatment of Spinal Muscular Atrophy. Orthop Rev (Pavia) 2021; 13:24934. [PMID: 34745470 DOI: 10.52965/001c.24934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 01/25/2023] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, autosomal recessive neuromuscular degenerative disease characterized by loss of spinal cord motor neurons leading to progressive muscle wasting. The most common pathology results from a homozygous disruption in the survival motor neuron 1 (SMN1) gene on chromosome 5q13 via deletion, conversion, or mutation. SMN2 is a near duplicate of SMN1 that can produce full-length SMN mRNA transcripts, but its overall production capability of these mRNA transcripts is lower than that seen in SMN1. This leads to lower levels of functional SMN protein within motor neurons. The FDA approved nusinersen in December 2016 to treat SMA associated with SMN1 gene mutation. It is administered directly to the central nervous system by intrathecal injection. An antisense oligonucleotide (ASO) drug, nusinersen, provides an upcoming and promising treatment option for SMA and represents a novel pharmacological approach with a mechanism of action relevant for other neurodegenerative disorders. Nusinersen begins with four initial loading doses that are followed by three maintenance doses per year. Three major studies (CHERISH, ENDEAR, and NURTURE) have shown to improve motor function in early and late-onset individuals and reduce the chances of ventilator requirements in pre-symptomatic infants. Studies investigating the timing of drug delivery in mouse models of SMA report the best outcomes when drugs are delivered early before any significant motor function is lost. Nusinersen is a novel therapeutic approach with consistent results in all three studies and is proof of the novel concept for treating SMA and other neurodegenerative disorders in the future.
Collapse
Affiliation(s)
| | - Long H Nguyen
- Louisiana State University Health Science Center Shreveport
| | - Amira S Odisho
- Louisiana State University Health Science Center Shreveport
| | | | - John W Pruitt
- Louisiana State University Health Science Center Shreveport
| | - Brook Girma
- Louisiana State University Health Science Center Shreveport
| | | | - Adam M Kaye
- Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific
| | - Alan D Kaye
- Louisiana State University Health Science Center Shreveport
| |
Collapse
|
20
|
Sumoylation regulates the assembly and activity of the SMN complex. Nat Commun 2021; 12:5040. [PMID: 34413305 PMCID: PMC8376998 DOI: 10.1038/s41467-021-25272-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
SMN is a ubiquitously expressed protein and is essential for life. SMN deficiency causes the neurodegenerative disease spinal muscular atrophy (SMA), the leading genetic cause of infant mortality. SMN interacts with itself and other proteins to form a complex that functions in the assembly of ribonucleoproteins. SMN is modified by SUMO (Small Ubiquitin-like Modifier), but whether sumoylation is required for the functions of SMN that are relevant to SMA pathogenesis is not known. Here, we show that inactivation of a SUMO-interacting motif (SIM) alters SMN sub-cellular distribution, the integrity of its complex, and its function in small nuclear ribonucleoproteins biogenesis. Expression of a SIM-inactivated mutant of SMN in a mouse model of SMA slightly extends survival rate with limited and transient correction of motor deficits. Remarkably, although SIM-inactivated SMN attenuates motor neuron loss and improves neuromuscular junction synapses, it fails to prevent the loss of sensory-motor synapses. These findings suggest that sumoylation is important for proper assembly and function of the SMN complex and that loss of this post-translational modification impairs the ability of SMN to correct selective deficits in the sensory-motor circuit of SMA mice.
Collapse
|
21
|
Meijboom KE, Volpato V, Monzón-Sandoval J, Hoolachan JM, Hammond SM, Abendroth F, de Jong OG, Hazell G, Ahlskog N, Wood MJ, Webber C, Bowerman M. Combining multiomics and drug perturbation profiles to identify muscle-specific treatments for spinal muscular atrophy. JCI Insight 2021; 6:e149446. [PMID: 34236053 PMCID: PMC8410072 DOI: 10.1172/jci.insight.149446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by loss of survival motor neuron (SMN) protein. While SMN restoration therapies are beneficial, they are not a cure. We aimed to identify potentially novel treatments to alleviate muscle pathology combining transcriptomics, proteomics, and perturbational data sets. This revealed potential drug candidates for repurposing in SMA. One of the candidates, harmine, was further investigated in cell and animal models, improving multiple disease phenotypes, including lifespan, weight, and key molecular networks in skeletal muscle. Our work highlights the potential of multiple and parallel data-driven approaches for the development of potentially novel treatments for use in combination with SMN restoration therapies.
Collapse
Affiliation(s)
- Katharina E Meijboom
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Viola Volpato
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Jimena Monzón-Sandoval
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | | | - Suzan M Hammond
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Frank Abendroth
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom.,Institute of Chemistry, Philipps-University of Marburg, Marburg, Germany
| | - Olivier G de Jong
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and
| | - Matthew Ja Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Department of Paediatrics, John Radcliffe Hospital and.,MDUK Oxford Neuromuscular Centre, University of Oxford, United Kingdom
| | - Caleb Webber
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,UK Dementia Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,School of Medicine, Keele University, Staffordshire, United Kingdom.,Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, United Kingdom
| |
Collapse
|
22
|
Van Alstyne M, Tattoli I, Delestree N, Recinos Y, Workman E, Shihabuddin LS, Zhang C, Mentis GZ, Pellizzoni L. Gain of toxic function by long-term AAV9-mediated SMN overexpression in the sensorimotor circuit. Nat Neurosci 2021; 24:930-940. [PMID: 33795885 PMCID: PMC8254787 DOI: 10.1038/s41593-021-00827-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/24/2021] [Indexed: 02/01/2023]
Abstract
The neurodegenerative disease spinal muscular atrophy (SMA) is caused by deficiency in the survival motor neuron (SMN) protein. Currently approved SMA treatments aim to restore SMN, but the potential for SMN expression beyond physiological levels is a unique feature of adeno-associated virus serotype 9 (AAV9)-SMN gene therapy. Here, we show that long-term AAV9-mediated SMN overexpression in mouse models induces dose-dependent, late-onset motor dysfunction associated with loss of proprioceptive synapses and neurodegeneration. Mechanistically, aggregation of overexpressed SMN in the cytoplasm of motor circuit neurons sequesters components of small nuclear ribonucleoproteins, leading to splicing dysregulation and widespread transcriptome abnormalities with prominent signatures of neuroinflammation and the innate immune response. Thus, long-term SMN overexpression interferes with RNA regulation and triggers SMA-like pathogenic events through toxic gain-of-function mechanisms. These unanticipated, SMN-dependent and neuron-specific liabilities warrant caution on the long-term safety of treating individuals with SMA with AAV9-SMN and the risks of uncontrolled protein expression by gene therapy.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Ivan Tattoli
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032
| | - Nicolas Delestree
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Yocelyn Recinos
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Systems Biology, Columbia University, New York, NY 10032,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Eileen Workman
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032
| | | | - Chaolin Zhang
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Systems Biology, Columbia University, New York, NY 10032,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - George Z. Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032,Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032,Department of Neurology, Columbia University, New York, NY, 10032,Address correspondence to: Livio Pellizzoni, Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, 630 West 168TH Street, New York, NY, 10032. Phone: +1 212-305-3046;
| |
Collapse
|
23
|
Targeting the 5' untranslated region of SMN2 as a therapeutic strategy for spinal muscular atrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:731-742. [PMID: 33575118 PMCID: PMC7851419 DOI: 10.1016/j.omtn.2020.12.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/30/2020] [Indexed: 11/21/2022]
Abstract
Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations in the survival motor neuron 1 (SMN1) gene. All patients have at least one copy of a paralog, SMN2, but a C-to-T transition in this gene results in exon 7 skipping in a majority of transcripts. Approved treatment for SMA involves promoting exon 7 inclusion in the SMN2 transcript or increasing the amount of full-length SMN by gene replacement with a viral vector. Increasing the pool of SMN2 transcripts and increasing their translational efficiency can be used to enhance splice correction. We sought to determine whether the 5' untranslated region (5' UTR) of SMN2 contains a repressive feature that can be targeted to increase SMN levels. We found that antisense oligonucleotides (ASOs) complementary to the 5' end of SMN2 increase SMN mRNA and protein levels and that this effect is due to inhibition of SMN2 mRNA decay. Moreover, use of the 5' UTR ASO in combination with a splice-switching oligonucleotide (SSO) increases SMN levels above those attained with the SSO alone. Our results add to the current understanding of SMN regulation and point toward a new therapeutic target for SMA.
Collapse
|
24
|
Reedich EJ, Kalski M, Armijo N, Cox GA, DiDonato CJ. Spinal motor neuron loss occurs through a p53-and-p21-independent mechanism in the Smn 2B/- mouse model of spinal muscular atrophy. Exp Neurol 2020; 337:113587. [PMID: 33382987 DOI: 10.1016/j.expneurol.2020.113587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/12/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022]
Abstract
Spinal muscular atrophy (SMA) is a pediatric neuromuscular disease caused by genetic deficiency of the survival motor neuron (SMN) protein. Pathological hallmarks of SMA are spinal motor neuron loss and skeletal muscle atrophy. The molecular mechanisms that elicit and drive preferential motor neuron degeneration and death in SMA remain unclear. Transcriptomic studies consistently report p53 pathway activation in motor neurons and spinal cord tissue of SMA mice. Recent work has identified p53 as an inducer of spinal motor neuron loss in severe Δ7 SMA mice. Additionally, the cyclin-dependent kinase inhibitor P21 (Cdkn1a), an inducer of cell cycle arrest and mediator of skeletal muscle atrophy, is consistently increased in motor neurons, spinal cords, and other tissues of various SMA models. p21 is a p53 transcriptional target but can be independently induced by cellular stressors. To ascertain whether p53 and p21 signaling pathways mediate spinal motor neuron death in milder SMA mice, and how they affect the overall SMA phenotype, we introduced Trp53 and P21 null alleles onto the Smn2B/- background. We found that p53 and p21 depletion did not modulate the timing or degree of Smn2B/- motor neuron loss as evaluated using electrophysiological and immunohistochemical methods. Moreover, we determined that Trp53 and P21 knockout differentially affected Smn2B/- mouse lifespan: p53 ablation impaired survival while p21 ablation extended survival through Smn-independent mechanisms. These results demonstrate that p53 and p21 are not primary drivers of spinal motor neuron death in Smn2B/- mice, a milder SMA mouse model, as motor neuron loss is not alleviated by their ablation.
Collapse
Affiliation(s)
- Emily J Reedich
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Martin Kalski
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Nicholas Armijo
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Christine J DiDonato
- Human Molecular Genetics and Physiology Program, Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital, Chicago, IL, USA; Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Rietz A, Hodgetts KJ, Lusic H, Quist KM, Osman EY, Lorson CL, Androphy EJ. Short-duration splice promoting compound enables a tunable mouse model of spinal muscular atrophy. Life Sci Alliance 2020; 4:4/1/e202000889. [PMID: 33234679 PMCID: PMC7723287 DOI: 10.26508/lsa.202000889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022] Open
Abstract
We describe drug treatment paradigms that allow investigation of cellular and molecular pathogenesis at different stages of spinal muscular atrophy in a mouse model. Spinal muscular atrophy (SMA) is a motor neuron disease and the leading genetic cause of infant mortality. SMA results from insufficient survival motor neuron (SMN) protein due to alternative splicing. Antisense oligonucleotides, gene therapy and splicing modifiers recently received FDA approval. Although severe SMA transgenic mouse models have been beneficial for testing therapeutic efficacy, models mimicking milder cases that manifest post-infancy have proven challenging to develop. We established a titratable model of mild and moderate SMA using the splicing compound NVS-SM2. Administration for 30 d prevented development of the SMA phenotype in severe SMA mice, which typically show rapid weakness and succumb by postnatal day 11. Furthermore, administration at day eight resulted in phenotypic recovery. Remarkably, acute dosing limited to the first 3 d of life significantly enhanced survival in two severe SMA mice models, easing the burden on neonates and demonstrating the compound as suitable for evaluation of follow-on therapies without potential drug–drug interactions. This pharmacologically tunable SMA model represents a useful tool to investigate cellular and molecular pathogenesis at different stages of disease.
Collapse
Affiliation(s)
- Anne Rietz
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kevin J Hodgetts
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Hrvoje Lusic
- Laboratory for Drug Discovery in Neurodegeneration, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Kevin M Quist
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erkan Y Osman
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, Bond Life Sciences Center, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Elliot J Androphy
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
26
|
Simon CM, Van Alstyne M, Lotti F, Bianchetti E, Tisdale S, Watterson DM, Mentis GZ, Pellizzoni L. Stasimon Contributes to the Loss of Sensory Synapses and Motor Neuron Death in a Mouse Model of Spinal Muscular Atrophy. Cell Rep 2020; 29:3885-3901.e5. [PMID: 31851921 PMCID: PMC6956708 DOI: 10.1016/j.celrep.2019.11.058] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/08/2019] [Accepted: 11/14/2019] [Indexed: 12/31/2022] Open
Abstract
Reduced expression of the survival motor neuron (SMN) protein causes the neurodegenerative disease spinal muscular atrophy (SMA). Here, we show that adeno-associated virus serotype 9 (AAV9)-mediated delivery of Stasimon—a gene encoding an endoplasmic reticulum (ER)-resident transmembrane protein regulated by SMN—improves motor function in a mouse model of SMA through multiple mechanisms. In proprioceptive neurons, Stasimon overexpression prevents the loss of afferent synapses on motor neurons and enhances sensory-motor neurotransmission. In motor neurons, Stasimon suppresses neurodegeneration by reducing phosphorylation of the tumor suppressor p53. Moreover, Stasimon deficiency converges on SMA-related mechanisms of p53 upregulation to induce phosphorylation of p53 through activation of p38 mitogen-activated protein kinase (MAPK), and pharmacological inhibition of this kinase prevents motor neuron death in SMA mice. These findings identify Stasimon dysfunction induced by SMN deficiency as an upstream driver of distinct cellular cascades that lead to synaptic loss and motor neuron degeneration, revealing a dual contribution of Stasimon to motor circuit pathology in SMA. SMN deficiency causes motor circuit dysfunction in SMA. Simon et al. show that Stasimon—an ER-resident protein regulated by SMN—contributes to sensory synaptic loss and motor neuron death in SMA mice through distinct mechanisms. In motor neurons, Stasimon dysfunction induces p38 MAPK-mediated phosphorylation of p53 whose inhibition prevents neurodegeneration.
Collapse
Affiliation(s)
- Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Elena Bianchetti
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - D Martin Watterson
- Department of Pharmacology, Northwestern University, Chicago, IL 60611, USA
| | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Nichterwitz S, Nijssen J, Storvall H, Schweingruber C, Comley LH, Allodi I, Lee MVD, Deng Q, Sandberg R, Hedlund E. LCM-seq reveals unique transcriptional adaptation mechanisms of resistant neurons and identifies protective pathways in spinal muscular atrophy. Genome Res 2020; 30:1083-1096. [PMID: 32820007 PMCID: PMC7462070 DOI: 10.1101/gr.265017.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/10/2020] [Indexed: 11/25/2022]
Abstract
Somatic motor neurons are selectively vulnerable in spinal muscular atrophy (SMA), which is caused by a deficiency of the ubiquitously expressed survival of motor neuron protein. However, some motor neuron groups, including oculomotor and trochlear (ocular), which innervate eye muscles, are for unknown reasons spared. To reveal mechanisms of vulnerability and resistance in SMA, we investigate the transcriptional dynamics in discrete neuronal populations using laser capture microdissection coupled with RNA sequencing (LCM-seq). Using gene correlation network analysis, we reveal a TRP53-mediated stress response that is intrinsic to all somatic motor neurons independent of their vulnerability, but absent in relatively resistant red nucleus and visceral motor neurons. However, the temporal and spatial expression analysis across neuron types shows that the majority of SMA-induced modulations are cell type-specific. Using Gene Ontology and protein network analyses, we show that ocular motor neurons present unique disease-adaptation mechanisms that could explain their resilience. Specifically, ocular motor neurons up-regulate (1) Syt1, Syt5, and Cplx2, which modulate neurotransmitter release; (2) the neuronal survival factors Gdf15, Chl1, and Lif; (3) Aldh4, that protects cells from oxidative stress; and (4) the caspase inhibitor Pak4. Finally, we show that GDF15 can rescue vulnerable human spinal motor neurons from degeneration. This confirms that adaptation mechanisms identified in resilient neurons can be used to reduce susceptibility of vulnerable neurons. In conclusion, this in-depth longitudinal transcriptomics analysis in SMA reveals novel cell type-specific changes that, alone and combined, present compelling targets, including Gdf15, for future gene therapy studies aimed toward preserving vulnerable motor neurons.
Collapse
Affiliation(s)
| | - Jik Nijssen
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Helena Storvall
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Laura Helen Comley
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ilary Allodi
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mirjam van der Lee
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Qiaolin Deng
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Rickard Sandberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
- Ludwig Institute for Cancer Research, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
28
|
Osman EY, Van Alstyne M, Yen PF, Lotti F, Feng Z, Ling KK, Ko CP, Pellizzoni L, Lorson CL. Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons. JCI Insight 2020; 5:130574. [PMID: 32516136 DOI: 10.1172/jci.insight.130574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. SMN has key functions in multiple RNA pathways, including the biogenesis of small nuclear ribonucleoproteins that are essential components of both major (U2-dependent) and minor (U12-dependent) spliceosomes. Here we investigated the specific contribution of U12 splicing dysfunction to SMA pathology through selective restoration of this RNA pathway in mouse models of varying phenotypic severity. We show that virus-mediated delivery of minor snRNA genes specifically improves select U12 splicing defects induced by SMN deficiency in cultured mammalian cells, as well as in the spinal cord and dorsal root ganglia of SMA mice without increasing SMN expression. This approach resulted in a moderate amelioration of several parameters of the disease phenotype in SMA mice, including survival, weight gain, and motor function. Importantly, minor snRNA gene delivery improved aberrant splicing of the U12 intron-containing gene Stasimon and rescued the severe loss of proprioceptive sensory synapses on SMA motor neurons, which are early signatures of motor circuit dysfunction in mouse models. Taken together, these findings establish the direct contribution of U12 splicing dysfunction to synaptic deafferentation and motor circuit pathology in SMA.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Pei-Fen Yen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Karen Ky Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Maccallini P, Bavasso F, Scatolini L, Bucciarelli E, Noviello G, Lisi V, Palumbo V, D'Angeli S, Cacchione S, Cenci G, Ciapponi L, Wakefield JG, Gatti M, Raffa GD. Intimate functional interactions between TGS1 and the Smn complex revealed by an analysis of the Drosophila eye development. PLoS Genet 2020; 16:e1008815. [PMID: 32453722 PMCID: PMC7289441 DOI: 10.1371/journal.pgen.1008815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/11/2020] [Accepted: 04/30/2020] [Indexed: 11/27/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a conserved enzyme that mediates formation of the trimethylguanosine cap on several RNAs, including snRNAs and telomerase RNA. Previous studies have shown that TGS1 binds the Survival Motor Neuron (SMN) protein, whose deficiency causes spinal muscular atrophy (SMA). Here, we analyzed the roles of the Drosophila orthologs of the human TGS1 and SMN genes. We show that the Drosophila TGS1 protein (dTgs1) physically interacts with all subunits of the Drosophila Smn complex (Smn, Gem2, Gem3, Gem4 and Gem5), and that a human TGS1 transgene rescues the mutant phenotype caused by dTgs1 loss. We demonstrate that both dTgs1 and Smn are required for viability of retinal progenitor cells and that downregulation of these genes leads to a reduced eye size. Importantly, overexpression of dTgs1 partially rescues the eye defects caused by Smn depletion, and vice versa. These results suggest that the Drosophila eye model can be exploited for screens aimed at the identification of genes and drugs that modify the phenotypes elicited by Tgs1 and Smn deficiency. These modifiers could help to understand the molecular mechanisms underlying SMA pathogenesis and devise new therapies for this genetic disease. We explored the functional relationships between TGS1 and SMN using Drosophila as model organism. TGS1 is an enzyme that modifies the structure of the 5’-end of several RNAs, including telomerase RNA and the small nuclear RNAs (snRNAs) that are required for messenger RNA maturation. The SMN protein regulates snRNAs biogenesis and mutations in human SMN cause Spinal Muscular Atrophy (SMA), a devastating disorder characterized by neurodegeneration, progressive paralysis and death. We show that mutations in the Drosophila TGS1 (dTgs1) gene cause lethality, which is rescued by a human TGS1 transgene. We also show that the dTgs1 protein physically interacts with all subunits of the Smn complex, and that downregulation of either dTgs1 or Smn leads to a reduced Drosophila eye size. Notably, overexpression of dTgs1 partially rescues the eye defects caused by Smn knockdown, and vice versa, indicating that these genes cooperate in eye development. These results suggest that the eye model can be exploited for screens aimed at detection of chemical and genetic modifiers of the eye mutant phenotype elicited by dTgs1 and Smn deficiency, providing new clues about SMA pathogenesis and potential therapies.
Collapse
Affiliation(s)
- Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | | | - Gemma Noviello
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Veronica Lisi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Simone D'Angeli
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, Rome, Italy
| | - Laura Ciapponi
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
| | - James G. Wakefield
- Biosciences/Living Systems Institute, College of Life and Environmental Sciences, University of Exeter, United Kingdom
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
- * E-mail: (MG); (GDR)
| | - Grazia Daniela Raffa
- Dipartimento di Biologia e Biotecnologie “C Darwin”, Sapienza University of Rome, Rome, Italy
- * E-mail: (MG); (GDR)
| |
Collapse
|
30
|
Nussbacher JK, Tabet R, Yeo GW, Lagier-Tourenne C. Disruption of RNA Metabolism in Neurological Diseases and Emerging Therapeutic Interventions. Neuron 2019; 102:294-320. [PMID: 30998900 DOI: 10.1016/j.neuron.2019.03.014] [Citation(s) in RCA: 184] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
Abstract
RNA binding proteins are critical to the maintenance of the transcriptome via controlled regulation of RNA processing and transport. Alterations of these proteins impact multiple steps of the RNA life cycle resulting in various molecular phenotypes such as aberrant RNA splicing, transport, and stability. Disruption of RNA binding proteins and widespread RNA processing defects are increasingly recognized as critical determinants of neurological diseases. Here, we describe distinct mechanisms by which the homeostasis of RNA binding proteins is compromised in neurological disorders through their reduced expression level, increased propensity to aggregate or sequestration by abnormal RNAs. These mechanisms all converge toward altered neuronal function highlighting the susceptibility of neurons to deleterious changes in RNA expression and the central role of RNA binding proteins in preserving neuronal integrity. Emerging therapeutic approaches to mitigate or reverse alterations of RNA binding proteins in neurological diseases are discussed.
Collapse
Affiliation(s)
- Julia K Nussbacher
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA
| | - Ricardos Tabet
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, Institute for Genomic Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA, USA.
| | - Clotilde Lagier-Tourenne
- Department of Neurology, The Sean M. Healey and AMG Center for ALS at Mass General, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
31
|
Osman EY, Bolding MR, Villalón E, Kaifer KA, Lorson ZC, Tisdale S, Hao Y, Conant GC, Pires JC, Pellizzoni L, Lorson CL. Functional characterization of SMN evolution in mouse models of SMA. Sci Rep 2019; 9:9472. [PMID: 31263170 PMCID: PMC6603021 DOI: 10.1038/s41598-019-45822-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/11/2019] [Indexed: 12/13/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a monogenic neurodegenerative disorder and the leading genetic cause of infantile mortality. While several functions have been ascribed to the SMN (survival motor neuron) protein, their specific contribution to the disease has yet to be fully elucidated. We hypothesized that some, but not all, SMN homologues would rescue the SMA phenotype in mouse models, thereby identifying disease-relevant domains. Using AAV9 to deliver Smn homologs to SMA mice, we identified a conservation threshold that marks the boundary at which homologs can rescue the SMA phenotype. Smn from Danio rerio and Xenopus laevis significantly prevent disease, whereas Smn from Drosophila melanogaster, Caenorhabditis elegans, and Schizosaccharomyces pombe was significantly less efficacious. This phenotypic rescue correlated with correction of RNA processing defects induced by SMN deficiency and neuromuscular junction pathology. Based upon the sequence conservation in the rescuing homologs, a minimal SMN construct was designed consisting of exons 2, 3, and 6, which showed a partial rescue of the SMA phenotype. While a significant extension in survival was observed, the absence of a complete rescue suggests that while the core conserved region is essential, additional sequences contribute to the overall ability of the SMN protein to rescue disease pathology.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Madeline R Bolding
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Eric Villalón
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Kevin A Kaifer
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Zachary C Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah Tisdale
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Yue Hao
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Gavin C Conant
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA.,Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.,Division of Biological Sciences, Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - J Chris Pires
- Department of Biological Sciences, Program in Genetics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, NY, 10032, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
32
|
Wang Y, Xu C, Ma L, Mou Y, Zhang B, Zhou S, Tian Y, Trinh J, Zhang X, Li XJ. Drug screening with human SMN2 reporter identifies SMN protein stabilizers to correct SMA pathology. Life Sci Alliance 2019; 2:2/2/e201800268. [PMID: 30910806 PMCID: PMC6435041 DOI: 10.26508/lsa.201800268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality, is caused by reduced levels of functional survival motor neuron (SMN) protein. To identify therapeutic agents for SMA, we established a versatile SMN2-GFP reporter line by targeting the human SMN2 gene. We then screened a compound library and identified Z-FA-FMK as a potent candidate. Z-FA-FMK, a cysteine protease inhibitor, increased functional SMN through inhibiting the protease-mediated degradation of both full-length and exon 7-deleted forms of SMN. Further studies reveal that CAPN1, CAPN7, CTSB, and CTSL mediate the degradation of SMN proteins, providing novel targets for SMA. Notably, Z-FA-FMK mitigated mitochondriopathy and neuropathy in SMA patient-derived motor neurons and showed protective effects in SMA animal model after intracerebroventricular injection. E64d, another cysteine protease inhibitor which can pass through the blood-brain barrier, showed even more potent therapeutic effects after subcutaneous delivery to SMA mice. Taken together, we have successfully established a human SMN2 reporter for future drug discovery and identified the potential therapeutic value of cysteine protease inhibitors in treating SMA via stabilizing SMN proteins.
Collapse
Affiliation(s)
- Yiran Wang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chongchong Xu
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Lin Ma
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University, School of Medicine, Shanghai, China
| | - Yongchao Mou
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA.,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Bowen Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanshan Zhou
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yue Tian
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jessica Trinh
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA
| | - Xiaoqing Zhang
- Brain and Spinal Cord Innovative Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China .,Key Laboratory of Reconstruction and Regeneration of Spine and Spinal Cord Injury, Ministry of Education, Shanghai, China.,Key Laboratory of Neuroregeneration of Shanghai Universities, Tongji University, School of Medicine, Shanghai, China.,Tsingtao Advanced Research Institute, Tongji University, Shanghai, China.,Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China.,Translational Medical Center for Stem Cell Therapy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xue-Jun Li
- Department of Biomedical Sciences, University of Illinois College of Medicine Rockford, Rockford, IL, USA .,Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Converging Mechanisms of p53 Activation Drive Motor Neuron Degeneration in Spinal Muscular Atrophy. Cell Rep 2019; 21:3767-3780. [PMID: 29281826 DOI: 10.1016/j.celrep.2017.12.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/09/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022] Open
Abstract
The hallmark of spinal muscular atrophy (SMA), an inherited disease caused by ubiquitous deficiency in the SMN protein, is the selective degeneration of subsets of spinal motor neurons. Here, we show that cell-autonomous activation of p53 occurs in vulnerable but not resistant motor neurons of SMA mice at pre-symptomatic stages. Moreover, pharmacological or genetic inhibition of p53 prevents motor neuron death, demonstrating that induction of p53 signaling drives neurodegeneration. At late disease stages, however, nuclear accumulation of p53 extends to resistant motor neurons and spinal interneurons but is not associated with cell death. Importantly, we identify phosphorylation of serine 18 as a specific post-translational modification of p53 that exclusively marks vulnerable SMA motor neurons and provide evidence that amino-terminal phosphorylation of p53 is required for the neurodegenerative process. Our findings indicate that distinct events induced by SMN deficiency converge on p53 to trigger selective death of vulnerable SMA motor neurons.
Collapse
|
34
|
Poirier A, Weetall M, Heinig K, Bucheli F, Schoenlein K, Alsenz J, Bassett S, Ullah M, Senn C, Ratni H, Naryshkin N, Paushkin S, Mueller L. Risdiplam distributes and increases SMN protein in both the central nervous system and peripheral organs. Pharmacol Res Perspect 2018; 6:e00447. [PMID: 30519476 PMCID: PMC6262736 DOI: 10.1002/prp2.447] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a rare, inherited neuromuscular disease caused by deletion and/or mutation of the Survival of Motor Neuron 1 (SMN1) gene. A second gene, SMN2, produces low levels of functional SMN protein that are insufficient to fully compensate for the lack of SMN1. Risdiplam (RG7916; RO7034067) is an orally administered, small-molecule SMN2 pre-mRNA splicing modifier that distributes into the central nervous system (CNS) and peripheral tissues. To further explore risdiplam distribution, we assessed in vitro characteristics and in vivo drug levels and effect of risdiplam on SMN protein expression in different tissues in animal models. Total drug levels were similar in plasma, muscle, and brain of mice (n = 90), rats (n = 148), and monkeys (n = 24). As expected mechanistically based on its high passive permeability and not being a human multidrug resistance protein 1 substrate, risdiplam CSF levels reflected free compound concentration in plasma in monkeys. Tissue distribution remained unchanged when monkeys received risdiplam once daily for 39 weeks. A parallel dose-dependent increase in SMN protein levels was seen in CNS and peripheral tissues in two SMA mouse models dosed with risdiplam. These in vitro and in vivo preclinical data strongly suggest that functional SMN protein increases seen in patients' blood following risdiplam treatment should reflect similar increases in functional SMN protein in the CNS, muscle, and other peripheral tissues.
Collapse
Affiliation(s)
- Agnès Poirier
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | | | - Katja Heinig
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Franz Bucheli
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Kerstin Schoenlein
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Jochem Alsenz
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Simon Bassett
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Mohammed Ullah
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Claudia Senn
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | - Hasane Ratni
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| | | | | | - Lutz Mueller
- Roche Pharma Research and Early DevelopmentRoche Innovation CenterBaselSwitzerland
| |
Collapse
|
35
|
Abstract
Autosomal-recessive proximal spinal muscular atrophy (Werdnig-Hoffmann, Kugelberg-Welander) is caused by mutation of the SMN1 gene, and the clinical severity correlates with the number of copies of a nearly identical gene, SMN2. The SMN protein plays a critical role in spliceosome assembly and may have other cellular functions, such as mRNA transport. Cell culture and animal models have helped to define the disease mechanism and to identify targets for therapeutic intervention. The main focus for developing treatment has been to increase SMN levels, and accomplishing this with small molecules, oligonucleotides, and gene replacement has been quite. An oligonucleotide, nusinersen, was recently approved for treatment in patients, and confirmatory studies of other agents are now under way.
Collapse
Affiliation(s)
- Eveline S Arnold
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
36
|
Beattie CE, Kolb SJ. Spinal muscular atrophy: Selective motor neuron loss and global defect in the assembly of ribonucleoproteins. Brain Res 2018; 1693:92-97. [DOI: 10.1016/j.brainres.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/10/2018] [Accepted: 02/15/2018] [Indexed: 12/13/2022]
|
37
|
Van Alstyne M, Simon CM, Sardi SP, Shihabuddin LS, Mentis GZ, Pellizzoni L. Dysregulation of Mdm2 and Mdm4 alternative splicing underlies motor neuron death in spinal muscular atrophy. Genes Dev 2018; 32:1045-1059. [PMID: 30012555 PMCID: PMC6075148 DOI: 10.1101/gad.316059.118] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 05/24/2018] [Indexed: 12/01/2022]
Abstract
Van Alstyne et al. show that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration. Ubiquitous deficiency in the survival motor neuron (SMN) protein causes death of motor neurons—a hallmark of the neurodegenerative disease spinal muscular atrophy (SMA)—through poorly understood mechanisms. Here, we show that the function of SMN in the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs) regulates alternative splicing of Mdm2 and Mdm4, two nonredundant repressors of p53. Decreased inclusion of critical Mdm2 and Mdm4 exons is most prominent in SMA motor neurons and correlates with both snRNP reduction and p53 activation in vivo. Importantly, increased skipping of Mdm2 and Mdm4 exons regulated by SMN is necessary and sufficient to synergistically elicit robust p53 activation in wild-type mice. Conversely, restoration of full-length Mdm2 and Mdm4 suppresses p53 induction and motor neuron degeneration in SMA mice. These findings reveal that loss of SMN-dependent regulation of Mdm2 and Mdm4 alternative splicing underlies p53-mediated death of motor neurons in SMA, establishing a causal link between snRNP dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - Christian M Simon
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| | - S Pablo Sardi
- Neuroscience Therapeutic Area, Sanofi, Framingham, Massachusetts 01701, USA
| | | | - George Z Mentis
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.,Department of Neurology, Columbia University, New York, New York 10032, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, New York, New York 10032, USA.,Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
38
|
Jha NN, Kim JK, Monani UR. Motor neuron biology and disease: A current perspective on infantile-onset spinal muscular atrophy. FUTURE NEUROLOGY 2018; 13:161-172. [PMID: 31396020 DOI: 10.2217/fnl-2018-0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Infantile-onset spinal muscular atrophy (SMA) is a prototypical disease in which to investigate selective neurodegenerative phenotypes. Caused by low levels of the ubiquitously expressed Survival Motor Neuron (SMN) protein, the disease mainly targets the spinal motor neurons. This selective phenotype remains largely unexplained, but has not hindered the development of SMN repletion as a means to a treatment. Here we chronicle recent advances in the area of SMA biology. We provide a brief background to the disease, highlight major advances that have shaped our current understanding of SMA, trace efforts to treat the condition, discuss the outcome of two promising new therapies and conclude by considering contemporary as well as new challenges stemming from recent successes within the field.
Collapse
Affiliation(s)
- Narendra N Jha
- Department of Pathology & Cell Biology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Center for Motor Neuron Biology & Disease, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032
| | - Jeong-Ki Kim
- Department of Pathology & Cell Biology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Center for Motor Neuron Biology & Disease, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032
| | - Umrao R Monani
- Department of Pathology & Cell Biology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Department of Neurology, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032.,Center for Motor Neuron Biology & Disease, 630 W. 168 St., Columbia University Medical Center, New York, NY 10032
| |
Collapse
|
39
|
Lafarga V, Tapia O, Sharma S, Bengoechea R, Stoecklin G, Lafarga M, Berciano MT. CBP-mediated SMN acetylation modulates Cajal body biogenesis and the cytoplasmic targeting of SMN. Cell Mol Life Sci 2018; 75:527-546. [PMID: 28879433 PMCID: PMC11105684 DOI: 10.1007/s00018-017-2638-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/09/2017] [Accepted: 08/29/2017] [Indexed: 01/12/2023]
Abstract
The survival of motor neuron (SMN) protein plays an essential role in the biogenesis of spliceosomal snRNPs and the molecular assembly of Cajal bodies (CBs). Deletion of or mutations in the SMN1 gene cause spinal muscular atrophy (SMA) with degeneration and loss of motor neurons. Reduced SMN levels in SMA lead to deficient snRNP biogenesis with consequent splicing pathology. Here, we demonstrate that SMN is a novel and specific target of the acetyltransferase CBP (CREB-binding protein). Furthermore, we identify lysine (K) 119 as the main acetylation site in SMN. Importantly, SMN acetylation enhances its cytoplasmic localization, causes depletion of CBs, and reduces the accumulation of snRNPs in nuclear speckles. In contrast, the acetylation-deficient SMNK119R mutant promotes formation of CBs and a novel category of promyelocytic leukemia (PML) bodies enriched in this protein. Acetylation increases the half-life of SMN protein, reduces its cytoplasmic diffusion rate and modifies its interactome. Hence, SMN acetylation leads to its dysfunction, which explains the ineffectiveness of HDAC (histone deacetylases) inhibitors in SMA therapy despite their potential to increase SMN levels.
Collapse
Affiliation(s)
- Vanesa Lafarga
- Laboratory of Genomic Instability, "Centro Nacional de Investigaciones Oncológicas" (CNIO), 28024, Madrid, Spain
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Olga Tapia
- Department of Anatomy and Cell Biology, "Centro de Investigación en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria-IDIVAL, 39011, Santander, Spain
| | - Sahil Sharma
- Department of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 68167, Mannheim, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167, Mannheim, Germany
| | - Rocio Bengoechea
- Department of Neurology, The Hope Center for Neurological Diseases, School of Medicine of Washington University, St. Louis, 63110, USA
| | - Georg Stoecklin
- Department of Biochemistry, Center for Biomedicine and Medical Technology Mannheim (CBTM), Medical Faculty Mannheim, Heidelberg University, 68167, Mannheim, Germany
- Center for Molecular Biology of Heidelberg University (ZMBH), 68167, Mannheim, Germany
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, 68167, Mannheim, Germany
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, "Centro de Investigación en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria-IDIVAL, 39011, Santander, Spain
| | - Maria T Berciano
- Department of Anatomy and Cell Biology, "Centro de Investigación en Red de Enfermedades Neurodegenerativas" (CIBERNED), University of Cantabria-IDIVAL, 39011, Santander, Spain.
| |
Collapse
|
40
|
Abstract
Neurodegeneration is a leading cause of death in the developed world and a natural, albeit unfortunate, consequence of longer-lived populations. Despite great demand for therapeutic intervention, it is often the case that these diseases are insufficiently understood at the basic molecular level. What little is known has prompted much hopeful speculation about a generalized mechanistic thread that ties these disparate conditions together at the subcellular level and can be exploited for broad curative benefit. In this review, we discuss a prominent theory supported by genetic and pathological changes in an array of neurodegenerative diseases: that neurons are particularly vulnerable to disruption of RNA-binding protein dosage and dynamics. Here we synthesize the progress made at the clinical, genetic, and biophysical levels and conclude that this perspective offers the most parsimonious explanation for these mysterious diseases. Where appropriate, we highlight the reciprocal benefits of cross-disciplinary collaboration between disease specialists and RNA biologists as we envision a future in which neurodegeneration declines and our understanding of the broad importance of RNA processing deepens.
Collapse
Affiliation(s)
- Erin G Conlon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
41
|
Functional interaction between FUS and SMN underlies SMA-like splicing changes in wild-type hFUS mice. Sci Rep 2017; 7:2033. [PMID: 28515487 PMCID: PMC5435706 DOI: 10.1038/s41598-017-02195-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/06/2017] [Indexed: 12/18/2022] Open
Abstract
Several of the identified genetic factors in Amyotrophic Lateral Sclerosis (ALS) point to dysfunction in RNA processing as a major pathogenic mechanism. However, whether a precise RNA pathway is particularly affected remains unknown. Evidence suggests that FUS, that is mutated in familial ALS, and SMN, the causative factor in Spinal Muscular Atrophy (SMA), cooperate to the same molecular pathway, i.e. regulation of alternative splicing, and that disturbances in SMN-regulated functions, either caused by depletion of SMN protein (as in the case of SMA) or by pathogenic interactions between FUS and SMN (as in the case of ALS) might be a common theme in both diseases. In this work, we followed these leads and tested their pathogenic relevance in vivo. FUS-associated ALS recapitulates, in transgenic mice, crucial molecular features that characterise mouse models of SMA, including defects in snRNPs distribution and in the alternative splicing of genes important for motor neurons. Notably, altering SMN levels by haploinsufficiency or overexpression does not impact the phenotypes of mouse or Drosophila models of FUS-mediated toxicity. Overall, these findings suggest that FUS and SMN functionally interact and that FUS may act downstream of SMN-regulated snRNP assembly in the regulation of alternative splicing and gene expression.
Collapse
|
42
|
Di Giorgio ML, Esposito A, Maccallini P, Micheli E, Bavasso F, Gallotta I, Vernì F, Feiguin F, Cacchione S, McCabe BD, Di Schiavi E, Raffa GD. WDR79/TCAB1 plays a conserved role in the control of locomotion and ameliorates phenotypic defects in SMA models. Neurobiol Dis 2017; 105:42-50. [PMID: 28502804 DOI: 10.1016/j.nbd.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/19/2017] [Accepted: 05/10/2017] [Indexed: 12/22/2022] Open
Abstract
SMN (Survival Motor Neuron) deficiency is the predominant cause of spinal muscular atrophy (SMA), a severe neurodegenerative disorder that can lead to progressive paralysis and death. Although SMN is required in every cell for proper RNA metabolism, the reason why its loss is especially critical in the motor system is still unclear. SMA genetic models have been employed to identify several modifiers that can ameliorate the deficits induced by SMN depletion. Here we focus on WDR79/TCAB1, a protein important for the biogenesis of several RNA species that has been shown to physically interact with SMN in human cells. We show that WDR79 depletion results in locomotion defects in both Drosophila and Caenorhabditis elegans similar to those elicited by SMN depletion. Consistent with this observation, we find that SMN overexpression rescues the WDR79 loss-of-function phenotype in flies. Most importantly, we also found that WDR79 overexpression ameliorates the locomotion defects induced by SMN depletion in both flies and worms. Our results collectively suggest that WDR79 and SMN play evolutionarily conserved cooperative functions in the nervous system and suggest that WDR79/TCAB1 may have the potential to modify SMA pathogenesis.
Collapse
Affiliation(s)
- Maria Laura Di Giorgio
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | - Paolo Maccallini
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Emanuela Micheli
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Francesca Bavasso
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Ivan Gallotta
- Institute of Genetics and Biophysics - ABT, CNR, Naples, Italy
| | - Fiammetta Vernì
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | - Fabian Feiguin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Stefano Cacchione
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy
| | | | - Elia Di Schiavi
- Institute of Genetics and Biophysics - ABT, CNR, Naples, Italy; Institute of Bioscience and Bioresources, CNR, Naples, Italy
| | - Grazia Daniela Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
43
|
Farrelly-Rosch A, Lau CL, Patil N, Turner BJ, Shabanpoor F. Combination of valproic acid and morpholino splice-switching oligonucleotide produces improved outcomes in spinal muscular atrophy patient-derived fibroblasts. Neurochem Int 2017; 108:213-221. [PMID: 28389270 DOI: 10.1016/j.neuint.2017.02.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/22/2017] [Accepted: 02/24/2017] [Indexed: 12/16/2022]
Abstract
Spinal muscular atrophy (SMA), the leading genetic cause of infant mortality worldwide, is characterised by the homozygous loss of the survival motor neuron 1 (SMN1) gene. The consequent degeneration of spinal motor neurons and progressive atrophy of voluntary muscle groups results in paralysis and eventually premature infantile death. Humans possess a second nearly identical copy of SMN1, known as SMN2. However, SMN2 produces only 10-20% functional SMN protein due to aberrant splicing of its pre-mRNA that leads to the exclusion of exon 7. This level of SMN is insufficient to rescue the phenotype. Recently developed splice-switching antisense oligonuclotides (SSO) have shown great promise in correcting the aberrant splicing of SMN2 towards producing functional SMN protein. Several FDA approved drugs are being repurposed for SMA treatment including valproic acid (VPA), a histone deacetylase inhibitor, which has been shown to increase overall SMN2 expression. In this study, we have characterised the effects of single and combined treatment of VPA and a SSO based on phosphorodiamidate morpholino oligomer (PMO) chemistry. We conjugated both VPA and PMO to a single cell-penetrating peptide (Apolipoprotein E (ApoE)) for their simultaneous intracellular delivery. Treatment of SMA Type I patient-derived fibroblasts with the conjugates showed no additive increase in the level of full-length SMN2 mRNA expression over both 4 and 16 h treatments indicating that conjugation of VPA to ApoE-PMO has limited benefit. However, treatment with a combination of VPA and ApoE-PMO induced more favourable splice switching activity than either agent alone, promoting exon 7 inclusion in SMN2 transcripts. Our results suggest that combination therapy of VPA and ApoE-PMO is superior in upregulating SMN2 production in vitro, as compared to singular treatment of each compound at both transcriptional and protein levels. This study provides the first indication of a novel dual therapy approach for the potential treatment of SMA.
Collapse
Affiliation(s)
- Anna Farrelly-Rosch
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Chew Ling Lau
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Nitin Patil
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3052, Australia; School of Chemistry, University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
44
|
Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett CF, Rigo F, Krainer AR, Hurt JA, Carulli JP, Staropoli JF. SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci U S A 2017; 114:E2347-E2356. [PMID: 28270613 PMCID: PMC5373344 DOI: 10.1073/pnas.1613181114] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spinal muscular atrophy (SMA), an autosomal recessive neuromuscular disease, is the leading monogenic cause of infant mortality. Homozygous loss of the gene survival of motor neuron 1 (SMN1) causes the selective degeneration of lower motor neurons and subsequent atrophy of proximal skeletal muscles. The SMN1 protein product, survival of motor neuron (SMN), is ubiquitously expressed and is a key factor in the assembly of the core splicing machinery. The molecular mechanisms by which disruption of the broad functions of SMN leads to neurodegeneration remain unclear. We used an antisense oligonucleotide (ASO)-based inducible mouse model of SMA to investigate the SMN-specific transcriptome changes associated with neurodegeneration. We found evidence of widespread intron retention, particularly of minor U12 introns, in the spinal cord of mice 30 d after SMA induction, which was then rescued by a therapeutic ASO. Intron retention was concomitant with a strong induction of the p53 pathway and DNA damage response, manifesting as γ-H2A.X positivity in neurons of the spinal cord and brain. Widespread intron retention and markers of the DNA damage response were also observed with SMN depletion in human SH-SY5Y neuroblastoma cells and human induced pluripotent stem cell-derived motor neurons. We also found that retained introns, high in GC content, served as substrates for the formation of transcriptional R-loops. We propose that defects in intron removal in SMA promote DNA damage in part through the formation of RNA:DNA hybrid structures, leading to motor neuron death.
Collapse
Affiliation(s)
- Mohini Jangi
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Christina Fleet
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Patrick Cullen
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - Shipra V Gupta
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | | | - Eric Chiao
- Stem Cell Research, Biogen, Cambridge, MA 02142
| | - Norm Allaire
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - C Frank Bennett
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92008
| | - Frank Rigo
- Neuroscience Drug Discovery, Ionis Pharmaceuticals, Carlsbad, CA 92008
| | | | - Jessica A Hurt
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142
| | - John P Carulli
- Computational Biology & Genomics, Biogen, Cambridge, MA 02142;
| | | |
Collapse
|
45
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
46
|
Doktor TK, Hua Y, Andersen HS, Brøner S, Liu YH, Wieckowska A, Dembic M, Bruun GH, Krainer AR, Andresen BS. RNA-sequencing of a mouse-model of spinal muscular atrophy reveals tissue-wide changes in splicing of U12-dependent introns. Nucleic Acids Res 2016; 45:395-416. [PMID: 27557711 PMCID: PMC5224493 DOI: 10.1093/nar/gkw731] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 11/21/2022] Open
Abstract
Spinal Muscular Atrophy (SMA) is a neuromuscular disorder caused by insufficient levels of the Survival of Motor Neuron (SMN) protein. SMN is expressed ubiquitously and functions in RNA processing pathways that include trafficking of mRNA and assembly of snRNP complexes. Importantly, SMA severity is correlated with decreased snRNP assembly activity. In particular, the minor spliceosomal snRNPs are affected, and some U12-dependent introns have been reported to be aberrantly spliced in patient cells and animal models. SMA is characterized by loss of motor neurons, but the underlying mechanism is largely unknown. It is likely that aberrant splicing of genes expressed in motor neurons is involved in SMA pathogenesis, but increasing evidence indicates that pathologies also exist in other tissues. We present here a comprehensive RNA-seq study that covers multiple tissues in an SMA mouse model. We show elevated U12-intron retention in all examined tissues from SMA mice, and that U12-dependent intron retention is induced upon siRNA knock-down of SMN in HeLa cells. Furthermore, we show that retention of U12-dependent introns is mitigated by ASO treatment of SMA mice and that many transcriptional changes are reversed. Finally, we report on missplicing of several Ca2+ channel genes that may explain disrupted Ca2+ homeostasis in SMA and activation of Cdk5.
Collapse
Affiliation(s)
- Thomas Koed Doktor
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Yimin Hua
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Henriette Skovgaard Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Sabrina Brøner
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Ying Hsiu Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Anna Wieckowska
- Department of Gamete and Embryo Biology, Division of Reproductive Biology, Institute of Animal Reproduction and Food Research of Polish Academy of Sciences, 10-243 Olsztyn, Poland
| | - Maja Dembic
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Gitte Hoffmann Bruun
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark.,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| | - Adrian R Krainer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Brage Storstein Andresen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark .,The Villum Center for Bioanalytical Sciences, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
47
|
Transcriptional enhancement of Smn levels in motoneurons is crucial for proper axon morphology in zebrafish. Sci Rep 2016; 6:27470. [PMID: 27273160 PMCID: PMC4895340 DOI: 10.1038/srep27470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
Abstract
An unresolved mystery in the field of spinal muscular atrophy (SMA) is why a reduction of the ubiquitously expressed Smn protein causes defects mostly in motoneurons. We addressed the possibility that this restricted vulnerability stems from elevated Smn expression in motoneurons. To explore this, we established an ex vivo zebrafish culture system of GFP-marked motoneurons to quantitatively measure Smn protein and smn mRNA levels as well as promoter activity in motoneurons versus other cell types. Importantly, we uncovered that Smn levels are elevated in motoneurons by means of transcriptional activation. In addition, we identified the ETS family transcription factor Etv5b to be responsible for increased smn transcription in motoneurons. Moreover, we established that the additional supply of Smn protein in motoneurons is necessary for proper axonogenesis in a cell-autonomous manner. These findings demonstrate the reliance of motoneurons on more Smn, thereby adding a novel piece of evidence for their increased vulnerability under SMA conditions.
Collapse
|
48
|
Lin TL, Chen TH, Hsu YY, Cheng YH, Juang BT, Jong YJ. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides. PLoS One 2016; 11:e0154723. [PMID: 27124114 PMCID: PMC4849667 DOI: 10.1371/journal.pone.0154723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/18/2016] [Indexed: 11/27/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies.
Collapse
Affiliation(s)
- Te-Lin Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Heng Chen
- Division of Pediatric Emergency, Department of Emergency, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Yun Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hua Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Departments of Pediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Zhao X, Feng Z, Ling KKY, Mollin A, Sheedy J, Yeh S, Petruska J, Narasimhan J, Dakka A, Welch EM, Karp G, Chen KS, Metzger F, Ratni H, Lotti F, Tisdale S, Naryshkin NA, Pellizzoni L, Paushkin S, Ko CP, Weetall M. Pharmacokinetics, pharmacodynamics, and efficacy of a small-molecule SMN2 splicing modifier in mouse models of spinal muscular atrophy. Hum Mol Genet 2016; 25:1885-1899. [PMID: 26931466 PMCID: PMC5062580 DOI: 10.1093/hmg/ddw062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/22/2016] [Indexed: 12/26/2022] Open
Abstract
Spinal muscular atrophy (SMA) is caused by the loss or mutation of both copies of the survival motor neuron 1 (SMN1) gene. The related SMN2 gene is retained, but due to alternative splicing of exon 7, produces insufficient levels of the SMN protein. Here, we systematically characterize the pharmacokinetic and pharmacodynamics properties of the SMN splicing modifier SMN-C1. SMN-C1 is a low-molecular weight compound that promotes the inclusion of exon 7 and increases production of SMN protein in human cells and in two transgenic mouse models of SMA. Furthermore, increases in SMN protein levels in peripheral blood mononuclear cells and skin correlate with those in the central nervous system (CNS), indicating that a change of these levels in blood or skin can be used as a non-invasive surrogate to monitor increases of SMN protein levels in the CNS. Consistent with restored SMN function, SMN-C1 treatment increases the levels of spliceosomal and U7 small-nuclear RNAs and corrects RNA processing defects induced by SMN deficiency in the spinal cord of SMNΔ7 SMA mice. A 100% or greater increase in SMN protein in the CNS of SMNΔ7 SMA mice robustly improves the phenotype. Importantly, a ∼50% increase in SMN leads to long-term survival, but the SMA phenotype is only partially corrected, indicating that certain SMA disease manifestations may respond to treatment at lower doses. Overall, we provide important insights for the translation of pre-clinical data to the clinic and further therapeutic development of this series of molecules for SMA treatment.
Collapse
Affiliation(s)
- Xin Zhao
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Zhihua Feng
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Karen K Y Ling
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA
| | - Anna Mollin
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | - Shirley Yeh
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | | | | | - Amal Dakka
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Ellen M Welch
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Gary Karp
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA
| | - Karen S Chen
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Friedrich Metzger
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Hasane Ratni
- F. Hoffmann-La Roche, Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland
| | - Francesco Lotti
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | - Sarah Tisdale
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | | | - Livio Pellizzoni
- Department of Pathology and Cell Biology, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA and
| | - Sergey Paushkin
- SMA Foundation, 888 Seventh Avenue, Suite 400, New York, NY 10019, USA
| | - Chien-Ping Ko
- Department of Biological Sciences, Section of Neurobiology, University of Southern California, Los Angeles, CA 90089, USA,
| | - Marla Weetall
- PTC Therapeutics, Inc., South Plainfield, NJ 07080, USA,
| |
Collapse
|
50
|
Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype. Clin Ther 2016; 36:340-56.e5. [PMID: 24636820 DOI: 10.1016/j.clinthera.2014.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 01/22/2014] [Accepted: 02/07/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is a fatal motor neuron disease of childhood that is caused by mutations in the SMN1 gene. Currently, no effective treatment is available. One possible therapeutic approach is the use of antisense oligos (ASOs) to redirect the splicing of the paralogous gene SMN2, thus increasing functional SMN protein production. Various ASOs with different chemical properties are suitable for these applications, including a morpholino oligomer (MO) variant with a particularly excellent safety and efficacy profile. OBJECTIVE We investigated a 25-nt MO sequence targeting the negative intronic splicing silencer (ISS-N1) 10 to 34 region. METHODS We administered a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) in the SMAΔ7 mouse model and evaluated the effect and neuropathologic phenotype. We tested different concentrations (from 2 to 24 nM) and delivery protocols (intracerebroventricular injection, systemic injection, or both). We evaluated the treatment efficacy regarding SMN levels, survival, neuromuscular phenotype, and neuropathologic features. RESULTS We found that a 25-nt MO sequence against the ISS-N1 region of SMN2 (HSMN2Ex7D[-10-34]) exhibited superior efficacy in transgenic SMAΔ7 mice compared with previously described sequences. In our experiments, the combination of local and systemic administration of MO (bare or conjugated to octaguanidine) was the most effective approach for increasing full-length SMN expression, leading to robust improvement in neuropathologic features and survival. Moreover, we found that several small nuclear RNAs were deregulated in SMA mice and that their levels were restored by MO treatment. CONCLUSION These results indicate that MO-mediated SMA therapy is efficacious and can result in phenotypic rescue, providing important insights for further development of ASO-based therapeutic strategies in SMA patients.
Collapse
|